1
|
Ramzan R, Michels S, Weber P, Rhiel A, Irqsusi M, Rastan AJ, Culmsee C, Vogt S. Protamine Sulfate Induces Mitochondrial Hyperpolarization and a Subsequent Increase in Reactive Oxygen Species Production. J Pharmacol Exp Ther 2019; 370:308-317. [DOI: 10.1124/jpet.119.257725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023] Open
|
2
|
Felton J, Person P, Stahl SS. Biochemical and Histochemical Studies of Aerobic Oxidative Metabolism of Oral Tissues. IV. Additional Observations on Histochemical Oxidase Reactions in Gingiva. J Dent Res 2016. [DOI: 10.1177/00220345650440062101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Joseph Felton
- Special Dental Research Laboratory, V.A. Hospital, Brooklyn, N.Y., Murry and Leonie Guggenheim Institute for Dental Research, N.Y. University College of Dentistry, New York, N.Y
| | - Philip Person
- Special Dental Research Laboratory, V.A. Hospital, Brooklyn, N.Y., Murry and Leonie Guggenheim Institute for Dental Research, N.Y. University College of Dentistry, New York, N.Y
| | - S. Sigmund Stahl
- Special Dental Research Laboratory, V.A. Hospital, Brooklyn, N.Y., Murry and Leonie Guggenheim Institute for Dental Research, N.Y. University College of Dentistry, New York, N.Y
| |
Collapse
|
3
|
Tsou LK, Jain RK, Hamilton AD. Protein surface recognition by porphyrin-based receptors. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein surface recognition is largely unexplored owing to the large solvent exposed surface and lack of proper molecular scaffolds to match the binding residues. This review describes the design, synthesis, and fluorescence binding studies of functionalized porphyrins aimed at targeting surface residues of proteins through complementary recognition. The pattern of lysine residues surrounding the heme-edge of horse heart cytochrome c has been targeted by tetraphenylporphyrin and tetrabiphenylporphyrin receptors that bind with nano- and sub-nanomolar affinity. Other designed porphyrin-based receptors also recognize potassium channel as a target. The strategies for protein surface recognition offer a new use for porphyrins as molecular scaffolds.
Collapse
Affiliation(s)
- Lun K. Tsou
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Rishi K. Jain
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
4
|
Schwenke KD. Fraktionierung, Struktur und mögliche biologische Funktion der Histone. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/zfch.19670070303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
|
6
|
SCHWARTZ A. A SODIUM AND POTASSIUM-STIMULATED ADENOSINE TRIPHOSPHATASE FROM CARDIAC TISSUES. IV. LOCALIZATION AND FURTHER STUDIES OF A BASIC PROTEIN INHIBITORY FACTOR. Biochim Biophys Acta Gen Subj 1996; 100:202-14. [PMID: 14323624 DOI: 10.1016/0304-4165(65)90442-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
DAVIES HC, SMITH L, WASSERMAN AR. THE INFLUENCE OF IONIC STRENGTH AND POLYCATIONS ON THE OXIDATION OF FERROCYTOCHROME C BY CYTOCHROME C OXIDASE. ACTA ACUST UNITED AC 1996; 85:238-46. [PMID: 14212970 DOI: 10.1016/0926-6569(64)90244-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Stros M, Nejedlý K, Dadák V. Changes in the cytochrome c content during the aerobic adaptation of Paracoccus denitrificans. Folia Microbiol (Praha) 1982; 27:11-8. [PMID: 6277754 DOI: 10.1007/bf02883831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Concentration of cytochrome c decreases when shaking anaerobically grown cells in a non-growth medium down to 50% of the original amount in the cell, depending on the degree of aeration. Only 10-20% of this amount can be found in the adaptation medium. The main portion of cytochrome c is degraded during the adaptation. Inhibitors of proteinases do not influence the degradation. Addition of mammalian cytochrome c fully prevents the degradation of bacterial cytochrome c but not its release from cells. Potassium hexacyanoferrate(III) exhibits a similar effect as oxygen. The degradation system is probably localized in the periplasmic space of the cells.
Collapse
|
9
|
Seiter CH, Margalit R, Perreault RA. The cytochrome c binding site on cytochrome c oxidase. Biochem Biophys Res Commun 1979; 86:473-7. [PMID: 218575 DOI: 10.1016/0006-291x(79)91738-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Hillar M. Histone inhibition of mitochondrial proton transport. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE ET DE BIOCHIMIE 1978; 86:227-33. [PMID: 80979 DOI: 10.3109/13813457809069899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone blocks proton uptake by mitochondria incubated in the presence of valinomycin or DNP. In the presence of DNP valinomycin-induced H+ uptake is not affected by histone. H+ uptake induced by nigericin is not affected by histone as well. Postulated mechanism of histone action involves the immobilization of proton translocation in mitochondrial membrane and induction of local change in H+ concentration, the prevention of the interaction between H+ and natural K+-carrier and Mg2+ transport system or valinomycin.
Collapse
|
11
|
König T, Kocsis B, Mészáros L, Nahm K, Zoltán S, Horváth I. Interaction of a synthetic polyanion with rat liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 462:380-9. [PMID: 145243 DOI: 10.1016/0005-2728(77)90136-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Mehlhorn RJ, Packer L. Inactivation and reactivation of mitochondrial respiration by charged detergents. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 423:382-97. [PMID: 177044 DOI: 10.1016/0005-2728(76)90195-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Respiration of submitochondrial preparations can be inhibited by the cationic detergent cetyl trimethyl ammonium bromide and the anionic detergent sodium dodecyl sulfate in the range of 0.3-2 mumol of detergent per mg of mitochondrial membrane protein depending on the substrate and detergent used. This inhibition can be rapidly reversed by neutralizing a given detergent by the detergent of the opposite charge. At higher levels of the inhibiting detergent, no such reactivation was observed. Spin labeling assays of membrane structure were used to correlate structural effects with the loss and recovery of respiratory functions. Because the detergents progressively disrupt membrane structure, mitochondrial were cross-linked with bifunctional imidoesters to an extent that osmotic properties and detergent lysis were gone, but respiration remained. Such fixed respiring mitochondria also show inhibition reactivation phenomena.
Collapse
|
13
|
Hackenbrock CR. Comparative distribution of cytochrome oxidase, succinate permease, and fixed anionic sites on the intact inner mitochondrial membrane. Polycationic ferritin as a visually detectable metabolic inhibitor. Arch Biochem Biophys 1975; 170:139-48. [PMID: 169743 DOI: 10.1016/0003-9861(75)90105-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
|
15
|
Harmon HJ, Hall JD, Crane FL. Structure of mitochondrial cristae membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 344:119-55. [PMID: 4153673 DOI: 10.1016/0304-4157(74)90002-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Popinigis J. The problem of permeability barrier in mitochondrial respiration: dual effect of protamine on succinate (plus rotenone) oxidation. FEBS Lett 1974; 41:46-9. [PMID: 4855014 DOI: 10.1016/0014-5793(74)80950-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Chuang TF, Crane FL. Phospholipids in the cytochrome oxidase reaction. JOURNAL OF BIOENERGETICS 1973; 4:563-78. [PMID: 4358876 DOI: 10.1007/bf01516208] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Mochan BS, Elliott WB, Nicholls P. Patterns of cytochrome oxidase inhibition by polycations. JOURNAL OF BIOENERGETICS 1973; 4:329-45. [PMID: 4147481 DOI: 10.1007/bf01648976] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
MASUDA Y, KUCHII M, OKADA N, YAMAMOTO H, MURANO T. Studies on the Function of Cell Membrane 8th Report: Binding of Cytochrome c to Liver Plasma Membrane and Microsome in CCl4-Poisoned Rats. ACTA ACUST UNITED AC 1973. [DOI: 10.1016/s0021-5198(19)31523-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
|
21
|
Penniall R, Holbrook JP, Zeya HI. The inhibition of cytochrome oxidase by lysosomal cationic proteins of rabbit polymorphonuclear leukocytes. Biochem Biophys Res Commun 1972; 47:1270-6. [PMID: 4337748 DOI: 10.1016/0006-291x(72)90972-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Penniall R, Zeya HI. The effects of cationic proteins of rabbit polymorphonuclear leukocyte lysosomes on the respiratory activity of liver mitochondria. Biochem Biophys Res Commun 1971; 45:6-13. [PMID: 5139931 DOI: 10.1016/0006-291x(71)90042-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Ruzicka FJ, Crane FL. Quinone interaction with the respiratory chain-linked NADH dehydrogenase of beef heart mitochondria. II. Duroquinone reductase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1971; 226:221-33. [PMID: 4324965 DOI: 10.1016/0005-2728(71)90089-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Berezney R, Funk LK, Crane FL. Electron transport in mammalian nuclei. II. Oxidative enzmes in a large-scale preparation of bovine liver nuclei. BIOCHIMICA ET BIOPHYSICA ACTA 1970; 223:61-70. [PMID: 4320758 DOI: 10.1016/0005-2728(70)90132-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Young JM. The mitochondrial oxidation of quinol monophosphates. Biochem J 1970; 118:719-31. [PMID: 5476716 PMCID: PMC1179280 DOI: 10.1042/bj1180719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
1. Mitochondria from ox heart and rat liver catalysed a slow cyanide-sensitive oxidation of 2,3-dimethylnaphthaquinol monophosphate, duroquinol monophosphate, menadiol 1-phosphate and menadiol 4-phosphate. 2. The release of P(i) was concomitant with oxygen uptake. 3. The oxidation was somewhat stimulated by Ca(2+) and P(i), and weakly inhibited by 2,4-dinitrophenol. 4. The quinol monophosphates effected a rapid reduction of free cytochrome c, and consequently addition of cytochrome c greatly increased the rate of the mitochondrial oxidation of 2,3-dimethylnaphthaquinol monophosphate. 5. This quinol phosphate interacts with the electron-transport chain at the level of cytochrome c. 6. Polylysine promoted an interaction between 2,3-dimethylnaphthaquinol monophosphate and cytochrome oxidase. Thus, although polylysine blocks mitochondrial oxidations via reduced cytochrome c, the oxidation of the quinol phosphate was strongly stimulated. 7. This stimulation was most effective in the most intact mitochondrial preparations and was inhibited by ADP and by P(i). 8. The implications of these results for factors limiting the rate of quinol phosphate oxidation, the mode of action of stimulators and the mechanism of P(i) formation are discussed.
Collapse
|
26
|
Young JM. The stimulation of the mitochondrial oxidation of a quinolphosphate by polylysine. FEBS Lett 1969; 2:327-329. [PMID: 11946346 DOI: 10.1016/0014-5793(69)80055-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J M. Young
- School of Molecular Sciences, University of Warwick, Coventry, Warwicks, U.K
| |
Collapse
|
27
|
|
28
|
Yates M, Nason A. Enhancing Effect of Nucleic Acids and Their Derivatives in the Reduction of Cytochrome c by Ferrous Ions. J Biol Chem 1966. [DOI: 10.1016/s0021-9258(18)99645-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
|
30
|
Smith L, Minnaert K. Interaction of macroions with the respiratory chain system of mitochondria and heart-muscle particles. BIOCHIMICA ET BIOPHYSICA ACTA 1965; 105:1-14. [PMID: 4284995 DOI: 10.1016/s0926-6593(65)80170-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Person P, Fine AS, Mora PT, Zipper H. Macroion Interactions Involving Components of the Cytochrome System. J Biol Chem 1965. [DOI: 10.1016/s0021-9258(18)97302-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
|
33
|
|
34
|
Person P, Zipper H, Fine AS, Mora PT. Macroion Interactions Involving Cytochrome System Components. J Biol Chem 1964. [DOI: 10.1016/s0021-9258(18)91149-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
35
|
EICHEL B, SHAHRIK HA. Cytochemical Aspects of Oxidative Enzyme Metabolism in Gingiva. ACTA ACUST UNITED AC 1964; 1:131-74. [PMID: 14247273 DOI: 10.1016/b978-1-4832-3117-4.50011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
|
36
|
|
37
|
RICHARDSON SH, FOLWLER LR. Studies on the electron transfer system. LII. Binding of cytochome c by reconstituted DPNH oxidase. Arch Biochem Biophys 1963; 100:547-53. [PMID: 13982129 DOI: 10.1016/0003-9861(63)90125-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
|
39
|
HANSON JB, SWANSON HR. The role of basic proteins in the declining respiration of senescing corn scutellum. Biochem Biophys Res Commun 1962; 9:442-6. [PMID: 13952637 DOI: 10.1016/0006-291x(62)90031-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
RIVENBARK WL, HANSON JB. The uncoupling of oxidative phosphorylation by basic proteins, and its reversal with potassium. Biochem Biophys Res Commun 1962; 7:318-21. [PMID: 14492553 DOI: 10.1016/0006-291x(62)90199-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
MACHINIST JM, DAS ML, CRANE FL, JACOBS EE. A negatively charged pore in the mitochondrial membrane as a site for cytochrome c function. Biochem Biophys Res Commun 1961; 6:475-8. [PMID: 14467888 DOI: 10.1016/0006-291x(62)90378-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|