1
|
La JW, Dhanasingh I, Jang H, Lee SH, Lee DW. Functional Characterization of Primordial Protein Repair Enzyme M38 Metallo-Peptidase From Fervidobacterium islandicum AW-1. Front Mol Biosci 2021; 7:600634. [PMID: 33392259 PMCID: PMC7774594 DOI: 10.3389/fmolb.2020.600634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/25/2020] [Indexed: 12/02/2022] Open
Abstract
The NA23_RS08100 gene of Fervidobacterium islandicum AW-1 encodes a keratin-degrading β-aspartyl peptidase (FiBAP) that is highly expressed under starvation conditions. Herein, we expressed the gene in Escherichia coli, purified the recombinant enzyme to homogeneity, and investigated its function. The 318 kDa recombinant FiBAP enzyme exhibited maximal activity at 80°C and pH 7.0 in the presence of Zn2+. Size-exclusion chromatography revealed that the native enzyme is an octamer comprising a tetramer of dimers; this was further supported by determination of its crystal structure at 2.6 Å resolution. Consistently, the structure of FiBAP revealed three additional salt bridges in each dimer, involving 12 ionic interactions that might contribute to its high thermostability. In addition, the co-crystal structure containing the substrate analog N-carbobenzoxy-β-Asp-Leu at 2.7 Å resolution revealed binuclear Zn2+-mediated substrate binding, suggesting that FiBAP is a hyperthermophilic type-I IadA, in accordance with sequence-based phylogenetic analysis. Indeed, complementation of a Leu auxotrophic E. coli mutant strain (ΔiadA and ΔleuB) with FiBAP enabled the mutant strain to grow on isoAsp-Leu peptides. Remarkably, LC-MS/MS analysis of soluble keratin hydrolysates revealed that FiBAP not only cleaves the C-terminus of isoAsp residues but also has a relatively broad substrate specificity toward α-peptide bonds. Moreover, heat shock-induced protein aggregates retarded bacterial growth, but expression of BAP alleviated the growth defect by degrading damaged proteins. Taken together, these results suggest that the viability of hyperthermophiles under stressful conditions may rely on the activity of BAP within cellular protein repair systems.
Collapse
Affiliation(s)
- Jae Won La
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Immanuel Dhanasingh
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
| | - Hyeonha Jang
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
2
|
Michalska K, Brzezinski K, Jaskolski M. Crystal Structure of Isoaspartyl Aminopeptidase in Complex with l-Aspartate. J Biol Chem 2005; 280:28484-91. [PMID: 15946951 DOI: 10.1074/jbc.m504501200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of Escherichia coli isoaspartyl aminopeptidase/asparaginase (EcAIII), an enzyme belonging to the N-terminal nucleophile (Ntn)-hydrolases family, has been determined at 1.9-A resolution for a complex obtained by cocrystallization with l-aspartate, which is a product of both enzymatic reactions catalyzed by EcAIII. The enzyme is a dimer of heterodimers, (alphabeta)(2). The (alphabeta) heterodimer, which arises by autoproteolytic cleavage of the immature protein, exhibits an alphabetabetaalpha-sandwich fold, typical for Ntn-hydrolases. The asymmetric unit contains one copy of the EcAIII.Asp complex, with clearly visible l-aspartate ligands, one bound in each of the two active sites of the enzyme. The l-aspartate ligand is located near Thr(179), the N-terminal residue of subunit beta liberated in the autoproteolytic event. Structural comparisons with the free form of EcAIII reveal that there are no major rearrangements of the active site upon aspartate binding. Although the ligand binding mode is similar to that observed in an l-aspartate complex of the related enzyme human aspartylglucosaminidase, the architecture of the EcAIII active site sheds light on the question of substrate specificity and explains why EcAIII is not able to hydrolyze glycosylated asparagine substrates.
Collapse
Affiliation(s)
- Karolina Michalska
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan 60-780, Poland
| | | | | |
Collapse
|
3
|
Jozic D, Kaiser JT, Huber R, Bode W, Maskos K. X-ray structure of isoaspartyl dipeptidase from E.coli: a dinuclear zinc peptidase evolved from amidohydrolases. J Mol Biol 2003; 332:243-56. [PMID: 12946361 DOI: 10.1016/s0022-2836(03)00845-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
L-aspartyl and L-asparaginyl residues in proteins spontaneously undergo intra-residue rearrangements forming isoaspartyl/beta-aspartyl residues linked through their side-chain beta-carboxyl group with the following amino acid. In order to avoid accumulation of isoaspartyl dipeptides left over from protein degradation, some bacteria have developed specialized isoaspartyl/beta-aspartyl zinc dipeptidases sequentially unrelated to other peptidases, which also poorly degrade alpha-aspartyl dipeptides. We have expressed and crystallized the 390 amino acid residue isoaspartyl dipeptidase (IadA) from E.coli, and have determined its crystal structure in the absence and presence of the phosphinic inhibitor Asp-Psi[PO(2)CH(2)]-LeuOH. This structure reveals an octameric particle of 422 symmetry, with each polypeptide chain organized in a (alphabeta)(8) TIM-like barrel catalytic domain attached to a U-shaped beta-sandwich domain. At the C termini of the beta-strands of the beta-barrel, the two catalytic zinc ions are surrounded by four His, a bridging carbamylated Lys and an Asp residue, which seems to act as a proton shuttle. A large beta-hairpin loop protruding from the (alphabeta)(8) barrel is disordered in the free peptidase, but forms a flap that stoppers the barrel entrance to the active center upon binding of the dipeptide mimic. This isoaspartyl dipeptidase shows strong topological homology with the alpha-subunit of the binickel-containing ureases, the dinuclear zinc dihydroorotases, hydantoinases and phosphotriesterases, and the mononuclear adenosine and cytosine deaminases, which all are catalyzing hydrolytic reactions at carbon or phosphorous centers. Thus, nature has adapted an existing fold with catalytic tools suitable for hydrolysis of amide bonds to the binding requirements of a peptidase.
Collapse
Affiliation(s)
- Daniela Jozic
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
4
|
Hejazi M, Piotukh K, Mattow J, Deutzmann R, Volkmer-Engert R, Lockau W. Isoaspartyl dipeptidase activity of plant-type asparaginases. Biochem J 2002; 364:129-36. [PMID: 11988085 PMCID: PMC1222554 DOI: 10.1042/bj3640129] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recombinant plant-type asparaginases from the cyanobacteria Synechocystis sp. PCC (Pasteur culture collection) 6803 and Anabaena sp. PCC 7120, from Escherichia coli and from the plant Arabidopsis thaliana were expressed in E. coli with either an N-terminal or a C-terminal His tag, and purified. Although each of the four enzymes is encoded by a single gene, their mature forms consist of two protein subunits that are generated by autoproteolytic cleavage of the primary translation products at the Gly-Thr bond within the sequence GTI/VG. The enzymes not only deamidated asparagine but also hydrolysed a range of isoaspartyl dipeptides. As various isoaspartyl peptides are known to arise from proteolytic degradation of post-translationally altered proteins containing isoaspartyl residues, and from depolymerization of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin), plant-type asparaginases may not only function in asparagine catabolism but also in the final steps of protein and cyanophycin degradation. The properties of these enzymes are compared with those of the sequence-related glycosylasparaginases.
Collapse
Affiliation(s)
- Mahdi Hejazi
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Ziegler F, Cynober L. Absorption de l'azote en nutrition entérale. I : bases physiopathologiques. NUTR CLIN METAB 2000. [DOI: 10.1016/s0985-0562(00)80040-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Gary JD, Clarke S. Purification and characterization of an isoaspartyl dipeptidase from Escherichia coli. J Biol Chem 1995; 270:4076-87. [PMID: 7876157 DOI: 10.1074/jbc.270.8.4076] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have identified a gene (iadA) in Escherichia coli encoding a 41-kDa polypeptide that catalyzes the hydrolytic cleavage of L-isoaspartyl, or L-beta-aspartyl, dipeptides. We demonstrate at least a 3000-fold purification of the enzyme to homogeneity from crude cytosol. From the amino-terminal amino acid sequence obtained from this preparation, we designed an oligonucleotide that allowed us to map the gene to the 98-min region of the chromosome and to clone and obtain the DNA sequence of the gene. Examination of the deduced amino acid sequence revealed no similarities to other peptidases or proteases, while a marked similarity was found with several dihydroorotases and imidases, reflecting the similarity in the structures of the substrates for these enzymes. Using an E. coli strain containing a plasmid overexpressing this gene, we were able to purify sufficient amounts of the dipeptidase to characterize its substrate specificity. We also examined the phenotype of two E. coli strains where this isoaspartyl dipeptidase gene was deleted. We inserted a chloramphenicol cassette into the disrupted coding region of iadA in both a parent strain (MC1000) and a derivative strain (CL1010) lacking pcm, the gene encoding the L-isoaspartyl methyltransferase involved in the repair of isomerized proteins. We found that the iadA deletion does not result in reduced stationary phase or heat shock survival. Analysis of isoaspartyl dipeptidase activity in the deletion strain revealed a second activity of lower native molecular weight that accounts for approximately 31% of the total activity in the parent strain MC1000. The presence of this second activity may account for the absence of an observable phenotype in the iadA mutant cells.
Collapse
Affiliation(s)
- J D Gary
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
7
|
Abstract
The dipeptide sweetener aspartame (N-L-alpha-aspartyl-L-phenylalanine, 1-methyl ester; alpha-APM) is relatively stable in dry powder form. However, when exposed to elevated temperature, extremes of pH and/or moisture, alpha-APM is converted into a variety of products. In aqueous solution alpha-APM decomposes to yield methanol, two isomeric forms of L-aspartyl-L-phenylalanine (Asp-Phe) [alpha-Asp-Phe and beta-Asp-Phe], and APM's diketopiperazine cyclo-Asp-Phe. Depending on beverage storage conditions, individuals drinking alpha-APM-sweetened beverages may consume small quantities of these three compounds. Relatively little has been published about the metabolism of beta-Asp-Phe and cyclo-Asp-Phe. We compared the absorption and metabolism of alpha-Asp-Phe, beta-Asp-Phe, and cyclo-Asp-Phe with that of L-phenylalanine (Phe) in adult rats. Steady-state perfusion studies of rat jejunum indicated rapid carrier-assisted uptake of Phe and alpha-Asp-Phe, but only slow passive diffusion of beta-Asp-Phe and cyclo-Asp-Phe from the lumen. Homogenates of rat intestinal mucosa, liver, and cecal contents, as well as homogenates of pure cultures of Escherichia coli B, catalyzed the hydrolysis of alpha-Asp-Phe, but not cyclo-Asp-Phe. Homogenates of E coli and rat cecal contents, but not homogenates of rat liver or intestinal mucosa catalyzed the hydrolysis of beta-Asp-Phe.
Collapse
Affiliation(s)
- W E Lipton
- Department of Pediatrics, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
8
|
Formation of Isoaspartate at Two Distinct Sites during in vitro Aging of Human Growth Hormone. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71672-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Johnson B, Murray E, Clarke S, Glass D, Aswad D. Protein carboxyl methyltransferase facilitates conversion of atypical L-isoaspartyl peptides to normal L-aspartyl peptides. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45619-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Gardner ML. Intestinal assimilation of intact peptides and proteins from the diet--a neglected field? Biol Rev Camb Philos Soc 1984; 59:289-331. [PMID: 6433995 DOI: 10.1111/j.1469-185x.1984.tb00708.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Pivcová H, Saudek V, Drobník J, Vlasák J. Nmr study of poly(aspartic acid). I. α- and β-Peptide bonds in poly(aspartic acid) prepared by thermal polycondensation. Biopolymers 1981. [DOI: 10.1002/bip.1981.360200804] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Welling GW, Groen G. beta-Aspartylglycine, a substance unique to caecal contents of germ-free and antibiotic-treated mice. Biochem J 1978; 175:807-12. [PMID: 570395 PMCID: PMC1186141 DOI: 10.1042/bj1750807] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The caecal supernatants from germ-free, antibiotic-treated and control mice were compared with respect to their content of low-molecular-weight substances (less than 3500 mol. wt.). The supernatants contained about the same amount of free amino acids. After acid hydrolysis, the caecal supernatants of germ-free and antibiotic-treated mice showed a 2.9-fold increase in free amino acids, whereas a similar treatment of the supernatant from control mice resulted in a 2.6-fold increase. By gel filtration on Sephadex G-25, and high-voltage paper electrophoresis at pH 3.5 of the fractions eluted after the void volume, it was found that the caecal supernatants of germ-free and antibiotic-treated mice contained a substance more acidic than aspartic acid. Preparative high-voltage electrophoresis, dansylation, amino acid analysis and a specific colour reaction showed the substance to be beta-aspartylglycine. After a minimal 36 h of treatment with neomycin and bacitracin, a high concentration of beta-aspartylglycine was found, and no enterococci and aerobic Gram-negative rods could be cultured from the caecal contents. The possibility that in one mouse the appearance of beta-aspartylglycine was related to a decrease in Gram-negative rods was ruled out by selective elimination of aerobic Gram-negative rods by using polymyxin B. This suggests that other bacteria concomitantly eliminated with the enterococci and aerobic Gram-negative rods, directly or indirectly, could play a role in the accumulation of beta-aspartylglycine.
Collapse
|
13
|
Cheung HS, Cushman DW. A soluble aspartate aminopeptidase from dog kidney. BIOCHIMICA ET BIOPHYSICA ACTA 1971; 242:190-3. [PMID: 4330623 DOI: 10.1016/0005-2744(71)90098-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
|