1
|
Chang JWC, Hsieh JJ, Tsai CY, Chiu HY, Lin YF, Wu CE, Shen YC, Hou MM, Chang CY, Chen JA, Chen CL, Chiu CT, Yeh YM, Chiu CH. Gut microbiota and clinical response to immune checkpoint inhibitor therapy in patients with advanced cancer. Biomed J 2024; 47:100698. [PMID: 38280521 PMCID: PMC11399570 DOI: 10.1016/j.bj.2024.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND There is currently no well-accepted consensus on the association between gut microbiota and the response to treatment of immune checkpoint inhibitors (ICIs) in patients with advanced cancer. METHODS Fecal samples were collected before ICI treatment. Gut microbiota was analyzed using 16 S ribosomal RNA sequencing. We investigated the relationship between the α-diversity of fecal microbiota and patients' clinical outcomes. Microbiota profiles from patients and healthy controls were determined. Pre-treatment serum was examined by cytokine array. RESULTS We analyzed 74 patients, including 42 with melanoma, 8 with kidney cancer, 13 with lung cancer, and 11 with other cancers. Combination therapy of anti-PD1 and anti-CTLA-4 was used in 14 patients, and monotherapy in the rest. Clinical benefit was observed in 35 (47.3 %) cases, including 2 complete responses, 16 partial responses, and 17 stable diseases according to RECIST criteria. No significant difference in α-diversity was found between the benefiter and non-benefiter groups. However, patients with α-diversity within the range of our healthy control had a significantly longer median overall survival (18.9 months), compared to the abnormal group (8.2 months) (p = 0.041, hazard ratio = 0.546) for all patients. The microbiota composition of the benefiters was similar to that of healthy individuals. Furthermore, specific bacteria, such as Prevotella copri and Faecalibacterium prausnitzii, were associated with a favorable outcome. We also observed that serum IL-18 before treatment was significantly lower in the benefiters, compared to non-benefiters. CONCLUSIONS The α-diversity of gut microbiota is positively correlated with more prolonged overall survival in cancer patients following ICI therapy.
Collapse
Affiliation(s)
- John Wen-Cheng Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Immuno-Oncology Center of Excellence, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Juan Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Yu Tsai
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Horng-Yih Chiu
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yu-Feng Lin
- Immuno-Oncology Center of Excellence, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Immuno-Oncology Center of Excellence, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chi Shen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Mo Hou
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Immuno-Oncology Center of Excellence, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chieh-Ying Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jian-An Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Microbiology and Immunology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Tang Chiu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Feng P, Zhang Y, Zhao Y, Zhao P, Li E. Combined repetitive transcranial magnetic stimulation and gut microbiota modulation through the gut-brain axis for prevention and treatment of autism spectrum disorder. Front Immunol 2024; 15:1341404. [PMID: 38455067 PMCID: PMC10918007 DOI: 10.3389/fimmu.2024.1341404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions characterized by enduring impairments in social communication and interaction together with restricted repetitive behaviors, interests, and activities. No targeted pharmacological or physical interventions are currently available for ASD. However, emerging evidence has indicated a potential association between the development of ASD and dysregulation of the gut-brain axis. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive diagnostic and therapeutic approach, has demonstrated positive outcomes in diverse psychiatric disorders; however, its efficacy in treating ASD and its accompanying gastrointestinal effects, particularly the effects on the gut-brain axis, remain unclear. Hence, this review aimed to thoroughly examine the existing research on the application of rTMS in the treatment of ASD. Additionally, the review explored the interplay between rTMS and the gut microbiota in children with ASD, focusing on the gut-brain axis. Furthermore, the review delved into the integration of rTMS and gut microbiota modulation as a targeted approach for ASD treatment based on recent literature. This review emphasizes the potential synergistic effects of rTMS and gut microbiota interventions, describes the underlying mechanisms, and proposes a potential therapeutic strategy for specific subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The American Psychiatric Association, Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghong Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Tang H, Chen X, Huang S, Yin G, Wang X, Shen G. Targeting the gut-microbiota-brain axis in irritable bowel disease to improve cognitive function - recent knowledge and emerging therapeutic opportunities. Rev Neurosci 2023; 34:763-773. [PMID: 36757367 DOI: 10.1515/revneuro-2022-0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023]
Abstract
The brain-gut axis forms a bidirectional communication system between the gastrointestinal (GI) tract and cognitive brain areas. Disturbances to this system in disease states such as inflammatory bowel disease have consequences for neuronal activity and subsequent cognitive function. The gut-microbiota-brain axis refers to the communication between gut-resident bacteria and the brain. This circuits exists to detect gut microorganisms and relay information to specific areas of the central nervous system (CNS) that in turn, regulate gut physiology. Changes in both the stability and diversity of the gut microbiota have been implicated in several neuronal disorders, including depression, autism spectrum disorder Parkinson's disease, Alzheimer's disease and multiple sclerosis. Correcting this imbalance with medicinal herbs, the metabolic products of dysregulated bacteria and probiotics have shown hope for the treatment of these neuronal disorders. In this review, we focus on recent advances in our understanding of the intricate connections between the gut-microbiota and the brain. We discuss the contribution of gut microbiota to neuronal disorders and the tangible links between diseases of the GI tract with cognitive function and behaviour. In this regard, we focus on irritable bowel syndrome (IBS) given its strong links to brain function and anxiety disorders. This adds to the growing body of evidence supporting targeted therapeutic strategies to modulate the gut microbiota for the treatment of brain/mental-health-related disease.
Collapse
Affiliation(s)
- Heyong Tang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Xiaoqi Chen
- School of Acupuncture and Massage, Anhui University of Chinese Medicine, 230012 Hefei, Anhui, China
| | - Shun Huang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Gang Yin
- Xin'an School, Anhui University of Chinese Medicine, 230012 Hefei, Anhui, China
| | - Xiyang Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Guoming Shen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| |
Collapse
|
4
|
de Castro JM, de Freitas JS, Stein DJ, de Macedo IC, Caumo W, Torres ILS. Transcranial Direct Current Stimulation (tDCS) Promotes state-dependent Effects on Neuroinflammatory and Behavioral Parameters in rats Chronically Exposed to Stress and a Hyper-Palatable Diet. Neurochem Res 2023; 48:3042-3054. [PMID: 37326900 DOI: 10.1007/s11064-023-03965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Chronic stress is a common condition affecting health, often associated with unhealthy eating habits. Transcranial direct current stimulation (tDCS) has been proposed to address these issues. Thus, this research investigated the effects of tDCS on biometric, behavioral, and neurochemical parameters in chronically stressed rats fed a hyper-palatable cafeteria diet (CAFD). The study lasted 8 weeks, with CAFD exposure and/or chronic restraint stress model (CRS - 1 h/day, 5 days/week, for 7 weeks) started concurrently. tDCS or sham sessions were applied between days 42 and 49 (0.5 mA, 20 min/day). CAFD increased body weight, caloric consumption, adiposity, and liver weight. It also altered central parameters, reducing anxiety and cortical levels of IL-10 and BDNF. In turn, the CRS resulted in increased adrenals in rats with standard diet (SD), and anxiety-like and anhedonic behaviors in rats with CAFD. tDCS provided neurochemical shifts in CAFD-fed stressed rats increasing central levels of TNF-α and IL-10, while in stressed rats SD-fed induced a decrease in the adrenals weight, relative visceral adiposity, and serum NPY levels. These data demonstrated the anxiolytic effect of CAFD and anxiogenic effect of stress in CAFD-fed animals. In addition, tDCS promoted state-dependent effects on neuroinflammatory and behavioral parameters in rats chronically exposed to stress and a hyper-palatable diet. These findings provide primary evidence for additional mechanistic and preclinical studies of the tDCS technique for stress-related eating disorders, envisioning clinical applicability.
Collapse
Affiliation(s)
- Josimar Macedo de Castro
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Investigations - Hospital de Clínicas de Porto Alegre - HCPA, Porto Alegre, RS, Brazil
- Nucleus of Pain Pharmacology and Neuromodulation - HCPA, RS, Porto Alegre, Brazil
- Animal Experimentation Unit and Research and Postgraduate Group - HCPA, Porto Alegre, RS, Brazil
| | - Joice Soares de Freitas
- Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Investigations - Hospital de Clínicas de Porto Alegre - HCPA, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Investigations - Hospital de Clínicas de Porto Alegre - HCPA, Porto Alegre, RS, Brazil
- Nucleus of Pain Pharmacology and Neuromodulation - HCPA, RS, Porto Alegre, Brazil
- Animal Experimentation Unit and Research and Postgraduate Group - HCPA, Porto Alegre, RS, Brazil
| | - Isabel Cristina de Macedo
- Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Investigations - Hospital de Clínicas de Porto Alegre - HCPA, Porto Alegre, RS, Brazil
- Nucleus of Pain Pharmacology and Neuromodulation - HCPA, RS, Porto Alegre, Brazil
| | - Wolnei Caumo
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Nucleus of Pain Pharmacology and Neuromodulation - HCPA, RS, Porto Alegre, Brazil
| | - Iraci L S Torres
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Investigations - Hospital de Clínicas de Porto Alegre - HCPA, Porto Alegre, RS, Brazil.
- Nucleus of Pain Pharmacology and Neuromodulation - HCPA, RS, Porto Alegre, Brazil.
- Animal Experimentation Unit and Research and Postgraduate Group - HCPA, Porto Alegre, RS, Brazil.
- Hospital de Clínicas de Porto Alegre - HCPA, Rua Ramiro Barcelos, n. 2350. Bairro Santa Cecília 90035-903, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Ziomber-Lisiak A, Piana K, Ostachowicz B, Wróbel P, Kasprzyk P, Kaszuba-Zwoińska J, Baranowska-Chowaniec A, Juszczak K, Szczerbowska-Boruchowska M. The New Markers of Early Obesity-Related Organ and Metabolic Abnormalities. Int J Mol Sci 2022; 23:13437. [PMID: 36362225 PMCID: PMC9658002 DOI: 10.3390/ijms232113437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 12/25/2023] Open
Abstract
The objective of our study was to identify new markers related to excessive body adiposity and its early consequences. For this purpose we determined serum FGF-19 and FGF-21 concentrations in obese rats, whose role in the pathogenesis of obesity is not yet established. In addition, a total reflection X-ray fluorescence technique was applied to determine the elemental chemistry of certain tissues affected by obesity. Next, the new biochemical and molecular parameters were correlated with well-known obesity-related markers of metabolic abnormalities. Our obese rats were characterized by increased calorie consumption and body adiposity, hypercholesterolemia, elevated levels of liver enzymes and FGF-21, while the level of FGF-19 was reduced. Strong relationships between new hormones and established metabolic parameters were observed. Furthermore, we demonstrated that obesity had the greatest effect on elemental composition in the adipose tissue and liver and that rubidium (Rb) had the highest importance in distinguishing the studied groups of animals. Tissue Rb strongly correlated with both well-known and new markers of obesity. In conclusion, we confirmed serum FGF-19 and FGF-21 as useful new markers of obesity-related metabolic alternations and we robustly propose Rb as a novel indicator of excessive body adiposity and its early consequences. However, further investigations are encouraged to address this clinical issue.
Collapse
Affiliation(s)
- Agata Ziomber-Lisiak
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Krakow, Poland
| | - Kaja Piana
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Paweł Wróbel
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Paula Kasprzyk
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jolanta Kaszuba-Zwoińska
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Krakow, Poland
| | - Agnieszka Baranowska-Chowaniec
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Krakow, Poland
| | - Kajetan Juszczak
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, ul. M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | | |
Collapse
|