1
|
Yoshikawa C, Nguyen DA, Nakaji-Hirabayashi T, Takigawa I, Mamitsuka H. Graph Network-Based Simulation of Multicellular Dynamics Driven by Concentrated Polymer Brush-Modified Cellulose Nanofibers. ACS Biomater Sci Eng 2024; 10:2165-2176. [PMID: 38546298 DOI: 10.1021/acsbiomaterials.3c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Manipulating the three-dimensional (3D) structures of cells is important for facilitating to repair or regenerate tissues. A self-assembly system of cells with cellulose nanofibers (CNFs) and concentrated polymer brushes (CPBs) has been developed to fabricate various cell 3D structures. To further generate tissues at an implantable level, it is necessary to carry out a large number of experiments using different cell culture conditions and material properties; however this is practically intractable. To address this issue, we present a graph-neural network-based simulator (GNS) that can be trained by using assembly process images to predict the assembly status of future time steps. A total of 24 (25 steps) time-series images were recorded (four repeats for each of six different conditions), and each image was transformed into a graph by regarding the cells as nodes and the connecting neighboring cells as edges. Using the obtained data, the performances of the GNS were examined under three scenarios (i.e., changing a pair of the training and testing data) to verify the possibility of using the GNS as a predictor for further time steps. It was confirmed that the GNS could reasonably reproduce the assembly process, even under the toughest scenario, in which the experimental conditions differed between the training and testing data. Practically, this means that the GNS trained by the first 24 h images could predict the cell types obtained 3 weeks later. This result could reduce the number of experiments required to find the optimal conditions for generating cells with desired 3D structures. Ultimately, our approach could accelerate progress in regenerative medicine.
Collapse
Affiliation(s)
- Chiaki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
| | - Duc Anh Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tadashi Nakaji-Hirabayashi
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Ichigaku Takigawa
- Center for Innovative Research and Education in Data Science (CIREDS), Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, Kyoto 606-8315, Japan
| | - Hiroshi Mamitsuka
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Streicher M, Boyko V, Blanazs A. Ultra-High-Molecular-Weight, Narrow-Polydispersity Polyacrylamides Synthesized Using Photoiniferter Polymerization to Generate High-Performance Flocculants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59044-59054. [PMID: 38059923 DOI: 10.1021/acsami.3c14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Ultra-high-molecular-weight, water-soluble polyelectrolytes are commonly employed as flocculants for solid-liquid separation via colloidal destabilization, enabling the rapid and efficient removal of particulate matter from wastewater streams. A drive toward more sustainable and less polluting industrial practices, coupled with the desire to reduce freshwater usage and improve closed-loop systems, demands the development of flocculants with ever-higher dewatering dose performance. Herein, the use of trithiocarbonate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization under either blue LED (λmax = 470 nm) or UV (λmax = 365 nm) irradiation, known as photoiniferter polymerization, was successfully utilized to generate ultra-high-molecular-weight (Mn > 1,000,000 g mol-1) polyelectrolyte copolymer flocculants with narrow molecular weight distributions (Mw/Mn < 1.2). Cationic and anionic polyelectrolyte flocculants were synthesized containing various monomer compositions of acrylamide (AM), dimethylacrylamide (DMA), 3-(acryloyloxyethyll)trimethylammonium chloride (DMAEAq), 3-(acrylamidopropyl)trimethylammonium chloride (APTAC), sodium acrylate (NaAA), and sodium 2-(acrylamido)-2-methylpropylsulfonate (NaATBS) with high monomer conversion using simple experimental apparatus. The narrow molecular weight distribution cationic polyelectrolytes showed improved flocculation efficiency in the clarification of kaolin suspensions of up to 50% in comparison to a broad polydispersity (Mw/Mn > 5.0) commercial benchmark with an equivalent number average molecular weight. The improved performance of the narrow-polydispersity copolymers is attributed to the reduction in the content of the lower-molecular-weight polymer chains, which impart lower flocculation performance.
Collapse
Affiliation(s)
| | | | - Adam Blanazs
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| |
Collapse
|
3
|
Sarkar P, Ghimire S, Vlasov S, Mukhopadhyay K. Effect of clay-zwitterionic interactions in controlling the viscoelastic properties in organomodified clays. iScience 2023; 26:108388. [PMID: 38047072 PMCID: PMC10690574 DOI: 10.1016/j.isci.2023.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Investigating the rheology of 2D materials such as clays is of growing interest in various applications as it dictates their flowability and structural stability. Clay minerals present unique rheological properties, especially when in suspension. This study explores the effect of functionalizing bentonite clay with betaines of variable carbon chain lengths on the rheological properties of clay slurries to analyze their interactions in suspension. The results show that these zwitterion-functionalized clays exhibit higher viscosity, storage moduli, and flow stresses due to the formation of three-dimensional networks and increased aggregation caused by intercalation. The structural properties of the clay slurries are also found to be pH-sensitive. Additionally, XRD and SEM analyses support the proposed intercalation of the clays. The findings suggest the potential application of small-chain betaine functionalized clays in engineering and energy applications. Overall, this study provides insight into predicting the stability and strength of functionalized clay suspensions.
Collapse
Affiliation(s)
- Pritha Sarkar
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Suvash Ghimire
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Sergey Vlasov
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Kausik Mukhopadhyay
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Oh SM, Kim SY. Intensified Nonequilibrium Effect of Polymer Nanocomposites with Decreasing Nanoparticle Size. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4527-4537. [PMID: 36629148 DOI: 10.1021/acsami.2c20156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
What are the most important and decisive parameters that determine the structure and the property of polymer nanocomposites (PNCs)? Previous studies answered that controlling the nanoparticle interface is critical, which can be achieved with a choice of a compatible nanoparticle, a proper surface modification, and a change in the polymer chain length. In addition to these parameters, the processing condition of PNCs has recently emerged as an influential parameter for controlling PNC properties, suggesting the existence of the nonequilibrium effect of PNCs. In this regard, we chose the solvent as a main change in the processing condition and investigated the initial solvent-driven nonequilibrium effect of PNCs with varied nanoparticle (NP) sizes. We found that the type of the initial solvent is indeed crucial in determining the ultimate properties of the PNCs, and this becomes more influential as the size of NPs decreases. The decreasing size of NPs causes a conformational change in the adsorbed polymers from tightly packed layers to loosely dangling chains. This results in much greater differences in NP microstructures and rheological properties of PNCs, indicating a stronger nonequilibrium effect with smaller NPs.
Collapse
Affiliation(s)
- Sol Mi Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan44919, Republic of Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| |
Collapse
|
5
|
Investigation of rheological behaviors of aqueous gum Arabic in the presence of crystalline nanocellulose. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Li S, Yu Z, Hu B, Yu H, Wang X. Effect of Flocculants Residue on Rheological Properties of Ultra-Fine Argillaceous Backfilling Slurry. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6485. [PMID: 36143796 PMCID: PMC9505702 DOI: 10.3390/ma15186485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Tailings concentration is indispensable for backfilling. Additionally, the residual flocculants in the concentration process affect the rheological properties of ultra-fine argillaceous backfilling slurry (e.g., viscosity and yield stress), resulting in a great effect on the fluidity and resistance of pipeline transportation. In this study, to explore the effect of flocculants residue on the rheological properties of the slurry, a series of rheological tests (constant shear rate test and variable shear rate test) were performed by changing the type, dosage, stirring time, temperature of flocculants addition and the amount of binder added. The results showed that the addition of flocculants increased the viscosity and yield stress of slurry. At a certain amount of flocculants additive, the flocculant network structure reached the best development state, which had a positive effect on increasing slurry viscosity and yield stress. As the stirring time increased, the scale of damage to the flocculant network structure became larger, which had a negative effect on increasing slurry viscosity and yield stress. Low temperature weakened the adsorption and bridging effect of polymeric chains, resulting in a poorly developed flocculant network structure, which had a negative effect on increasing slurry viscosity and yield stress. Caused by hydration products, the viscosity and yield stress of slurry with binder further increased. This study is significant for an in-depth study of the rheological and pipeline transport characteristics of ultra-fine argillaceous backfilling slurry, optimising the selection of flocculants for ultrafine particles, guiding backfill parameters and improving the reliability of pipeline transport.
Collapse
|
7
|
Dixon DV, Soares JB. Molecular weight distribution effects of polyacrylamide flocculants on clay aggregate formation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Gallegos MJ, Soetrisno DD, Park N, Conrad J. Aggregation and Gelation in a Tunable Aqueous Colloid-Polymer Bridging System. J Chem Phys 2022; 157:114903. [DOI: 10.1063/5.0101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a colloid-polymer model system with tunable bridging interactions for microscopic studies of structure and dynamics using confocal imaging. The interactions between trifluoroethyl methacrylate-co-\emph{tert}-butyl methacrylate (TtMA) copolymer particles and poly(acrylic acid) (PAA) polymers were controllable via polymer concentration and pH. The strength of adsorption of PAA on the particle surface, driven by pH-dependent interactions with polymer brush stabilizers on the particle surfaces, was tuned via solution pH. Particle-polymer suspensions formulated at low pH, where polymers strongly adsorbed to the particles, contained clusters or weak gels at particle volume fractions of $\phi = 0.15$ and $\phi = 0.40$. At high pH, where the PAA only weakly adsorbed to the particle surface, particles largely remained dispersed and the suspensions behaved as a dense fluid. The ability to visualize suspension structure is likely to provide insight into the role of polymer-driven bridging interactions on the behavior of colloidal suspensions.
Collapse
Affiliation(s)
| | | | | | - Jacinta Conrad
- Chemical and Biomolecular Engineering, University of Houston, United States of America
| |
Collapse
|
9
|
Customized Utilization Strategies of Industrial Lignin to Produce Adsorbents and Flocculants Based on Fractionation and Adequate Structural Interpretation. Int J Mol Sci 2022; 23:ijms23126617. [PMID: 35743071 PMCID: PMC9223612 DOI: 10.3390/ijms23126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/23/2022] Open
Abstract
Lignin, a by-product of pulping and biorefinery, has great potential to replace petrochemical resources for wastewater purification. However, the defects of lignin, such as severe heterogeneity, inferior reactivity and poor solubility, characterize the production process of lignin-based products by high energy consumption and serious pollution. In this study, several lignin fractions with relatively homogeneous structure were first obtained by organic solvent fractionation, and their structures were fully deciphered by various characterization techniques. Subsequently, each lignin component was custom-valued for wastewater purification based on their structural characteristics. Benefiting from the high reactivity and reaction accessibility, the lignin fraction (lignin-1) refined by dissolving in ethanol and n-butanol could been used as a raw material to produce cationic lignin-based flocculant (LBF) in a copolymerization system using green, cheap and recyclable ethanol as solvent. The lignin fraction (lignin-2) extracted by methanol and dioxane showed low reactivity and high carbon content, which was used to produce lignin-based activated carbon (LAC) with phosphoric acid as activator. Moreover, the influences of synthetic factors on the purification capacity were discussed, and the LBF and LAC produced under the optimal conditions showed distinguished purification effect on kaolin suspension and heavy metal wastewater, respectively. Furthermore, the corresponding purification mechanism and external factors were also elaborated. It is believed that this cleaner production strategy is helpful for the valorization of lignin in wastewater resources.
Collapse
|
10
|
Pyrazine yield and functional properties of rice bran protein hydrolysate formed by the Maillard reaction at varying pH. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:890-897. [PMID: 35185198 PMCID: PMC8814217 DOI: 10.1007/s13197-021-05084-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Interest in plant-based protein sources has grown rapidly. Rice bran contains excellent quality protein, but it is still rare in the market, due to its poor functional properties and undesirable odors. Therefore, we studied the Maillard reaction at different pHs on the formation of pyrazines and improved functional properties of rice bran protein hydrolysate. Protein from rice bran was extracted and hydrolyzed, using alcalase, at 55 °C for 4 h. Fructose was added, and the pH of the hydrolysate was adjusted to pHs between 7.0 and 10.0, before spray drying. Five pyrazines were detected in the hydrolysate powder, with the highest yield at pH 9 ( p < 0.05). The highest odor active value came from 2-ethyl-3,5-dimethylpyrazine (26.26), which contributed coffee, nutty and caramel aromas, followed by 2,5-dimethylpyrazine (9.2) and 2-ethyl-5-methylpyrazine (5.0). Increased pH led to a darker color (L* = 58.5) and redder (a* = 11.7) and yellower (b* = 13.8) powder. Key functional properties-solubility, water and oil binding capacity and emulsion stability index and foaming capacity-were increased with pH ( p < 0.05). The optimum pH for pyrazine formation and improved properties of enzymatic rice bran protein hydrolysate was pH 9.0.
Collapse
|
11
|
Feng Y, Liu G, Xu J, Wang K, Mao W, Yao G. Particle Separation from Liquid Marbles by the Viscous Folding of Liquid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2055-2065. [PMID: 35120293 DOI: 10.1021/acs.langmuir.1c02994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particle separation from fluid interfaces is one of the major challenges due to the large capillary energy associated with particle adsorption. Previous approaches rely on physicochemical modification or tuning the electrostatic action. Here, we show experimentally that particle separation can be achieved by fast dynamics of drop impact on soap films. When a droplet wrapped with particles (liquid marble) collides with a soap film, it undergoes bouncing and coalescence, stripping and viscous separation, or tunneling through the film. Despite the violence of splashing events, the process robustly yields the stripping in a tunable range. This viscous separation is supported by the transfer front of dynamic contact among the film, particle crust, and drop and can be well controlled in a deterministic manner by selectable impact parameters. By extensive experiments, together with thermodynamic analysis, we disclose that the separation thresholds depend on the energy competition between the kinetic energy, the increased surface energy, and the viscous dissipation. The mechanical cracking of the particle crust arises from the complex coupling between interfacial stress and viscous forces. This study is of potential benefit in soft matter research and also permits the study of a drop with colloid and surface chemistry.
Collapse
Affiliation(s)
- Yijun Feng
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Jinliang Xu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Kaiying Wang
- Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Wenbin Mao
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Guansheng Yao
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| |
Collapse
|
12
|
Yuan X, Nonsuwan P, Shobo M, Rajan R, Yamazaki T, Sakakibara K, Matsumura K, Yoshikawa C. Cellular Flocculation Using Concentrated Polymer Brush-Modified Cellulose Nanofibers with Different Fiber Lengths. Biomacromolecules 2022; 23:1101-1111. [PMID: 35104113 DOI: 10.1021/acs.biomac.1c01424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, concentrated polymer brush-modified cellulose nanofibers (CNFs) with different fiber lengths were used for the flocculation of cells for systematically studying the mechanism of this unique cellular flocculation based on colloidal flocculation theory. Concentrated poly(p-styrenesulfonic acid sodium salt) brush-grafted CNF (CNF-PSSNa) with different fiber lengths were cultured with three different cell types to examine their influence on floc (cell clusters formed by cellular flocculation) characteristics. The floc size and survival rate could be controlled by modifying the CNF-PSSNa fiber lengths. The three cell types showed the same flocculation tendency after culture, indicating the applicability of the method in different cell lines. After 2 weeks of culture, CNF-PSSNa increased the specific expression of hepatocytes compared to the two-dimensional cell culture. Thus, owing to its wide applicability, high cell viability, and ability to control cell size and improve cell function, this technology could be used as a new three-dimensional cell culture method.
Collapse
Affiliation(s)
- Xida Yuan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.,Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Punnida Nonsuwan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Miwako Shobo
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Keita Sakakibara
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Chiaki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
13
|
Influence of Zwitterionic CAPB on Flocculation of the Aqueous Cationic Guar Gum/Glauconite Suspensions at Various pH. Int J Mol Sci 2021; 22:ijms222212157. [PMID: 34830038 PMCID: PMC8621159 DOI: 10.3390/ijms222212157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
The influence of the pseudoamphoteric zwitterionic surfactant cocamidopropylbetaine (CAPB) on the stabilizing flocculating properties of the aqueous suspensions of glauconite (GT) with cationic guar gum (CGG) at various pH values was investigated. The following techniques were used: turbidimetry, UV-VIS spectrophotometry, tensiometry, electrophoretic mobility measurements, SEM, CHN, XRD, and FT-IR. It was established that CGG is an effective glauconite flocculant. Moreover, the most probable mechanism that is responsible for flocculation is bridge flocculation resulting from polymer adsorption on the glauconite surface. The adsorption process is caused by electrostatic interactions between the negatively charged glauconite surface and the positively charged polymer. The amount of CGG adsorption increases with the increase of the pH, which was confirmed by the adsorption and zeta potential measurements. The addition of CAPB increases the amount of the polymer adsorption due to the formation of intermolecular polymer–surfactant complexes; however, it reduces flocculation effectiveness.
Collapse
|
14
|
Temporal Changes of Adsorbed Layer Thickness and Electrophoresis of Polystyrene Sulfate Latex Particles after Long Incubation of Oppositely Charged Polyelectrolytes with Different Charge Densities. Polymers (Basel) 2021; 13:polym13152394. [PMID: 34371997 PMCID: PMC8348772 DOI: 10.3390/polym13152394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022] Open
Abstract
The different desorption concepts of the two polyelectrolytes PTMA5M and PTMC5M, which have similar molecular weights and differ in the charge density on the polystyrene sulfate latex (PSL) particles by 25 times, and with various charge densities in a long incubation, were systematically investigated based on hydrodynamic adsorbed layer thickness (δH) and electrophoretic mobility (EPM) under two ionic strengths in the present study. Herein, in the case of highly charged polyelectrolyte PTMA5M, desorption continued for 4 h and re-adsorbing proceeded after a longer incubation time higher than 4 h. Meanwhile, in the case of lowly charged polyelectrolyte PTMC5M, an adsorption-desorption equilibrium was suggested to take into account the unchanging of both δH and EPM.
Collapse
|
15
|
Deng N, Li Z, Zuo X, Chen J, Shakiba S, Louie SM, Rixey WG, Hu Y. Coprecipitation of Fe/Cr Hydroxides with Organics: Roles of Organic Properties in Composition and Stability of the Coprecipitates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4638-4647. [PMID: 33760589 DOI: 10.1021/acs.est.0c04712] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron hydroxides are important scavengers for dissolved chromium (Cr) via coprecipitation processes; however, the influences of organic matter (OM) on Cr sequestration in Fe/Cr-OM ternary systems and the stability of the coprecipitates are not well understood. Here, Fe/Cr-OM coprecipitation was conducted at pH 3, and Cr hydroxide was undersaturated. Acetic acid (HAc), poly(acrylic acid) (PAA), and Suwannee River natural organic matter (SRNOM) were selected as model OMs, which showed different complexation capabilities with Fe/Cr ions and Fe/Cr hydroxide particles. HAc had no significant effect on the coprecipitation, as the monodentate carboxyl ligand in HAc did not favor complexation with dissolved Fe/Cr ions or Fe/Cr hydroxide nanoparticles. Contrarily, PAA and SRNOM with polydentate carboxyl ligand had strong complexation with Fe/Cr ions and Fe/Cr hydroxide nanoparticles, leading to significant amounts of PAA/SRNOM sequestered in the coprecipitates, which caused the structural disorder and fast aggregation of the coprecipitates. In comparison with that of PAA, preferential complexation of Cr ions with SRNOM resulted in higher Cr/Fe ratios in the coprecipitates. This study advances the fundamental understanding of Fe/Cr-OM coprecipitation and mechanisms controlling the composition and stability of the coprecipitates, which is essential for successful Cr remediation and removal in both natural and engineered settings.
Collapse
Affiliation(s)
- Ning Deng
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Zhixiong Li
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| | - Sheyda Shakiba
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Stacey M Louie
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - William G Rixey
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Yandi Hu
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
16
|
Cationic starch as the effective flocculant of silica in the presence of different surfactants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Howard MP, Jadrich RB, Lindquist BA, Khabaz F, Bonnecaze RT, Milliron DJ, Truskett TM. Structure and phase behavior of polymer-linked colloidal gels. J Chem Phys 2019; 151:124901. [DOI: 10.1063/1.5119359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael P. Howard
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ryan B. Jadrich
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Beth A. Lindquist
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Fardin Khabaz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Roger T. Bonnecaze
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Delia J. Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
18
|
|
19
|
You Y, Zhang J, Sun X. Fabrication of a novel high-performance leather waste-based composite retention aid. RSC Adv 2019; 9:16271-16277. [PMID: 35521411 PMCID: PMC9064392 DOI: 10.1039/c9ra02407g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/20/2019] [Indexed: 11/27/2022] Open
Abstract
In this study, a novel biomass composite retention aid was developed by using collagen hydrolysate (CH) extracted from collagen waste as the starting material, glutaraldehyde as the organic crosslinking agent and polymeric aluminum chloride (PAC) as the inorganic modifying agent. The as-prepared retention aids were characterized by gel chromatography, hydrodynamic diameter, zeta potential, transmission electron microscope (TEM), ultraviolet-visible adsorption spectra (UV-Vis), Fourier infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results indicated that glutaraldehyde increased the molecular size of CH (i.e., CCH) through the crosslinking reaction between the aldehyde group of glutaraldehyde and the primary amine group of CH. Subsequently, the PAC further increased cationic charge density and molecular size of CCH (i.e., PAC–CCH) by the coordination interaction and self-assembly, thereby endowing PAC–CCH with better charge neutralization and bridging flocculation abilities. Compared to CH, CCH and PAC, the PAC–CCH exhibited excellent retention and drainage performances, and the best retention rate was greater than 85% at the dosage of 0.6 wt%. Our experimental results suggest that collagen wastes have a great potential to produce novel high-performance retention aids. A novel biomass composite retention aid was developed by using collagen hydrolysate extracted from collagen waste as starting material, glutaraldehyde as organic crosslinking agent and polymeric aluminum chloride as inorganic modifying agent.![]()
Collapse
Affiliation(s)
- Yaohui You
- Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial Higher Learning Institutes
- Neijiang
- China
| | - Jiayong Zhang
- Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial Higher Learning Institutes
- Neijiang
- China
| | - Xubing Sun
- Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial Higher Learning Institutes
- Neijiang
- China
| |
Collapse
|
20
|
de Vries A, Jansen D, van der Linden E, Scholten E. Tuning the rheological properties of protein-based oleogels by water addition and heat treatment. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Schneider J, Werner M, Bartsch E. New insights into re-entrant melting of microgel particles by polymer-induced aggregation experiments. SOFT MATTER 2018; 14:3811-3817. [PMID: 29717726 DOI: 10.1039/c7sm01922j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While microgels are in general described as soft particles, polystyrene (PS) microgels can be synthesized in a way that cross-link density has only a minor influence on their physical properties. Even though the particles swell in a good solvent, the imparted slight softness still allows a mapping on hard sphere behaviour for a large range of cross-link densities [Schneider et al., Soft Matter, 2017, 13, 445]. Nevertheless, the hard sphere analogy breaks down as soon as polymer chains are added to these systems. Quantitative differences between PS microgels and true hard sphere systems appear and the differences between stronger and weaker cross-linked PS microgels can be observed. To gain deeper insights into the origin of these deviations from true hard sphere behaviour, this work is addressed to a systematic study of the colloid-polymer interactions in PS microgel-polymer mixtures. We investigated the aggregation behaviour (namely aggregation concentration and cluster structure) as a function of colloid size, cross-link density and colloid-polymer size ratio in very dilute colloidal suspensions. Our results show that the interplay of cross-link density and polymer size is a key parameter for the strength of the colloid-polymer interactions. Furthermore, the centre-to-centre distance of the colloidal particles in the formed clusters decreases if the cross-link density is decreased, allowing for a higher packing density. This may also explain the unusually high fluid packing fractions observed in the re-entry region of the phase diagram of PS microgel-free PS polymer mixtures.
Collapse
Affiliation(s)
- Jochen Schneider
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
22
|
Samanta R, Ganesan V. Influence of dielectric inhomogeneities on the structure of charged nanoparticles in neutral polymer solutions. SOFT MATTER 2018; 14:3748-3759. [PMID: 29701232 DOI: 10.1039/c8sm00298c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study the structural characteristics of a system of charged nanoparticles in a neutral polymer solution while accounting for the differences in the dielectric constant between the particles, polymer and the solvent. We use a hybrid computational methodology involving a combination of single chain in mean-field simulations and the solution of the Poisson's equation for the electrostatic field. We quantify the resulting particle structural features in terms of radial distribution function among particles as a function of the dielectric contrast, particle charge, particle volume fraction and polymer concentration. In the absence of polymers, charged macroions experience increased repulsion with a lowering of the ratio of particle to solvent dielectric constant. The influence of the dielectric contrast between the particle and the solvent however diminishes with an increase in the particle volume fraction and/or its charge. In the presence of neutral polymers, similar effects manifest, but with the additional physics arising from the fact that the polymer-induced interactions are influenced by the dielectric contrast of the particle and solvent.
Collapse
Affiliation(s)
- Rituparna Samanta
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
23
|
Tahara K, Nishio M, Takeuchi H. Evaluation of liposomal behavior in the gastrointestinal tract after oral administration using real-time in vivo imaging. Drug Dev Ind Pharm 2017; 44:608-614. [DOI: 10.1080/03639045.2017.1405972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| | - Maki Nishio
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirofumi Takeuchi
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
24
|
Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: A comprehensive review. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.050] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Lindquist BA, Jadrich RB, Milliron DJ, Truskett TM. On the formation of equilibrium gels via a macroscopic bond limitation. J Chem Phys 2016; 145:074906. [DOI: 10.1063/1.4960773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- B. A. Lindquist
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - R. B. Jadrich
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - D. J. Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - T. M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
26
|
Peng J, Kroes-Nijboer A, Venema P, van der Linden E. Stability of colloidal dispersions in the presence of protein fibrils. SOFT MATTER 2016; 12:3514-3526. [PMID: 26961754 DOI: 10.1039/c5sm03101j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We studied the stability of monodispersed polystyrene latex dispersions with protein fibrils at different concentrations at pH 2 using microscopy and diffusing wave spectroscopy. At low fibril concentrations, fibrils induced bridging flocculation due to the opposite charges between fibrils and the latex particles. At higher fibril concentration the dispersions were stabilized due to steric and/or electrostatic repulsion. Upon further increasing fibril concentration, we find that the dispersion is destabilized again by depletion interaction. At even higher fibril concentration, the dispersions are stabilized again. These dispersions have a higher stability compared to the dispersions without fibrils. Interestingly, these dispersions contain single particles and small clusters of particles that do not grow beyond a certain size. Although the stabilization mechanism is not clear yet, the results from microscopy and diffusing wave spectroscopy point in the direction of a kinetic barrier that depends on fibril concentration.
Collapse
Affiliation(s)
- Jinfeng Peng
- Laboratory of Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Ardy Kroes-Nijboer
- Laboratory of Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Paul Venema
- Laboratory of Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Erik van der Linden
- Laboratory of Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
27
|
Souslov A, Curtis JE, Goldbart PM. Beads on a string: structure of bound aggregates of globular particles and long polymer chains. SOFT MATTER 2015; 11:8092-8099. [PMID: 26337680 DOI: 10.1039/c5sm01316j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Macroscopic properties of suspensions, such as those composed of globular particles (e.g., colloidal or macromolecular), can be tuned by controlling the equilibrium aggregation of the particles. We examine how aggregation - and, hence, macroscopic properties - can be controlled in a system composed of both globular particles and long, flexible polymer chains that reversibly bind to one another. We base this on a minimal statistical mechanical model of a single aggregate in which the polymer chain is treated either as ideal or self-avoiding, and, in addition, the globular particles are taken to interact with one another via excluded volume repulsion. Furthermore, each of the globular particles is taken to have one single site to which at most one polymer segment may bind. Within the context of this model, we examine the statistics of the equilibrium size of an aggregate and, thence, the structure of dilute and semidilute suspensions of these aggregates. We apply the model to biologically relevant aggregates, specifically those composed of macromolecular proteoglycan globules and long hyaluronan polymer chains. These aggregates are especially relevant to the materials properties of cartilage and the structure-function properties of perineuronal nets in brain tissue, as well as the pericellular coats of mammalian cells.
Collapse
Affiliation(s)
- Anton Souslov
- School of Physics Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
28
|
Pandav G, Pryamitsyn V, Errington J, Ganesan V. Multibody Interactions, Phase Behavior, and Clustering in Nanoparticle–Polyelectrolyte Mixtures. J Phys Chem B 2015; 119:14536-50. [DOI: 10.1021/acs.jpcb.5b07905] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gunja Pandav
- The University of Texas at Austin, McKetta Department
of Chemical Engineering, Austin, Texas 78712, United States
| | - Victor Pryamitsyn
- The University of Texas at Austin, McKetta Department
of Chemical Engineering, Austin, Texas 78712, United States
| | - Jeffrey Errington
- Department
of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Venkat Ganesan
- The University of Texas at Austin, McKetta Department
of Chemical Engineering, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Sasmal D, Singh R, Tripathy T. Synthesis and flocculation characteristics of a novel biodegradable flocculating agent amylopectin-g-poly(acrylamide-co-N-methylacrylamide). Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Vogel N, Retsch M, Fustin CA, del Campo A, Jonas U. Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chem Rev 2015; 115:6265-311. [DOI: 10.1021/cr400081d] [Citation(s) in RCA: 531] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse
4, 91058 Erlangen, Germany
- Cluster
of Excellence - Engineering of Advanced Materials, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Markus Retsch
- Physical
Chemistry 1 - Polymer Systems, University of Bayreuth, Universitätsstraße
30, 95447 Bayreuth, Germany
| | - Charles-André Fustin
- Institute
of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
Division (BSMA), Université catholique de Louvain, Place Louis
Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
| | - Aranzazu del Campo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ulrich Jonas
- Macromolecular
Chemistry, Cμ - The Research Center for Micro- and Nanochemistry
and Engineering, University of Siegen, Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
- Bio-Organic Materials Chemistry Laboratory (BOMCLab), Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology - Hellas (FORTH), Nikolaou Plastira 100, Vassilika Vouton, P.O. Box 1527, 71110 Heraklion, Crete, Greece
| |
Collapse
|
31
|
Oh CM, Heng PWS, Chan LW. A study on the impact of hydroxypropyl methylcellulose on the viscosity of PEG melt suspensions using surface plots and principal component analysis. AAPS PharmSciTech 2015; 16:466-77. [PMID: 25370022 DOI: 10.1208/s12249-014-0204-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
An understanding of the rheological behaviour of polymer melt suspensions is crucial in pharmaceutical manufacturing, especially when processed by spray congealing or melt extruding. However, a detailed comparison of the viscosities at each and every temperature and concentration between the various grades of adjuvants in the formulation will be tedious and time-consuming. Therefore, the statistical method, principal component analysis (PCA), was explored in this study. The composite formulations comprising polyethylene glycol (PEG) 3350 and hydroxypropyl methylcellulose (HPMC) of ten different grades (K100 LV, K4M, K15M, K100M, E15 LV, E50 LV, E4M, F50 LV, F4M and Methocel VLV) at various concentrations were prepared and their viscosities at different temperatures determined. Surface plots showed that concentration of HPMC had a greater effect on the viscosity compared to temperature. Particle size and size distribution of HPMC played an important role in the viscosity of melt suspensions. Smaller particles led to a greater viscosity than larger particles. PCA was used to evaluate formulations of different viscosities. The complex viscosity profiles of the various formulations containing HPMC were successfully classified into three clusters of low, moderate and high viscosity. Formulations within each group showed similar viscosities despite differences in grade or concentration of HPMC. Formulations in the low viscosity cluster were found to be sprayable. PCA was able to differentiate the complex viscosity profiles of different formulations containing HPMC in an efficient and time-saving manner and provided an excellent visualisation of the data.
Collapse
|
32
|
Luo J, Yuan G, Zhao C, Han CC, Chen J, Liu Y. Gelation of large hard particles with short-range attraction induced by bridging of small soft microgels. SOFT MATTER 2015; 11:2494-2503. [PMID: 25679297 DOI: 10.1039/c4sm02165g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, mixed suspensions of large hard polystyrene microspheres and small soft poly(N-isopropylacrylamide) microgels are used as model systems to investigate the static and viscoelastic properties of suspensions which go through liquid to gel transitions. The microgels cause short-range attraction between microspheres through the bridging and depletion mechanism whose strength can be tuned by the microgel concentration. Rheological measurements are performed on suspensions with the volume fraction (Φ) of microspheres ranging from 0.02 to 0.15, and the transitions from liquid-like to solid-like behaviors triggered by the concentration of microgels are carefully identified. Two gel lines due to bridging attraction under unsaturated conditions are obtained. Ultra-small angle neutron scattering is used to probe the thermodynamic properties of suspensions approaching the liquid-solid transition boundaries. Baxter's sticky hard-sphere model is used to extract the effective inter-microsphere interaction introduced by the small soft microgels. It is found that the strength of attraction (characterized by a single stickiness parameter τ) on two gel lines formed by bridging is very close to the theoretical value for the spinodal line in the τ-Φ phase diagram predicted by Baxter's model. This indicates that the nature of the gel state may have the same thermodynamic origins, independent of the detailed mechanism of the short-range attraction. The relationship between the rheological criterion for the liquid-solid transition and the thermodynamic criterion for the equilibrium-nonequilibrium transition is also discussed.
Collapse
Affiliation(s)
- Junhua Luo
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, CAS, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
33
|
Chen J, Kline SR, Liu Y. From the depletion attraction to the bridging attraction: The effect of solvent molecules on the effective colloidal interactions. J Chem Phys 2015; 142:084904. [DOI: 10.1063/1.4913197] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Jie Chen
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Center for Neutron Research, National Institute of Standards and Technology, Gaithursburg, Maryland 20899, USA
| | - Steven R. Kline
- Center for Neutron Research, National Institute of Standards and Technology, Gaithursburg, Maryland 20899, USA
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithursburg, Maryland 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
34
|
Dan N. Lipid-Nucleic Acid Supramolecular Complexes: Lipoplex Structure and the Kinetics of Formation. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
35
|
Feng L, Laderman B, Sacanna S, Chaikin P. Re-entrant solidification in polymer-colloid mixtures as a consequence of competing entropic and enthalpic attractions. NATURE MATERIALS 2015; 14:61-65. [PMID: 25326826 DOI: 10.1038/nmat4109] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
In polymer-colloid mixtures, non-adsorbing polymers dispersed with much larger colloids provide a universal yet specific entropic attraction between the colloids. Such so-called depletion interaction arises from an osmotic-pressure imbalance caused by the polymers and is considered to be independent of temperature. Here we show that, for the most commonly used polymer-colloid depletion systems, the polymer undergoes a crossover from non-adsorbing to adsorbing and that, consequently, the effective colloidal interactions depend on temperature. We also find that a combination of the enthalpic (polymer bridging) and entropic (polymer exclusion) interactions, both attractive, leads to a re-entrant regime where the colloids are dispersed and form solids both on heating and on cooling. We provide a simple model to explain the observed transitions and to fill the theoretical gap at the polymer-adsorption crossover. Our findings open possibilities for colloidal self-assembly, the formation of colloidal crystals and glasses, and the behaviour of temperature-controlled viscoelastic materials.
Collapse
Affiliation(s)
- Lang Feng
- Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York New York 10003, USA
| | - Bezia Laderman
- Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York New York 10003, USA
| | - Stefano Sacanna
- 1] Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York New York 10003, USA [2] Chemistry Department, New York University, 100 Washington Square East, New York New York 10003, USA
| | - Paul Chaikin
- Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York New York 10003, USA
| |
Collapse
|
36
|
Zhang H, Yuan G, Luo J, Han CC. Shear-thickening in mixed suspensions of silica colloid and oppositely charged polyethyleneimine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11011-11018. [PMID: 25180890 DOI: 10.1021/la503116g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The liquid-gel-liquid transition tuned by increasing concentration of linear and hyperbranched polyethyleneimine in suspension of silica colloids, and the accompanying shear-thickening phenomena, were investigated by rheological measurements. The influence from linear and hyperbranched polymer conformation and from different size-ratio between particle and polymer on the rheological properties of suspensions flocculated by absorbing polyelectrolyte were considered. Charge neutralization and bridging mechanism are the main reasons for the flocculation of silica colloid in this study. Because of charge reversal, the irreversible bridges are turned into flexible reversible bridges with increasing adsorption amount of oppositely charged polymer, which leads to an abrupt transition from gel to liquid. Over a narrow composition range, around the gel to liquid transition region, shear-thickening flow is observed. It is found that, for given particle volume fraction, the composition region exhibiting shear-thickening for mixed suspension with linear polyethyleneimine is broader than that for mixed suspension with hyperbranched polyethyleneimine, and the onset of shear-thickening depends only on size-ratio, regardless of the actual size of particle and polymer in the range of this study. The relationship between the gel to liquid transition and shear-thickening was discussed.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | |
Collapse
|
37
|
Sharma KP, Collins AM, Perriman AW, Mann S. Enzymatically active self-standing protein-polymer surfactant films prepared by hierarchical self-assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2005-10. [PMID: 23381887 DOI: 10.1002/adma.201204161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/06/2012] [Indexed: 05/21/2023]
Abstract
Cross-linked protein-polymer surfactant films consisting of enzymatically active hybrid nanoclusters are prepared using a novel approach based on electrostatically mediated hierarchical self-assembly. The free-standing films are structurally robust, highly hydrophilic, and exhibit sustained fluorescence or recyclable enzymatic phosphatase or oxido-reductase behavior.
Collapse
Affiliation(s)
- Kamendra P Sharma
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
38
|
Qiao J, Adams J, Johannsmann D. Addition of halloysite nanotubes prevents cracking in drying latex films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8674-8680. [PMID: 22616787 DOI: 10.1021/la3011597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Investigating the process of film drying from aqueous dispersions containing a polymer latex as well as halloysite nanotubes (HNTs), we found that composite films could be formed without cracking under conditions where films of the pure polymer would always crack. Scanning electron micrographs showed that the HNTs were well dispersed and, further, that the distribution of fiber orientations was close to isotropic. The pendulum hardness of films formed from acrylate dispersions strongly increased upon addition of the inorganic phase. The pencil hardness, on the other hand, was poor, which presumably goes back to insufficient coupling between the organic and the inorganic phase. All films were white in appearance. For fiber concentrations higher than 10 vol %, the final films were porous.
Collapse
Affiliation(s)
- Junqiang Qiao
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | |
Collapse
|
39
|
Ahmed S, Savarala S, Chen Y, Bothun G, Wunder SL. Formation of lipid sheaths around nanoparticle-supported lipid bilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1740-1751. [PMID: 22434657 DOI: 10.1002/smll.201101833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 10/25/2011] [Indexed: 05/31/2023]
Abstract
High-surface-area nanoparticles often cluster, with unknown effects on their cellular uptake and environmental impact. In the presence of vesicles or cell membranes, lipid adsorption can occur on the nanoparticles, resulting in the formation of supported lipid bilayers (SLBs), which tend to resist cellular uptake. When the amount of lipid available is in excess compared with that required to form a single-SLB, large aggregates of SLBs enclosed by a close-fitting lipid bilayer sheath are shown to form. The proposed mechanism for this process is one where small unilamellar vesicles (SUVs) adsorb to aggregates of SLBs just above the gel-to-liquid phase transition temperature, T(m) , of the lipids (as observed by dynamic light scattering), and then fuse with each other (rather than to the underlying SLBs) upon cooling below T(m) . The sacks of SLB nanoparticles that are formed are encapsulated by the contiguous close-fitting lipid sheath, and precipitate below T(m) , due to reduced hydration repulsion and the absence of undulation/protrusion forces for the lipids attached to the solid support. The single-SLBs can be released above T(m) , where these forces are restored by the free lipid vesicles. This mechanism may be useful for encapsulation/release of drugs/DNA, and has implications for the toxic effects of nanoparticles, which may be mitigated by lipid sequestration.
Collapse
Affiliation(s)
- Selver Ahmed
- Department of Chemistry, Temple University, Philadelphia, PA 19317, USA
| | | | | | | | | |
Collapse
|
40
|
Aider M, Djenane D, Ounis WB. Amino acid composition, foaming, emulsifying properties and surface hydrophobicity of mustard protein isolate as affected by pH and NaCl. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.02937.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Monte Carlo Simulation to Investigate the Cascade Transition of a Permuted Polyelectrolyte Chain. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.procs.2012.04.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci 2011; 169:1-12. [PMID: 21762869 DOI: 10.1016/j.cis.2011.06.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/09/2011] [Accepted: 06/13/2011] [Indexed: 11/23/2022]
Abstract
Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'.
Collapse
|
43
|
Helgeson ME, Wagner NJ. Colloidal interactions mediated by end-adsorbing polymer-like micelles. J Chem Phys 2011; 135:084901. [DOI: 10.1063/1.3624754] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
44
|
The use of dielectric spectroscopy for the characterisation of polymer-induced flocculation of core-shell particles. J Colloid Interface Sci 2011; 356:681-9. [PMID: 21310425 DOI: 10.1016/j.jcis.2011.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 11/22/2022]
Abstract
Flocculation is an important process in separation science, but only few methods are available for on-line evaluation of the process. Recently, it has been shown that dielectric spectroscopy can be used to characterise the flocculation process of hard polystyrene particles. As many "real life" suspensions contain particles covered with a porous layer of organic material, it is of interest to investigate the potential of dielectric spectroscopy to characterise the flocculation of such suspensions as well. In this paper dielectric spectroscopy is used to investigate the flocculation process of core-shell particles. The flocculation process is characterised using a photometric dispersion analyser as a reference method, and the results are compared to the dielectric dispersions measured by dielectric spectroscopy. It is found that the use of the relaxation time of the dielectric dispersion for an evaluation of the flocculation process is commensurate with the use of the photometric dispersion analyser. Furthermore, the magnitude of the dielectric dispersion is observed to decrease as the charge of the core-shell particles is neutralised. Dielectric spectroscopy is thus found to have potential as an on-line flocculation monitor.
Collapse
|
45
|
|
46
|
Flocculation of protein-stabilized oil-in-water emulsions. Colloids Surf B Biointerfaces 2010; 81:130-40. [DOI: 10.1016/j.colsurfb.2010.06.033] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/30/2010] [Indexed: 02/07/2023]
|
47
|
Conrad JC, Lewis JA. Structural evolution of colloidal gels during constricted microchannel flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6102-6107. [PMID: 20369847 DOI: 10.1021/la1000123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We investigate the structure of colloidal gels flowing through constrictions in microchannels using confocal microscopy. As the gel traverses the constricted region, both the average velocity and particle density increase downstream. While the average flow profile is smoothly varying, stagnation zones develop at the constriction entry, leading to markedly nonuniform local flow profiles. Dense clusters undergo shear-induced yielding at intercluster boundaries, which enhances the structural heterogeneity of the suspension at the constriction outlet.
Collapse
Affiliation(s)
- Jacinta C Conrad
- Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
48
|
Ludwig D, Carpenter JF, Hamel J, Randolph TW. Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions. J Pharm Sci 2010; 99:1721-33. [DOI: 10.1002/jps.21982] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Das K, Raha S, Somasundaran P. Effect of polyacrylic acid molecular weight on the floc stability during prolonged settling. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Ong B, Leong Y, Chen S. Interparticle forces in spherical monodispersed silica dispersions: Effects of branched polyethylenimine and molecular weight. J Colloid Interface Sci 2009; 337:24-31. [DOI: 10.1016/j.jcis.2009.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 11/16/2022]
|