1
|
Chang A, Botteri E, Gillis RD, Löfling L, Le CP, Ziegler AI, Chung NC, Rowe MC, Fabb SA, Hartley BJ, Nowell CJ, Kurozumi S, Gandini S, Munzone E, Montagna E, Eikelis N, Phillips SE, Honda C, Masuda K, Katayama A, Oyama T, Cole SW, Lambert GW, Walker AK, Sloan EK. Beta-blockade enhances anthracycline control of metastasis in triple-negative breast cancer. Sci Transl Med 2023; 15:eadf1147. [PMID: 37099632 DOI: 10.1126/scitranslmed.adf1147] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Beta-adrenergic blockade has been associated with improved cancer survival in patients with triple-negative breast cancer (TNBC), but the mechanisms of these effects remain unclear. In clinical epidemiological analyses, we identified a relationship between beta-blocker use and anthracycline chemotherapy in protecting against TNBC progression, disease recurrence, and mortality. We recapitulated the effect of beta-blockade on anthracycline efficacy in xenograft mouse models of TNBC. In metastatic 4T1.2 and MDA-MB-231 mouse models of TNBC, beta-blockade improved the efficacy of the anthracycline doxorubicin by reducing metastatic development. We found that anthracycline chemotherapy alone, in the absence of beta-blockade, increased sympathetic nerve fiber activity and norepinephrine concentration in mammary tumors through the induction of nerve growth factor (NGF) by tumor cells. Moreover, using preclinical models and clinical samples, we found that anthracycline chemotherapy up-regulated β2-adrenoceptor expression and amplified receptor signaling in tumor cells. Neurotoxin inhibition of sympathetic neural signaling in mammary tumors using 6-hydroxydopamine or genetic deletion of NGF or β2-adrenoceptor in tumor cells enhanced the therapeutic effect of anthracycline chemotherapy by reducing metastasis in xenograft mouse models. These findings reveal a neuromodulatory effect of anthracycline chemotherapy that undermines its potential therapeutic impact, which can be overcome by inhibiting β2-adrenergic signaling in the tumor microenvironment. Supplementing anthracycline chemotherapy with adjunctive β2-adrenergic antagonists represents a potential therapeutic strategy for enhancing the clinical management of TNBC.
Collapse
Affiliation(s)
- Aeson Chang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Edoardo Botteri
- Department of Research, Cancer Registry of Norway, Oslo 0379, Norway
| | - Ryan D Gillis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lukas Löfling
- Department of Research, Cancer Registry of Norway, Oslo 0379, Norway
| | - Caroline P Le
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Jreissati Pancreatic Centre, Epworth HealthCare, Richmond, VIC 3121, Australia
| | - Alexandra I Ziegler
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ni-Chun Chung
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Matthew C Rowe
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Stewart A Fabb
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Sasagu Kurozumi
- Department of Breast Surgery, International University of Health and Welfare, Narita, Chiba 286-8520, Japan
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology IRCCS, Milan, Italy
| | - Emilia Montagna
- Division of Medical Senology, European Institute of Oncology IRCCS, Milan, Italy
| | - Nina Eikelis
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Human Neurotransmitters Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Sarah E Phillips
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Human Neurotransmitters Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Chikako Honda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kei Masuda
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Steve W Cole
- Departments of Psychiatry and Biobehavioral Sciences and Medicine, Division of Hematology-Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, and the Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gavin W Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Human Neurotransmitters Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Adam K Walker
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, and the Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Swartjes T, Shang P, van den Berg DTM, Künne T, Geijsen N, Brouns SJJ, van der Oost J, Staals RHJ, Notebaart RA. Modulating CRISPR-Cas Genome Editing Using Guide-Complementary DNA Oligonucleotides. CRISPR J 2022; 5:571-585. [PMID: 35856642 PMCID: PMC9419950 DOI: 10.1089/crispr.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications, CRISPR-Cas may benefit from strict control over Cas enzyme activity. Previously, anti-CRISPR proteins and designed oligonucleotides have been proposed to modulate CRISPR-Cas activity. In this study, we report on the potential of guide-complementary DNA oligonucleotides as controlled inhibitors of Cas9 ribonucleoprotein complexes. First, we show that DNA oligonucleotides inhibit Cas9 activity in human cells, reducing both on- and off-target cleavage. We then used in vitro assays to better understand how inhibition is achieved and under which conditions. Two factors were found to be important for robust inhibition: the length of the complementary region and the presence of a protospacer adjacent motif-loop on the inhibitor. We conclude that DNA oligonucleotides can be used to effectively inhibit Cas9 activity both ex vivo and in vitro.
Collapse
Affiliation(s)
- Thomas Swartjes
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peng Shang
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Tim Künne
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard A Notebaart
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Caothien R, Yu C, Tam L, Newman R, Nakao B, Alcantar T, Bacarro N, Reyes J, Pham A, Roose-Girma M. Accelerated embryonic stem cell screening with a highly efficient genotyping pipeline. Mol Biol Rep 2022; 49:3281-3288. [PMID: 35107736 DOI: 10.1007/s11033-022-07165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/19/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Gene targeting in mouse ES cells replaces or modifies genes of interest; conditional alleles, reporter knock-ins, and amino acid changes are common examples of how gene targeting is used. For example, enhanced green fluorescent protein or Cre recombinase is placed under the control of endogenous genes to define promoter expression patterns. METHODS AND RESULTS The most important step in the process is to demonstrate that a gene targeting vector is correctly integrated in the genome at the desired chromosomal location. The rapid identification of correctly targeted ES cell clones is facilitated by proper targeting vector construction, rapid screening procedures, and advances in cell culture. Here, we optimized and functionally linked magnetic activated cell sorting (MACS) technology as well as multiplex droplet digital PCR (ddPCR) to our ES cell screening process to achieve a greater than 60% assurance that ES clones are correctly targeted. In a further refinement of the process, drug selection cassettes are removed from ES cells with adenovirus technology. We describe this improved workflow and illustrate the reduction in time between therapeutic target identification and experimental validation. CONCLUSION In sum, we describe a novel and effective implementation of ddPCR, multiMACS, and adenovirus recombinase into a streamlined screening workflow that significantly reduces timelines for gene targeting in mouse ES cells.
Collapse
Affiliation(s)
- Roger Caothien
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Charles Yu
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Robert Newman
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Brian Nakao
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Tuija Alcantar
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Natasha Bacarro
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Juan Reyes
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Anna Pham
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
4
|
Adams EJ, Khoriaty R, Kiseleva A, Cleuren ACA, Tomberg K, van der Ent MA, Gergics P, Tang VT, Zhu G, Hoenerhoff MJ, O'Shea KS, Saunders TL, Ginsburg D. Murine SEC24D can substitute functionally for SEC24C during embryonic development. Sci Rep 2021; 11:21100. [PMID: 34702932 PMCID: PMC8548507 DOI: 10.1038/s41598-021-00579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
The COPII component SEC24 mediates the recruitment of transmembrane cargos or cargo adaptors into newly forming COPII vesicles on the ER membrane. Mammalian genomes encode four Sec24 paralogs (Sec24a-d), with two subfamilies based on sequence homology (SEC24A/B and C/D), though little is known about their comparative functions and cargo-specificities. Complete deficiency for Sec24d results in very early embryonic lethality in mice (before the 8 cell stage), with later embryonic lethality (E7.5) observed in Sec24c null mice. To test the potential overlap in function between SEC24C/D, we employed dual recombinase mediated cassette exchange to generate a Sec24cc-d allele, in which the C-terminal 90% of SEC24C has been replaced by SEC24D coding sequence. In contrast to the embryonic lethality at E7.5 of SEC24C-deficiency, Sec24cc-d/c-d pups survive to term, though dying shortly after birth. Sec24cc-d/c-d pups are smaller in size, but exhibit no other obvious developmental abnormality by pathologic evaluation. These results suggest that tissue-specific and/or stage-specific expression of the Sec24c/d genes rather than differences in cargo export function explain the early embryonic requirements for SEC24C and SEC24D.
Collapse
Affiliation(s)
- Elizabeth J Adams
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Constellation Pharmaceuticals, Cambridge, MA, 02142, USA
| | - Rami Khoriaty
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Univeristy of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA.
| | - Anna Kiseleva
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Audrey C A Cleuren
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kärt Tomberg
- Departement of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Peter Gergics
- Departement of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vi T Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark J Hoenerhoff
- In Vivo Animal Core, Unit of Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Advanced maternal age perturbs mouse embryo development and alters the phenotype of derived embryonic stem cells. J Dev Orig Health Dis 2021; 13:395-405. [PMID: 34193331 DOI: 10.1017/s2040174421000325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Advanced maternal age (AMA) is known to reduce fertility, increases aneuploidy in oocytes and early embryos and leads to adverse developmental consequences which may associate with offspring lifetime health risks. However, investigating underlying effects of AMA on embryo developmental potential is confounded by the inherent senescence present in maternal body systems further affecting reproductive success. Here, we describe a new model for the analysis of early developmental mechanisms underlying AMA by the derivation and characterisation of mouse embryonic stem cell (mESC-like) lines from naturally conceived embryos. Young (7-8 weeks) and Old (7-8 months) C57BL/6 female mice were mated with young males. Preimplantation embryos from Old dams displayed developmental retardation in blastocyst morphogenesis. mESC lines established from these blastocysts using conventional techniques revealed differences in genetic, cellular and molecular criteria conserved over several passages in the standardised medium. mESCs from embryos from AMA dams displayed increased incidence of aneuploidy following Giemsa karyotyping compared with those from Young dams. Moreover, AMA caused an altered pattern of expression of pluripotency markers (Sox2, OCT4) in mESCs. AMA further diminished mESC survival and proliferation and reduced the expression of cell proliferation marker, Ki-67. These changes coincided with altered expression of the epigenetic marker, Dnmt3a and other developmental regulators in a sex-dependent manner. Collectively, our data demonstrate the feasibility to utilise mESCs to reveal developmental mechanisms underlying AMA in the absence of maternal senescence and with reduced animal use.
Collapse
|
6
|
Mehta AR, Gregory JM, Dando O, Carter RN, Burr K, Nanda J, Story D, McDade K, Smith C, Morton NM, Mahad DJ, Hardingham GE, Chandran S, Selvaraj BT. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol 2021; 141:257-279. [PMID: 33398403 PMCID: PMC7847443 DOI: 10.1007/s00401-020-02252-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function.
Collapse
Affiliation(s)
- Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jenna M Gregory
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Roderick N Carter
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Jyoti Nanda
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - David Story
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Karina McDade
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Genome-wide microhomologies enable precise template-free editing of biologically relevant deletion mutations. Nat Commun 2019; 10:4856. [PMID: 31649251 PMCID: PMC6813315 DOI: 10.1038/s41467-019-12829-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
The functional effect of a gene edit by designer nucleases depends on the DNA repair outcome at the targeted locus. While non-homologous end joining (NHEJ) repair results in various mutations, microhomology-mediated end joining (MMEJ) creates precise deletions based on the alignment of flanking microhomologies (µHs). Recently, the sequence context surrounding nuclease-induced double strand breaks (DSBs) has been shown to predict repair outcomes, for which µH plays an important role. Here, we survey naturally occurring human deletion variants and identify that 11 million or 57% are flanked by µHs, covering 88% of protein-coding genes. These biologically relevant mutations are candidates for precise creation in a template-free manner by MMEJ repair. Using CRISPR-Cas9 in human induced pluripotent stem cells (hiPSCs), we efficiently create pathogenic deletion mutations for demonstrable disease models with both gain- and loss-of-function phenotypes. We anticipate this dataset and gene editing strategy to enable functional genetic studies and drug screening.
Collapse
|
8
|
Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 2019; 574:553-558. [PMID: 31645721 DOI: 10.1038/s41586-019-1658-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Age-associated chronic inflammation (inflammageing) is a central hallmark of ageing1, but its influence on specific cells remains largely unknown. Fibroblasts are present in most tissues and contribute to wound healing2,3. They are also the most widely used cell type for reprogramming to induced pluripotent stem (iPS) cells, a process that has implications for regenerative medicine and rejuvenation strategies4. Here we show that fibroblast cultures from old mice secrete inflammatory cytokines and exhibit increased variability in the efficiency of iPS cell reprogramming between mice. Variability between individuals is emerging as a feature of old age5-8, but the underlying mechanisms remain unknown. To identify drivers of this variability, we performed multi-omics profiling of fibroblast cultures from young and old mice that have different reprogramming efficiencies. This approach revealed that fibroblast cultures from old mice contain 'activated fibroblasts' that secrete inflammatory cytokines, and that the proportion of activated fibroblasts in a culture correlates with the reprogramming efficiency of that culture. Experiments in which conditioned medium was swapped between cultures showed that extrinsic factors secreted by activated fibroblasts underlie part of the variability between mice in reprogramming efficiency, and we have identified inflammatory cytokines, including TNF, as key contributors. Notably, old mice also exhibited variability in wound healing rate in vivo. Single-cell RNA-sequencing analysis identified distinct subpopulations of fibroblasts with different cytokine expression and signalling in the wounds of old mice with slow versus fast healing rates. Hence, a shift in fibroblast composition, and the ratio of inflammatory cytokines that they secrete, may drive the variability between mice in reprogramming in vitro and influence wound healing rate in vivo. This variability may reflect distinct stochastic ageing trajectories between individuals, and could help in developing personalized strategies to improve iPS cell generation and wound healing in elderly individuals.
Collapse
|
9
|
Sima J, Chakraborty A, Dileep V, Michalski M, Klein KN, Holcomb NP, Turner JL, Paulsen MT, Rivera-Mulia JC, Trevilla-Garcia C, Bartlett DA, Zhao PA, Washburn BK, Nora EP, Kraft K, Mundlos S, Bruneau BG, Ljungman M, Fraser P, Ay F, Gilbert DM. Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Cell 2019; 176:816-830.e18. [PMID: 30595451 PMCID: PMC6546437 DOI: 10.1016/j.cell.2018.11.036] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.
Collapse
Affiliation(s)
- Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Marco Michalski
- Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Nicolas P Holcomb
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jesse L Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | - Daniel A Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Peiyao A Zhao
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Elphège P Nora
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Katerina Kraft
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; UC San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
10
|
Dubich T, Lieske A, Santag S, Beauclair G, Rückert J, Herrmann J, Gorges J, Büsche G, Kazmaier U, Hauser H, Stadler M, Schulz TF, Wirth D. An endothelial cell line infected by Kaposi's sarcoma-associated herpes virus (KSHV) allows the investigation of Kaposi's sarcoma and the validation of novel viral inhibitors in vitro and in vivo. J Mol Med (Berl) 2019; 97:311-324. [PMID: 30610257 DOI: 10.1007/s00109-018-01733-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a tumor of endothelial origin predominantly affecting immunosuppressed individuals. Up to date, vaccines and targeted therapies are not available. Screening and identification of anti-viral compounds are compromised by the lack of scalable cell culture systems reflecting properties of virus-transformed cells in patients. Further, the strict specificity of the virus for humans limits the development of in vivo models. In this study, we exploited a conditionally immortalized human endothelial cell line for establishment of in vitro 2D and 3D KSHV latency models and the generation of KS-like xenograft tumors in mice. Importantly, the invasive properties and tumor formation could be completely reverted by purging KSHV from the cells, confirming that tumor formation is dependent on the continued presence of KSHV, rather than being a consequence of irreversible transformation of the infected cells. Upon testing a library of 260 natural metabolites, we selected the compounds that induced viral loss or reduced the invasiveness of infected cells in 2D and 3D endothelial cell culture systems. The efficacy of selected compounds against KSHV-induced tumor formation was verified in the xenograft model. Together, this study shows that the combined use of anti-viral and anti-tumor assays based on the same cell line is predictive for tumor reduction in vivo and therefore allows faithful selection of novel drug candidates against Kaposi's sarcoma. KEY MESSAGES: Novel 2D, 3D, and xenograft mouse models mimic the consequences of KSHV infection. KSHV-induced tumorigenesis can be reverted upon purging the cells from the virus. A 3D invasiveness assay is predictive for tumor reduction in vivo. Chondramid B, epothilone B, and pretubulysin D diminish KS-like lesions in vivo.
Collapse
Affiliation(s)
- Tatyana Dubich
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Anna Lieske
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Susann Santag
- Institute of Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Guillaume Beauclair
- Institute of Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Jennifer Herrmann
- German Centre for Infection Research, Hannover-Braunschweig, Germany.,Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research, Saarbrücken, Germany
| | - Jan Gorges
- Institute of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Uli Kazmaier
- Institute of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- German Centre for Infection Research, Hannover-Braunschweig, Germany.,Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Kim SI, Matsumoto T, Kagawa H, Nakamura M, Hirohata R, Ueno A, Ohishi M, Sakuma T, Soga T, Yamamoto T, Woltjen K. Microhomology-assisted scarless genome editing in human iPSCs. Nat Commun 2018; 9:939. [PMID: 29507284 PMCID: PMC5838097 DOI: 10.1038/s41467-018-03044-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/16/2018] [Indexed: 12/26/2022] Open
Abstract
Gene-edited induced pluripotent stem cells (iPSCs) provide relevant isogenic human disease models in patient-specific or healthy genetic backgrounds. Towards this end, gene targeting using antibiotic selection along with engineered point mutations remains a reliable method to enrich edited cells. Nevertheless, integrated selection markers obstruct scarless transgene-free gene editing. Here, we present a method for scarless selection marker excision using engineered microhomology-mediated end joining (MMEJ). By overlapping the homology arms of standard donor vectors, short tandem microhomologies are generated flanking the selection marker. Unique CRISPR-Cas9 protospacer sequences nested between the selection marker and engineered microhomologies are cleaved after gene targeting, engaging MMEJ and scarless excision. Moreover, when point mutations are positioned unilaterally within engineered microhomologies, both mutant and normal isogenic clones are derived simultaneously. The utility and fidelity of our method is demonstrated in human iPSCs by editing the X-linked HPRT1 locus and biallelic modification of the autosomal APRT locus, eliciting disease-relevant metabolic phenotypes.
Collapse
Affiliation(s)
- Shin-Il Kim
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Matsumoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Harunobu Kagawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Michiko Nakamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Ryoko Hirohata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Ayano Ueno
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Maki Ohishi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan. .,Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
12
|
Moffatt P, Geng Y, Lamplugh L, Nanci A, Roughley PJ. Absence of the dermatan sulfate chain of decorin does not affect mouse development. J Negat Results Biomed 2017; 16:7. [PMID: 28412940 PMCID: PMC5393030 DOI: 10.1186/s12952-017-0074-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vitro studies suggest that the multiple functions of decorin are related to both its core protein and its dermatan sulfate chain. To determine the contribution of the dermatan sulfate chain to the functional properties of decorin in vivo, a mutant mouse whose decorin lacked a dermatan sulfate chain was generated. RESULTS Homozygous mice expressing only the decorin core protein developed and grew in a similar manner to wild type mice. In both embryonic and postnatal mice, all connective tissues studied, including cartilage, skin and cornea, appeared to be normal upon histological examination, and their collagen fibrils were of normal diameter and organization. In addition, abdominal skin wounds healed in an identical manner in the mutant and wild type mice. CONCLUSIONS The absence of a dermatan sulfate chain on decorin does not appear to overtly influence its functional properties in vivo.
Collapse
Affiliation(s)
- Pierre Moffatt
- Research Center, Shriners Hospitals for Children - Canada, 1003 Boulevard Décarie, Montréal, H4A 0A9, QC, Canada. .,Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Yeqing Geng
- Research Center, Shriners Hospitals for Children - Canada, 1003 Boulevard Décarie, Montréal, H4A 0A9, QC, Canada
| | - Lisa Lamplugh
- Research Center, Shriners Hospitals for Children - Canada, 1003 Boulevard Décarie, Montréal, H4A 0A9, QC, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QC, Canada
| | - Peter J Roughley
- Research Center, Shriners Hospitals for Children - Canada, 1003 Boulevard Décarie, Montréal, H4A 0A9, QC, Canada.,Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Woltjen K, Kim SI, Nagy A. The piggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse. Methods Mol Biol 2016; 1357:1-22. [PMID: 26126450 DOI: 10.1007/7651_2015_274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Somatic cell reprogramming to induced pluripotent stem cells (iPSCs) is a revolutionary technology, with repercussions affecting modern functional genomics and regenerative medicine. Still, relatively little is known about the processes underlying this dramatic cellular and molecular metamorphosis. Reprogramming technology based on the implementation of piggyBac (PB) transposons has enabled studies of iPSC reprogramming mechanisms, shedding an increasing light on these processes. Unique characteristics of PB transposons such as efficient genomic integration, unlimited cargo capacity, robust gene expression, and even seamless excision highlight the importance of this transgenic tool in advancing stem cell biology. In this chapter, we provide a detailed overview of versatile primary iPSC generation from mouse somatic cells using PB transposons, and the subsequent establishment of robust secondary reprogramming systems. These protocols are highlighted with examples from recent studies as to how PB has been, and continues to be, conducive to the dissection of reprogramming processes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| | - Shin-Il Kim
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| |
Collapse
|
14
|
Ludwig M, Kitzenberg D, Chick WS. Forward Genetic Approach to Uncover Stress Resistance Genes in Mice - A High-throughput Screen in ES Cells. J Vis Exp 2015. [PMID: 26649459 DOI: 10.3791/53062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Phenotype-driven genetic screens in mice is a powerful technique to uncover gene functions, but are often hampered by extremely high costs, which severely limits its potential. We describe here the use of mouse embryonic stem (ES) cells as surrogate cells to screen for a phenotype of interest and subsequently introduce these cells into a host embryo to develop into a living mouse carrying the phenotype. This method provides (1) a cost effective, high-throughput platform for genetic screen in mammalian cells; (2) a rapid way to identify the mutated genes and verify causality; and (3) a short-cut to develop mouse mutants directly from these selected ES cells for whole animal studies. We demonstrated the use of paraquat (PQ) to select resistant mutants and identify mutations that confer oxidative stress resistance. Other stressors or cytotoxic compounds may also be used to screen for resistant mutants to uncover novel genetic determinants of a variety of cellular stress resistance.
Collapse
Affiliation(s)
- Michael Ludwig
- Department of Cell and Developmental Biology, University of Colorado Denver
| | - David Kitzenberg
- Department of Cell and Developmental Biology, University of Colorado Denver
| | - Wallace S Chick
- Department of Cell and Developmental Biology, University of Colorado Denver;
| |
Collapse
|
15
|
Byrne SM, Church GM. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2015; 35:5A.8.1-5A.8.22. [PMID: 26949444 DOI: 10.1002/9780470151808.sc05a08s35] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.
Collapse
Affiliation(s)
- Susan M Byrne
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Byrne SM, Ortiz L, Mali P, Aach J, Church GM. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 2014; 43:e21. [PMID: 25414332 PMCID: PMC4330342 DOI: 10.1093/nar/gku1246] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient ‘knock-in’ targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC.
Collapse
Affiliation(s)
- Susan M Byrne
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Luis Ortiz
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Prashant Mali
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
17
|
Chick WS, Ludwig M, Zhao X, Kitzenberg D, Williams K, Johnson TE. Screening for stress-resistance mutations in the mouse. Front Genet 2014; 5:310. [PMID: 25250048 PMCID: PMC4157564 DOI: 10.3389/fgene.2014.00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/19/2014] [Indexed: 11/13/2022] Open
Abstract
Longevity is correlated with stress resistance in many animal models. However, previous efforts through the boosting of the antioxidant defense system did not extend life span, suggesting that longevity related stress resistance is mediated by other uncharacterized pathways. We have developed a high-throughput platform for screening and rapid identification of novel genetic mutants in the mouse that are stress resistant. Selection for resistance to stressors occurs in mutagenized mouse embryonic stem (ES) cells, which are carefully treated so as to maintain pluripotency for mouse production. Initial characterization of these mutant ES cells revealed mutations in Pigl, Tiam1, and Rffl, among others. These genes are implicated in glycosylphosphatidylinositol biosynthesis, NADPH oxidase function, and inflammation. These mutants: (1) are resistant to two different oxidative stressors, paraquat and the omission of 2-mercaptoethanol, (2) have reduced levels of endogenous reactive oxygen species (ROS), (3) are capable of generating live mice, and (4) transmit the stress resistance phenotype to the mice. This strategy offers an efficient way to select for new mutants expressing a stress resistance phenotype, to rapidly identify the causative genes, and to develop mice for in vivo studies.
Collapse
Affiliation(s)
- Wallace S Chick
- Department of Cell and Developmental Biology, University of Colorado Denver Aurora, CO, USA ; Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver Aurora, CO, USA
| | - Michael Ludwig
- Department of Cell and Developmental Biology, University of Colorado Denver Aurora, CO, USA
| | - Xiaoyun Zhao
- Department of Cell and Developmental Biology, University of Colorado Denver Aurora, CO, USA
| | - David Kitzenberg
- Department of Cell and Developmental Biology, University of Colorado Denver Aurora, CO, USA
| | - Kristina Williams
- Department of Pediatrics, University of Colorado Denver Aurora, CO, USA
| | - Thomas E Johnson
- Department of Integrative Physiology, University of Colorado Boulder Boulder, CO, USA ; Institute for Behavioral Genetics, University of Colorado Boulder Boulder, CO, USA ; Biofrontiers Institute, University of Colorado Boulder Boulder, CO, USA
| |
Collapse
|
18
|
Hartley BJ, Fabb SA, Finnin BAL, Haynes JM, Pouton CW. Zinc-finger nuclease enhanced gene targeting in human embryonic stem cells. J Vis Exp 2014:e51764. [PMID: 25177806 DOI: 10.3791/51764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
One major limitation with current human embryonic stem cell (ESC) differentiation protocols is the generation of heterogeneous cell populations. These cultures contain the cells of interest, but are also contaminated with undifferentiated ESCs, non-neural derivatives and other neuronal subtypes. This limits their use in in vitro and in vivo applications, such as in vitro modeling for drug discovery or cell replacement therapy. To help overcome this, reporter cell lines, which offer a means to visualize, track and isolate cells of interest, can be engineered. However, to achieve this in human embryonic stem cells via conventional homologous recombination is extremely inefficient. This protocol describes targeting of the Pituitary homeobox 3 (PITX3) locus in human embryonic stem cells using custom designed zinc-finger nucleases, which introduce site-specific double-strand DNA breaks, together with a PITX3-EGFP-specific DNA donor vector. Following the generation of the PITX3 reporter cell line, it can then be differentiated using published protocols for use in studies such as in vitro Parkinson's disease modeling or cell replacement therapy.
Collapse
Affiliation(s)
- Brigham J Hartley
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University
| | - Stewart A Fabb
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University
| | - Ben A L Finnin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University
| | - John M Haynes
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University
| | - Colin W Pouton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University;
| |
Collapse
|
19
|
Nolte MJ, Wang Y, Deng JM, Swinton PG, Wei C, Guindani M, Schwartz RJ, Behringer RR. Functional analysis of limb transcriptional enhancers in the mouse. Evol Dev 2014; 16:207-23. [PMID: 24920384 DOI: 10.1111/ede.12084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required.
Collapse
Affiliation(s)
- Mark J Nolte
- Graduate Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Nature 2013; 501:569-72. [PMID: 24013173 PMCID: PMC3805358 DOI: 10.1038/nature12500] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 07/22/2013] [Indexed: 12/27/2022]
Abstract
Replication fork (RF) maintenance pathways preserve chromosomes, but their faulty application at nonallelic repeats could generate rearrangements causing cancer, genomic disorders and speciation1-3. Potential causal mechanisms are homologous recombination (HR) and error-free postreplication repair (EF-PRR). HR repairs damage induced DNA double strand breaks (DSBs) and single-ended DSBs within replication. To facilitate HR, the recombinase RAD51 and mediator BRCA2 form a filament on the 3’ DNA strand at a break to enable annealing to the complementary sister chromatid4 while the RecQ helicase, BLM (Bloom syndrome mutated) suppresses crossing over to prevent recombination5. HR also stabilizes6,7 and restarts8,9 RFs without a DSB10,11. EF-PRR bypasses DNA incongruities that impede replication by ubiquitinating PCNA (proliferating cell nuclear antigen) using the RAD6/RAD18 and UBC13/MMS2/RAD5 ubiquitin ligase complexes12. Some components are common to both HR and EF-PRR like RAD51 and RAD1813,14. Here we delineate two pathways that spontaneously fuse inverted repeats to generate unstable chromosomal rearrangements in wild type mouse embryonic stem (ES) cells. Gamma-radiation induced a BLM-regulated pathway that selectively fused identical, but not mismatched repeats. By contrast, UV light induced a RAD18-dependent pathway that efficiently fused mismatched repeats. Furthermore, TREX2 (a 3’→5’ exonuclease) suppressed identical repeat fusion but enhanced mismatched repeat fusion, clearly separating these pathways. TREX2 associated with UBC13 and enhanced PCNA ubiquitination in response to UV light, consistent with it being a novel member of EF-PRR. RAD18 and TREX2 also suppressed RF stalling in response to nucleotide depletion. Interestingly, RF stalling induced fusion for identical and mismatched repeats implicating faulty replication as a causal mechanism for both pathways.
Collapse
|
21
|
Guan G, Yan Y, Chen T, Yi M, Ni H, Naruse K, Nagahama Y, Hong Y. Nanos3 gene targeting in medaka ES cells. Int J Biol Sci 2013; 9:444-54. [PMID: 23678294 PMCID: PMC3654493 DOI: 10.7150/ijbs.6507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/08/2013] [Indexed: 11/05/2022] Open
Abstract
Gene targeting (GT) by homologous recombination offers the best precision for genome editing in mice. nanos3 is a highly conserved gene and encodes a zinc-finger RNA binding protein essential for germ stem cell maintenance in Drosophila, zebrafish and mouse. Here we report nanos3 GT in embryonic stem (ES) cells of the fish medaka as a lower vertebrate model organism. A vector was designed for GT via homologous recombination on the basis of positive-negative selection (PNS). The ES cell line MES1 after gene transfer and PNS produced 56 colonies that were expanded into ES cell sublines. Nine sublines were GT-positive by PCR genotyping, 4 of which were homologous recombinants as revealed by Southern blot. We show that one of the 4, A15, contains a precisely targeted nanos3 allele without any random events, demonstrating the GT feasibility in medaka ES cells. Importantly, A15 retained all features of undifferentiated ES cells, including stable self-renewal, an undifferentiated phenotype, pluripotency gene expression and differentiation during chimeric embryogenesis. These results provide first evidence that the GT procedure and genuine GT on a chromosomal locus such as nanos3 do not compromise pluripotency in ES cells of a lower vertebrate.
Collapse
Affiliation(s)
- Guijun Guan
- Department of Bioresource, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells. Proc Natl Acad Sci U S A 2013; 110:E1462-9. [PMID: 23530190 DOI: 10.1073/pnas.1216894110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis.
Collapse
|
23
|
p53 gene targeting by homologous recombination in fish ES cells. PLoS One 2013; 8:e59400. [PMID: 23527183 PMCID: PMC3602087 DOI: 10.1371/journal.pone.0059400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 02/17/2013] [Indexed: 12/12/2022] Open
Abstract
Background Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes). Methodology and Principal Findings Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1∼MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by ∼12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo. Conclusions Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology.
Collapse
|
24
|
Abstract
RAD51 is important for restarting stalled replication forks and for repairing DNA double-strand breaks (DSBs) through a pathway called homology-directed repair (HDR). However, analysis of the consequences of specific RAD51 mutants has been difficult since they are toxic. Here we report on the dominant effects of two human RAD51 mutants defective for ATP binding (K133A) or ATP hydrolysis (K133R) expressed in mouse embryonic stem (ES) cells that also expressed normal mouse RAD51 from the other chromosome. These cells were defective for restarting stalled replication forks and repairing breaks. They were also hypersensitive to camptothecin, a genotoxin that generates breaks specifically at the replication fork. In addition, these cells exhibited a wide range of structural chromosomal changes that included multiple breakpoints within the same chromosome. Thus, ATP binding and hydrolysis are essential for chromosomal maintenance. Fusion of RAD51 to a fluorescent tag (enhanced green fluorescent protein [eGFP]) allowed visualization of these proteins at sites of replication and repair. We found very low levels of mutant protein present at these sites compared to normal protein, suggesting that low levels of mutant protein were sufficient for disruption of RAD51 activity and generation of chromosomal rearrangements.
Collapse
|
25
|
Kim TM, Ko JH, Choi YJ, Hu L, Hasty P. The phenotype of FancB-mutant mouse embryonic stem cells. Mutat Res 2011; 712:20-7. [PMID: 21458466 DOI: 10.1016/j.mrfmmm.2011.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/11/2011] [Accepted: 03/23/2011] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.
Collapse
Affiliation(s)
- Tae Moon Kim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
26
|
Domínguez MC, Enith González N, Sánchez A, García Vallejo F. Human T-Lymphotropic Virus (HTLV) Type I in vivo Integration in Oral Keratinocytes. Braz J Microbiol 2011; 42:310-20. [PMID: 24031637 PMCID: PMC3768932 DOI: 10.1590/s1517-83822011000100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/24/2010] [Accepted: 06/21/2010] [Indexed: 11/21/2022] Open
Abstract
Although the infection of HTLV-1 to cell components of the mouth have been previously reported, there was not until this report, a detailed study to show the characteristics of such infection. From 14 Tropical Spastic Paraparesis/HTLV-1-Associated Myelopathy (HAM/TSP) patients and 11 asymptomatic carrier individuals (AC) coming from HTLV-1 endemic areas of southwest Pacific of Colombia, infected oral mucosa cells were primary cultured during five days. These cell cultures were immunophenotyped by dual color fluorescence cell assortment using different lymphocyte CD markers and also were immunohistochemically processed using a polyclonal anti-keratin antibody. Five days old primary cultures were characterized as oral keratinocytes, whose phenotype was CD3- /CD4-/CD8-/CD19-/CD14-/CD45-/A575-keratin+. From DNA extracted of primary cultures LTR, pol, env and tax HTLV-1 proviral DNA regions were differentially amplified by PCR showing proviral integration. Using poly A+ RNA obtained of these primary cultures, we amplify by RT-PCR cDNA of tax and pol in 57.14% (8/14) HAM/TSP patients and 27.28% (3/11) AC. Tax and pol poly A+ RNA were expressed only in those sIgA positive subjects. Our results showed that proviral integration and viral gene expression in oral keratinocytes are associated with a HTLV-1 specific local mucosal immune response only in those HTLV-1 infected individuals with detectable levels of sIgA in their oral fluids. Altogether the results gave strong evidence that oral mucosa infection would be parte of the systemic spreading of HTLV-1 infection.
Collapse
Affiliation(s)
- Martha C Domínguez
- Laboratory of Molecular Biology and Pathogenesis. Department of Physiological Sciences. Faculty of Health . University of Valle, Cali , Colombia
| | | | | | | |
Collapse
|
27
|
Hughes ED, Saunders TL. Gene Targeting in Embryonic Stem Cells. SPRINGER PROTOCOLS HANDBOOKS 2011. [DOI: 10.1007/978-3-662-45763-4_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
28
|
van Ree J, Zhou W, Li M, van Deursen JM. Transgenesis in mouse embryonic stem cells. Methods Mol Biol 2011; 693:143-62. [PMID: 21080279 DOI: 10.1007/978-1-60761-974-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Traditionally, transgenic mice are generated by pronuclear injection of exogenous DNA. This technique has several limitations, including limited control over transgene expression, transgene cytotoxicity, -promiscuity and silencing, and founder mouse sterility. Here we describe two protocols to generate transgenic mice from ES cell clones carrying stably integrated exogenous DNA with inducible transgene expression.
Collapse
Affiliation(s)
- Janine van Ree
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | | | |
Collapse
|
29
|
Gama-Norton L, Herrmann S, Schucht R, Coroadinha A, Löw R, Alves P, Bartholomae C, Schmidt M, Baum C, Schambach A, Hauser H, Wirth D. Retroviral Vector Performance in Defined Chromosomal Loci of Modular Packaging Cell Lines. Hum Gene Ther 2010; 21:979-91. [DOI: 10.1089/hum.2009.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- L. Gama-Norton
- Helmholtz Center for Infection Research (HZI), 38124 Braunschweig, Germany
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica (ITQB-UNL/IBET), P-2781-901 Oeiras, Portugal
| | - S. Herrmann
- Helmholtz Center for Infection Research (HZI), 38124 Braunschweig, Germany
| | - R. Schucht
- Helmholtz Center for Infection Research (HZI), 38124 Braunschweig, Germany
| | - A.S. Coroadinha
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica (ITQB-UNL/IBET), P-2781-901 Oeiras, Portugal
| | - R. Löw
- EUFETS, D-55743 Idar-Oberstein, Germany
| | - P.M. Alves
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica (ITQB-UNL/IBET), P-2781-901 Oeiras, Portugal
| | - C.C. Bartholomae
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - M. Schmidt
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - C. Baum
- Experimental Hematology, Hannover Medical School (MHH), D-30625 Hannover, Germany
| | - A. Schambach
- Experimental Hematology, Hannover Medical School (MHH), D-30625 Hannover, Germany
| | - H. Hauser
- Helmholtz Center for Infection Research (HZI), 38124 Braunschweig, Germany
| | - D. Wirth
- Helmholtz Center for Infection Research (HZI), 38124 Braunschweig, Germany
| |
Collapse
|
30
|
Klinger M, Chmura SA, Killeen N. Reporter alleles that inform on differences in Cre recombinase expression. THE JOURNAL OF IMMUNOLOGY 2010; 184:6170-6. [PMID: 20427774 DOI: 10.4049/jimmunol.1000089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alleles that express reporters after Cre recombination allow for fate-mapping studies when used in combination with appropriate cre alleles. In this study, we describe two fluorescent reporter alleles that differentially mark populations of cells as a function of their level of expression of Cre recombinase. Mice carrying these alleles were generated and used to demonstrate the usefulness of the reporter alleles for informing on prior Cre recombinase expression in lymphocytes. The alleles expand the range of genetic tools available for understanding how differences in gene expression result in divergent developmental fates during the development and differentiation of lymphocytes and other cells.
Collapse
Affiliation(s)
- Mark Klinger
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0414, USA
| | | | | |
Collapse
|
31
|
Nuka S, Zhou W, Henry SP, Gendron CM, Schultz JB, Shinomura T, Johnson J, Wang Y, Keene DR, Ramírez-Solis R, Behringer RR, Young MF, Höök M. Phenotypic characterization of epiphycan-deficient and epiphycan/biglycan double-deficient mice. Osteoarthritis Cartilage 2010; 18:88-96. [PMID: 19932218 PMCID: PMC3013283 DOI: 10.1016/j.joca.2009.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize the in vivo role epiphycan (Epn) has in cartilage development and/or maintenance. METHODS Epn-deficient mice were generated by disrupting the Epn gene in mouse embryonic stem cells. Epn/biglycan (Bgn) double-deficient mice were produced by crossing Epn-deficient mice with Bgn-deficient mice. Whole knee joint histological sections were stained using van Gieson or Fast green/Safranin-O to analyze collagen or proteoglycan content, respectively. Microarray analysis was performed to detect gene expression changes within knee joints. RESULTS Epn-deficient and Epn/Bgn double-deficient mice appeared normal at birth. No significant difference in body weight or femur length was detected in any animal at 1 month of age. However, 9-month Epn/Bgn double-deficient mice were significantly lighter and had shorter femurs than wild type mice, regardless of gender. Male Epn-deficient mice also had significantly shorter femurs than wild type mice at 9 months. Most of the deficient animals developed osteoarthritis (OA) with age; the onset of OA was observed earliest in Epn/Bgn double-deficient mice. Message RNA isolated from Epn/Bgn double-deficient knee joints displayed increased matrix protein expression compared with wild type mice, including other small leucine-rich proteoglycan (SLRP) members such as asporin, fibromodulin and lumican. CONCLUSION Similar to other previously studied SLRPs, EPN plays an important role in maintaining joint integrity. However, the severity of the OA phenotype in the Epn/Bgn double-deficient mouse suggests a synergy between these two proteins. These data are the first to show a genetic interaction involving class I and class III SLRPs in vivo.
Collapse
Affiliation(s)
- Satoshi Nuka
- Texas A&M University System Health Science Center, Albert B Alkek Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, 2121 W. Holcombe Boulevard, Houston, TX 77030
| | - Wei Zhou
- Texas A&M University System Health Science Center, Albert B Alkek Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, 2121 W. Holcombe Boulevard, Houston, TX 77030
| | - Stephen P. Henry
- Texas A&M University System Health Science Center, Albert B Alkek Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, 2121 W. Holcombe Boulevard, Houston, TX 77030
| | - Christi M. Gendron
- Texas A&M University System Health Science Center, Albert B Alkek Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, 2121 W. Holcombe Boulevard, Houston, TX 77030
| | - Jason B. Schultz
- Texas A&M University System Health Science Center, Albert B Alkek Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, 2121 W. Holcombe Boulevard, Houston, TX 77030
| | - Tamayuki Shinomura
- Texas A&M University System Health Science Center, Albert B Alkek Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, 2121 W. Holcombe Boulevard, Houston, TX 77030
| | - Jan Johnson
- Texas A&M University System Health Science Center, Albert B Alkek Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, 2121 W. Holcombe Boulevard, Houston, TX 77030
| | - Ying Wang
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | | | - Ramiro Ramírez-Solis
- Texas A&M University System Health Science Center, Albert B Alkek Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, 2121 W. Holcombe Boulevard, Houston, TX 77030
| | - Richard R. Behringer
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Marian F. Young
- Craniofacial and Skeletal Diseases Branch, NIDCR, National Institutes of Health, Bethesda, MD 20892
| | - Magnus Höök
- Texas A&M University System Health Science Center, Albert B Alkek Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, 2121 W. Holcombe Boulevard, Houston, TX 77030,To whom correspondence and reprint requests should be addressed: Dr. Magnus Höök, Telephone: (713)677-7552, Fax: (713)677-7576,
| |
Collapse
|
32
|
Abstract
In 1991, Soriano and coworkers isolated the ROSA26 locus in a gene-trap mutagenesis screening performed in mouse embryonic stem (ES) cells. The ubiquitous expression of ROSA26 in embryonic and adult tissues, together with the high frequency of gene-targeting events observed at this locus in murine ES cells has led to the establishment in the past 10 years of over 130 knock-in lines expressing successfully from the ROSA26 locus a variety of transgenes including reporters, site-specific recombinases and, recently, noncoding RNAs. Different strategies can be employed to drive transgene expression from the ROSA26 locus. This chapter provides an overview of the current methodologies used to generate ROSA26 knock-in lines and describes different approaches that exploit the ROSA26 gene to control expression of transgenes, including miRNAs, in a temporal, cell-type, and stage-specific fashion.
Collapse
Affiliation(s)
- Stefano Casola
- IFOM, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| |
Collapse
|
33
|
O'Connor AK, Kesterson RA, Yoder BK. Generating conditional mutants to analyze ciliary functions: the use of Cre-lox technology to disrupt cilia in specific organs. Methods Cell Biol 2009; 93:305-30. [PMID: 20409823 DOI: 10.1016/s0091-679x(08)93015-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The list of human disordered associated with cilia dysfunction, the ciliopathies, continues to highlight the importance of understanding the many roles of the long overlooked primary cilium. Much of the insights into the clinical importance of the cilium have come from analyses in model organisms, especially the mouse. However, the early embryonic lethality and severe developmental defects associated with cilia disruption has hindered progress in exploring cilia functions in late development or in adult tissues. This hurdle is being surmounted through the use of conditional alleles of genes encoding ciliary proteins and Cre deletor lines with inducible Cre activity or with lines expressing Cre in a cell-type-specific manner. Results from these approaches are providing important insights into the diverse array of cellular and tissue activities regulated by the cilium. Here we provide a recent account of the Cre/lox strategy. The generation and use of well-designed conditional alleles, as well as careful manipulation of embryonic stem cells are discussed. We also provide specific examples to illustrate the use of Cre/lox approaches to evaluate ciliary function in several tissues. With the recent characterization of multiple cilia proteomes along with efforts of several consortia to generate conditional alleles of all genes in the mouse, further use of conditional mutation approaches promise to yield many advances and surprises as we explore the functions of this increasingly complex organelle.
Collapse
Affiliation(s)
- Amber K O'Connor
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
34
|
Luckow B, Hänggli A, Maier H, Chilla S, Loewe RP, Dehmel S, Schlöndorff D, Loetscher P, Zerwes HG, Müller M. Microinjection of Cre recombinase protein into zygotes enables specific deletion of two eukaryotic selection cassettes and enhances the expression of a DsRed2 reporter gene in Ccr2/Ccr5 double-deficient mice. Genesis 2009; 47:545-58. [PMID: 19517561 DOI: 10.1002/dvg.20531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemokine receptors CCR2 and CCR5 represent potential novel therapeutic targets to treat important inflammatory and infectious diseases, including atherosclerosis and HIV infection. To study the functions of both receptors in vivo, we aimed to generate Ccr2/Ccr5 double-deficient mice. As these genes are separated by <20 kb, they were inactivated consecutively by two rounds of gene targeting in embryonic stem (ES) cells. Thereby neomycin and hygromycin selection cassettes flanked by four identical loxP recognition sequences for Cre recombinase were integrated into the ES cell genome together with EGFP and DsRed2 reporter genes. Both selection cassettes could be deleted in vitro by transiently transfecting ES cells with Cre expression vectors. However, after blastocyst microinjection these cells yielded only weak chimeras, and germline transmission was not achieved. Therefore, Ccr2/Ccr5 double-deficient mice were generated from ES cells still carrying both selection cassettes. Microinjection of zygotes with a recombinant fusion protein consisting of maltose-binding protein and Cre (MBP-Cre) allowed the selective deletion of both cassettes. All sequences in between and both reporter genes were left intact. Deletion of both selection cassettes resulted in enhanced DsRed2 reporter gene expression. Cre protein microinjection of zygotes represents a novel approach to perform complex recombination tasks.
Collapse
Affiliation(s)
- Bruno Luckow
- Klinikum der Universität München, Campus Innenstadt, Medizinische Poliklinik, Arbeitsgruppe Klinische Biochemie, D-80336 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ruby KM, Zheng B. Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells 2009; 27:1496-506. [PMID: 19544466 DOI: 10.1002/stem.73] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Genetic modification is critical for achieving the full potential of human embryonic stem (ES) cells as a tool for therapeutic development and for basic research. Targeted modifications in human ES cells have met with limited success because of the unique culture conditions for many human ES cell lines. The HUES lines of human ES cells were developed for ease of manipulation and are gaining increased utility in stem cell research. We tested conditions for gene targeting via electroporation in the HUES-9 human ES cell line and demonstrate here successful gene targeting at the gene encoding Fezf2 (also known as Fezl), a transcription factor involved in corticospinal neuron development. With a targeting strategy involving positive and negative selection that is applicable to all genes, we observed a gene targeting frequency of approximately 1.5% for Fezf2, a gene not expressed in human ES cells. We found that conditions developed for gene targeting in mouse ES cells can be readily adapted to HUES cells with few key modifications. HUES-9 cells exhibit an intrinsically high efficiency of clonal expansion and sustain electroporation-based gene targeting procedures without any significant loss of pluripotency marker expression or karyotypic stability. Thus, human ES cell lines adapted for enzymatic passage and efficient clonal expansion can be highly amenable to genetic modifications, which will facilitate their application in basic science and clinical development.
Collapse
Affiliation(s)
- Katherine M Ruby
- Biomedical Sciences Graduate Program and Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, California 92093-0691, USA
| | | |
Collapse
|
36
|
Wang J, Yang J, Yuan D, Wang J, Zhao J, Wang L. Effects of basic fibroblast growth factor on angiogenin expression and cell proliferation in H7402 human hepatoma cells. J Genet Genomics 2009; 36:399-407. [PMID: 19631914 DOI: 10.1016/s1673-8527(08)60129-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 03/03/2009] [Accepted: 03/24/2009] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Basic fibroblast growth factor (bFGF), which is highly expressed in developing tissues and malignant cells, regulates cell growth, differentiation, and migration. Its expression is essential for the progression and metastasis of HCC. This study aims to investigate the effects of bFGF on the expression of angiogenin, another growth factor, which plays an important role in tumor angiogenesis, and on cell proliferation in H7402 human hepatoma cells. The bFGF sense cDNA or antisense cDNA was stably transfected into H7402 cells. Genomic DNA PCR analysis demonstrated that human bFGF sense cDNA or antisense cDNA was inserted into the genome. Furthermore, the expression of bFGF and angiogenin was examined by RT-PCR and Western blot assays. MTT and colony formation assays were employed to determine cell proliferation. Stable bFGF over-expressing and under-expressing transfectants were successfully established. Expression of angiogenin was decreased in the over-expressing bFGF cells (sense transfectants) and was increased in the under-expressing bFGF cells (antisense transfectants). Cell proliferation increased in the bFGF sense transfectants and decreased in the bFGF antisense transfectants. These results demonstrated that the endogenous bFGF may not only negatively regulate the angiogenin expression but also contribute to the overall cell proliferation in H7402 human hepatoma cells. This study may be helpful in finding a potential therapeutic approach to HCC.
Collapse
Affiliation(s)
- Ji Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | |
Collapse
|
37
|
Kim TM, Choi YJ, Ko JH, Hasty P. High-throughput knock-in coupling gene targeting with the HPRT minigene and Cre-mediated recombination. Genesis 2009; 46:732-7. [PMID: 18932256 DOI: 10.1002/dvg.20439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Single nucleotide polymorphisms (SNPs) may influence protein function possibly contributing to phenotype; yet, for most SNPs their potential influence is unknown. Here, we present a technique in mouse embryonic stem cells that enables high-throughput knock-in (the placement of coding sequences adjacent to a specific endogenous promoter). Our methodology utilizes gene targeting with a combination of two selection cassettes (SAbetageo and the HPRT minigene) along with site-specific recombinases (Cre/loxP and FLP/FRT) to efficiently introduce multiple DNA sequences, including enhanced green fluorescent protein (eGFP), adjacent to the DNA topoisomerase 3beta (Top3beta) promoter. This technology enables rapid and efficient introduction of DNA sequences to a specific location and advances high-throughput analysis of many SNPs with control for expression and genetic background.
Collapse
Affiliation(s)
- Tae Moon Kim
- The Department of Molecular Medicine, The Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | | | | | | |
Collapse
|
38
|
Dumitrache LC, Hu L, Hasty P. TREX2 exonuclease defective cells exhibit double-strand breaks and chromosomal fragments but not Robertsonian translocations. Mutat Res 2008; 662:84-7. [PMID: 19094998 DOI: 10.1016/j.mrfmmm.2008.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/13/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
TREX2 is a 3'-->5' exonuclease that binds to DNA and removes 3' mismatched nucleotides. By an in vitro structure function analysis, we found a single amino acid change (H188A) completely ablates exonuclease activity and impairs DNA binding by about 60% while another change (R167A) impairs DNA binding by about 85% without impacting exonuclease activity. For a biological analysis, we generated trex2null cells by deleting the entire Trex2 coding sequences in mouse embryonic stem (ES) cells. We found Trex2 deletion caused high levels of Robertsonian translocations (RbTs) showing Trex2 is important for chromosomal maintenance. Here we evaluate the exonuclease and DNA binding domains by expressing in trex2(null) cells coding sequences for wild type human TREX2 (Trex2hTX2) or human TREX2 with the H188A change (Trex2H188A) or the R167A change (Trex2R167A). These cDNAs are positioned adjacent to the mouse Trex2 promoter by Cre-mediated knock-in. By observing metaphase spreads, we found Trex2H188A cells exhibited high levels of double-strand breaks (DSBs) and chromosomal fragments. Therefore, TREX2 may suppress spontaneous DSBs or exonuclease defective TREX2 may induce them in a dominate-negative manner. We also found Trex2hTX2, hTrex2H188A and hTrex2R167A cells did not exhibit RbTs. Thus, neither the exonuclease nor DNA binding domains suppress RbTs suggesting TREX2 possesses additional biochemical activities.
Collapse
Affiliation(s)
- Lavinia C Dumitrache
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | | | | |
Collapse
|
39
|
Abstract
Chinese hamster ovary (CHO) cells are the most common host cells and are widely used in the manufacture of approved recombinant therapeutics. They represent a major new class of universal hosts in biopharmaceutical production. However, there remains room for improvement to create more ideal host cells that can add greater value to therapeutic recombinant proteins at reduced production cost. A promising approach to this goal is biallelic gene knockout in CHO cells, as it is the most reliable and effective means to permanent phenotypic change, owing to the complete removal of gene function. In this chapter, we describe a biallelic gene knockout process in CHO cells, as exemplified by the successful targeted disruption of both FUT8 alleles encoding alpha-1,6-fucosyltransferase gene in CHO/DG44 cells. Wild-type alleles are sequentially disrupted by homologous recombination using two targeting vectors to generate homozygous disruptants, and the drug-resistance gene cassettes remaining on the alleles are removed by a Cre/loxP recombination system so as not to leave the extraphenotype except for the functional loss of the gene of interest.
Collapse
|
40
|
Cretekos CJ, Wang Y, Green ED, Martin JF, Rasweiler JJ, Behringer RR. Regulatory divergence modifies limb length between mammals. Genes Dev 2008; 22:141-51. [PMID: 18198333 DOI: 10.1101/gad.1620408] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Natural selection acts on variation within populations, resulting in modified organ morphology, physiology, and ultimately the formation of new species. Although variation in orthologous proteins can contribute to these modifications, differences in DNA sequences regulating gene expression may be a primary source of variation. We replaced a limb-specific transcriptional enhancer of the mouse Prx1 locus with the orthologous sequence from a bat. Prx1 expression directed by the bat enhancer results in elevated transcript levels in developing forelimb bones and forelimbs that are significantly longer than controls because of endochondral bone formation alterations. Surprisingly, deletion of the mouse Prx1 limb enhancer results in normal forelimb length and Prx1 expression, revealing regulatory redundancy. These findings suggest that mutations accumulating in pre-existing noncoding regulatory sequences within a population are a source of variation for the evolution of morphological differences between species and that cis-regulatory redundancy may facilitate accumulation of such mutations.
Collapse
Affiliation(s)
- Chris J Cretekos
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
41
|
ARS2 is a conserved eukaryotic gene essential for early mammalian development. Mol Cell Biol 2007; 28:1503-14. [PMID: 18086880 DOI: 10.1128/mcb.01565-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Determining the functions of novel genes implicated in cell survival is directly relevant to our understanding of mammalian development and carcinogenesis. ARS2 is an evolutionarily conserved gene that confers arsenite resistance on arsenite-sensitive Chinese hamster ovary cells. Little is known regarding the function of ARS2 in mammals. We report that ARS2 is transcribed throughout embryonic development and is expressed ubiquitously in mouse and human tissues. The mouse ARS2 protein is predominantly localized to the nucleus, and this nuclear localization is ablated in ARS2-null embryos, which in turn die around the time of implantation. After 24 h of culture, ARS2-null blastocysts contained a significantly greater number of apoptotic cells than wild-type or heterozygous blastocysts. By 48 h of in vitro culture, null blastocysts invariably collapsed and failed to proliferate. These data indicate ARS2 is essential for early mammalian development and is likely involved in an essential cellular process. The analysis of data from several independent protein-protein interaction studies in mammals, combined with functional studies of its Arabidopsis ortholog, SERRATE, suggests that this essential process is related to RNA metabolism.
Collapse
|
42
|
Chen MJ, Dumitrache LC, Wangsa D, Ma SM, Padilla-Nash H, Ried T, Hasty P. Cisplatin depletes TREX2 and causes Robertsonian translocations as seen in TREX2 knockout cells. Cancer Res 2007; 67:9077-83. [PMID: 17909011 DOI: 10.1158/0008-5472.can-07-1146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cisplatin, an anticancer drug, forms DNA interstrand cross-links (ICL) that interfere with replication, whereas TREX2 is a 3'-->5' exonuclease that removes 3' mismatched nucleotides and promotes cellular proliferation. Here, we show that TREX2 is depleted in human cells derived from cancer after exposure to cisplatin but not other genotoxins including another cross-linking agent, mitomycin C (MMC), indicating a potential role for TREX2 depletion in cisplatin-induced cytotoxicity. To better understand TREX2 cellular function, we deleted TREX2 in mouse embryonic stem (ES) cells by gene targeting and find these cells exhibit reduced proliferation and gross chromosomal rearrangements including Robertsonian translocations (RbT). Quite interestingly, ES cells exposed to cisplatin also exhibit RbTs. By contrast, RbTs are not observed for ES cells exposed to MMC, indicating that RbTs are not caused by ICLs but instead TREX2 depletion by either cisplatin exposure or mutation. Taken together, our results show that cisplatin depletes TREX2 and causes genomic instability that is similarly observed in TREX2-mutant cells. Thus, cisplatin has two potential cytotoxic activities: (a) the generation of ICLs and (b) the depletion of TREX2.
Collapse
Affiliation(s)
- Ming-Jiu Chen
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245-3207, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449:1003-7. [PMID: 17934449 DOI: 10.1038/nature06196] [Citation(s) in RCA: 4138] [Impact Index Per Article: 243.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/24/2007] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. It is currently believed that four to six crypt stem cells reside at the +4 position immediately above the Paneth cells in the small intestine; colon stem cells remain undefined. Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5, also known as Gpr49) was selected from a panel of intestinal Wnt target genes for its restricted crypt expression. Here, using two knock-in alleles, we reveal exclusive expression of Lgr5 in cycling columnar cells at the crypt base. In addition, Lgr5 was expressed in rare cells in several other tissues. Using an inducible Cre knock-in allele and the Rosa26-lacZ reporter strain, lineage-tracing experiments were performed in adult mice. The Lgr5-positive crypt base columnar cell generated all epithelial lineages over a 60-day period, suggesting that it represents the stem cell of the small intestine and colon. The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers.
Collapse
Affiliation(s)
- Nick Barker
- Hubrecht Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Holcomb VB, Kim TM, Dumitrache LC, Ma SM, Chen MJ, Hasty P. HPRT minigene generates chimeric transcripts as a by-product of gene targeting. Genesis 2007; 45:275-81. [PMID: 17457929 DOI: 10.1002/dvg.20300] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The HPRT minigene is a selection cassette used for gene targeting in mouse embryonic stem (ES) cells and, it is unique since selection may be applied for its presence and absence. This minigene has two exon clusters separated by a small intron and splicing sequences. We find these exon clusters splice into exons from the target gene forming two different classes of chimeric transcripts. The first class is expressed by the endogenous promoter and includes upstream target gene exons spliced into minigene exons 3-8. The second class is expressed by the minigene's PGK promoter and includes minigene exons 1-2 spliced into downstream target gene exons. These chimeric transcripts may produce chimeric proteins that could influence phenotype. Therefore, we have designed two floxed HPRT minigenes that permit removal of either the 5' half of the minigene or the entire minigene via Cre-mediated recombination.
Collapse
Affiliation(s)
- Valerie B Holcomb
- Department of Molecular Medicine, The Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245-3207, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lee HH, Behringer RR. Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice. PLoS One 2007; 2:e450. [PMID: 17505543 PMCID: PMC1865390 DOI: 10.1371/journal.pone.0000450] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 04/02/2007] [Indexed: 12/21/2022] Open
Abstract
Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26) locus by gene targeting in embryonic stem (ES) cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo) that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF). These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype.
Collapse
Affiliation(s)
- Hu-Hui Lee
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Richard R. Behringer
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Chan W, Costantino N, Li R, Lee SC, Su Q, Melvin D, Court DL, Liu P. A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res 2007; 35:e64. [PMID: 17426124 PMCID: PMC1885671 DOI: 10.1093/nar/gkm163] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 03/05/2007] [Accepted: 03/05/2007] [Indexed: 12/30/2022] Open
Abstract
Functional analysis of mammalian genes in vivo is primarily achieved through analysing knockout mice. Now that the sequencing of several mammalian genomes has been completed, understanding functions of all the genes represents the next major challenge in the post-genome era. Generation of knockout mutant mice has currently been achieved by many research groups but only by making individual knockouts, one by one. New technological advances and the refinements of existing technologies are critical for genome-wide targeted mutagenesis in the mouse. We describe here new recombineering reagents and protocols that enable recombineering to be carried out in a 96-well format. Consequently, we are able to construct 96 conditional knockout targeting vectors simultaneously. Our new recombineering system makes it a reality to generate large numbers of precisely engineered DNA constructs for functional genomics studies.
Collapse
Affiliation(s)
- Waiin Chan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Nina Costantino
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Ruixue Li
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Song Choon Lee
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Qin Su
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - David Melvin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Donald L. Court
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
47
|
Schucht R, Coroadinha AS, Zanta-Boussif MA, Verhoeyen E, Carrondo MJT, Hauser H, Wirth D. A New Generation of Retroviral Producer Cells: Predictable and Stable Virus Production by Flp-Mediated Site-Specific Integration of Retroviral Vectors. Mol Ther 2006; 14:285-92. [PMID: 16697259 DOI: 10.1016/j.ymthe.2005.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 12/09/2005] [Accepted: 12/13/2005] [Indexed: 11/18/2022] Open
Abstract
We developed a new strategy that provides well-defined high-titer producer cells for recombinant retroviruses in a minimum amount of time. The strategy involves the targeted integration of the retroviral vector into a chromosomal locus with favorable properties. For proof of concept we established a novel HEK293-based retroviral producer cell line, called Flp293A, with a single-copy retroviral vector integrated at a selected chromosomal locus. The vector was flanked by noninteracting Flp-recombinase recognition sites and was exchanged for different retroviral vectors via Flp-mediated cassette exchange. All analyzed cell clones showed correct integration and identical titers for each of the vectors, confirming that the expression characteristics from the parental cell were preserved. Titers up to 2.5 x 10(7) infectious particles/10(6) cells were obtained. Also, high-titer producer cells for a therapeutic vector that encodes the 8.9-kb collagen VII cDNA in a marker-free cassette were obtained within 3 weeks without screening. Thus, we provide evidence that the precise integration of viral vectors into a favorable chromosomal locus leads to high and predictable virus production. This method is compatible with other retroviral vectors, including self-inactivating vectors and marker-free vectors. Further, it provides a tool for evaluation of different retroviral vector designs.
Collapse
Affiliation(s)
- R Schucht
- Department of Gene Regulation and Differentiation, German Research Center for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Nagy A, Gertsenstein M, Vintersten K, Behringer R. Rapid preparation of DNA from cells in 96-well tissue culture dishes. Cold Spring Harb Protoc 2006; 2006:2006/2/pdb.prot4413. [PMID: 22485821 DOI: 10.1101/pdb.prot4413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
49
|
Capron C, Lécluse Y, Kaushik AL, Foudi A, Lacout C, Sekkai D, Godin I, Albagli O, Poullion I, Svinartchouk F, Schanze E, Vainchenker W, Sablitzky F, Bennaceur-Griscelli A, Duménil D. The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 2006; 107:4678-86. [PMID: 16514064 DOI: 10.1182/blood-2005-08-3145] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractHematopoietic stem cells (HSCs) arise, self-renew, or give rise to all hematopoietic lineages through the effects of transcription factors activated by signaling cascades. Lyl-1 encodes a transcription factor containing a basic helix-hoop-helix (bHLH) motif closely related to scl/tal, which controls numerous decisions in embryonic and adult hematopoiesis. We report here that Lyl-1 null mice are viable and display normal blood cell counts, except for a reduced number of B cells resulting from a partial block after the pro-B stage. Nevertheless, the deletion of Lyl-1 results in a diminution in the frequency of immature progenitors (Lin–, CD34–, sca-1+, c-kit+ [LSK], and LSK-side population [LSK-SP]) and in S12 colony-forming unit (CFU-S12) and long-term culture-initiating cell (LTC-IC) content in embryonic day 14 fetal liver (E14 FL) and adult bone marrow (BM). More important, Lyl-1–/– E14 FL cells and BM are severely impaired in their competitive reconstituting abilities, especially with respect to B and T lineage reconstitution. Thus, ablation of Lyl-1 quantitatively and functionally affects HSCs, a cell population that transcribes Lyl-1 more actively than their differentiated progenies. Our results demonstrate for the first time that Lyl-1 functions are important for HSC properties and B-cell differentiation and that they are largely distinct from scl functions.
Collapse
Affiliation(s)
- Claude Capron
- Institut National de la Santé et de la Recherche Médicicale (INSERM) U362, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sambrook J, Russell DW. Isolation of DNA from Mammalian Cells Grown in 96-well Microtiter Plates. Cold Spring Harb Protoc 2006; 2006:2006/1/pdb.prot3695. [PMID: 22485288 DOI: 10.1101/pdb.prot3695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|