1
|
Mostafa IM, Mohamed AA, Alahmadi Y, Shehata AM, Almikhlafi MA, Omar MA. Facile, eco-friendly and sensitive fluorimetric approach for detection of chlorpromazine: Application in biological fluids and tablet formulations as well as greenness evaluation of the analytical method. LUMINESCENCE 2024; 39:e4897. [PMID: 39252443 DOI: 10.1002/bio.4897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Monitoring antipsychotic drugs in biological fluids, such as human serum and urine, is important for ensuring the safety and efficacy of psychiatric treatments. This process helps maintain therapeutic drug levels, minimize side effects, and optimize patient well-being. Chlorpromazine (CZ) is a widely prescribed antipsychotic drug used for conditions like schizophrenia, bipolar disorder, and acute psychosis. Almost all existing sensing techniques for CZ are either insensitive spectrophotometric methods or involve long and complex chromatographic procedures, limiting their routine use. In this work, we introduce a facile, green, and sensitive fluorimetric strategy with high reproducibility for detecting CZ in its pure form, tablet formulation, and spiked human plasma and urine without the need for derivatization reactions. The proposed method relies on the inhibition of the intramolecular photoinduced electron transfer (PET) effect by using 2.0 M acetic acid. This approach enables the linear detection of CZ from 3.0 to 600 ng/mL with remarkably low quantitation and detection limits of 1.51 and 0.49 ng/mL, respectively. Moreover, the developed method's greenness was evaluated.
Collapse
Affiliation(s)
- Islam M Mostafa
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Abobakr A Mohamed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | - Yaser Alahmadi
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed M Shehata
- Departement of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Departement of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohannad A Almikhlafi
- Departement of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mahmoud A Omar
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
- Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
2
|
Wang Z, Felstead HR, Troup RI, Linclau B, Williamson PTF. Lipophilicity Modulations by Fluorination Correlate with Membrane Partitioning. Angew Chem Int Ed Engl 2023; 62:e202301077. [PMID: 36932824 PMCID: PMC10946813 DOI: 10.1002/anie.202301077] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Bioactive compounds generally need to cross membranes to arrive at their site of action. The octanol-water partition coefficient (lipophilicity, logPOW ) has proven to be an excellent proxy for membrane permeability. In modern drug discovery, logPOW and bioactivity are optimized simultaneously, for which fluorination is one of the relevant strategies. The question arises as to which extent the often subtle logP modifications resulting from different aliphatic fluorine-motif introductions also lead to concomitant membrane permeability changes, given the difference in molecular environment between octanol and (anisotropic) membranes. It was found that for a given compound class, there is excellent correlation between logPOW values with the corresponding membrane molar partitioning coefficients (logKp ); a study enabled by novel solid-state 19 F NMR MAS methodology using lipid vesicles. Our results show that the factors that cause modulation of octanol-water partition coefficients similarly affect membrane permeability.
Collapse
Affiliation(s)
- Zhong Wang
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Hannah R. Felstead
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Robert I. Troup
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Bruno Linclau
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
- Department of Organic and Macromolecular ChemistryGhent University Campus SterreKrijgslaan 281-S49000GhentBelgium
| | | |
Collapse
|
3
|
Investigation of Quercetin interaction behaviors with lipid bilayers: Toward understanding its antioxidative effect within biomembrane. J Biosci Bioeng 2021; 132:49-55. [PMID: 33863664 DOI: 10.1016/j.jbiosc.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022]
Abstract
Quercetin (QCT), existing in common dietary sources, is an abundant bioflavonoid with planar structure and exerts multiple pharmacological effects. Herein, four kinds of liposomes were prepared as model biomembranes, and then the partition coefficient, distribution in lipid membrane and influence of the QCT on the membrane properties were evaluated. The partition of QCT to lipid membranes was affected by both membrane phase state and the interference of QCT on membrane properties. The location of QCT in lipid membrane was related to the phase state of lipid membrane. In addition, influence of QCT on the compaction of the hydrocarbon tail in lipid membranes was dependent on the unsaturation degree of lipid molecules. Finally, about its antioxidant activity, from the results of 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, it can be concluded that the interaction of QCT with lipid membrane greatly influences on QCT reductive activity in lipid membrane. Furthermore, mass spectrometry of DOPC molecule showed no lipid oxidation in the presence of QCT, indicating that in addition to the QCT ability toward radical scavenging, the ordering effect of QCT in unsaturated lipid membrane would be helpful to protect lipid membrane from oxidation by inhibiting radical diffusion (synergy effect). Based on lipid membrane analysis, our study made it clear that the effect of QCT on various lipid membrane and its relation with the antioxidant effect of QCT within lipid membrane. Therefore, our analytical method and findings would be also helpful for understanding the mechanism of other antioxidants effects on biomembrane.
Collapse
|
4
|
Lopes-de-Campos D, Pereira-Leite C, Fontaine P, Coutinho A, Prieto M, Sarmento B, Jakobtorweihen S, Nunes C, Reis S. Interface-Mediated Mechanism of Action-The Root of the Cytoprotective Effect of Immediate-Release Omeprazole. J Med Chem 2021; 64:5171-5184. [PMID: 33847502 DOI: 10.1021/acs.jmedchem.1c00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Omeprazole is usually administered under an enteric coating. However, there is a Food and Drug Administration-approved strategy that enables its release in the stomach. When locally absorbed, omeprazole shows a higher efficacy and a cytoprotective effect, whose mechanism was still unknown. Therefore, we aimed to assess the effect of the absorption route on the gastric mucosa. 2D and 3D models of dipalmitoylphosphatidylcholine (DPPC) at different pH values (5.0 and 7.4) were used to mimic different absorption conditions. Several experimental techniques, namely, fluorescence studies, X-ray scattering methodologies, and Langmuir monolayers coupled with microscopy, X-ray diffraction, and infrared spectroscopy techniques, were combined with molecular dynamics simulations. The results showed that electrostatic and hydrophobic interactions between omeprazole and DPPC rearranged the conformational state of DPPC. Omeprazole intercalates among DPPC molecules, promoting domain formation with untilted phospholipids. Hence, the local release of omeprazole enables its action as a phospholipid-like drug, which can reinforce and protect the gastric mucosa.
Collapse
Affiliation(s)
- Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Pereira-Leite
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Ana Coutinho
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Manuel Prieto
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IINFACTS, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Aloi E, Rizzuti B, Guzzi R, Bartucci R. Binding of warfarin differently affects the thermal behavior and chain packing of anionic, zwitterionic and cationic lipid membranes. Arch Biochem Biophys 2020; 694:108599. [PMID: 32979389 DOI: 10.1016/j.abb.2020.108599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Warfarin is a coumarin derivative drug widely used for its anticoagulant properties. The interaction of warfarin with fully hydrated lipid bilayers has been studied by combining differential scanning calorimetry, spectrophotometry, electron spin resonance of chain-labelled lipids and molecular docking. Bilayers formed by lipids with different chemico-physical properties were considered, namely dimyristoyl-phosphatidylcholine (DMPC), dimyristoyl-phosphatidylglycerol (DMPG), and dioleoyltrimethyl-ammoniumpropane (DOTAP). We observed in all cases the binding of warfarin in proximity of the surface of the bilayers, leading to a variety of distinct effects on key molecular properties of the membranes. The drug associates with the lipid bilayers in the deprotonated open chain form, with an association constant similar for DMPC and DMPG (1.27·104 and 2.82·104 M-1, respectively) and lower for DOTAP (0.46·104 M-1). In DMPC bilayers, which are zwitterionic and with saturated symmetrical chains, warfarin at 10 mol% suppresses the pre-transition, slightly stabilizes the fluid state and reduces the cooperativity of the main transition. Moreover, it alters the lateral packing density of the chain segments close to the polar/apolar interface at any temperature through the gel phase. In anionic DMPG bilayers, the drug slightly perturbs the thermotropic phase behavior, and at 10 mol% markedly loosens the compact gel phase packing of the first chain segments. In cationic DOTAP bilayers, possessing unsaturated acyl chains, the drug induces a slightly higher degree of order and motional restriction in the outer hydrocarbon region in the frozen state. In all cases, as a surface adsorbed molecule, warfarin does not affect the segmental chain order and dynamics for temperatures in the fluid phase. The overall results provide an outline of the action of warfarin on membranes formed by lipids of different types.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics and Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, 87036, Italy
| | - Rita Guzzi
- Department of Physics and Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy; CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, 87036, Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies and Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
6
|
Santos MSC, Matos AM, Reis M, Martins F. Lipophilicity assessment of some isoniazid derivatives active against Mycobacterium tuberculosis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Rubio-Camacho M, Encinar JA, Martínez-Tomé MJ, Esquembre R, Mateo CR. The Interaction of Temozolomide with Blood Components Suggests the Potential Use of Human Serum Albumin as a Biomimetic Carrier for the Drug. Biomolecules 2020; 10:E1015. [PMID: 32659914 PMCID: PMC7408562 DOI: 10.3390/biom10071015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The interaction of temozolomide (TMZ) (the main chemotherapeutic agent for brain tumors) with blood components has not been studied at the molecular level to date, even though such information is essential in the design of dosage forms for optimal therapy. This work explores the binding of TMZ to human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP), as well as to blood cell-mimicking membrane systems. Absorption and fluorescence experiments with model membranes indicate that TMZ does not penetrate into the lipid bilayer, but binds to the membrane surface with very low affinity. Fluorescence experiments performed with the plasma proteins suggest that in human plasma, most of the bound TMZ is attached to HSA rather than to AGP. This interaction is moderate and likely mediated by hydrogen-bonding and hydrophobic forces, which increase the hydrolytic stability of the drug. These experiments are supported by docking and molecular dynamics simulations, which reveal that TMZ is mainly inserted in the subdomain IIA of HSA, establishing π-stacking interactions with the tryptophan residue. Considering the overexpression of albumin receptors in tumor cells, our results propose that part of the administered TMZ may reach its target bound to plasma albumin and suggest that HSA-based nanocarriers are suitable candidates for designing biomimetic delivery systems that selectively transport TMZ to tumor cells.
Collapse
Affiliation(s)
| | | | | | - Rocío Esquembre
- Instituto e investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), E-03202 Elche, Spain; (M.R.-C.); (J.A.E.); (M.J.M.-T.)
| | - C. Reyes Mateo
- Instituto e investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), E-03202 Elche, Spain; (M.R.-C.); (J.A.E.); (M.J.M.-T.)
| |
Collapse
|
8
|
Ngo DTN, Nguyen TQ, Huynh HK, Nguyen TT. Thermodynamics of selective serotonin reuptake inhibitors partitioning into 1,2-dioleoyl- sn-glycero-3-phosphocholine bilayers. RSC Adv 2020; 10:39338-39347. [PMID: 35518408 PMCID: PMC9057331 DOI: 10.1039/d0ra07367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022] Open
Abstract
Knowledge of thermodynamics of lipid membrane partitioning of amphiphilic drugs as well as their binding site within the membrane are of great relevance not only for understanding the drugs' pharmacology but also for the development and optimization of more potent drugs. In this study, the interaction between two representatives of selective serotonin reuptake inhibitors, including paroxetine and sertraline, and large unilamellar vesicles (LUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was investigated by second derivative spectrophotometry and Fourier transform infrared spectroscopy (FTIR) to determine the driving force of the drug partitioning across lipid membranes. It was found that temperature increase from 25 to 42 °C greatly enhanced the partitioning of paroxetine and sertraline into DOPC LUVs, and sertraline intercalated into the lipid vesicles to a greater extent than paroxetine in the temperature range examined. The partitioning of both drugs into DOPC LUVs was a spontaneous, endothermic and entropy-driven process. FTIR measurements suggested that sertraline could penetrate deeply into the acyl tails of DOPC LUVs as shown by the considerable shifts in the lipid's CH2 and C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O stretching modes induced by the drug. Paroxetine, however, could reside closer to the head groups of the lipid since its presence caused a larger shift in the PO2− bands of DOPC LUVs. The findings reported here provide valuable insights into the influence of small molecules' chemical structure on their molecular interaction with the lipid bilayer namely their possible binding sites within the lipid bilayer and their thermodynamics profiles of partitioning, which could benefit rational drug design and drug delivery systems. Paroxetine and sertraline have the same thermodynamics profile of phospholipid bilayer partitioning but different location within the lipid bilayer.![]()
Collapse
Affiliation(s)
- Dat T. N. Ngo
- Department of Biotechnology
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| | - Trinh Q. Nguyen
- Department of Biotechnology
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| | - Hieu K. Huynh
- University of Medicine and Pharmacy at Ho Chi Minh City
- Ho Chi Minh City
- Vietnam
| | - Trang T. Nguyen
- Department of Chemical Engineering
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| |
Collapse
|
9
|
Ganjali Koli M, Azizi K. Investigation of benzodiazepines (BZDs) in a DPPC lipid bilayer: Insights from molecular dynamics simulation and DFT calculations. J Mol Graph Model 2019; 90:171-179. [DOI: 10.1016/j.jmgm.2019.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
|
10
|
Tacheva B, Paarvanova B, Ivanov IT, Tenchov B, Georgieva R, Karabaliev M. Drug Exchange between Albumin Nanoparticles and Erythrocyte Membranes. NANOMATERIALS 2018; 9:nano9010047. [PMID: 30602679 PMCID: PMC6359138 DOI: 10.3390/nano9010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022]
Abstract
The effects of thioridazine (TDZ) and chlorpromazine (CPZ) and bovine serum albumin nanoparticles (BSA-NPs) on erythrocyte membranes have been investigated. Two kinds of hemolytic assays were used; hemolysis under hypotonic conditions and hemolysis in physiological conditions. Under hypotonic conditions for 50% hemolysis, both TDZ and CPZ have a biphasic effect on membranes; namely, stabilization at low concentrations and destabilization after reaching a critical concentration. In physiological conditions, there are other critical concentrations above which both drugs hemolyse the erythrocites. In each case, the critical concentrations of TDZ are lower than those of CPZ, which is consistent with the ratio of their partition coefficients. When BSA-NPs are added to the erythrocyte suspension simultaneously with the drugs, the critical concentrations increase for both drugs. The effect is due to the incorporation of a portion of drug substances into the BSA-nanoparticles, which consequently leads to the decrease of the active drug concentrations in the erythrocyte suspension medium. Similar values of the critical concentrations are found when the BSA-NPs are loaded with the drugs before their addition to the erythrocyte suspension in which case the events of the partition are: desorption of the drug from BSA-NPs, diffusion through the medium, and adsorption on erythrocyte membranes. This result suggests that the drugs are not influenced by the processes of adsorption and desorption onto and out of the BSA-NPs, and that the use of BSA-NPs as drug transporters would allow intravenous administration of higher doses of the drug without the risk of erythrocyte hemolysis.
Collapse
Affiliation(s)
- Bilyana Tacheva
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, Stara 6000 Zagora, Bulgaria.
| | - Boyana Paarvanova
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, Stara 6000 Zagora, Bulgaria.
| | - Ivan T Ivanov
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, Stara 6000 Zagora, Bulgaria.
| | - Boris Tenchov
- Department of Medical Physics and Biophysics, Medical University⁻Sofia, 1431 Sofia, Bulgaria.
| | - Radostina Georgieva
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, Stara 6000 Zagora, Bulgaria.
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Miroslav Karabaliev
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, Stara 6000 Zagora, Bulgaria.
| |
Collapse
|
11
|
A Molecular Biophysical Approach to Diclofenac Topical Gastrointestinal Damage. Int J Mol Sci 2018; 19:ijms19113411. [PMID: 30384433 PMCID: PMC6275047 DOI: 10.3390/ijms19113411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
Diclofenac (DCF), the most widely consumed non-steroidal anti-inflammatory drug (NSAID) worldwide, is associated with adverse typical effects, including gastrointestinal (GI) complications. The present study aims to better understand the topical toxicity induced by DCF using membrane models that mimic the physiological, biophysical, and chemical environments of GI mucosa segments. For this purpose, phospholipidic model systems that mimic the GI protective lining and lipid models of the inner mitochondrial membrane were used together with a wide set of techniques: derivative spectrophotometry to evaluate drug distribution at the membrane; steady-state and time-resolved fluorescence to predict drug location at the membrane; fluorescence anisotropy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and calcein leakage studies to evaluate the drug-induced disturbance on membrane microviscosity and permeability; and small- and wide-angle X-ray scattering studies (SAXS and WAXS, respectively), to evaluate the effects of DCF at the membrane structure. Results demonstrated that DCF interacts chemically with the phospholipids of the GI protective barrier in a pH-dependent manner and confirmed the DCF location at the lipid headgroup region, as well as DCF’s higher distribution at mitochondrial membrane contact points where the impairment of biophysical properties is consistent with the uncoupling effects reported for this drug.
Collapse
|
12
|
Fernandes E, Soares TB, Gonçalves H, Lúcio M. Spectroscopic Studies as a Toolbox for Biophysical and Chemical Characterization of Lipid-Based Nanotherapeutics. Front Chem 2018; 6:323. [PMID: 30109226 PMCID: PMC6080416 DOI: 10.3389/fchem.2018.00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023] Open
Abstract
The goal of this study is to provide tools to minimize trial-and-error in the development of novel lipid-based nanotherapeutics, in favor of a rational design process. For this purpose, we present case-study examples of biophysical assays that help addressing issues of lipid-based nanotherapeutics' profiling and assist in the design of lipid nanocarriers for therapeutic usage. The assays presented are rooted in spectroscopic methods (steady-state and time-resolved fluorescence; UV-Vis derivative spectroscopy; fluorescence anisotropy and fluorescence lifetime image microscopy) and allow accessing physical-chemical interactions between drugs and lipid nanocarriers, as well as studying interactions between lipid-based nanotherapeutics and membranes and/or proteins, as this is a key factor in predicting their therapeutic and off target effects. Derivative spectroscopy revealed Naproxen's high distribution (LogD ≈ 3) in different lipid-based nanocarriers (micelles and unilamellar or multilamellar vesicles) confirming the adequacy of such systems for encapsulating this anti-inflammatory drug. Fluorescence quenching studies revealed that the anti-inflammatory drugs Acemetacin and Indomethacin can reach an inner location at the lipid nanocarrier while being anchored with its carboxylic moiety at the polar headgroup. The least observed quenching effect suggested that Tolmetin is probably located at the polar headgroup region of the lipid nanocarriers and this superficial location may translate in a fast drug release from the nanocarriers. Fluorescent anisotropy measurements indicated that the drugs deeply buried within the lipid nanocarrier where the ones that had a greater fluidizing effect which can also translate in a faster drug release. The drug binding strength to serum albumin was also compared for a free drug (Clonixin) or for the same drug after encapsulation in a lipid nanocarrier DSPC:DODAP (2:1). Under both conditions there is a strong binding to serum albumin, at one binding site, suggesting the need to produce a stealth nanosystem. Finally the cellular uptake of lipid nanocarriers loaded with Daunorubicin was investigated in cancer cells using fluorescence lifetime imaging microscopy. From the images obtained it was possible to conclude that even at short incubation times (15 min) there was a distribution of the drug in the cytoplasm, whereas for longer incubation periods (4 h) the drug has reached the nucleus.
Collapse
Affiliation(s)
- Eduarda Fernandes
- Department of Physics, Centre of Physics of University of Minho and Porto, University of Minho, Braga, Portugal
| | - Telma B Soares
- Department of Physics, Centre of Physics of University of Minho and Porto, University of Minho, Braga, Portugal
| | - Hugo Gonçalves
- Department of Physics, Centre of Physics of University of Minho and Porto, University of Minho, Braga, Portugal
| | - Marlene Lúcio
- Department of Physics, Centre of Physics of University of Minho and Porto, University of Minho, Braga, Portugal
| |
Collapse
|
13
|
Pham VT, Nguyen TQ, Dao UPN, Nguyen TT. On the interaction between fluoxetine and lipid membranes: Effect of the lipid composition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:50-61. [PMID: 28982068 DOI: 10.1016/j.saa.2017.09.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 05/27/2023]
Abstract
Molecular interaction between the antidepressant fluoxetine and lipid bilayers was investigated in order to provide insights into the drug's incorporation to lipid membranes. In particular, the effects of lipid's unsaturation degree and cholesterol content on the partitioning of fluoxetine into large unilamellar vesicles (LUVs) comprised of unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated using second derivative spectrophotometry and Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). It was found that fluoxetine partitioned to a greater extent into the liquid-crystalline DOPC LUVs than into the solid-gel DPPC LUVs. The lipid physical state dependence of drug partitioning was verified by increasing the temperature in which the partition coefficient of fluoxetine significantly increased upon the change of the lipid phase from solid-gel to liquid-crystalline. The incorporation of 28mol% cholesterol into the LUVs exerted a significant influence on the drug partitioning into both DOPC and DPPC LUVs. The ATR-FTIR study revealed that fluoxetine perturbed the conformation of DOPC more strongly than that of DPPC due to the cis-double bonds in the lipid acyl chains. Fluoxetine possibly bound to the carbonyl moiety of the lipids through the hydrogen bonding formation while displaced some water molecules surrounding the PO2- regions of the lipid head groups. Cholesterol, however, could lessen the interaction between fluoxetine and the carbonyl groups of both DOPC and DPPC LUVs. These findings provided a better understanding of the role of lipid structure and cholesterol on the interaction between fluoxetine and lipid membranes, shedding more light into the drug's therapeutic action.
Collapse
Affiliation(s)
- Vy T Pham
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Trinh Q Nguyen
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Uyen P N Dao
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Trang T Nguyen
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
14
|
Santos Á, Soares JX, Cravo S, Tiritan ME, Reis S, Afonso C, Fernandes C, Pinto MMM. Lipophilicity assessement in drug discovery: Experimental and theoretical methods applied to xanthone derivatives. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:182-192. [PMID: 29175698 DOI: 10.1016/j.jchromb.2017.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
For the last several years, searching of new xanthone derivatives (XDs) with potential pharmacological activities has remained one of the main areas of interest of our group. The optimization of biological activity and drug-like properties of hits and leads is crucial at early stage of the drug discovery pipeline. Lipophilicity is one of the most important drug-like properties having a great impact in both pharmacokinetics and pharmacodynamics processes. In this work, we describe the lipophilicity of a small library of bioactive XDs, previously synthesized by our group, using different methods: computational, vortex-assisted liquid-liquid microextraction coupled with high-performance liquid chromatography (VALLME-HPLC), reversed-phase high-performance thin layer chromatography (RP-HPTLC), reversed-phase high-performance liquid chromatography (RP-HPLC), and biomembrane model by the partition between micelles and aqueous phase. The different results obtained by the used methods were compared and discussed. The methodologies and data gathered in this study will expand the investigation of lipophilicity of XDs, an important class of compounds in medicinal chemistry.
Collapse
Affiliation(s)
- Álvaro Santos
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - José Xavier Soares
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sara Cravo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal
| | - Maria E Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal
| | - Salette Reis
- UCBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Carlos Afonso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal.
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal
| |
Collapse
|
15
|
Do TT, Dao UP, Bui HT, Nguyen TT. Effect of electrostatic interaction between fluoxetine and lipid membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR. Chem Phys Lipids 2017; 207:10-23. [DOI: 10.1016/j.chemphyslip.2017.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/25/2017] [Accepted: 07/01/2017] [Indexed: 12/26/2022]
|
16
|
Jiang YW, Gao G, Chen Z, Wu FG. Fluorescence studies on the interaction between chlorpromazine and model cell membranes. NEW J CHEM 2017. [DOI: 10.1039/c7nj00037e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence quenching of membrane fluorophores and the fluorescence enhancement of chlorpromazine were simultaneously observed during chlorpromazine–lipid membrane interaction.
Collapse
Affiliation(s)
- Yao-Wen Jiang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| |
Collapse
|
17
|
Takegami S, Kitamura K, Ohsugi M, Konishi A, Kitade T. 19F Nuclear Magnetic Resonance Spectrometric Determination of the Partition Coefficients of Flutamide and Nilutamide (Antiprostate Cancer Drugs) in a Lipid Nano-Emulsion and Prediction of Its Encapsulation Efficiency for the Drugs. AAPS PharmSciTech 2016; 17:1500-1506. [PMID: 26863891 DOI: 10.1208/s12249-016-0495-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/31/2016] [Indexed: 11/30/2022] Open
Abstract
To design a useful lipid drug carrier having a high encapsulation efficiency (EE%) for the antiprostate cancer drugs flutamide (FT) and nilutamide (NT), a lipid nano-emulsion (LNE) was prepared with soybean oil (SO), phosphatidylcholine (PC), and sodium palmitate, and the partition coefficients (K ps) of the drugs for the LNE were determined by 19F nuclear magnetic resonance (NMR) spectrometry. The 19F NMR signal of the trifluoromethyl group of both drugs showed a downfield shift from an internal standard (trifluoroethanol) and broadening according to the increase in the lipid concentration due to their interaction with LNE particles. The difference in the chemical shift (Δδ) of each drug caused by the addition of LNE was measured under different amounts of LNE, and the K p values were calculated from the Δδ values. The results showed that FT has higher lipophilicity than NT. The total lipid concentration (SO + PC) required to encapsulate each drug into LNE with an EE% of more than 95% was calculated from the K p values as 93.3 and 189.9 mmol/L for FT and NT, respectively. For an LNE prepared with the total lipid concentration of 215 mmol/L, the predicted EE% values were 98 and 96% for FT and NT, respectively, while the experimental EE% values determined by a centrifugation method were approximately 99% for both drugs. Thus, the 19F NMR spectrometric method is a useful technique to obtain the K p values of fluorinated drugs and thereby predict the theoretical lipid concentrations and prepare LNEs with high EE% values.
Collapse
|
18
|
Majumdar A, Sarkar M. Small Mismatches in Fatty Acyl Tail Lengths Can Effect Non Steroidal Anti-Inflammatory Drug Induced Membrane Fusion. J Phys Chem B 2016; 120:4791-802. [PMID: 27153337 DOI: 10.1021/acs.jpcb.6b03583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anupa Majumdar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF,
Bidhannagar, Kolkata 700064, India
| | - Munna Sarkar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF,
Bidhannagar, Kolkata 700064, India
| |
Collapse
|
19
|
Takegami S, Kitamura K, Ohsugi M, Ito A, Kitade T. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 145:198-202. [PMID: 25775945 DOI: 10.1016/j.saa.2015.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM>FT>PFF>PCF>IFP>CFVP>FNT⩾DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R(2)=0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.
Collapse
Affiliation(s)
- Shigehiko Takegami
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchicho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Keisuke Kitamura
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchicho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mayuko Ohsugi
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchicho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Aya Ito
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchicho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tatsuya Kitade
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchicho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
20
|
Petrus J, Czarnik-Matusewicz B, Petrus R, Cieślik-Boczula K, Jaszczyszyn A, Gąsiorowski K. Fluphenazine: From an isolated molecule to its interaction with lipid bilayers. Chem Phys Lipids 2015; 186:51-60. [DOI: 10.1016/j.chemphyslip.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
|
21
|
Phase Separation in Phosphatidylcholine Membrane Caused by the Presence of a Pyrimidine Analogue of Fluphenazine with High Anti-Multidrug-Resistance Activity. J Phys Chem B 2014; 118:3605-15. [DOI: 10.1021/jp410882r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Pyranoxanthones: Synthesis, growth inhibitory activity on human tumor cell lines and determination of their lipophilicity in two membrane models. Eur J Med Chem 2013; 69:798-816. [DOI: 10.1016/j.ejmech.2013.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 01/05/2023]
|
23
|
Belfaragui M, Seridi A, Winum JY, Abdaoui M, Kadri M. A spectrophotometric and thermodynamic study of the charge-transfer complexes of N-aryl-N'-isopropyloxycarbonylsulfamides with DDQ and TCNE. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 108:55-61. [PMID: 23454845 DOI: 10.1016/j.saa.2013.01.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 01/19/2013] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
Molecular charge-transfer complexes of three N-aryl-N'-isopropyloxycarbonylsulfamides derivatives with π-acceptors tetracyanoethylene (TCNE), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), were studied by using zero and second order derivative UV spectrophotometry in different solvents at four different temperatures within the range of 20-35 °C. The stoichiometries of the complexes were found to be 1:1 ratio between donors and acceptors using Job's method. The data were analyzed in terms of their stability constant (K), molar extinction coefficient (εCT), thermodynamic standard reaction quantities (ΔG°, ΔH°, ΔS°), oscillator strength (f), transition dipole moment (μEN) and ionization potential (ID). The results show that the stability constant (K) for the complexes was found to be dependant upon the nature of electron acceptor, electron donor, and polarity of used solvents.
Collapse
Affiliation(s)
- Moufida Belfaragui
- Laboratoire de Chimie Physique, Université 08 Mai 45, BP401, Guelma 24000, Algeria
| | | | | | | | | |
Collapse
|
24
|
Omran AA. An in vitro spectrometric method for determining the partition coefficients of non-steroidal anti-inflammatory drugs into human erythrocyte ghost membranes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 104:461-467. [PMID: 23277182 DOI: 10.1016/j.saa.2012.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/10/2012] [Accepted: 12/02/2012] [Indexed: 06/01/2023]
Abstract
Usefulness of second derivative spectrophotometry for determining the partition coefficients (K(p)s) of four non-steroidal anti-inflammatory drugs (NSAIDs) between human erythrocyte ghost (HEG) membranes and buffer at simulated physiological conditions (pH=7.4, 37 °C) has been adequately emphasized. In the absorption spectra for each of the investigated NSAIDs, λ(max) was red-shifted in presence of HEG membranes, indicating that NSAIDs have the nature of metachromasy between lipid bilayer and water. Further quantitative spectral data for calculating K(p)s could not be obtained from the absorption spectra because of the presence of background signal impacts of HEG lipid bilayers. Second derivative spectra were calculated from absorption spectra and fortunately showed three isosbestic derivative points for each NSAID, indicating without doubt that the background signals were entirely eliminated. From the relation between the derivative intensity change (ΔD) induced by addition of HEG membranes, K(p)s were calculated and obtained with RSD of below 6%. Fractions of partitioned NSAIDs are in well-harmony with that derived from the experimental values. Moreover, validity of the proposed method was confirmed. Conclusively, the second derivative spectrometry has proven to be a facile, reliable and more expeditious method to obtain in vitro K(p)s of drugs to HEG without previous separation.
Collapse
Affiliation(s)
- Ahmed A Omran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| |
Collapse
|
25
|
Pereira-Leite C, Nunes C, Lima JLFC, Reis S, Lúcio M. Interaction of Celecoxib with Membranes: The Role of Membrane Biophysics on its Therapeutic and Toxic Effects. J Phys Chem B 2012; 116:13608-17. [DOI: 10.1021/jp304037v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Catarina Pereira-Leite
- REQUIMTE,
Departamento de Ciências Químicas,
Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Cláudia Nunes
- REQUIMTE,
Departamento de Ciências Químicas,
Faculdade de Farmácia, Universidade do Porto, Portugal
| | - José L. F. C. Lima
- REQUIMTE,
Departamento de Ciências Químicas,
Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Salette Reis
- REQUIMTE,
Departamento de Ciências Químicas,
Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Marlene Lúcio
- REQUIMTE,
Departamento de Ciências Químicas,
Faculdade de Farmácia, Universidade do Porto, Portugal
| |
Collapse
|
26
|
Omran A, El-Sayed AA, Shehata A. Second Derivative Spectrophotometric Determination of the Binding Constant Between Codeine Phosphate and Bovine Serum Albumin. J SOLUTION CHEM 2012. [DOI: 10.1007/s10953-012-9869-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Martins PT, Velazquez-Campoy A, Vaz WLC, Cardoso RMS, Valério J, Moreno MJ. Kinetics and Thermodynamics of Chlorpromazine Interaction with Lipid Bilayers: Effect of Charge and Cholesterol. J Am Chem Soc 2012; 134:4184-95. [DOI: 10.1021/ja209917q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrícia T. Martins
- Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra,
Portugal
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation
and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain, Unidad Asociada BIFI-IQFR,
CSIC, Zaragoza, Spain
- Fundación ARAID, Diputación General de Aragón, Spain
| | - Winchil L. C. Vaz
- Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra,
Portugal
| | - Renato M. S. Cardoso
- Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra,
Portugal
| | - Joana Valério
- Instituto de Tecnologia Química e Biológica − UNL, Av.
da República-EAN, 2780-157 Oeiras, Portugal
| | - Maria João Moreno
- Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra,
Portugal
| |
Collapse
|
28
|
Omran AA, El-Sayed AA, Shehata A. Binding of benzodiazepine drugs to bovine serum albumin: a second derivative spectrophotometric study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 83:362-367. [PMID: 21930425 DOI: 10.1016/j.saa.2011.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/03/2011] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
Abstract
The binding constants (K values) of three benzodiazepine drugs to bovine serum albumin were determined by a second derivative spectrophotometric method. Despite the sample and reference samples were prepared in the same way to maintain the same albumin content in each sample and reference pair, the absorption spectra show that the baseline compensation was incomplete because of the strong background signals caused by bovine serum albumin. Accordingly, further quantitative spectral information could not be obtained from these absorption spectra. On the other hand, the calculated second derivative spectra clearly show isosbestic points indicating the complete removal of the residual background signal effects. Using the derivative intensity differences (ΔD values) of the studied benzodiazepine drugs before and after the addition of albumin, the binding constants were calculated and obtained with R.S.D. of less than 8%. The interactions of drugs with bovine serum albumin were investigated using Scatchard's plot. In addition, the consistency between the fractions of bound benzodiazepine calculated from the obtained K values and the experimental values were established. The results indicate that the second derivative method can be advantageously applicable to the determination of binding constants of drugs to serum albumin without prior separation. Moreover, the validity of the proposed method was confirmed.
Collapse
Affiliation(s)
- Ahmed A Omran
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | | | | |
Collapse
|
29
|
Proença C, Serralheiro ML, Araújo ME, Pamplona T, Santos S, Santos MS, Frazão F. Novel sulfenamides as promising acetylcholinesterase inhibitors. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
High-throughput microplate assay for the determination of drug partition coefficients. Nat Protoc 2010; 5:1823-30. [DOI: 10.1038/nprot.2010.137] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Lipophilic phenolic antioxidants: correlation between antioxidant profile, partition coefficients and redox properties. Bioorg Med Chem 2010; 18:5816-25. [PMID: 20650639 DOI: 10.1016/j.bmc.2010.06.090] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 12/27/2022]
Abstract
Lipophilic compounds structurally based on caffeic, hydrocaffeic, ferulic and hydroferulic acids were synthesized. Subsequently, their antioxidant activity was evaluated as well as their partition coefficients and redox potentials. The structure-property-activity relationship (SPAR) results revealed the existence of a clear correlation between the redox potentials and the antioxidant activity. In addition, some compounds showed a proper lipophilicity to cross the blood-brain barrier. Their predicted ADME properties are also in accordance with the general requirements for potential CNS drugs. Accordingly, one can propose these phenolic compounds as potential antioxidants for tackling the oxidative status linked to the neurodegenerative processes.
Collapse
|
32
|
Reis S, Lúcio M, Segundo M, Lima JL. Use of liposomes to evaluate the role of membrane interactions on antioxidant activity. Methods Mol Biol 2010; 606:167-188. [PMID: 20013397 DOI: 10.1007/978-1-60761-447-0_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cellular membranes, which contain abundant phospholipids, such as phosphatidylcholine, are major targets subjected to the damage caused by free radicals. Cellular damage due to lipid oxidation is strongly associated with ageing, carcinogenesis and other diseases. In addition, lipid oxidation is an important deteriorative reaction in the processing and storage of lipid-containing foods. Liposomes have been used extensively as biological models for in vitro lipid oxidation studies. The resemblance between the liposomal and membrane bilayer core makes liposomes a very useful tool to investigate the significance of the antioxidant-membrane interactions for antioxidant activity. The antioxidant activity of a compound is strongly influenced by numerous factors including the nature of the lipid substrate, the hydrophilic-lipophilic balance of the antioxidant, the physical and chemical environments of the lipids, and various other interfacial interactions. Thus, compounds that are effective antioxidants in one model system or food matrix may be unsuitable in other systems.This chapter describes fluorescent probes-based methods commonly used for testing antioxidant activity in liposomes and stresses the need to combine antioxidant assays and drug-membrane interaction studies to get a better description of the antioxidants' profile considering their location in lipid bilayer and their effect on membrane fluidity and consequently provide additional information to that obtained currently from assays performed in aqueous buffer media.
Collapse
|
33
|
Alakoskela JM, Vitovic P, Kinnunen PKJ. Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 2009; 4:1224-51. [PMID: 19551800 DOI: 10.1002/cmdc.200900052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic properties of lipid bilayers reflecting the chemical structures and organization of the constituent phospholipids are considered. The interactions of drugs with phospholipids are important in various processes, such as drug absorption, tissue distribution, and subcellular distribution. In addition, drug-lipid interactions may lead to changes in lipid-dependent protein activities, and further, to functional and morphological changes in cells, a prominent example being the phospholipidosis (PLD) induced by cationic amphiphilic drugs. Herein we briefly review drug-lipid interactions in general and the significance of these interactions in PLD in particular. We also focus on a potential causal connection between drug-induced PLD and steatohepatitis, which is induced by some cationic amphiphilic drugs.
Collapse
Affiliation(s)
- Juha-Matti Alakoskela
- Division of Biochemistry, Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
35
|
Hosseinzadeh R, Gheshlagi M. Interaction and micellar solubilization of diclofenac with cetyltrimethylammonium bromide: A spectrophotometric study. ACTA ACUST UNITED AC 2009. [DOI: 10.1135/cccc2008021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, the interaction of diclofenac (Dic) with cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. The effect of cationic micelles on solubilization of diclofenac in aqueous micellar solution was studied at pH 6.8, 29 °C and various drug concentrations. The binding of diclofenac to CTAB micelles was accompanied by a batochromic shift in the drug absorption spectra. The solubility of diclofenac increased with increasing surfactant concentration as a consequence of the association between the drug and micelles. From the results, the binding constants Kb, was obtained. By using the pseudo-phase model, the partition coefficient between the bulk water and CTAB micelles, Kx, and the Gibbs energy of binding were calculated. The value of binding constant and partition coefficient are increased by increasing of diclofenac concentration.
Collapse
|
36
|
Effect of anti-inflammatory drugs in phosphatidylcholine membranes: A fluorescence and calorimetric study. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.02.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Manuel M, Martins J. Partitioning of 1-pyrenesulfonate into zwitterionic and mixed zwitterionic/anionic fluid phospholipid bilayers. Chem Phys Lipids 2008; 154:79-86. [DOI: 10.1016/j.chemphyslip.2008.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 04/23/2008] [Accepted: 04/25/2008] [Indexed: 11/28/2022]
|
38
|
Esteves M, Siquet C, Gaspar A, Rio V, Sousa JB, Reis S, Marques MPM, Borges F. Antioxidant Versus Cytotoxic Properties of Hydroxycinnamic Acid Derivatives – A New Paradigm in Phenolic Research. Arch Pharm (Weinheim) 2008; 341:164-73. [DOI: 10.1002/ardp.200700168] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Abstract
Interaction of curcumin with lipid bilayers is not well understood. A recent experiment showed that curcumin significantly affected the single-channel lifetime of gramicidin in a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer without affecting its single-channel conductance. We performed two experiments to understand this result. By isothermal titration calorimetry, we measured the partition coefficient of curcumin binding to DOPC bilayers. By x-ray lamellar diffraction, we measured the thickness change of DOPC bilayers as a function of the curcumin/lipid ratio. A nonlinear membrane-thinning effect by curcumin was discovered. The gramicidin data were qualitatively interpreted by the combination of isothermal titration calorimetry and x-ray results. We show that not only does curcumin thin the lipid bilayer, it might also weaken its elasticity moduli. The result implies that curcumin may affect the function of membrane proteins by modifying the properties of the host membrane.
Collapse
|
40
|
Takegami S, Kitamura K, Funakoshi T, Kitade T. Partitioning of Anti-inflammatory Steroid Drugs into Phosphatidylcholine and Phosphatidylcholine-Cholesterol Small Unilamellar Vesicles as Studied by Second-Derivative Spectrophotometry. Chem Pharm Bull (Tokyo) 2008; 56:663-7. [DOI: 10.1248/cpb.56.663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
KITAMURA K. Derivative Spectrophotometric and NMR Spectroscopic Study in Pharmaceutical Science. YAKUGAKU ZASSHI 2007; 127:1621-42. [DOI: 10.1248/yakushi.127.1621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Ingolfsson HI, Koeppe RE, Andersen OS. Curcumin is a Modulator of Bilayer Material Properties. Biochemistry 2007; 46:10384-91. [PMID: 17705403 DOI: 10.1021/bi701013n] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is the major bioactive compound in turmeric (Curcuma longa) with antioxidant, antiinflammatory, anticarcinogenic, and antimutagenic effects. At low muM concentrations, curcumin modulates many structurally and functionally unrelated proteins, including membrane proteins. Because the cell membranes' lipid bilayer serves as a gate-keeper and regulator of many cell functions, we explored whether curcumin modifies general bilayer properties using channels formed by gramicidin A (gA). gA channels form when two monomers from opposing monolayers associate to form a conducting dimer with a hydrophobic length that is less than the bilayer hydrophobic thickness; gA channel formation thus causes a local bilayer thinning. The energetic cost of this bilayer deformation alters the gA monomer <--> dimer equilibrium, which makes the channels' appearance rate and lifetime sensitive to changes in bilayer material properties, and the gA channels become probes for changes in bilayer properties. Curcumin decreases bilayer stiffness, increasing both gA channel lifetimes and appearance rates, meaning that the energetic cost of the gA-induced bilayer deformation is reduced. These results show that curcumin may exert some of its effects on a diverse range of membrane proteins through a bilayer-mediated mechanism.
Collapse
Affiliation(s)
- Helgi I Ingolfsson
- Cornell/Rockefeller/Sloan-Kettering Tri-Institutional Program in Computational Biology & Medicine, New York, New York 10065, USA
| | | | | |
Collapse
|
43
|
Lukacova V, Peng M, Fanucci G, Tandlich R, Hinderliter A, Maity B, Manivannan E, Cook GR, Balaz S. Drug-membrane interactions studied in phospholipid monolayers adsorbed on nonporous alkylated microspheres. ACTA ACUST UNITED AC 2007; 12:186-202. [PMID: 17218665 PMCID: PMC2896050 DOI: 10.1177/1087057106297063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Characterization of interactions with phospholipids is an integral part of the in vitro profiling of drug candidates because of the roles the interactions play in tissue accumulation and passive diffusion. Currently used test systems may inadequately emulate the bilayer core solvation properties (immobilized artificial membranes [IAM]), suffer from potentially slow transport of some chemicals (liposomes in free or immobilized forms), and require a tedious separation (if used for free liposomes). Here the authors introduce a well-defined system overcoming these drawbacks: nonporous octadecylsilica particles coated with a self-assembled phospholipid monolayer. The coating mimics the structure of the headgroup region, as well as the thickness and properties of the hydrocarbon core, more closely than IAM. The monolayer has a similar transition temperature pattern as the corresponding bilayer. The particles can be separated by filtration or a mild centrifugation. The partitioning equilibria of 81 tested chemicals were dissected into the headgroup and core contributions, the latter using the alkane/water partition coefficients. The deconvolution allowed a successful prediction of the bilayer/water partition coefficients with the standard deviation of 0.26 log units. The plate-friendly assay is suitable for high-throughput profiling of drug candidates without sacrificing the quality of analysis or details of the drug-phospholipid interactions.
Collapse
Affiliation(s)
- Viera Lukacova
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Neves P, Leite A, Rangel M, de Castro B, Gameiro P. Influence of structural factors on the enhanced activity of moxifloxacin: a fluorescence and EPR spectroscopic study. Anal Bioanal Chem 2007; 387:1543-52. [PMID: 17200861 DOI: 10.1007/s00216-006-1009-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/24/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Partition coefficients of moxifloxacin in liposomes of dimyristoyl-L-alpha-phosphatidylcholine or dimyristoyl-L-alpha-phosphatidylglycerol and water were determined by spectrophotometry and fluorimetry. The K (p) values obtained were larger than those reported for most of the other fluoroquinolones, a consequence of the structural changes observed in the molecule of moxifloxacin, which in turn change its acid/base properties. Introduction of a methoxy group at position 8 and a diazabicyclonyl ring at position 7 in the basic fluoroquinolone structure alters the charge distribution at the physiological pH of 7.4, and these changes seem to be responsible for its improved antibacterial potency and broader spectrum of activity. Location studies have also been performed using fluorescence and electron paramagnetic resonance (EPR) spectroscopies. The results show that moxifloxacin must be located near the phospholipid headgroups, similar to other fluoroquinolones, but contributions from a hydrophobic component were also detected. These results suggest that the enhanced activity of this drug may be related to a more facilitated entrance into the bacterial cell, perhaps including a mediator step involving electrostatic interaction with a hydrophobic component; this step then controls the extent or orientation of insertion and improves the electrostatic interaction.
Collapse
Affiliation(s)
- Patrícia Neves
- Faculdade de Ciências, Departamento de Química, REQUIMTE, 4169-007 Porto, Portugal
| | | | | | | | | |
Collapse
|
45
|
Siquet C, Paiva-Martins F, Lima JLFC, Reis S, Borges F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids--a structure-activity relationship study. Free Radic Res 2006; 40:433-42. [PMID: 16517509 DOI: 10.1080/10715760500540442] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Eight structurally similar dihydroxy and trihydroxyphenolic acids (protocatechuic acid, 3,4-dihydroxyphenylacetic acid, hydrocaffeic acid, caffeic acid, gallic acid, 3,4,5-trihydroxyphenylacetic acid, 3-(3,4,5-trihydroxyphenyl)propanoic acid and 3-(3,4,5-trihydroxyphenyl)propenoic acid) were examined for their total antioxidant capacity (TAC). Furthermore, their ability to scavenge peroxyl radicals, generated by AAPH in liposomes, was determined. The antioxidant/pro-oxidant activity of the compounds was screened using the 2'-deoxyguanosine assay. All compounds behave as radical scavengers, with 3,4,5-trihydroxyphenylacetic acid being the most potent. Nevertheless, in the lipid peroxidation assay an inverse ranking order was observed, 3,4-dihydroxyphenylacetic acid being the most effective compound. All the dihydroxylated compounds showed a pro-oxidant behaviour leading to an increase of 50% in 8-OH-dG induction. From the structure-antioxidant activity relationship studies performed it may be concluded that the number of phenolic groups and the type of the alkyl spacer between the carboxylic acid and the aromatic ring strongly influence the antioxidant activity.
Collapse
Affiliation(s)
- Christophe Siquet
- REQUIMTE, Departamento de Química-Física, Universidade do Porto, Faculdade de Farmácia, Porto, Portugal
| | | | | | | | | |
Collapse
|
46
|
Concentration and time dependant behavior of chlorpromazine interaction with supported bilayer lipid membrane. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2005.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Kitamura K, Omran AA, Nagata C, Kamijima Y, Tanaka R, Takegami S, Kitade T. Effects of Inorganic Ions on the Binding of Triflupromazine and Chlorpromazine to Bovine Serum Albumin Studied by Spectrometric Methods. Chem Pharm Bull (Tokyo) 2006; 54:972-6. [PMID: 16819214 DOI: 10.1248/cpb.54.972] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of inorganic salts, NaCl, NaBr, NaI, Na2SO4, KCl, KBr, KI, on the binding constants (Ks) of psychotropic phenothiazine drugs, triflupromazine (TFZ) and chlorpromazine, to bovine serum albumin (BSA) were examined by using second-derivative spectrophotometry. All of the salts examined, with the exception of Na2SO4, decreased the K values significantly, depending on the concentration of the salt, e.g., the decrease in the K values of both drugs were about 40% for 0.1 M NaCl. The results obtained with Na2SO4 indicated that neither Na+ nor SO4(2-) had any affect on the binding of the phenothiazines to BSA. Based on the Na2SO4 results and the finding that the effect of each potassium salt on binding was quite similar to that of the corresponding sodium salt, the effects of these halogen salts can be considered to be derived from their anions, although the phenothiazines are positively charged at pH 7.4. The effectiveness of the anions was determined to occur in the following order: I->>Br->Cl-; these results coincided with the published order of the binding affinity of these anions to albumin. The 19F-NMR spectra of TFZ in the presence of each of these halogen salts revealed a concentration-dependent decrease in the intensity of the signal at 13.8 ppm that had previously been assigned to the TFZ bound to Site II. Consequently, the effects of these anions on the binding of positively charged phenothiazine drugs are thought to be local steric effects caused by the binding of these anions to Site II.
Collapse
Affiliation(s)
- Keisuke Kitamura
- Kyoto Pharmaceutical University; 5 Nakauchicho, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Liawruangrath S, Makchit J, Liawruangrath B. A Simple Flow Injection Spectrophotometric Procedure for the Determination of Diazepam in Pharmaceutical Formulation. ANAL SCI 2006; 22:127-30. [PMID: 16429787 DOI: 10.2116/analsci.22.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A single-channel flow injection (FI) manifold with spectrophotometric detection has been designed and fabricated for diazepam determination. A 100 microl sample and/or standard solution containing diazepam was injected into a flowing stream of 0.1 mol L(-1) hydrochloric acid with the optimum flow rate of 6.8 mL min(-1). As soon as the sample reached the detector, the FI signal as a peak was recorded at 360 nm. The optimum conditions for microg amounts of diazepam were achieved. A linear calibration graph over the range of 2-110 mg L(-1) diazepam was obtained with the regression equation Y = 0.2926X + 0.5896 (r2 = 0.9929). The method was very sensitive, since as little as 0.60 mg L(-1) could be detected; very reproducible with an RSD of 3.3% (n=11); and very rapid with a sampling rate of 100 h(-1). The limit of quantitation (10 sigma) was 2.0 mg L(-1). The proposed FI procedure has been satisfactorily applied to the quantitation of diazepam in commercial pharmaceutical formulations. The obtained results were in excellent agreement with those obtained by the conventional spectrophotometric method, verified by the student t-test at the 95% confidence level.
Collapse
Affiliation(s)
- S Liawruangrath
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| | | | | |
Collapse
|
49
|
Teixeira S, Siquet C, Alves C, Boal I, Marques MP, Borges F, Lima JLFC, Reis S. Structure-property studies on the antioxidant activity of flavonoids present in diet. Free Radic Biol Med 2005; 39:1099-108. [PMID: 16198236 DOI: 10.1016/j.freeradbiomed.2005.05.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 05/25/2005] [Accepted: 05/31/2005] [Indexed: 11/24/2022]
Abstract
The screening of natural flavonoids for their bioactivity as antioxidants is usually carried out by determinination of their profile as chain-breaking antioxidants, by the evaluation of their direct free radical-scavenging activity as hydrogen- or electron-donating compounds. Since this may not be the only mechanism underlying the antioxidant activity it is important to check the ability of these compounds to act as chelators of transition metal ions. Accordingly, in the present study the acidity constants of catechin and taxifolin, as well as the formation constants of the corresponding copper (II) complexes, were investigated by potentiometry and/or spectrophotometry. Moreover, a detailed quantitative examination of the coordination species formed is presented. In addition, the partition coefficients of both catechin and taxifolin in a biomimetic system (micelles) were determined, since these properties may also contribute to the antioxidant behavior of this type of compound. The log P values determined depend on the electrostatic interactions of the compounds with the differently charged micelles (the highest values were obtained for zwitterionic and cationic micelles). The prooxidant behavior of the compounds was assessed through the oxidation of 2'-deoxyguanosine, induced by a Fenton reaction, catalyzed by copper. The data obtained reveal that the flavonoids under study did not present prooxidant activity, in this particular system. The results obtained are evidence of a clear difference among the pKa, the complexation properties, and the lipophilicity of the flavonoids studied, which can partially explain their distinct antioxidant activity. The most stable geometries of the free compounds were determined by theoretical (ab initio) methods, in order to properly account for the electron correlation effects which occur in these systems, thus allowing a better interpretation of the experimental data.
Collapse
Affiliation(s)
- Susana Teixeira
- REQUIMTE, Departamento de Química-Física, Faculdade de Farmácia, Universidade do Porto, Rua Anibal Cunha 164, 4099-030 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ferreira H, Lúcio M, Lima JLFC, Matos C, Reis S. Effects of diclofenac on EPC liposome membrane properties. Anal Bioanal Chem 2005; 382:1256-64. [PMID: 15983770 DOI: 10.1007/s00216-005-3251-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/02/2005] [Accepted: 04/08/2005] [Indexed: 02/02/2023]
Abstract
In this work the interaction of a non-steroidal anti-inflammatory drug (NSAID), diclofenac, with egg yolk phosphatidylcoline (EPC) liposomes, used as cell-membrane models, was quantified by determination of the partition coefficient. The liposome/aqueous phase partition coefficient was determined by derivative spectrophotometry, fluorescence quenching, and measurement of zeta-potential. Theoretical models based on simple partition of the diclofenac between two different media, were used to fit the experimental data, enabling the determination of K(p). The three techniques used yielded similar results. The effects of the interaction on the membrane's characteristics were further evaluated, either by studying membrane potential changes or by effects on membrane fluidity. The liposome membrane potential and the size and size-homogeneity of liposomes were measured by light scattering. The effects of diclofenac on the internal viscosity or fluidity of the membrane were determined by use of spectroscopic probes-a series of n-(9-anthroyloxy) fatty acids in which the carboxyl terminal group is located at the interfacial region of the membrane and the fluorescent anthracene group is attached at different positions along the fatty acid chain. The location of the diclofenac on the membrane was also evaluated, by fluorescence quenching using the same series of fluorescent probes. Because the fluorescent anthracene group is attached at different positions along the fatty acid chain, it is possible to label at a graded series of depths in the bilayer. The interactions between the drug and the probe are a means of predicting the location of the drug on the membrane.
Collapse
Affiliation(s)
- Helena Ferreira
- REQUIMTE/Dep. de Química-Física, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4050-047, Porto, Portugal
| | | | | | | | | |
Collapse
|