1
|
Rivera ES, LeBrun ES, Breidenbach JD, Solomon E, Sanders CK, Harvey T, Tseng CY, Thornhill MG, Blackwell BR, McBride EM, Luchini KA, Alvarez M, Williams RF, Norris JL, Mach PM, Glaros TG. Feature-agnostic metabolomics for determining effective subcytotoxic doses of common pesticides in human cells. Toxicol Sci 2024; 202:85-95. [PMID: 39110521 DOI: 10.1093/toxsci/kfae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Although classical molecular biology assays can provide a measure of cellular response to chemical challenges, they rely on a single biological phenomenon to infer a broader measure of cellular metabolic response. These methods do not always afford the necessary sensitivity to answer questions of subcytotoxic effects, nor do they work for all cell types. Likewise, boutique assays such as cardiomyocyte beat rate may indirectly measure cellular metabolic response, but they too, are limited to measuring a specific biological phenomenon and are often limited to a single cell type. For these reasons, toxicological researchers need new approaches to determine metabolic changes across various doses in differing cell types, especially within the low-dose regime. The data collected herein demonstrate that LC-MS/MS-based untargeted metabolomics with a feature-agnostic view of the data, combined with a suite of statistical methods including an adapted environmental threshold analysis, provides a versatile, robust, and holistic approach to directly monitoring the overall cellular metabolomic response to pesticides. When employing this method in investigating two different cell types, human cardiomyocytes and neurons, this approach revealed separate subcytotoxic metabolomic responses at doses of 0.1 and 1 µM of chlorpyrifos and carbaryl. These findings suggest that this agnostic approach to untargeted metabolomics can provide a new tool for determining effective dose by metabolomics of chemical challenges, such as pesticides, in a direct measurement of metabolomic response that is not cell type-specific or observable using traditional assays.
Collapse
Affiliation(s)
- Emilio S Rivera
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Erick S LeBrun
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Joshua D Breidenbach
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Emilia Solomon
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Claire K Sanders
- Microbial and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Tara Harvey
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Chi Yen Tseng
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - M Grace Thornhill
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Brett R Blackwell
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Ethan M McBride
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Kes A Luchini
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Marc Alvarez
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Robert F Williams
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Jeremy L Norris
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Phillip M Mach
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Trevor G Glaros
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| |
Collapse
|
2
|
Ceasovschih A, Șorodoc V, Covantsev S, Balta A, Uzokov J, Kaiser SE, Almaghraby A, Lionte C, Stătescu C, Sascău RA, Onofrei V, Haliga RE, Stoica A, Bologa C, Ailoaei Ș, Şener YZ, Kounis NG, Șorodoc L. Electrocardiogram Features in Non-Cardiac Diseases: From Mechanisms to Practical Aspects. J Multidiscip Healthc 2024; 17:1695-1719. [PMID: 38659633 PMCID: PMC11041971 DOI: 10.2147/jmdh.s445549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Despite the noteworthy advancements and the introduction of new technologies in diagnostic tools for cardiovascular disorders, the electrocardiogram (ECG) remains a reliable, easily accessible, and affordable tool to use. In addition to its crucial role in cardiac emergencies, ECG can be considered a very useful ancillary tool for the diagnosis of many non-cardiac diseases as well. In this narrative review, we aimed to explore the potential contributions of ECG for the diagnosis of non-cardiac diseases such as stroke, migraine, pancreatitis, Kounis syndrome, hypothermia, esophageal disorders, pulmonary embolism, pulmonary diseases, electrolyte disturbances, anemia, coronavirus disease 2019, different intoxications and pregnancy.
Collapse
Affiliation(s)
- Alexandr Ceasovschih
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Victorița Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Serghei Covantsev
- Department of Research and Clinical Development, Botkin Hospital, Moscow, Russia
| | - Anastasia Balta
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Jamol Uzokov
- Department of Cardiology, Republican Specialized Scientific Practical Medical Center of Therapy and Medical Rehabilitation, Tashkent, Uzbekistan
| | - Sergio E Kaiser
- Discipline of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Abdallah Almaghraby
- Department of Cardiology, Ibrahim Bin Hamad Obaidallah Hospital, Ras Al Khaimah, United Arab Emirates
| | - Cătălina Lionte
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Cristian Stătescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Radu A Sascău
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Viviana Onofrei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Raluca Ecaterina Haliga
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Alexandra Stoica
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Cristina Bologa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Ștefan Ailoaei
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Yusuf Ziya Şener
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkiye
| | - Nicholas G Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, Patras, Greece
| | - Laurențiu Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| |
Collapse
|
3
|
Rajak P, Roy S, Podder S, Dutta M, Sarkar S, Ganguly A, Mandi M, Dutta A, Nanda S, Khatun S. Synergistic action of organophosphates and COVID-19 on inflammation, oxidative stress, and renin-angiotensin system can amplify the risk of cardiovascular maladies. Toxicol Appl Pharmacol 2022; 456:116267. [PMID: 36240863 PMCID: PMC9554205 DOI: 10.1016/j.taap.2022.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Organophosphates (OPs) are ubiquitous environmental contaminants, widely used as pesticides in agricultural fields. In addition, they serve as flame-retardants, plasticizers, antifoaming or antiwear agents in lacquers, hydraulic fluids, and floor polishing agents. Therefore, world-wide and massive application of these compounds have increased the risk of unintentional exposure to non-targets including the human beings. OPs are neurotoxic agents as they inhibit the activity of acetylcholinesterase at synaptic cleft. Moreover, they can fuel cardiovascular issues in the form of myocardities, cardiac oedema, arrhythmia, systolic malfunction, infarction, and altered electrophysiology. Such pathological outcomes might increase the severity of cardiovascular diseases which are the leading cause of mortality in the developing world. Coronavirus disease-19 (COVID-19) is the ongoing global health emergency caused by SARS-CoV-2 infection. Similar to OPs, SARS-CoV-2 disrupts cytokine homeostasis, redox-balance, and angiotensin-II/AT1R axis to promote cardiovascular injuries. Therefore, during the current pandemic milieu, unintentional exposure to OPs through several environmental sources could escalate cardiac maladies in patients with COVID-19.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India,Corresponding author
| | - Sumedha Roy
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | | | - Moumita Dutta
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya; Gushkara, Purba Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Anik Dutta
- Post Graduate Department of Zoology, Darjeeling Govt. College, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India
| |
Collapse
|
4
|
Patterns of cardio-respiratory motor outputs during acute and subacute exposure to chlorpyrifos in an ex-vivo in situ preparation in rats. Toxicol Appl Pharmacol 2022; 436:115862. [PMID: 34998853 DOI: 10.1016/j.taap.2022.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/08/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
While a considerable body of literature has characterized the clinical features induced by organophosphate pesticides, the field lacks scrutiny into cardio-respiratory changes in different phases of poisoning. Herein, we evaluated the impact of chlorpyrifos (CPF) and its active metabolite chlorpyrifos-oxon (CPO) on the cardiorespiratory system during acute and subacute phases of poisoning using an in situ experimental rodent model. CPF (30 mg/kg) was injected intraperitoneally to rats beforehand (24 h) whereas CPO (15 mg/kg) was added into the perfusate reservoir to evaluate the effects on the motor outputs throughout the three phases of the respiratory cycle: inspiration, post-inspiration and late expiration. Phrenic, recurrent laryngeal (RLN) and thoracic sympathetic nerve activity (tSNA) were recorded. Heart rate was derived from the electrocardiogram (ECG) and the baro- and chemo-reflexes tested. CPF and CPO led to a time-dependent change in cardiorespiratory motor outputs. In the acute phase, the CPO induced bradypnea, transiently reduced the inspiratory time (TI), and increased the amplitude of phrenic. Post-inspiratory (PI) discharge recorded from the RLN was progressively reduced while tSNA was increased. CPO significantly depressed the chemoreflex but had no effect on baroreflex. During subacute phase, CPF prolongated TI with no effect on respiratory rate. Both the RLN PI discharge, the chemoreflex and the baroreflex sympathetic gain were reduced. In addition, both CPF and CPO shifted the cardiac sympatho-vagal balance towards sympathetic dominance. Our data show that different phases of poisoning are associated with specific changes in the cardio-respiratory system and might therefore demand distinct approaches by health care providers.
Collapse
|
5
|
El-Nahhal Y, El-Nahhal I. Cardiotoxicity of some pesticides and their amelioration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44726-44754. [PMID: 34231153 DOI: 10.1007/s11356-021-14999-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Pesticides are used to control pests that harm plants, animals, and humans. Their application results in the contamination of the food and water systems. Pesticides may cause harm to the human body via occupational exposure or the ingestion of contaminated food and water. Once a pesticide enters the human body, it may create health consequences such as cardiotoxicity. There is not enough information about pesticides that cause cardiotoxicity in the literature. Currently, there are few reports that summarized the cardiotoxicity due to some pesticide groups. This necessitates reviewing the current literature regarding pesticides and cardiotoxicity and to summarize them in a concrete review. The objectives of this review article were to summarize the advances in research related to pesticides and cardiotoxicity, to classify pesticides into certain groups according to cardiotoxicity, to discuss the possible mechanisms of cardiotoxicity, and to present the agents that ameliorate cardiotoxicity. Approximately 60 pesticides were involved in cardiotoxicity: 30, 13, and 17 were insecticides, herbicides, and fungicides, respectively. The interesting outcome of this study is that 30 and 13 pesticides from toxicity classes II and III, respectively, are involved in cardiotoxicity. The use of standard antidotes for pesticide poisoning shows health consequences among users. Alternative safe medical management is the use of cardiotoxicity-ameliorating agents. This review identifies 24 ameliorating agents that were successfully used to manage 60 cases. The most effective agents were vitamin C, curcumin, vitamin E, quercetin, selenium, chrysin, and garlic extract. Vitamin C showed ameliorating effects in a wide range of toxicities. The exposure mode to pesticide residues, where 1, 2, 3, and 4 are aerial exposure to pesticide drift, home and/or office exposure, exposure due to drinking contaminated water, and consumption of contaminated food, respectively. General cardiotoxicity is represented by 5, whereas 6, 7, 8 and 9 are electrocardiogram (ECG) of hypotension due to exposure to OP residues, ECG of myocardial infraction due to exposure to OPs, ECG of hypertension due to exposure to OC and/or PY, and normal ECG respectively.
Collapse
Affiliation(s)
- Yasser El-Nahhal
- Department of Earth and Environmental Science Faculty of Science, The Islamic University-Gaza, Gaza, Palestine.
| | | |
Collapse
|
6
|
Different body parts' fat mass and corrected QT interval on the electrocardiogram: The Fasa PERSIAN Cohort Study. BMC Cardiovasc Disord 2021; 21:277. [PMID: 34090333 PMCID: PMC8178852 DOI: 10.1186/s12872-021-02095-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022] Open
Abstract
Background Previous studies suggested that obesity and fat mass are associated with QT interval prolongation, but the role of different body parts' fat mass is unclear. The associations between total and regional fat mass (FM) and corrected QT interval (QTc) were investigated for the first time in this study.
Methods In this sub-analysis of Fasa PERSIAN cohort Study data, 3217 subjects aged 35–70 entered our study. Body fat mass was assessed by bioelectrical impedance analysis and QTc interval calculated by the QT interval measured by Cardiax® software from ECGs and Bazett’s formula. Uni- and multi-variable linear and logistic regression was performed in IBM SPSS Statistics v23. Results In males, the fat mass to fat-free mass (FM/FFM) ratio in the trunk, arms, total body, and legs were significantly higher in the prolonged QTc group (QTc > 450 ms). Trunk (B = 0.148), total (B = 0.137), arms (B = 0.124), legs (B = 0.107) fat mass index (FMI) showed significant positive relationship with continuous QTc (P-value < 0.001). Also, just the fat-free mass index of legs had significant positive associations with QTc interval (P-value < 0.05). Surprisingly, in females, the mean of FM/FFM ratio in trunk and legs in the normal QTc group had higher values than the prolonged QTc group (QTc > 470 ms). Also, none of the body composition variables had a significant correlation with continuous QTc. Conclusion Our study suggested that FMI ratios in the trunk, total body, arms, and legs were positively associated with QTc interval in males, respectively, from a higher to a lower beta-coefficient. Such associations were not seen in females. Our study implies that body fat mass may be an independent risk factor for higher QTc interval and, consequently, more cardiovascular events that should be investigated. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02095-2.
Collapse
|
7
|
Outcomes of elderly patients with organophosphate intoxication. Sci Rep 2021; 11:11615. [PMID: 34079035 PMCID: PMC8172550 DOI: 10.1038/s41598-021-91230-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/24/2021] [Indexed: 11/08/2022] Open
Abstract
This study analysed the clinical patterns and outcomes of elderly patients with organophosphate intoxication. A total of 71 elderly patients with organophosphate poisoning were seen between 2008 and 2017. Patients were stratified into two subgroups: survivors (n = 57) or nonsurvivors (n = 14). Chlorpyrifos accounted for 33.8% of the cases, followed by methamidophos (12.7%) and mevinphos (11.3%). Mood, adjustment and psychotic disorder were noted in 39.4%, 33.8% and 2.8% of patients, respectively. All patients were treated with atropine and pralidoxime therapies. Acute cholinergic crisis developed in all cases (100.0%). The complications included respiratory failure (52.1%), aspiration pneumonia (50.7%), acute kidney injury (43.7%), severe consciousness disturbance (25.4%), shock (14.1%) and seizures (4.2%). Some patients also developed intermediate syndrome (15.5%) and delayed neuropathy (4.2%). The nonsurvivors suffered higher rates of hypotension (P < 0.001), shock (P < 0.001) and kidney injury (P = 0.001) than survivors did. Kaplan–Meier analysis indicated that patients with shock suffered lower cumulative survival than did patients without shock (log-rank test, P < 0.001). In a multivariate-Cox-regression model, shock was a significant predictor of mortality after intoxication (odds ratio 18.182, 95% confidence interval 2.045–166.667, P = 0.009). The mortality rate was 19.7%. Acute cholinergic crisis, intermediate syndrome, and delayed neuropathy developed in 100.0%, 15.5%, and 4.2% of patients, respectively.
Collapse
|
8
|
Pannu AK, Bhalla A, Vishnu RI, Garg S, Dhibar DP, Sharma N, Vijayvergiya R. Cardiac injury in organophosphate poisoning after acute ingestion. Toxicol Res (Camb) 2021; 10:446-452. [PMID: 34141158 DOI: 10.1093/toxres/tfab036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Sparse data and conflicting evidence exist on the prevalence and prognosis of organophosphate (OP)-related cardiac toxicity. We aimed to characterize the cardiac abnormalities of OP after an acute cholinergic crisis in adults without previous cardiovascular conditions. Patients and Methods We did a prospective observational study in a tertiary-care hospital of north India (Postgraduate Institute of Medical Education and Research, Chandigarh) in 74 patients aged ≥ 13 years admitted with acute OP poisoning after self-ingestion. A systemic evaluation, including clinical characteristics, electrocardiography, and echocardiography, was performed to estimate the prevalence and prognosis of cardiac injury. A rate-corrected QT interval was calculated using Bazett's method, and >440 milliseconds was used to define prolongation. Results Chlorpyrifos was the most commonly ingested OP (n = 29). The patients had a similar occurrence of hypotension (n = 10) and hypertension (n = 9) at admission, and electrocardiography demonstrated sinus tachycardia in 38 (51.3%) and sinus bradycardia in one case. During the hospital stay, 3 out of 74 patients had a prolonged rate-corrected QT interval (457, 468, and 461 milliseconds), and one patient developed supraventricular tachycardia. Eight (10.8%) patients developed the intermediate syndrome, and six (8.1%) died. None of the hemodynamic or electrocardiographic abnormalities was associated with in-hospital mortality or intermediate syndrome development on univariant analysis. Baseline echocardiography at hospital discharge was performed in 27 patients (admitted during 2018) and normal in all except mild tricuspid regurgitation in one. At a 6-month follow-up, 23 cases were available for cardiovascular screening (including echocardiography) and had a normal evaluation. Conclusion Cardiac toxicity is uncommon after acute OP self-ingestion and lacks prognostic significance.
Collapse
Affiliation(s)
- Ashok Kumar Pannu
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, 4th Floor, F Block, Nehru Hospital, PGIMER, Chandigarh 160012, India
| | - Ashish Bhalla
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, 4th Floor, F Block, Nehru Hospital, PGIMER, Chandigarh 160012, India
| | - R I Vishnu
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, 4th Floor, F Block, Nehru Hospital, PGIMER, Chandigarh 160012, India
| | - Sahil Garg
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, 4th Floor, F Block, Nehru Hospital, PGIMER, Chandigarh 160012, India
| | - Deba Prasad Dhibar
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, 4th Floor, F Block, Nehru Hospital, PGIMER, Chandigarh 160012, India
| | - Navneet Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, 4th Floor, F Block, Nehru Hospital, PGIMER, Chandigarh 160012, India
| | - Rajesh Vijayvergiya
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, 3rd Floor, Block - C, Advanced Cardiac Center, PGIMER, Chandigarh 160012, India
| |
Collapse
|
9
|
Rajak P, Ganguly A, Sarkar S, Mandi M, Dutta M, Podder S, Khatun S, Roy S. Immunotoxic role of organophosphates: An unseen risk escalating SARS-CoV-2 pathogenicity. Food Chem Toxicol 2021; 149:112007. [PMID: 33493637 PMCID: PMC7825955 DOI: 10.1016/j.fct.2021.112007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Consistent gathering of immunotoxic substances on earth is a serious global issue affecting people under pathogenic stress. Organophosphates are among such hazardous compounds that are ubiquitous in nature. They fuel oxidative stress to impair antiviral immune response in living entities. Aside, organophosphates promote cytokine burst and pyroptosis in broncho-alveolar chambers leading to severe respiratory ailments. At present, we witness COVID-19 outbreak caused by SARS-CoV-2. Infection triggers cytokine storm coupled with inflammatory manifestations and pulmonary disorders in patients. Since organophosphate-exposure promotes necroinflammation and respiratory troubles hence during current pandemic situation, additional exposure to such chemicals can exacerbate inflammatory outcome and pulmonary maladies in patients, or pre-exposure to organophosphates might turn-out to be a risk factor for compromised immunity. Fortunately, antioxidants alleviate organophosphate-induced immunosuppression and hence under co-exposure circumstances, dietary intake of antioxidants would be beneficial to boost immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India.
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya, Gushkara, Purba Bardhaman, West Bengal, India.
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India.
| | - Moumita Dutta
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.
| | - Sayanti Podder
- Post Graduate Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, India.
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India.
| | - Sumedha Roy
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| |
Collapse
|
10
|
Toma D, Toma TE, Bologa C, Lionte C. Unusual aetiology of a type 2 myocardial infarction: a case-based review. Arh Hig Rada Toksikol 2021; 72:80-87. [PMID: 33787179 PMCID: PMC8191432 DOI: 10.2478/aiht-2021-72-3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/01/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Organophosphate pesticide (OP) poisoning is quite common and can cause cardiovascular complications and even direct myocardial injury. However, no guideline has included an acute poisoning as a potential cause for a type 2 myocardial infarction (MI) so far. Here we present a case of a 61-year-old woman brought by ambulance to emergency department one hour after accidental ingestion of an unknown quantity of a solution she used against flea infestation. The patient presented with dizziness, myosis, excessive sweating, hypersalivation, sphincteric incontinence, muscle fasciculation, tremor of the extremities, pale skin, alcoholic and pesticide breath odour. Even though we had no guidelines to fall back on, we successfully treated the patient with low-molecular-weight heparin, antiplatelets, statin, diltiazem, antidote therapy, and supportive care. Physicians should be aware that OP poisoning can induce type 2 MI as a complication within a few hours since exposure, and emergency management should always include close cardiac monitoring.
Collapse
Affiliation(s)
- David Toma
- Sf. Spiridon Emergency County Hospital, Emergency Department, Iași, Romania
| | - Tania-Emima Toma
- Sf. Maria Emergency Children’s Hospital, General Paediatrics, Iași, Romania
| | - Cristina Bologa
- “Grigore T. Popa” University of Medicine and Pharmacy, School of Medicine, Internal Medicine and Clinical Toxicology Department, Iași, Romania
- Sf. Spiridon Emergency County Hospital, 2 Internal Medicine Clinic, Iași, Romania
| | - Cătălina Lionte
- “Grigore T. Popa” University of Medicine and Pharmacy, School of Medicine, Internal Medicine and Clinical Toxicology Department, Iași, Romania
- Sf. Spiridon Emergency County Hospital, 2 Internal Medicine Clinic, Iași, Romania
| |
Collapse
|
11
|
Sun H, Sun ML, Barr DB. Exposure to organophosphorus insecticides and increased risks of health and cancer in US women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103474. [PMID: 32828957 PMCID: PMC7808295 DOI: 10.1016/j.etap.2020.103474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 05/04/2023]
Abstract
Results of this paper provide evidence that chronic long-term exposure to organophosphorus insecticides poses a significantly higher health risk for US women than for men, based on dialkylphosphate biomarker data from NHANES cycles 2003-2012. The risk of cardiovascular disease for female non-smokers aged 60-85 years in the highest dimethylthiophosphate (DMTP) urinary concentration quartile is 3.0 (odds ratio, OD = 3.0, 95%CI 1.4-6.4) times higher than that in the lowest quartile. Women with higher urinary DMTP concentrations also have significantly higher risk of asthma at the ages 6-39 years and an apparently higher risk of chronic bronchitis at the ages 60-85. Overall cancer risk is significantly higher for female non-smokers aged 60-85 years in the higher urinary DMTP quartiles (OD = 2.7, 95% CI 1.3-5.9). Increasing risks of breast cancer for female smokers and prostate cancer for male smokers aged 60-85 years with higher exposure to organophosphorus insecticides in the US are also significant.
Collapse
Affiliation(s)
- Hongbing Sun
- GEMS Department, Health Studies Institute, Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648, United States.
| | - Michael Leo Sun
- Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, United States
| |
Collapse
|
12
|
Felemban SG, Vyas FS, Durose L, Hargreaves AJ, Dickenson JM. Phenyl Saligenin Phosphate Disrupts Cell Morphology and the Actin Cytoskeleton in Differentiating H9c2 Cardiomyoblasts and Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocyte Progenitor Cells. Chem Res Toxicol 2020; 33:2310-2323. [PMID: 32786544 DOI: 10.1021/acs.chemrestox.0c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that phenyl saligenin phosphate (PSP), an organophosphorus compound which is classed as a weak inhibitor of acetylcholinesterase, triggered cytotoxicity in mitotic and differentiated H9c2 cardiomyoblasts. The aim of this study was to assess whether sublethal concentrations of PSP could disrupt the morphology of differentiating rat H9c2 cardiomyoblasts and human-induced pluripotent stem-cell-derived cardiomyocyte progenitor cells (hiPSC-CMs) and to assess the underlying cytoskeletal changes. PSP-induced changes in protein expression were monitored via Western blotting, immunocytochemistry, and proteomic analysis. PSP-mediated cytotoxicity was determined by measuring MTT reduction, LDH release, and caspase-3 activity. Sublethal exposure to PSP (3 μM) induced morphological changes in differentiating H9c2 cells (7, 9, and 13 days), reflected by reduced numbers of spindle-shaped cells. Moreover, this treatment (7 days) attenuated the expression of the cytoskeletal proteins cardiac troponin I, tropomyosin-1, and α-actin. Further proteomic analysis identified nine proteins (e.g., heat shock protein 90-β and calumenin) which were down-regulated by PSP exposure in H9c2 cells. To assess the cytotoxic effects of organophosphorus compounds in a human cell model, we determined their effects on human-induced pluripotent stem-cell-derived cardiomyocyte progenitor cells. Chlorpyrifos and diazinon-induced cytotoxicity (48 h) was evident only at concentrations >100 μM. By contrast, PSP exhibited cytotoxicity in hiPSC-CMs at a concentration of 25 μM following 48 h exposure. Finally, sublethal exposure to PSP (3 μM; 7 days) induced morphological changes and decreased the expression of cardiac troponin I, tropomyosin-1, and α-actin in hiPSC-CMs. In summary, our data suggest cardiomyocyte morphology is disrupted in both cell models by sublethal concentrations of PSP via modulation of cytoskeletal protein expression.
Collapse
Affiliation(s)
- Shatha G Felemban
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Falguni S Vyas
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Lyndsey Durose
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alan J Hargreaves
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - John M Dickenson
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
13
|
Glaros T, Dhummakupt ES, Rizzo GM, McBride E, Carmany DO, Wright LKM, Forster JS, Renner JA, Moretz RW, Dorsey R, Marten MR, Huso W, Doan A, Dorsey CD, Phillips C, Benton B, Mach PM. Discovery of treatment for nerve agents targeting a new metabolic pathway. Arch Toxicol 2020; 94:3249-3264. [PMID: 32720192 PMCID: PMC7415758 DOI: 10.1007/s00204-020-02820-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/18/2020] [Indexed: 11/19/2022]
Abstract
The inhibition of acetylcholinesterase is regarded as the primary toxic mechanism of action for chemical warfare agents. Recently, there have been numerous reports suggesting that metabolic processes could significantly contribute to toxicity. As such, we applied a multi-omics pipeline to generate a detailed cascade of molecular events temporally occurring in guinea pigs exposed to VX. Proteomic and metabolomic profiling resulted in the identification of several enzymes and metabolic precursors involved in glycolysis and the TCA cycle. All lines of experimental evidence indicated that there was a blockade of the TCA cycle at isocitrate dehydrogenase 2, which converts isocitrate to α-ketoglutarate. Using a primary beating cardiomyocyte cell model, we were able to determine that the supplementation of α-ketoglutarate subsequently rescued cells from the acute effects of VX poisoning. This study highlights the broad impacts that VX has and how understanding these mechanisms could result in new therapeutics such as α-ketoglutarate.
Collapse
Affiliation(s)
- Trevor Glaros
- Research and Technology Directorate, BioSciences Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Building E3150, Aberdeen Proving Ground, Gunpowder, MD, 21010, USA.
- BioSciences Division, B11 Bioenergy and Biome Sciences, Los Alamos National Laboratory, SM30, Mailstop E529, PO Box 1663, Los Alamos, NM, 87545, USA.
| | - Elizabeth S Dhummakupt
- Research and Technology Directorate, BioSciences Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Building E3150, Aberdeen Proving Ground, Gunpowder, MD, 21010, USA
| | - Gabrielle M Rizzo
- Excet, Inc., 6225 Brandon Ave, Suite 360, Springfield, VA, 22150, USA
| | - Ethan McBride
- Research and Technology Directorate, BioSciences Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Building E3150, Aberdeen Proving Ground, Gunpowder, MD, 21010, USA
- National Academies of Sciences, Engineering, and Medicine, NRC Research Associateship Programs, 500 Fifth Street, NW, Washington, DC, 20001, USA
| | - Daniel O Carmany
- Excet, Inc., 6225 Brandon Ave, Suite 360, Springfield, VA, 22150, USA
| | - Linnzi K M Wright
- Research and Technology Directorate, Toxicology and Obscurants Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD, 21010, USA
| | - Jeffry S Forster
- Research and Technology Directorate, Toxicology and Obscurants Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD, 21010, USA
| | - Julie A Renner
- Research and Technology Directorate, Toxicology and Obscurants Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD, 21010, USA
| | - Ruth W Moretz
- Research and Technology Directorate, Toxicology and Obscurants Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD, 21010, USA
| | - Russell Dorsey
- Research and Technology Directorate, Toxicology and Obscurants Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD, 21010, USA
| | - Mark R Marten
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), Engineering Building, Baltimore, MD, USA
| | - Walker Huso
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), Engineering Building, Baltimore, MD, USA
| | - Alexander Doan
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), Engineering Building, Baltimore, MD, USA
| | - Carrie D Dorsey
- Kirk U.S. Army Health Clinic, 6455 Machine Rd., Aberdeen Proving Ground, Gunpowder, MD, 21005, USA
| | - Christopher Phillips
- Research and Technology Directorate, Toxicology and Obscurants Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD, 21010, USA
| | - Bernard Benton
- Research and Technology Directorate, Toxicology and Obscurants Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD, 21010, USA
| | - Phillip M Mach
- Research and Technology Directorate, BioSciences Division, Combat Capabilities Development Command (CCDC) Chemical Biological Center, 5183 Blackhawk Rd., Building E3150, Aberdeen Proving Ground, Gunpowder, MD, 21010, USA.
| |
Collapse
|
14
|
Worek F, Thiermann H, Wille T. Organophosphorus compounds and oximes: a critical review. Arch Toxicol 2020; 94:2275-2292. [PMID: 32506210 PMCID: PMC7367912 DOI: 10.1007/s00204-020-02797-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Organophosphorus (OP) pesticides and nerve agents still pose a threat to the population. Treatment of OP poisoning is an ongoing challenge and burden for medical services. Standard drug treatment consists of atropine and an oxime as reactivator of OP-inhibited acetylcholinesterase and is virtually unchanged since more than six decades. Established oximes, i.e. pralidoxime, obidoxime, TMB-4, HI-6 and MMB-4, are of insufficient effectiveness in some poisonings and often cover only a limited spectrum of the different nerve agents and pesticides. Moreover, the value of oximes in human OP pesticide poisoning is still disputed. Long-lasting research efforts resulted in the preparation of countless experimental oximes, and more recently non-oxime reactivators, intended to replace or supplement the established and licensed oximes. The progress of this development is slow and none of the novel compounds appears to be suitable for transfer into advanced development or into clinical use. This situation calls for a critical analysis of the value of oximes as mainstay of treatment as well as the potential and limitations of established and novel reactivators. Requirements for a straightforward identification of superior reactivators and their development to licensed drugs need to be addressed as well as options for interim solutions as a chance to improve the therapy of OP poisoning in a foreseeable time frame.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| |
Collapse
|
15
|
Bouknight KD, Jurkouich KM, Compton JR, Khavrutskii IV, Guelta MA, Harvey SP, Legler PM. Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. Biochem Pharmacol 2020; 177:113980. [PMID: 32305437 DOI: 10.1016/j.bcp.2020.113980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
Human Cathepsin A (CatA) is a lysosomal serine carboxypeptidase of the renin-angiotensin system (RAS) and is structurally similar to acetylcholinesterase (AChE). CatA can remove the C-terminal amino acids of endothelin I, angiotensin I, Substance P, oxytocin, and bradykinin, and can deamidate neurokinin A. Proteomic studies identified CatA and its homologue, SCPEP1, as potential targets of organophosphates (OP). CatA could be stably inhibited by low µM to high nM concentrations of racemic sarin (GB), soman (GD), cyclosarin (GF), VX, and VR within minutes to hours at pH 7. Cyclosarin was the most potent with a kinetically measured dissociation constant (KI) of 2 µM followed by VR (KI = 2.8 µM). Bimolecular rate constants for inhibition by cyclosarin and VR were 1.3 × 103 M-1sec-1 and 1.2 × 103 M-1sec-1, respectively, and were approximately 3-orders of magnitude lower than those of human AChE indicating slower reactivity. Notably, both AChE and CatA bound diisopropylfluorophosphate (DFP) comparably and had KIDFP = 13 µM and 11 µM, respectively. At low pH, greater than 85% of the enzyme spontaneously reactivated after OP inhibition, conditions under which OP-adducts of cholinesterases irreversibly age. At pH 6.5 CatA remained stably inhibited by GB and GF and <10% of the enzyme spontaneously reactivated after 200 h. A crystal structure of DFP-inhibited CatA was determined and contained an aged adduct. Similar to AChE, CatA appears to have a "backdoor" for product release. CatA has not been shown previously to age. These results may have implications for: OP-associated inflammation; cardiovascular effects; and the dysregulation of RAS enzymes by OP.
Collapse
Affiliation(s)
- Kayla D Bouknight
- Hampton University, 100 E Queen St, Hampton, VA 23668, United States
| | - Kayla M Jurkouich
- Case Western Reserve University, Dept. of Biomedical Engineering, Cleveland, 10900 Euclid Avenue, OH 44106, United States
| | - Jaimee R Compton
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States
| | - Ilja V Khavrutskii
- Uniformed Services University, Armed Forces Radiobiology Research Institute, 4301 Jones Bridge Rd., Bethesda, MD 20889-5648, United States
| | - Mark A Guelta
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Steven P Harvey
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Patricia M Legler
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States.
| |
Collapse
|
16
|
Shahsavari Nia K, Moharamzadeh P, Taghizadieh A, Abedi S, Gharekhani A. Association between ECG Alterations and Outcomes of Patients with Acute Organophosphate Poisoning. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Organophosphate (OP) poisoning leads to atrioventricular node blockade, alterations in ST segment, prolongation of QT interval, alterations in P wave, lethal arrhythmias, and cardiac arrest through the inhibition of acetylcholinesterase and consequent accumulation of free synaptic acetylcholine level. So the present study was aimed to investigate the role of electrocardiographic (ECG) monitoring combined with the introduction of anti-arrhythmic interventions on OPs poisoning outcomes. Methods: 41 patients with OPs poisoning were included. Patients with history of heart or liver diseases, cholinesterase deficiency, anemia, and poisoning with other toxins were excluded. Demographic characteristics, the time elapsed between OP ingestion and hospital admission, need for mechanical ventilation, and serum cholinesterase level were recorded. ECG of patients was analyzed for rate, rhythm, ST-T abnormalities, conduction defects, and measurement of PR and QT intervals. Study outcomes were measures of morbidity and mortality. Results: Of 41 patients, with mean age of 34.76±13 years, 19 were male. For 68.3% of the patients, the time elapsed between ingestion and hospital admission was 3-6 hours. Eight patients were treated with mechanical ventilation. There was a significant correlation between ST segment alterations and poisoning outcomes including uncomplicated discharge, complicated discharge, and death (P=0.02). Thirty one patients were discharged without any complication, 8 with morbidity and 2 expired. ST segment changes were seen in 4 patients. Two percent had PR interval greater than 0.21s and 3% had QT interval longer than 0.45s. The mean serum cholinesterase concentration was 3011.56 U/L. Conclusion: Due to lethal cardiac arrhythmia caused by OP poisoning, continuous monitoring, managing, and preventing irreparable effects of OP poisoning is highly emphasized.
Collapse
Affiliation(s)
- Kavous Shahsavari Nia
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Payman Moharamzadeh
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Taghizadieh
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Abedi
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Gharekhani
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy (Pharmacotherapy), Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Amend N, Thiermann H, Worek F, Wille T. The arrhythmogenic potential of nerve agents and a cardiac safety profile of antidotes - A proof-of-concept study using human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM). Toxicol Lett 2019; 308:1-6. [DOI: 10.1016/j.toxlet.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
18
|
Shiyovich A, Matot R, Elyagon S, Liel-Cohen N, Rosman Y, Shrot S, Kassirer M, Katz A, Etzion Y. QT Prolongation as an Isolated Long-Term Cardiac Manifestation of Dichlorvos Organophosphate Poisoning in Rats. Cardiovasc Toxicol 2019; 18:24-32. [PMID: 28510081 DOI: 10.1007/s12012-017-9409-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Organophosphates (OP) are used extensively as pesticides and as chemical weapons. Cardiotoxicity is a major concern in survivors of the acute poisoning. To characterize the delayed cardiac effects of OP, rats were poisoned by intraperitoneal administration of dichlorvos. In group I, poisoning (0.25-, 0.75-, 1.4-LD50) was followed by application of atropine and obidoxime. In group II, poisoning (0.35-, 0.5-LD50) was done without antidotes. Cardiac evaluation included electrocardiography and echocardiography 2- and 6-week post-exposure, arrhythmia susceptibility following administration of Isoproterenol (150 mcg/kg), and histological evaluation. All poisoned animals displayed cholinergic symptoms. In group I, all animals exposed to 1.4-LD50 (n = 3) had profound convulsions and died despite antidote treatment. However, in the lower doses, all animals survived and no cardiac abnormalities were noted during follow-up. In group II, six animals had convulsions and died. Surviving animals had mild but significant prolongation of corrected QT at both 2 and 6 weeks, compared to shams. There were no notable echocardiographic, gravimetric, or histological differences between poisoned and sham animals. Our data indicate that dichlorvos poisoning is associated with QT prolongation without anatomical or histopathological abnormalities. This new model can be used to elaborate the molecular mechanism\s of QT prolongation following OP poisoning.
Collapse
Affiliation(s)
- Arthur Shiyovich
- Medical Corps HQ, IDF, P.O. Box 02149, Tel Hashomer Base, Ramat-Gan, Israel
| | - Ran Matot
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Sigal Elyagon
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Noah Liel-Cohen
- Department of Cardiology, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yossi Rosman
- Medical Corps HQ, IDF, P.O. Box 02149, Tel Hashomer Base, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shai Shrot
- Medical Corps HQ, IDF, P.O. Box 02149, Tel Hashomer Base, Ramat-Gan, Israel
| | - Michael Kassirer
- Medical Corps HQ, IDF, P.O. Box 02149, Tel Hashomer Base, Ramat-Gan, Israel
- Pulmonary Institute, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amos Katz
- Department of Cardiology, Barzilai Medical Center, Ashkelon and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
19
|
|
20
|
Lee CW, Su H, Lee RH, Lin YP, Tsai YD, Wu DC, Shiea J. Point-of-care identification of organophosphates in gastric juice by ambient mass spectrometry in emergency settings. Clin Chim Acta 2018; 485:288-297. [DOI: 10.1016/j.cca.2018.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/18/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022]
|
21
|
Georgiadis N, Tsarouhas K, Tsitsimpikou C, Vardavas A, Rezaee R, Germanakis I, Tsatsakis A, Stagos D, Kouretas D. Pesticides and cardiotoxicity. Where do we stand? Toxicol Appl Pharmacol 2018; 353:1-14. [PMID: 29885332 DOI: 10.1016/j.taap.2018.06.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases are among the most significant causes of mortality in humans. Pesticides toxicity and risk for human health are controlled at a European level through a well-developed regulatory network, but cardiotoxicity is not described as a separate hazard class. Specific classification criteria should be developed within the frame of Regulation (EC) No 1272/2008 in order to classify chemicals as cardiotoxic, if applicable to avoid long-term cardiovascular complications. The aim of this study was to review the cardiac pathology and function impairment due to exposure to pesticides (i.e. organophosphates, organothiophisphates, organochlorines, carbamates, pyrethroids, dipyridyl herbicides, triazoles, triazines) based on both animal and human data. The majority of human data on cardiotoxicity of pesticides come from poisoning cases and epidemiological data. Several cardiovascular complications have been reported in animal models including electrocardiogram abnormalities, myocardial infarction, impaired systolic and diastolic performance, functional remodeling and histopathological findings, such as haemorrhage, vacuolisation, signs of apoptosis and degeneration.
Collapse
Affiliation(s)
- Nikolaos Georgiadis
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy; Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Konstantinos Tsarouhas
- Department of Cardiology, University Hospital of Larissa, Mezourlo, Larissa 41110, Greece
| | | | - Alexandros Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71003 Crete, Greece
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ioannis Germanakis
- Paediatric Cardiology Unit, Department of Paediatrics, University Hospital Voutes, Heraklion, 71409 Crete, Greece
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71003 Crete, Greece
| | - Dimitrios Stagos
- Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece.
| |
Collapse
|
22
|
|
23
|
Abstract
Organophosphorus (OP) pesticide poisoning is a major clinical and public health problem in a developing country like India. Cardiac injury is a strong predictor of death in these patients. Cardiac complications usually described include cardiac arrest, pulmonary edema, and arrhythmia. Rarely, myocardial infarction has also been reported. The possible mechanisms for myocardial injury include sympathetic/parasympathetic overactivity, hypoxemia, acidosis, dyselectrolytemia, and direct cardiotoxicity. We describe herein one case of OP poisoning, recently admitted in our emergency department and which was complicated by acute onset atrial fibrillation which reverted to sinus rhythm following detoxification of OP compound.
Collapse
Affiliation(s)
| | - Shreekant Chaudhary
- Department of Medicine, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| |
Collapse
|
24
|
Felemban SG, Garner AC, Smida FA, Boocock DJ, Hargreaves AJ, Dickenson JM. Phenyl Saligenin Phosphate Induced Caspase-3 and c-Jun N-Terminal Kinase Activation in Cardiomyocyte-Like Cells. Chem Res Toxicol 2015; 28:2179-91. [PMID: 26465378 DOI: 10.1021/acs.chemrestox.5b00338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
At present, little is known about the effect(s) of organophosphorous compounds (OPs) on cardiomyocytes. In this study, we have investigated the effects of phenyl saligenin phosphate (PSP), two organophosphorothioate insecticides (diazinon and chlorpyrifos), and their acutely toxic metabolites (diazoxon and chlorpyrifos oxon) on mitotic and differentiated H9c2 cardiomyoblasts. OP-induced cytotoxicity was assessed by monitoring MTT reduction, LDH release, and caspase-3 activity. Cytotoxicity was not observed with diazinon, diazoxon, or chlorpyrifos oxon (48 h exposure; 200 μM). Chlorpyrifos-induced cytotoxicity was only evident at concentrations >100 μM. In marked contrast, PSP displayed pronounced cytotoxicity toward mitotic and differentiated H9c2 cells. PSP triggered the activation of JNK1/2 but not ERK1/2, p38 MAPK, or PKB, suggesting a role for this pro-apoptotic protein kinase in PSP-induced cell death. The JNK1/2 inhibitor SP 600125 attenuated PSP-induced caspase-3 and JNK1/2 activation, confirming the role of JNK1/2 in PSP-induced cytotoxicity. Fluorescently labeled PSP (dansylated PSP) was used to identify novel PSP binding proteins. Dansylated PSP displayed cytotoxicity toward differentiated H9c2 cells. 2D-gel electrophoresis profiles of cells treated with dansylated PSP (25 μM) were used to identify proteins fluorescently labeled with dansylated PSP. Proteomic analysis identified tropomyosin, heat shock protein β-1, and nucleolar protein 58 as novel protein targets for PSP. In summary, PSP triggers cytotoxicity in differentiated H9c2 cardiomyoblasts via JNK1/2-mediated activation of caspase-3. Further studies are required to investigate whether the identified novel protein targets of PSP play a role in the cytotoxicity of this OP, which is usually associated with the development of OP-induced delayed neuropathy.
Collapse
Affiliation(s)
- Shatha G Felemban
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - A Christopher Garner
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Fathi A Smida
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - John M Dickenson
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
25
|
Hung DZ, Yang HJ, Li YF, Lin CL, Chang SY, Sung FC, Tai SCW. The Long-Term Effects of Organophosphates Poisoning as a Risk Factor of CVDs: A Nationwide Population-Based Cohort Study. PLoS One 2015; 10:e0137632. [PMID: 26339906 PMCID: PMC4560399 DOI: 10.1371/journal.pone.0137632] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Organophosphorus pesticides are widely used throughout the world. Because of their ease of availability, organophosphorus compounds are commonly used for self-poisoning in developing countries. The acute effects of exposure to organophosphorus pesticides are well known, but the chronic effects are unclear. Recent studies suggest that abnormalities of the central and peripheral nervous systems persisted for up to 5 years after acute poisoning due to a single large dose of organophosphates (OPs). However, the long-term effects on cardiovascular diseases are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS An OPs-exposed cohort (N = 7,561) and an age- and gender-matched control cohort (N = 30,244), both identified from the National Health Insurance Research Database, were compared. We utilized the multivariable Cox proportional model to estimate the risks of developing arrhythmia, coronary artery disease (CAD) and congestive heart failure (CHF). The patients with acute poisoning from OPs had higher incidence rates of arrhythmia (5.89 vs. 3.61 per 1,000 person-years), CAD (9.10 vs. 6.88 per 1,000 person-years), and CHF (3.89 vs. 2.98 per 1,000 person-years) compared with that of the non-OPs poisoning cohort, with a crude subhazard ratio (SHR) of 1.40, 1.13, and 1.12, respectively. Additionally, a significantly higher risk of arrhythmia was observed in the OPs poisoning cohort (adjusted SHR = 1.25) compared with the non-OPs poisoning cohort, particularly in male patients (adjusted SHR = 1.33) and those under 49 years of age (adjusted SHR = 3.16). After accounting for the competing risks of death, there was a higher risk of arrhythmia and CAD during a three year follow-up period (adjusted SHR = 1.50 for arrhythmia; adjusted SHR = 1.10 for CAD). We also found an adjusted SHR of 1.36 associated with developing CHF after 6 years of follow-up for OPs poisoning cohort. CONCLUSIONS Acute OPs poisoning may continuously impact human health through mechanisms that are unclear. Any supportive measurements that could contribute to a reduction in the risk of heart disease may be beneficial in cases of OPs poisoning survivors.
Collapse
Affiliation(s)
- Dong-Zong Hung
- Department of Emergency, Toxicology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Hao-Jan Yang
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Fen Li
- Institute of Biostatistics, China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Yu Chang
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| | - Fung-Chang Sung
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Sally C. W. Tai
- Department of Emergency, Toxicology Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
Aydin M, Yildiz A, Ibiloglu I, Ekinci A, Ulger BV, Yuksel M, Bilik MZ, Ozaydogdu N, Ekinci C, Yazgan UC. The protective role of glutamine against acute induced toxicity in rats. Toxicol Mech Methods 2015; 25:296-301. [DOI: 10.3109/15376516.2015.1025349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Taksande B, Dhirawani B. Ventricular bigeminy in acute organophorous poisoning - A rare ECG finding. J Arrhythm 2015; 31:255-256. [PMID: 30941203 DOI: 10.1016/j.joa.2014.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/29/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022] Open
Abstract
India being a land of farmer, the pesticides are freely and easily available and therefore organophosphorous poisoning is one of the major health issues. Suicidal poisoning is more common than accidental poisoning. Cardiac manifestations of organophosphorous poisoning are well known. It results in various electrocardiographic changes from sinus tachycardia to ST elevation. We hereby present a rare ECG finding of ventricular bigeminy in a case of acute organophosphorous poisoning.
Collapse
Affiliation(s)
- Bharati Taksande
- Department of Medicine, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Bhawik Dhirawani
- Department of Medicine, Jawaharlal Nehru Medical College, Sawangi (Meghe), Wardha, Maharashtra 442 005, India
| |
Collapse
|
28
|
Saxena A, Hastings NB, Sun W, Dabisch PA, Hulet SW, Jakubowski EM, Mioduszewski RJ, Doctor BP. Prophylaxis with human serum butyrylcholinesterase protects Göttingen minipigs exposed to a lethal high-dose of sarin vapor. Chem Biol Interact 2015; 238:161-9. [PMID: 26145887 DOI: 10.1016/j.cbi.2015.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/02/2015] [Indexed: 11/17/2022]
Abstract
Serum-derived human butyrylcholinesterase (Hu BChE) is a stoichiometric bioscavenger that is being developed as a potential prophylactic nerve agent countermeasure. Previously, we reported the prophylactic efficacy of Hu BChE in Göttingen minipigs against a whole-body exposure to 4.1mg/m(3) of sarin (GB) vapor, which produced lethality over 60min. Since the toxicity of nerve agent is concentration-dependent, in the present study, we investigated the toxic effects of an almost 3-fold higher rate of GB vapor exposure and the ability of Hu BChE to protect minipigs against this exposure. Male minipigs were subjected to: (1) air exposure; (2) GB vapor exposure; or (3) pretreatment with 7.5mg/kg of Hu BChE by i.m. injection, 24h prior to whole-body exposure to 11.4mg/m(3) of GB vapor for 10min. Electrocardiogram, electroencephalogram, and pupil size were monitored throughout exposure. Blood drawn before and throughout exposure was analyzed for blood gases, electrolytes, metabolites, acetylcholinesterase and BChE activities, and amount of GB bound to red blood cells and plasma. A novel finding was that saline-treated animals exposed to GB vapor did not develop any seizures, but manifested a variety of cardiac and whole blood toxic signs and rapidly died due to respiratory failure. Strikingly, pre-treatment with 7.5mg/kg of Hu BChE not only prevented lethality, but also avoided all cardiac toxic signs manifested in the non-treated cohort. Thus, Hu BChE alone can serve as an effective prophylactic countermeasure versus a lethal high-dose exposure to GB vapor.
Collapse
Affiliation(s)
- Ashima Saxena
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States.
| | - Nicholas B Hastings
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | - Wei Sun
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | - Paul A Dabisch
- Operational Toxicology Team, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, United States
| | - Stanley W Hulet
- Operational Toxicology Team, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, United States
| | - Edward M Jakubowski
- Operational Toxicology Team, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, United States
| | - Robert J Mioduszewski
- Operational Toxicology Team, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, United States
| | - Bhupendra P Doctor
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| |
Collapse
|
29
|
Gress S, Lemoine S, Séralini GE, Puddu PE. Glyphosate-based herbicides potently affect cardiovascular system in mammals: review of the literature. Cardiovasc Toxicol 2015; 15:117-26. [PMID: 25245870 DOI: 10.1007/s12012-014-9282-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In glyphosate (G)-based herbicides (GBHs), the declared active principle G is mixed with several adjuvants that help it to penetrate the plants' cell membranes and its stabilization and liposolubility. Its utilization is growing with genetically modified organisms engineered to tolerate GBH. Millions of farmers suffer poisoning and death in developing countries, and occupational exposures and suicide make GBH toxicity a worldwide concern. As GBH is found in human plasma, widespread hospital facilities for measuring it should be encouraged. Plasma determination is an essential prerequisite for risk assessment in GBH intoxication. Only when standard ECGs were performed, at least one abnormal ECG was detected in the large majority of cases after intoxication. QTc prolongation and arrhythmias along with first-degree atrioventricular block were observed after GBH intoxication. Thus, life-threatening arrhythmias might be the cause of death in GBH intoxication. Cardiac cellular effects of GBH were reviewed along with few case reports in men and scanty larger studies. We observed in two mammalian species (rats and rabbits) direct cardiac electrophysiological changes, conduction blocks and arrhythmias among GBH-mediated effects. Plasmatic (and urine) level determinations of G and electrocardiographic Holter monitoring seem warranted to ascertain whether cardiovascular risk among agro-alimentary workers might be defined.
Collapse
Affiliation(s)
- Steeve Gress
- EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Institute of Biology, University of Caen, Esplanade de la Paix, 14032, Caen Cedex, France
| | | | | | | |
Collapse
|
30
|
Vale A, Lotti M. Organophosphorus and carbamate insecticide poisoning. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:149-68. [PMID: 26563788 DOI: 10.1016/b978-0-444-62627-1.00010-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both organophosphorus (OP) and carbamate insecticides inhibit acetylcholinesterase (AChE), which results in accumulation of acetylcholine (ACh) at autonomic and some central synapses and at autonomic postganglionic and neuromuscular junctions. As a consequence, ACh binds to, and stimulates, muscarinic and nicotinic receptors, thereby producing characteristic features. With OP insecticides (but not carbamates), "aging" may also occur by partial dealkylation of the serine group at the active site of AChE; recovery of AChE activity requires synthesis of new enzyme in the liver. Relapse after apparent resolution of cholinergic symptoms has been reported with OP insecticides and is termed the intermediate syndrome. This involves the onset of muscle paralysis affecting particularly upper-limb muscles, neck flexors, and cranial nerves some 24-96 hours after OP exposure and is often associated with the development of respiratory failure. OP-induced delayed neuropathy results from phosphorylation and subsequent aging of at least 70% of neuropathy target esterase. Cramping muscle pain in the lower limbs, distal numbness, and paresthesiae are followed by progressive weakness, depression of deep tendon reflexes in the lower limbs and, in severe cases, in the upper limbs. The therapeutic combination of oxime, atropine, and diazepam is well established experimentally in the treatment of OP pesticide poisoning. However, there has been controversy as to whether oximes improve morbidity and mortality in human poisoning. The explanation may be that the solvents in many formulations are primarily responsible for the high morbidity and mortality; oximes would not be expected to reduce toxicity in these circumstances. even if given in appropriate dose.
Collapse
Affiliation(s)
- Allister Vale
- National Poisons Information Service (Birmingham Unit) and West Midlands Poisons Unit, City Hospital, Birmingham, UK; Honorary Professor, School of Biosciences, University of Birmingham, UK.
| | - Marcello Lotti
- Department of Cardiology, Thoracic and Vascular Sciences, School of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
31
|
Peter JV, Sudarsan TI, Moran JL. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J Crit Care Med 2014; 18:735-45. [PMID: 25425841 PMCID: PMC4238091 DOI: 10.4103/0972-5229.144017] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The typical toxidrome in organophosphate (OP) poisoning comprises of the Salivation, Lacrimation, Urination, Defecation, Gastric cramps, Emesis (SLUDGE) symptoms. However, several other manifestations are described. We review the spectrum of symptoms and signs in OP poisoning as well as the different approaches to clinical features in these patients. MATERIALS AND METHODS Articles were obtained by electronic search of PubMed(®) between 1966 and April 2014 using the search terms organophosphorus compounds or phosphoric acid esters AND poison or poisoning AND manifestations. RESULTS Of the 5026 articles on OP poisoning, 2584 articles pertained to human poisoning; 452 articles focusing on clinical manifestations in human OP poisoning were retrieved for detailed evaluation. In addition to the traditional approach of symptoms and signs of OP poisoning as peripheral (muscarinic, nicotinic) and central nervous system receptor stimulation, symptoms were alternatively approached using a time-based classification. In this, symptom onset was categorized as acute (within 24-h), delayed (24-h to 2-week) or late (beyond 2-week). Although most symptoms occur with minutes or hours following acute exposure, delayed onset symptoms occurring after a period of minimal or mild symptoms, may impact treatment and timing of the discharge following acute exposure. Symptoms and signs were also viewed as an organ specific as cardiovascular, respiratory or neurological manifestations. An organ specific approach enables focused management of individual organ dysfunction that may vary with different OP compounds. CONCLUSIONS Different approaches to the symptoms and signs in OP poisoning may better our understanding of the underlying mechanism that in turn may assist with the management of acutely poisoned patients.
Collapse
Affiliation(s)
- John Victor Peter
- Department of Medical Intensive Care, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Thomas Isiah Sudarsan
- Department of Medical Intensive Care, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - John L Moran
- Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia
| |
Collapse
|
32
|
Cha YS, Kim H, Go J, Kim TH, Kim OH, Cha KC, Lee KH, Hwang SO. Features of myocardial injury in severe organophosphate poisoning. Clin Toxicol (Phila) 2014; 52:873-9. [DOI: 10.3109/15563650.2014.944976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Cardiotoxicity in rabbits after a low-level exposure to diazinon, propoxur, and chlorpyrifos. Hum Exp Toxicol 2014; 33:1241-52. [DOI: 10.1177/0960327114532384] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lethal cardiac complications leading to death and various arrhythmias have been reported after organophosphate and/or carbamate poisonings. The present study focuses on the long-term effects of repeated low-level exposure to diazinon, propoxur, and chlorpyrifos (CPF) on cardiac function in rabbits. The yearly based experimental scheme of exposure consisted of two oral administration periods, lasting 3 months and 1 month each, interrupted by an 8-month washout period (total duration 12 months). At the end of the experimental scheme, the rabbits underwent an echocardiographic evaluation under sedation, after which they were killed and the tissue and serum samples were collected. A mild localized cardiotoxic effect was established by echocardiography for the three pesticides tested. Severe histological alterations were identified, especially in the diazinon-treated animals in agreement with increased persistence of this pesticide established in the cardiac tissue. In addition, all pesticides tested increased the oxidative stress and oxidative modifications in the genomic DNA content of the cardiac tissues, each one following a distinct mechanism.
Collapse
|
34
|
Kumar S, Diwan SK, Dubey S. Myocardial infarction in organophosphorus poisoning: Association or just chance? J Emerg Trauma Shock 2014; 7:131-2. [PMID: 24812462 PMCID: PMC4013732 DOI: 10.4103/0974-2700.130885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sunil Kumar
- Department of Medicine, Jawahar Lal Nehru Medical College, DMIMS, Sawangi, Wardha, Maharastra, India E-mail:
| | - Sanjay Kumar Diwan
- Department of Medicine, Jawahar Lal Nehru Medical College, DMIMS, Sawangi, Wardha, Maharastra, India E-mail:
| | - Sameeksha Dubey
- Department of Medicine, Jawahar Lal Nehru Medical College, DMIMS, Sawangi, Wardha, Maharastra, India E-mail:
| |
Collapse
|
35
|
Konickx LA, Bingham K, Eddleston M. Is oxygen required before atropine administration in organophosphorus or carbamate pesticide poisoning? - A cohort study. Clin Toxicol (Phila) 2014; 52:531-7. [PMID: 24810796 PMCID: PMC4134047 DOI: 10.3109/15563650.2014.915411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Early and adequate atropine administration in organophosphorus (OP) or carbamate insecticide poisoning improves outcome. However, some authors advise that oxygen must be given before atropine due to the risk of inducing ventricular dysrhythmias in hypoxic patients. Because oxygen is frequently unavailable in district hospitals of rural Asia, where the majority of patients with insecticide poisoning present, this guidance has significant implications for patient care. The published evidence for this advice is weak. We therefore performed a patient cohort analysis to look for early cardiac deaths in patients poisoned by anticholinesterase pesticides. Methods We analysed a prospective Sri Lankan cohort of OP or carbamate-poisoned patients treated with early atropine without the benefit of oxygen for evidence of early deaths. The incidence of fatal primary cardiac arrests within 3 h of admission was used as a sensitive (but non-specific) marker of possible ventricular dysrhythmias. Results The cohort consisted of 1957 patients. The incidence of a primary cardiac death within 3 h of atropine administration was 4 (0.2%) of 1957 patients. The majority of deaths occurred at a later time point from respiratory complications of poisoning. Conclusion We found no evidence of a high number of early deaths in an observational study of 1957 patients routinely given atropine before oxygen that might support guidance that oxygen must be given before atropine. The published literature indicates that early and rapid administration of atropine during resuscitation is life-saving. Therefore, whether oxygen is available or not, early atropinisation of OP- and carbamate-poisoned patients should be performed.
Collapse
Affiliation(s)
- L A Konickx
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh , UK
| | | | | |
Collapse
|
36
|
Gunduz A, Kalkan A, Turedi S, Durmus I, Turkmen S, Ayaz FA, Ayar A. Pseudocholinesterase Levels Are Not Decreased in Grayanotoxin (Mad Honey) Poisoning in Most Patients. J Emerg Med 2012; 43:1008-13. [PMID: 22525697 DOI: 10.1016/j.jemermed.2011.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/03/2011] [Accepted: 08/28/2011] [Indexed: 10/28/2022]
|
37
|
Moshiri M, Darchini-Maragheh E, Balali-Mood M. Advances in toxicology and medical treatment of chemical warfare nerve agents. ACTA ACUST UNITED AC 2012; 20:81. [PMID: 23351280 PMCID: PMC3556041 DOI: 10.1186/2008-2231-20-81] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 11/10/2022]
Abstract
Organophosphorous (OP) Nerve agents (NAs) are known as the deadliest chemical warfare agents. They are divided into two classes of G and V agents. Most of them are liquid at room temperature. NAs chemical structures and mechanisms of actions are similar to OP pesticides, but their toxicities are higher than these compounds. The main mechanism of action is irreversible inhibition of Acetyl Choline Esterase (AChE) resulting in accumulation of toxic levels of acetylcholine (ACh) at the synaptic junctions and thus induces muscarinic and nicotinic receptors stimulation. However, other mechanisms have recently been described. Central nervous system (CNS) depression particularly on respiratory and vasomotor centers may induce respiratory failure and cardiac arrest. Intermediate syndrome after NAs exposure is less common than OP pesticides poisoning. There are four approaches to detect exposure to NAs in biological samples: (I) AChE activity measurement, (II) Determination of hydrolysis products in plasma and urine, (III) Fluoride reactivation of phosphylated binding sites and (IV) Mass spectrometric determination of cholinesterase adducts. The clinical manifestations are similar to OP pesticides poisoning, but with more severity and fatalities. The management should be started as soon as possible. The victims should immediately be removed from the field and treatment is commenced with auto-injector antidotes (atropine and oximes) such as MARK I kit. A 0.5% hypochlorite solution as well as novel products like M291 Resin kit, G117H and Phosphotriesterase isolated from soil bacterias, are now available for decontamination of NAs. Atropine and oximes are the well known antidotes that should be infused as clinically indicated. However, some new adjuvant and additional treatment such as magnesium sulfate, sodium bicarbonate, gacyclidine, benactyzine, tezampanel, hemoperfusion, antioxidants and bioscavengers have recently been used for OP NAs poisoning.
Collapse
Affiliation(s)
- Mohammd Moshiri
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | |
Collapse
|
38
|
|
39
|
Yu JH, Weng YM, Chen KF, Chen SY, Lin CC. Triage vital signs predict in-hospital mortality among emergency department patients with acute poisoning: a case control study. BMC Health Serv Res 2012; 12:262-9. [PMID: 22900613 PMCID: PMC3459725 DOI: 10.1186/1472-6963-12-262] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 08/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To document the relationship between triage vital signs and in-hospital mortality among emergency department (ED) patients with acute poisoning. METHODS Poisoning patients who admitted to our emergency department during the study period were enrolled. Patient's demographic data were collected and odds ratios (OR) of triage vital signs to in-hospital mortality were assessed. Receiver operating characteristic curve was used to determine the proper cut-off value of vital signs that predict in-hospital mortality. Logistic regression analysis was performed to test the association of in-hospital mortality and vital signs after adjusting for different variables. RESULTS 997 acute poisoning patients were enrolled, with 70 fatal cases (6.7%). A J-shaped relationship was found between triage vital signs and in-hospital mortality. ED triage vital signs exceed cut-off values independently predict in-hospital mortality after adjusting for variables were as follow: body temperature <36 or >37°C, p < 0.01, OR = 2.8; systolic blood pressure <100 or >150 mmHg, p < 0.01, OR: 2.5; heart rate <35 or >120 bpm, p < 0.01, OR: 3.1; respiratory rate <16 or >20 per minute, p = 0.38, OR: 1.4. CONCLUSIONS Triage vital signs could predict in-hospital mortality among ED patients with acute poisoning. A J-curve relationship was found between triage vital signs and in-hospital mortality. ED physicians should take note of the extreme initial vital signs in these patients.
Collapse
Affiliation(s)
- Jiun-Hao Yu
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou, No. 5, Fu-Hsing St., Kuei Shan Hsiang, Tao-yuan Hsien, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Farzad G. Comment on "Hyperacute rejection from a donor who died of carbamate intoxication-a case report". Am J Emerg Med 2012; 30:1008-9; author reply 1009-10. [PMID: 22633734 DOI: 10.1016/j.ajem.2012.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 03/30/2012] [Indexed: 02/05/2023] Open
|
41
|
Heart rate-corrected QT interval helps predict mortality after intentional organophosphate poisoning. PLoS One 2012; 7:e36576. [PMID: 22574184 PMCID: PMC3344908 DOI: 10.1371/journal.pone.0036576] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/10/2012] [Indexed: 01/17/2023] Open
Abstract
Introduction In this study, we investigated the outcomes for patients with intentional organophosphate poisoning. Previous reports indicate that in contrast to normal heart rate-corrected QT intervals (QTc), QTc prolongation might be indicative of a poor prognosis for patients exposed to organophosphates. Methods We analyzed the records of 118 patients who were referred to Chang Gung Memorial Hospital for management of organophosphate poisoning between 2000 and 2011. Patients were grouped according to their initial QTc interval, i.e., normal (<0.44 s) or prolonged (>0.44 s). Demographic, clinical, laboratory, and mortality data were obtained for analysis. Results The incidence of hypotension in patients with prolonged QTc intervals was higher than that in the patients with normal QTc intervals (P = 0.019). By the end of the study, 18 of 118 (15.2%) patients had died, including 3 of 75 (4.0%) patients with normal QTc intervals and 15 of 43 (34.9%) patients with prolonged QTc intervals. Using multivariate-Cox-regression analysis, we found that hypotension (OR = 10.930, 95% CI = 2.961–40.345, P = 0.000), respiratory failure (OR = 4.867, 95% CI = 1.062–22.301, P = 0.042), coma (OR = 3.482, 95% CI = 1.184–10.238, P = 0.023), and QTc prolongation (OR = 7.459, 95% CI = 2.053–27.099, P = 0.002) were significant risk factors for mortality. Furthermore, it was revealed that non-survivors not only had longer QTc interval (503.00±41.56 versus 432.71±51.21 ms, P = 0.002), but also suffered higher incidences of hypotension (83.3 versus 12.0%, P = 0.000), shortness of breath (64 versus 94.4%, P = 0.010), bronchorrhea (55 versus 94.4%, P = 0.002), bronchospasm (50.0 versus 94.4%, P = 0.000), respiratory failure (94.4 versus 43.0%, P = 0.000) and coma (66.7 versus 11.0%, P = 0.000) than survivors. Finally, Kaplan-Meier analysis demonstrated that cumulative mortality was higher among patients with prolonged QTc intervals than among those with normal QTc intervals (Log-rank test, Chi-square test = 20.36, P<0.001). Conclusions QTc interval helps predict mortality after intentional organophosphate poisoning.
Collapse
|
42
|
|
43
|
|
44
|
Vijayakumar S, Fareedullah M, Ashok Kumar E, Mohan Rao K. A prospective study on electrocardiographic findings of patients with organophosphorus poisoning. Cardiovasc Toxicol 2012; 11:113-7. [PMID: 21336997 DOI: 10.1007/s12012-011-9104-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Organophosphate (OP) compounds are widely used in different applications including agriculture. The widespread use of OP insecticides, however, brings high risks of severe health problems. Besides occupational poisoning in industrial production and agricultural application, instances of acute organophosphate poisoning (OPP) also include suicide, homicide, and accidental overdose. Cardiovascular manifestations frequently accompany exposure to these organophosphorus compounds, but their exact nature is not fully elucidated. In this study, we evaluated 20 patients who presented to our emergency department with organophosphorus (OP) poisoning and discussed their associated electrocardiographic (ECG) abnormalities. Over 3 months, 20 patients with OP poisoning were included in this prospective study. ECG analysis included the rate, ST-T abnormalities, conduction defects, and measurement of PR and "QTc" intervals. Our results show that 12 patients were having prolonged QTc interval i.e., >0.43 s. Eight patients were having mild elevated ST segment and low-amplitude "T" waves. Most of the patients have shown increased heart rate, where as some has shown decreased value. From this study, we conclude that acute organophosphorus poisoning is associated with ventricular arrhythmias, tachycardia and bradycardia, and attributes mild myocardial ischemia.
Collapse
Affiliation(s)
- Subash Vijayakumar
- Department of Pharmacy Practice, Mahatma Gandhi Memorial Hospital, Vaagdevi College of Pharmacy, Warangal, Andhra Pradesh, India.
| | | | | | | |
Collapse
|
45
|
Vale A, Bradberry S, Proudfoot A. Clinical Toxicology of Insecticides. MAMMALIAN TOXICOLOGY OF INSECTICIDES 2012. [DOI: 10.1039/9781849733007-00312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Some insects compete for our food, some damage construction materials and some are important disease vectors in humans and animals. Hence, it is not surprising that chemicals (insecticides) have been developed that kill insects and other arthropods. More recently introduced insecticides, such as the neonicotinoids, have been produced with the intent that humans and animals will not be harmed by their appropriate use. This chapter reviews the clinical features and management of exposure to organophosphorus (OP) and carbamate insecticides, neonicotinoids, phosphides and pyrethroids. In the developing world where the ambient temperature is often high and personal protection equipment often not worn, poisoning particularly from OP and carbamate insecticides is common in an occupational setting, though more severe cases are due to deliberate ingestion of these pesticides. Both of these insecticides produce the cholinergic syndrome. The neonicotinoids, a major new class of insecticide, were introduced on the basis that they were highly specific for subtypes of nicotinic receptors that occur only in insect tissues. However, deliberate ingestion of substantial amounts of a neonicotinoid has resulted in features similar to those found in nicotine (and OP and carbamate) poisoning, though the solvent in some formulations may have contributed to their toxicity. Phosphides interact with moisture in air (or with water or acid) to liberate phosphine, which is the active pesticide. Inhalation of phosphine, however, is a much less frequent cause of human poisoning than ingestion of a metal phosphide, though the toxicity by the oral route is also due to phosphine liberated by contact of the phosphide with gut fluids. It is then absorbed through the alimentary mucosa and distributed to tissues where it depresses mitochondrial respiration by inhibiting cytochrome c oxidase and other enzymes. Dermal exposure to pyrethroids may result in paraesthesiae, but systemic toxicity usually only occurs after ingestion, when irritation of the gastrointestinal tract and CNS toxicity, predominantly coma and convulsions, result.
Collapse
Affiliation(s)
- Allister Vale
- National Poisons Information Service (Birmingham Unit) City Hospital, Birmingham UK. *
- West Midlands Poisons Unit City Hospital, Birmingham UK
- School of Biosciences and College of Medical and Dental Sciences University of Birmingham, Birmingham UK
| | - Sally Bradberry
- National Poisons Information Service (Birmingham Unit) City Hospital, Birmingham UK. *
- West Midlands Poisons Unit City Hospital, Birmingham UK
- School of Biosciences and College of Medical and Dental Sciences University of Birmingham, Birmingham UK
| | - Alex Proudfoot
- National Poisons Information Service (Birmingham Unit) City Hospital, Birmingham UK. *
| |
Collapse
|
46
|
Saxena A, Sun W, Dabisch PA, Hulet SW, Hastings NB, Jakubowski EM, Mioduszewski RJ, Doctor BP. Pretreatment with human serum butyrylcholinesterase alone prevents cardiac abnormalities, seizures, and death in Göttingen minipigs exposed to sarin vapor. Biochem Pharmacol 2011; 82:1984-93. [DOI: 10.1016/j.bcp.2011.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 11/17/2022]
|
47
|
Atropine maintenance dosage in patients with severe organophosphate pesticide poisoning. Toxicol Lett 2011; 206:77-83. [DOI: 10.1016/j.toxlet.2011.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
|
48
|
Xia M, Shahane SA, Huang R, Titus SA, Shum E, Zhao Y, Southall N, Zheng W, Witt KL, Tice RR, Austin CP. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. Toxicol Appl Pharmacol 2011; 252:250-8. [PMID: 21362439 DOI: 10.1016/j.taap.2011.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 02/03/2023]
Abstract
The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K(+)) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially leads to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC(50) potencies ranging from 0.26 to 22μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC(50) value of 260nM in the thallium influx assay and 80nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo.
Collapse
Affiliation(s)
- Menghang Xia
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892-3370, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chacko J, Elangovan A. Late onset, prolonged asystole following organophosphate poisoning: a case report. J Med Toxicol 2010; 6:311-4. [PMID: 20532843 PMCID: PMC3550479 DOI: 10.1007/s13181-010-0095-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Organophosphate (OP) compounds are commonly used as suicidal agents and produce characteristic toxic effects. Cardiac arrhythmias are often observed in the acute phase of toxicity; late onset polymorphic ventricular tachycardia preceded by prolonged QT interval on the EKG is also known to occur. However, there are no reports of late onset, prolonged asystole without preceding arrhythmias and after acute toxicity had abated. CASE REPORT We report a case of prolonged asystole 12 days after ingestion of an OP compound, after apparent recovery from the acute toxic effects. Asystole persisted for 25 min, followed by successful resuscitation without any sequelae. DISCUSSION Although cardiac arrhythmias and circulatory arrest are known to occur following OP ingestion, these are often in the acute phase of toxicity. Our patient had no preceding cardiac manifestations but developed prolonged refractory asystole after 12 days of ingestion of the compound when the acute effects had subsided. We emphasize the importance of being aware of the potential for OP compounds to cause late onset asystole and the need for continued EKG monitoring even after the acute symptoms appear to have settled.
Collapse
Affiliation(s)
- Jose Chacko
- Manipal Hospital, Bangalore, PIN: 560017, India.
| | | |
Collapse
|
50
|
Akdur O, Durukan P, Ozkan S, Avsarogullari L, Vardar A, Kavalci C, Ikizceli I. Poisoning severity score, Glasgow coma scale, corrected QT interval in acute organophosphate poisoning. Hum Exp Toxicol 2010; 29:419-25. [PMID: 20203133 DOI: 10.1177/0960327110364640] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate effectiveness of the poisoning severity score (PSS), Glasgow coma scale (GCS), and corrected QT (QTc) interval in predicting outcomes in acute organophosphates (OP) poisoning. Over a period of 2 years, 62 patients with OP poisoning were admitted to emergency department (ED) of Erciyes University Medical School Hospital. The age, sex, cause of contact, compound involved, time elapsed between exposure and admission to the ED, duration of hospital stay, and cardiac manifestations at the time of presentation were recorded. GCS and poisoning severity score (PSS) was calculated for each patient. Electrocardiogram (ECG) analysis included the rate, rhythm, ST-T abnormalities, conduction defects, and measurement of PR and QT intervals. Sixty-two patients with OP poisoning presented to our ED from January 2007 to December 2008 from which 54 patients were included in the study. The mean age was 34.1 +/- 14.8 years. Of the cases, 53.7% were female. Twenty-six patients had a prolonged QTc interval. Mean PSS of men and women was 1.8 +/- 1.0. No statistically significant correlation was found between the PSS and QTc intervals of the cases. A significant correlation was determined between the GCS and PSS of grade 3 and grade 4 cases. GCS is a parameter that helps clinician to identify advanced grade OP poisoning patients in the initial assessment in the ED. However, ECG findings, such as prolonged QTc interval, are not effective in determination of short-term prognosis and show no relationship with PSS.
Collapse
Affiliation(s)
- Okhan Akdur
- Canakkale Onsekiz Mart University Faculty of Medicine, Department of Emergency Medicine, Canakkale, Turkey.
| | | | | | | | | | | | | |
Collapse
|