1
|
Makwana MV, Dos Santos Souza C, Pickup BT, Thompson MJ, Lomada SK, Feng Y, Wieland T, Jackson RFW, Muimo R. Chemical Tools for Studying Phosphohistidine: Generation of Selective τ-Phosphohistidine and π-Phosphohistidine Antibodies. Chembiochem 2023; 24:e202300182. [PMID: 37183567 DOI: 10.1002/cbic.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Nonhydrolysable stable analogues of τ-phosphohistidine (τ-pHis) and π-pHis have been designed, aided by electrostatic surface potential calculations, and subsequently synthesized. The τ-pHis and π-pHis analogues (phosphopyrazole 8 and pyridyl amino amide 13, respectively) were used as haptens to generate pHis polyclonal antibodies. Both τ-pHis and π-pHis conjugates in the form of BSA-glutaraldehyde-τ-pHis and BSA-glutaraldehyde-π-pHis were synthesized and characterized by 31 P NMR spectroscopy. Commercially available τ-pHis (SC56-2) and π-pHis (SC1-1; SC50-3) monoclonal antibodies were used to show that the BSA-G-τ-pHis and BSA-G-π-pHis conjugates could be used to assess the selectivity of pHis antibodies in a competitive ELISA. Subsequently, the selectivity of the pHis antibodies generated by using phosphopyrazole 8 and pyridyl amino amide 13 as haptens was assessed by competitive ELISA against His, pSer, pThr, pTyr, τ-pHis and π-pHis. Antibodies generated by using phosphopyrazole 8 as a hapten were found to be selective for τ-pHis, and antibodies generated by using pyridyl amino amide 13 were found to be selective for π-pHis. Both τ- and π-pHis antibodies were shown to be effective in immunological experiments, including ELISA, western blot, and immunofluorescence. The τ-pHis antibody was also shown to be useful in the immunoprecipitation of proteins containing pHis.
Collapse
Affiliation(s)
- Mehul V Makwana
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
- Department of Infection Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Cleide Dos Santos Souza
- Sheffield Instituate of Translational Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Barry T Pickup
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Mark J Thompson
- Department of Oncology and Metabolism, Medical School, The University Of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Santosh K Lomada
- Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Richard F W Jackson
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Richmond Muimo
- Department of Infection Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
2
|
Widespread protein N-phosphorylation in organism revealed by SiO2@DpaZn beads based mild-acidic enrichment method. Talanta 2023; 251:123740. [DOI: 10.1016/j.talanta.2022.123740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
|
3
|
Zn(II)-DPA functionalized graphene oxide two-dimensional nanocomposites for N-phosphoproteins enrichment. Talanta 2022; 243:123384. [DOI: 10.1016/j.talanta.2022.123384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/15/2022]
|
4
|
A Quantitative Method for the Measurement of Protein Histidine Phosphorylation. Methods Mol Biol 2020; 2077:51-61. [PMID: 31707651 DOI: 10.1007/978-1-4939-9884-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The method described in this chapter provides a quantitative means of assaying for protein histidine phosphorylation and thus protein histidine kinase activity, even in the presence of other protein kinases, for example, serine/threonine or tyrosine kinases. The method involves the measurement of 32P, derived from [γ32P]ATP, incorporation into phosphohistidine in a protein substrate. The method makes use of the differential stabilities of phosphohistidine and the common phosphohydroxyamino acids to alkali and acid treatments to measure phosphohistidine incorporation. Phosphoserine and phosphothreonine are depleted by alkali treatment, while phosphohistidine, which is alkali-stable, is removed by acid treatment. Phosphotyrosine is stable to both alkali and acid treatments. The method is filter-based and allows for rapid assay of multiple protein histidine kinase samples, for example, screening for histidine kinase activity, allowing for the calculation of specific activity. In addition, quantitative time-course assays can also be performed to allow for kinetic analysis of histidine kinase activity.
Collapse
|
5
|
Hu Y, Weng Y, Jiang B, Li X, Zhang X, Zhao B, Wu Q, Liang Z, Zhang L, Zhang Y. Isolation and identification of phosphorylated lysine peptides by retention time difference combining dimethyl labeling strategy. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9433-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Ueno TB, Johnson RA, Boon EM. Optimized assay for the quantification of histidine kinase autophosphorylation. Biochem Biophys Res Commun 2015; 465:331-7. [PMID: 26255967 DOI: 10.1016/j.bbrc.2015.07.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/24/2015] [Indexed: 01/27/2023]
Abstract
Although two-component signaling systems, comprising a sensory histidine kinase and a response regulator, are a primary means by which bacteria detect and respond to environmental stimuli, they are poorly characterized. Here we report optimized conditions for detecting histidine phosphorylation using a facile medium-throughput filter paper-binding assay. Employing this assay we report the kinetic parameters of previously uncharacterized histidine kinases from Vibrio haveyi, Vibrio parahaemolytius, Shewanella oneidensis, and Legionella pneumophila. In characterizing these kinases, we effectively double the number of kinetically characterized histidine kinases that have been reported in the literature.
Collapse
Affiliation(s)
- Takahiro B Ueno
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Roger A Johnson
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794-8661, USA
| | - Elizabeth M Boon
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA.
| |
Collapse
|
7
|
Histone H4 histidine phosphorylation: kinases, phosphatases, liver regeneration and cancer. Biochem Soc Trans 2012; 40:290-3. [PMID: 22260708 DOI: 10.1042/bst20110605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphorylation of histone H4 on one or both of its two histidine residues has been known to occur in liver cells for nearly 40 years and has been associated with proliferation of hepatocytes during regeneration of the liver following mechanical damage. More recently, large increases in histone H4 histidine kinase activity have been found to occur associated with proliferation and differentiation of liver progenitor cells following chemical damage that prevents hepatocyte proliferation. In addition, it has been shown this histone H4 histidine kinase activity is elevated nearly 100-fold in human foetal liver and several hundredfold in hepatocellular carcinoma tissue compared with normal adult liver. In the present paper, we review what is currently known about histone H4 histidine phosphorylation, the kinase(s) responsible and the phosphatases capable of catalysing its dephosphorylation, and briefly summarize the techniques used to detect and measure the histidine phosphorylation of histone H4 and the corresponding kinase activity.
Collapse
|
8
|
P-N bond protein phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:470-8. [PMID: 22450136 DOI: 10.1016/j.bbapap.2012.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/27/2012] [Accepted: 03/03/2012] [Indexed: 01/09/2023]
Abstract
The current work briefly reviews what is currently known about protein phosphorylation on arginine, lysine and histidine residues, where PN bonds are formed, and the protein kinases that catalyze these reactions. Relatively little is understood about protein arginine and lysine kinases and the role of phosphorylation of these residues in cellular systems. Protein histidine phosphorylation and the two-component histidine kinases play important roles in cellular signaling systems in bacteria, plants and fungi. Their roles in vertebrates are much less well researched and there are no protein kinases similar to the two-component histidine kinases. The main focus of the review however, is to present current knowledge of the characterization, mechanisms of action and biological roles of the phosphatases that catalyze the hydrolysis of these phosphoamino acids. Very little is known about protein phosphoarginine and phospholysine phosphatases, although their existence is well documented. Some of these phosphatases exhibit very broad specificity in terms of which phosphoamino acids are substrates, however there appear to be one or two quite specific protein phospholysine and phosphoarginine phosphatases. Similarly, there are phosphatases with broad substrate specificities that catalyze the hydrolysis of phosphohistidine in protein substrates, including the serine/threonine phosphatases 1, 2A and 2C. However there are two, more specific, protein phosphohistidine phosphatases that have been well characterized and for which structures are available, SixA is a phosphatase associated with two-component histidine kinase signaling in bacteria, and the other is found in a number of organisms, including mammals. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.
Collapse
|
9
|
Kee JM, Muir TW. Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 2012; 7:44-51. [PMID: 22148577 DOI: 10.1021/cb200445w] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This year (2012) marks the 50th anniversary of the discovery of protein histidine phosphorylation. Phosphorylation of histidine (pHis) is now widely recognized as being critical to signaling processes in prokaryotes and lower eukaryotes. However, the modification is also becoming more widely reported in mammalian cellular processes and implicated in certain human disease states such as cancer and inflammation. Nonetheless, much remains to be understood about the role and extent of the modification in mammalian cell biology. Studying the functional role of pHis in signaling, either in vitro or in vivo, has proven devilishly hard, largely due to the chemical instability of the modification. As a consequence, we are currently handicapped by a chronic lack of chemical and biochemical tools with which to study histidine phosphorylation. Here, we discuss the challenges associated with studying the chemical biology of pHis and review recent progress that offers some hope that long-awaited biochemical reagents for studying this elusive posttranslational modification (PTM) might soon be available.
Collapse
Affiliation(s)
- Jung-Min Kee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Abstract
Although discovered long ago, posttranslational phosphorylation of histones has been in the spotlight only recently. Information is accumulating almost daily on phosphorylation of histones and their roles in cellular physiology and human diseases. An extensive cross talk exists between phosphorylation and other posttranslational modifications, which together regulate various biological processes, including gene transcription, DNA repair, and cell cycle progression. Recent research on histone phosphorylation has demonstrated that nearly all histone types are phosphorylated at specific residues and that these modifications act as a critical intermediate step in chromosome condensation during cell division, transcriptional regulation, and DNA damage repair. As with all young fields, apparently conflicting and sometimes controversial observations about histone phosphorylations and their true functions in different species are found in the literature. Accumulating evidence suggests that instead of functioning strictly as part of a general code, histone phosphorylation probably functions by establishing cross talk with other histone modifications and serving as a platform for recruitment or release of effector proteins, leading to a downstream cascade of events. Here we extensively review published information on the complexities of histone phosphorylation, the roles of proteins recognizing these modifications and the resuting physiological outcome, and, importantly, future challenges and opportunities in this fast-moving field.
Collapse
|
11
|
Wu ZL. Phosphatase-coupled universal kinase assay and kinetics for first-order-rate coupling reaction. PLoS One 2011; 6:e23172. [PMID: 21853082 PMCID: PMC3154929 DOI: 10.1371/journal.pone.0023172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022] Open
Abstract
Kinases use adenosine-5′-triphosphate (ATP) as the donor substrate and generate adenosine-5′-diphosphate (ADP) as a product. An ADP-based phosphatase-coupled kinase assay is described here. In this assay, CD39L2, a nucleotidase, is added into a kinase reaction to hydrolyze ADP to AMP and phosphate. The phosphate is subsequently detected using malachite green phosphate-detection reagents. As ADP hydrolysis by CD39L2 displays a first-order rate constant, relatively simple equations are derived to calculate the coupling rate and the lagging time of the coupling reaction, allowing one to obtain kinase kinetic parameters without the completion of the coupling reaction. ATP inhibition of CD39L2-catalyzed ADP hydrolysis is also determined for correction of the kinetic data. As examples, human glucokinase, P. chrysogenum APS kinase and human ERK1, kinases specific for sugar, nucleotide and protein respectively, are assayed. To assess the compatibility of the method for high-throughput assays, Z′ factors >0.5 are also obtained for the three kinases.
Collapse
Affiliation(s)
- Zhengliang L Wu
- R&D Systems Inc., Minneapolis, Minnesota, United States of America.
| |
Collapse
|
12
|
Kamath V, Kyathanahalli CN, Jayaram B, Syed I, Olson LK, Ludwig K, Klumpp S, Krieglstein J, Kowluru A. Regulation of glucose- and mitochondrial fuel-induced insulin secretion by a cytosolic protein histidine phosphatase in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2010; 299:E276-86. [PMID: 20501872 PMCID: PMC2928511 DOI: 10.1152/ajpendo.00091.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report localization of a cytosolic protein histidine phosphatase (PHP; approximately 16 kDa) in INS 832/13 cells, normal rat islets, and human islets. siRNA-mediated knockdown of PHP markedly reduced glucose- or mitochondrial fuel-induced but not KCl-induced insulin secretion. siRNA-mediated knockdown of PHP also attenuated mastoparan-induced insulin secretion, suggesting its participation in G protein-sensitive signaling steps, leading to insulin secretion. Functional assays revealed that the beta-cell PHP catalyzes the dephosphorylation of ATP-citrate lyase (ACL). Silencing of PHP expression markedly reduced ACL activity, suggesting functional regulation of ACL by PHP in beta-cells. Coimmunoprecipitation studies revealed modest effects of glucose on the interaction between PHP and ACL. Confocal microscopic evidence indicated that glucose promotes association between ACL and nm23-H1, a known kinase histidine kinase, but not between PHP and ACL. Furthermore, metabolic viability of INS 832/13 cells was resistant to siRNA-PHP, suggesting no regulatory roles of PHP in cell viability. Finally, long-term exposure (24 h) of INS 832/13 cells or rat islets to high glucose (30 mM) increased the expression of PHP. Such increases in PHP expression were also seen in islets derived from the Zucker diabetic fatty rat compared with islets from the lean control animals. Together, these data implicate regulatory roles for PHP in a G protein-sensitive step involved in nutrient-induced insulin secretion. In light of the current debate on putative regulatory roles of ACL in insulin secretion, additional studies are needed to precisely identify the phosphoprotein substrate(s) for PHP in the cascade of events leading to nutrient-induced insulin secretion.
Collapse
Affiliation(s)
- Vasudeva Kamath
- Department of Pharmaceutical Sciences, Wayne State University and Veterans Affairs Medical Center, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
14
|
Abstract
The investigation of protein histidine phosphorylation has required the development of a number of methods that differ from traditional methods of phosphoprotein analysis that were developed to study phosphorylation of serine, threonine, and tyrosine, which are, unlike phosphohistidine, acid-stable. The investigation of histidine phosphorylation is further complicated by the fact that in mammalian proteins, phosphorylation appears to occur at either 1-N or 3-N positions of the imidazole ring, depending on the source of the kinase. In this review, we describe methods developed for phosphoamino acid analysis to detect phosphohistidine, including the determination of the isoform present, using chromatographic and mass spectrometric analysis of phosphoprotein hydrolysates and 1H- and 31P NMR analysis of intact phosphoproteins and phosphopeptides. We also describe methods for the assay of protein histidine kinase activity, including a quantitative assay of alkali-stable, acid-labile protein phosphorylation, and an in-gel kinase assay applied to histidine kinases. Most of the detailed descriptions of methods are as they are applied in our laboratory to the investigation of histone H4 phosphorylation and histone H4 histidine kinases, but which can be applied to the phosphorylation of any proteins and to any such histidine kinases.
Collapse
|
15
|
Besant PG, Attwood PV. Detection and analysis of protein histidine phosphorylation. Mol Cell Biochem 2009; 329:93-106. [PMID: 19387796 DOI: 10.1007/s11010-009-0117-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 04/02/2009] [Indexed: 11/30/2022]
Abstract
Protein histidine phosphorylation is well established as an important part of signalling systems in bacteria, fungi and plants and there is growing evidence of its role in mammalian cell biology. Compared to phosphoserine, phosphothreonine and phosphotyrosine, phosphohistidine is relatively labile, especially under the acidic conditions that were developed to analyse protein phosphorylation. In recent years, there has been an increasing impetus to develop specific methods for the analysis of histidine phosphorylation and assay of histidine kinase activity. Most recently attention has focussed on the application of mass spectrometry to this end. This review provides an overview of methods available for the detection and analysis of phosphohistidine in phosphoproteins, with particular emphasis on the application of mass spectrometric techniques.
Collapse
Affiliation(s)
- Paul G Besant
- School of Biomedical, Biomolecular and Chemical Sciences (M310), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | |
Collapse
|
16
|
Kowluru A. Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet beta-cell. J Cell Mol Med 2008; 12:1885-908. [PMID: 18400053 PMCID: PMC4506158 DOI: 10.1111/j.1582-4934.2008.00330.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein phosphorylation represents one of the key regulatory events in physiological insulin secretion from the islet β-cell. In this context, several classes of protein kinases (e.g. calcium-, cyclic nucleotide- and phospholipid-dependent protein kinases and tyrosine kinases) have been characterized in the β-cell. The majority of phosphorylated amino acids identified include phosphoserine, phosphothreonine and phosphotyrosine. Protein histidine phosphorylation has been implicated in the prokaryotic and eukaryotic cellular signal transduction. Most notably, phoshohistidine accounts for 6% of total protein phosphorylation in eukaryotes, which makes it nearly 100-fold more abundant than phosphotyrosine, but less abundant than phosphoserine and phosphothreonine. However, very little is known about the number of proteins with phosphohistidines, since they are highly labile and are rapidly lost during phosphoamino acid identification under standard experimental conditions. The overall objectives of this review are to: (i) summarize the existing evidence indicating the subcellular distribution and characterization of various histidine kinases in the islet β-cell, (ii) describe evidence for functional regulation of these kinases by agonists of insulin secretion, (iii) present a working model to implicate novel regulatory roles for histidine kinases in the receptor-independent activation, by glucose, of G-proteins endogenous to the β-cell, (iv) summarize evidence supporting the localization of protein histidine phosphatases in the islet β-cell and (v) highlight experimental evidence suggesting potential defects in the histidine kinase signalling cascade in islets derived from the Goto-Kakizaki (GK) rat, a model for type 2 diabetes. Potential avenues for future research to further decipher regulatory roles for protein histidine phosphorylation in physiological insulin secretion are also discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Chapter 14 Protein Histidine Phosphorylation. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-526x(08)00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Abstract
Protein kinase activity results in the incorporation of radiolabeled phosphate from [gamma-32P]ATP into a peptide or protein substrate. The measurement of the amount of radioactivity incorporated into a substrate as a function of time and enzyme concentration allows enzyme activity to be quantified. The activity is expressed as a 'unit', where 1 unit corresponds to the amount of protein kinase that catalyzes the incorporation of 1 nanomole of phosphate into the standard substrate in 1 minute. Specific activity is defined as units of activity per milligram protein. The assay format described here is quick, simple, inexpensive, sensitive and accurate, provides a direct measurement of activity and remains the 'gold standard' for the quantification of protein kinase activity. Up to 40 samples can be assayed manually at one time, and the assay takes one person less than 1 hour to complete.
Collapse
Affiliation(s)
- C James Hastie
- Division of Signal Transduction Therapy, Medical Sciences Institute-Wellcome Trust Biocentre Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | | | | |
Collapse
|
19
|
Zu XL, Besant PG, Imhof A, Attwood PV. Mass spectrometric analysis of protein histidine phosphorylation. Amino Acids 2007; 32:347-57. [PMID: 17334905 DOI: 10.1007/s00726-007-0493-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/10/2007] [Indexed: 11/27/2022]
Abstract
Protein histidine phosphorylation is now recognized as an important form of post-translational modification. The acid-lability of phosphohistidine has meant that this phosphorylation has not been as well studied as serine/threonine or tyrosine phosphorylation. We show that phosphohistidine and phosphohistidine-containing phosphopeptides derived from proteolytic digestion of phosphohistone H4 are detectable by ESI-MS. We also demonstrate reverse-phase HPLC separation of these phosphopeptides and their detection by MALDI-TOF-MS.
Collapse
Affiliation(s)
- X-L Zu
- School of Biomedical, Biomolecular and Chemical Sciences (M310), The University of Western Australia, Crawley, WA, Australia
| | | | | | | |
Collapse
|
20
|
Besant PG, Attwood PV. Mammalian histidine kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:281-90. [PMID: 16188507 DOI: 10.1016/j.bbapap.2005.07.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 07/19/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Protein phosphorylation is one of the most ubiquitous and important types of post-translational modification for the regulation of cell function. The importance of two-component histidine kinases in bacteria, fungi and plants has long been recognised. In mammals, the regulatory roles of serine/threonine and tyrosine kinases have attracted most attention. However, the existence of histidine kinases in mammalian cells has been known for many years, although little is still understood about their biological roles by comparison with the hydroxyamino acid kinases. In addition, with the exception of NDP kinase, other mammalian histidine kinases remain to be identified and characterised. NDP kinase is a multifunctional enzyme that appears to act as a protein histidine kinase and as such, to regulate the activation of some G-proteins. Histone H4 histidine kinase activity has been shown to correlate with cellular proliferation and there is evidence that it is an oncodevelopmental marker in liver. This review mainly concentrates on describing recent research on these two types of histidine kinase. Developments in methods for the detection and assay of histidine kinases, including mass spectrometric methods for the detection of phosphohistidines in proteins and in-gel kinase assays for histone H4 histidine kinases, are described. Little is known about inhibitors of mammalian histidine kinases, although there is much interest in two-component histidine kinase inhibitors as potential antibiotics. The inhibition of a histone H4 histidine kinase by genistein is described and that of two-component histidine kinase inhibitors of structurally-related mammalian protein kinases. In addition, recent findings concerning mammalian protein histidine phosphatases are briefly described.
Collapse
Affiliation(s)
- Paul G Besant
- School of Biomedical and Chemical Sciences (M310), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | |
Collapse
|
21
|
Histone modifications. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Tan E, Lin Zu X, Yeoh GC, Besant PG, Attwood PV. Detection of histidine kinases via a filter-based assay and reverse-phase thin-layer chromatographic phosphoamino acid analysis. Anal Biochem 2003; 323:122-6. [PMID: 14622966 DOI: 10.1016/j.ab.2003.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The methods that detect histidine phosphorylation have largely been either laborious or difficult to apply quantitatively. The major difficulty in assessing for its presence is its alkali-stable, acid-labile nature. While an assay that detects alkali-stable phosphorylation has been developed, it does not distinguish phosphohistidine from other alkali-stable phosphoamino acids. Using this established method, we extend the assay to facilitate the specific detection of phosphohistidine. We use the acid-lability of phosphohistidine as a defining feature in our approach for its detection. In addition, reverse-phase thin-layer chromatography was utilized to conclusively demonstrate the viability of the conditions that we implement in the assay for the selective detection of phosphohistidine. In summary, this report describes a rapid filter-based kinase assay that quantitatively measures histidine kinase activity, even in the presence of tyrosine kinase activity.
Collapse
Affiliation(s)
- Eiling Tan
- Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6100, Australia
| | | | | | | | | |
Collapse
|
23
|
Kowluru A. Regulatory roles for small G proteins in the pancreatic beta-cell: lessons from models of impaired insulin secretion. Am J Physiol Endocrinol Metab 2003; 285:E669-84. [PMID: 12959934 DOI: 10.1152/ajpendo.00196.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emerging evidence suggests that GTP-binding proteins (G proteins) play important regulatory roles in physiological insulin secretion from the islet beta-cell. Such conclusions were drawn primarily from experimental data derived through the use of specific inhibitors of G protein function. Data from gene depletion experiments appear to further substantiate key roles for these signaling proteins in the islet metabolism. The first part of this review will focus on findings supporting the hypothesis that activation of specific G proteins is essential for insulin secretion, including regulation of their function by posttranslational modifications at their COOH-terminal cysteines (e.g., isoprenylation). The second part will overview novel, non-receptor-dependent mechanism(s) whereby glucose might activate specific G proteins via protein histidine phosphorylation. The third section will review findings that appear to link abnormalities in the expression and/or functional activation of these key signaling proteins to impaired insulin secretion. It is hoped that this review will establish a basis for future research in this area of islet signal transduction, which presents a significant potential, not only in identifying key signaling proteins that are involved in physiological insulin secretion, but also in examining potential abnormalities in this signaling cascade that lead to islet dysfunction and onset of diabetes.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences 3601, Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48202.
| |
Collapse
|
24
|
Kowluru A. Defective protein histidine phosphorylation in islets from the Goto-Kakizaki diabetic rat. Am J Physiol Endocrinol Metab 2003; 285:E498-503. [PMID: 12799314 DOI: 10.1152/ajpendo.00121.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently described novel regulatory roles for protein histidine phosphorylation of key islet proteins (e.g., nucleoside diphosphate kinase and succinyl thiokinase) in insulin secretion from the islet beta-cell (Kowluru A. Diabetologia 44: 89-94, 2001; Kowluru A, Tannous M, and Chen HQ. Arch Biochem Biophys 398: 160-169, 2002). In this context, we also characterized a novel, ATP- and GTP-sensitive protein histidine kinase in isolated beta-cells that catalyzed the histidine phosphorylation of islet (endogenous) proteins as well as exogenously added histone 4, and we implicated this kinase in the activation of islet endogenous G proteins (Kowluru A. Biochem Pharmacol 63: 2091-2100, 2002). In the present study, we describe abnormalities in ATP- or GTP-mediated histidine phosphorylation of nucleoside diphosphate kinase in islets derived from the Goto-Kakizaki (GK) rat, a model for non-insulin-dependent diabetes. Furthermore, we provide evidence for a marked reduction in the activities of ATP- or GTP-sensitive histidine kinases in GK rat islets. On the basis of these observations, we propose that alterations in protein histidine phosphorylation could contribute toward insulin-secretory abnormalities demonstrable in the diabetic islet.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, 3601 Applebaum Bldg., Wayne State University, 259 Mack Ave., Detroit, MI 48202, USA.
| |
Collapse
|
25
|
Abstract
The existence of protein kinases, known as histidine kinases, which phosphorylate their substrates on histidine residues has been well documented in bacteria and also in lower eukaryotes such as yeast and plants. Their biological roles in cellular signalling pathways within these organisms have also been well characterised. The evidence for the existence of such enzymes in mammalian cells is much less well established and little has been determined about their cellular functions. The aim of the current review is to present a summary of what is known about mammalian histidine kinases. In addition, by consideration of the chemistry of phosphohistidine, what is currently known of some mammalian histidine kinases and the way in which they act in bacteria and other eukaryotes, a general role for mammalian histidine kinases is proposed. A histidine kinase phosphorylates a substrate protein, by virtue of the relatively high free energy of hydrolysis of phosphohistidine the phosphate group is easily transferred to either a small molecule or another protein with which the phosphorylated substrate protein specifically interacts. This allows a signalling process to occur, which may be downregulated by the action of phosphatases. Given the known importance of protein phosphorylation to the regulation of almost all aspects of cellular function, the investigation of the largely unexplored area of histidine phosphorylation in mammalian cells is likely to provide a greater understanding of cellular action and possibly provide a new set of therapeutic drug targets.
Collapse
Affiliation(s)
- Paul G Besant
- Proteomics International Pty Ltd, Level 21, Governor Stirling Tower, 197 St. Georges Terrace, Perth, WA 6000, Australia
| | | | | |
Collapse
|
26
|
Kowluru A. Identification and characterization of a novel protein histidine kinase in the islet beta cell: evidence for its regulation by mastoparan, an activator of G-proteins and insulin secretion. Biochem Pharmacol 2002; 63:2091-100. [PMID: 12110368 DOI: 10.1016/s0006-2952(02)01025-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using insulin-secreting cells, we previously demonstrated that specific proteins associated with the cytosolic, secretory granule, and mitochondrial fractions undergo a novel type of phosphorylation on their histidine residues. Subsequently, we identified these proteins as the nucleoside diphosphate kinase (NDPK) [Kowluru and Metz, Biochemistry 1994;33:12495-503], the beta subunit of trimeric GTP-binding proteins [Kowluru et al., Biochem J 1996;313:97-107], and the alpha subunit of succinyl-CoA synthetase [Kowluru, Diabetologia 2001;44:89-94], respectively. Since several other enzymes of intermediary metabolism (e.g. ATP-citrate lyase and glucose-6-phosphatase) also undergo histidine phosphorylation, these initial findings may have a more generalized significance to beta cells. Herein, we characterized a novel protein histidine kinase in pancreatic beta cells, and determined it to be acid- and heat-labile as well as alkali-resistant in its phosphorylation of histone 4. Such an activity was detected in normal rat islets, human islets, and clonal beta (HIT-T15 and INS-1) cells, and could utilize either ATP or GTP as a phosphoryl donor (with K(m) values in the range of 60-100 microM). On a size-exclusion column, its molecular mass was estimated to be in the range of 60-70 kDa. It was stimulated by divalent cations (Mg(2+)>Mn(2+)>control=Ca(2+)=Zn(2+)=Co(2+)), but was resistant to polyamines. It was inactivated by known in vitro inhibitors of protein histidine phosphorylation (e.g. UDP or cromoglycate). Mastoparan, a global activator of G-proteins and insulin secretion from isolated beta cells, but not mastoparan-17, its inactive analog, stimulated histidine kinase activity and histidine phosphorylation of G(beta) subunit and insulin secretion from isolated rat islets. These studies identify, for the first time, a protein kinase activity in the pancreatic beta cell that does not act on traditional -Ser, -Tyr, or -Thr residues. They also establish a possible link between histidine kinase activity and G(beta) phosphorylation in isolated beta cells.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
27
|
Besant PG, Attwood PV. Detection of a mammalian histone H4 kinase that has yeast histidine kinase-like enzymic activity. Int J Biochem Cell Biol 2000; 32:243-53. [PMID: 10687958 DOI: 10.1016/s1357-2725(99)00119-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A well characterized histidine kinase purified from yeast has been shown to phosphorylate histone H4 on a histidine residue. This enzyme is unlike the two-component histidine kinases predominantly found in prokaryotes. Until now, a histidine kinase similar to this yeast enzyme has not been purified from a mammalian source. By using a purification scheme similar to that used to purify the yeast histidine kinase, a protein fraction with histone H4 kinase activity has been isolated from porcine thymus. The yeast histidine kinase was shown to be detectable using an in-gel kinase assay system and using this system, four major bands of histone H4 kinase activity were apparent in the porcine thymus preparation. Through the use of immunoprecipitation, alkaline hydrolysis and subsequent phosphoamino acid analysis it has been demonstrated that this partially purified kinase fraction is capable of phosphorylating histone H4 on histidine. In conclusion, an preparation has been made from porcine thymus that contains histone H4 kinase activity and at least one of the kinases present in this preparation is a histidine kinase.
Collapse
Affiliation(s)
- P G Besant
- Department of Biochemistry, The University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
28
|
Underwood CJ, Blumenthal DK. Adaptation of the protein kinase filter paper assay to a 96-well microtiter format. Anal Biochem 1999; 267:235-8. [PMID: 9918678 DOI: 10.1006/abio.1998.2985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- C J Underwood
- Departments of Pharmacology & Toxicology and Biochemistry, University of Utah, Salt Lake City, Utah, 84103, USA
| | | |
Collapse
|
29
|
Mizuguchi H, Cook PF, Tai CH, Hasemann CA, Uyeda K. Reaction mechanism of fructose-2,6-bisphosphatase. A mutation of nucleophilic catalyst, histidine 256, induces an alteration in the reaction pathway. J Biol Chem 1999; 274:2166-75. [PMID: 9890979 DOI: 10.1074/jbc.274.4.2166] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A bifunctional enzyme, fructose-6-phosphate,2-kinase/fructose 2, 6-bisphosphatase (Fru-6-P,2-kinase/Fru-2,6-Pase), catalyzes synthesis and degradation of fructose 2,6-bisphosphate (Fru-2,6-P2). Previously, the rat liver Fru-2,6-Pase reaction (Fru-2,6-P2 --> Fru-6-P + Pi) has been shown to proceed via a phosphoenzyme intermediate with His258 phosphorylated, and mutation of the histidine to alanine resulted in complete loss of activity (Tauler, A., Lin, K., and Pilkis, S. J. (1990) J. Biol. Chem. 265, 15617-15622). In the present study, it is shown that mutation of the corresponding histidine (His256) of the rat testis enzyme decreases activity by less than a factor of 10 with a kcat of 17% compared with the wild type enzyme. Mutation of His390 (in close proximity to His256) to Ala results in a kcat of 12.5% compared with the wild type enzyme. Attempts to detect a phosphohistidine intermediate with the H256A mutant enzyme were unsuccessful, but the phosphoenzyme is detected in the wild type, H390A, R255A, R305S, and E325A mutant enzymes. Data demonstrate that the mutation of His256 induces a change in the phosphatase hydrolytic reaction mechanism. Elimination of the nucleophilic catalyst, H256A, results in a change in mechanism. In the H256A mutant enzyme, His390 likely acts as a general base to activate water for direct hydrolysis of the 2-phosphate of Fru-2,6-P2. Mutation of Arg255 and Arg305 suggests that the arginines probably have a role in neutralizing excess charge on the 2-phosphate and polarizing the phosphoryl for subsequent transfer to either His256 or water. The role of Glu325 is less certain, but it may serve as a general acid, protonating the leaving 2-hydroxyl of Fru-2,6-P2.
Collapse
Affiliation(s)
- H Mizuguchi
- Research Service, Dallas Veterans Affairs Medical Center, Dallas, Texas 75216, USA
| | | | | | | | | |
Collapse
|
30
|
Kim Y, Pesis KH, Matthews HR. Removal of phosphate from phosphohistidine in proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:221-8. [PMID: 7662712 DOI: 10.1016/0167-4889(95)00062-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Kinetic constants of KM = 0.8 microM, 3 microM and 1.6 microM, and kcat = 9 s-1, 7 s-1 or 9 s-1 were determined for histidine dephosphorylation by protein phosphatases 1, 2A and 2C respectively. IC50 values were determined for the inhibition of protein phosphatase 1 by inhibitor 1 (IC50 = 1 nM), inhibitor-2 (IC50 = 3 nM) and okadaic acid (IC50 = 30 nM) and for the inhibition of protein phosphatase 2A by okadaic acid (IC50 = 0.02 nM) and microcystin-LR (IC50 = 1 nM). Inhibitor-1 (Ki = 0.7 nM) and okadaic acid (Ki = 32 nM) are noncompetitive with protein phosphatase 1. Some of the IC50 values were low enough to violate the assumptions of the usual inhibition equations and a more general approach to the analysis of the data was used. On the basis of these kinetic parameters and the presence of phosphohistidine, the major cellular protein serine/threonine phosphatases are likely to act as protein histidine phosphatases in the cell.
Collapse
Affiliation(s)
- Y Kim
- Department of Biological Chemistry, University of California at Davis 95616, USA
| | | | | |
Collapse
|
31
|
Matthews HR. Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol Ther 1995; 67:323-50. [PMID: 8577821 DOI: 10.1016/0163-7258(95)00020-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phosphohistidine goes undetected in conventional studies of protein phosphorylation, although it may account for 6% of total protein phosphorylation in eukaryotes. Procedures for studying protein N- kinases are described. Genes whose products are putative protein histidine kinases occur in a yeast and a plant. In rat liver plasma membranes, activation of the small G-protein, Ras, causes protein histidine phosphorylation. Cellular phosphatases dephosphorylate phosphohistidine. One eukaryotic protein histidine kinase has been purified, and specific proteins phosphorylated on histidine have been observed. There is a protein arginine kinase in mouse and protein lysine kinases in rat. Protein phosphohistidine may regulate the mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- H R Matthews
- Department of Biological Chemistry, University of California at Davis 95616, USA
| |
Collapse
|
32
|
Wakim B, Aswad G. Ca(2+)-calmodulin-dependent phosphorylation of arginine in histone 3 by a nuclear kinase from mouse leukemia cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42003-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Kim Y, Huang J, Cohen P, Matthews H. Protein phosphatases 1, 2A, and 2C are protein histidine phosphatases. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46657-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Wright GD, Holman TR, Walsh CT. Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 1993; 32:5057-63. [PMID: 8494882 DOI: 10.1021/bi00070a013] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Resistance to the glycopeptide antibiotic vancomycin requires five genes. Two of these, vanR and vanS, have sequence homology to cytoplasmic response regulatory (VanR) and transmembrane sensory (VanS) proteins of two-component regulatory systems used to sense and transduce environmental signals. We report the overproduction and purification to homogeneity of VanR (27 kDa) and of a fusion protein of VanS (residues 95-374, the cytosolic domain) to the maltose binding protein (MBP), yielding a MBP-VanS protein of 76 kDa. The MBP-VanS fusion protein displayed an ATP-dependent autophosphorylation on a histidine residue with a rate of 0.17 min-1 and a phosphorylation stoichiometry of 10-15%. 32P-PhosphoMBP-VanS transferred the phosphoryl group to VanR. 32P-Phospho VanR showed chemical stability anticipated for an aspartyl phosphate and was relatively stable to hydrolysis (t1/2 = 10-12 h). Thus, the vancomycin resistance operon appears to have collected and specifically tailored the His kinase and Asp phosphoryl receptor of two-component signal transduction logic for sensing extracellular vancomycin and turning on structural genes, vanA and vanH, to make altered peptidoglycan structures such that vancomycin does not bind.
Collapse
Affiliation(s)
- G D Wright
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
35
|
Ohmori H, Kuba M, Kumon A. Two phosphatases for 6-phospholysine and 3-phosphohistidine from rat brain. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53000-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
|
37
|
Wei YF, Matthews HR. Identification of phosphohistidine in proteins and purification of protein-histidine kinases. Methods Enzymol 1991; 200:388-414. [PMID: 1956326 DOI: 10.1016/0076-6879(91)00156-q] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|