1
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Brustovetsky N. The Role of Adenine Nucleotide Translocase in the Mitochondrial Permeability Transition. Cells 2020; 9:E2686. [PMID: 33333766 PMCID: PMC7765165 DOI: 10.3390/cells9122686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022] Open
Abstract
The mitochondrial permeability transition, a Ca2+-induced significant increase in permeability of the inner mitochondrial membrane, plays an important role in various pathologies. The mitochondrial permeability transition is caused by induction of the permeability transition pore (PTP). Despite significant effort, the molecular composition of the PTP is not completely clear and remains an area of hot debate. The Ca2+-modified adenine nucleotide translocase (ANT) and F0F1 ATP synthase are the major contenders for the role of pore in the PTP. This paper briefly overviews experimental results focusing on the role of ANT in the mitochondrial permeability transition and proposes that multiple molecular entities might be responsible for the conductance pathway of the PTP. Consequently, the term PTP cannot be applied to a single specific protein such as ANT or a protein complex such as F0F1 ATP synthase, but rather should comprise a variety of potential contributors to increased permeability of the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Hawrysh PJ, Buck LT. Anoxia-mediated calcium release through the mitochondrial permeability transition pore silences NMDA receptor currents in turtle neurons. ACTA ACUST UNITED AC 2014; 216:4375-87. [PMID: 24259257 DOI: 10.1242/jeb.092650] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mammalian neurons are anoxia sensitive and rapidly undergo excitotoxic cell death when deprived of oxygen, mediated largely by Ca(2+) entry through over-activation of N-methyl-d-aspartate receptors (NMDARs). This does not occur in neurons of the anoxia-tolerant western painted turtle, where a decrease in NMDAR currents is observed with anoxia. This decrease is dependent on a modest rise in cytosolic [Ca(2+)] ([Ca(2+)]c) that is mediated by release from the mitochondria. The aim of this study was to determine whether the mitochondrial permeability transition pore (mPTP) is involved in NMDAR silencing through release of mitochondrial Ca(2+). Opening the mPTP during normoxia with atractyloside decreased NMDAR currents by releasing mitochondrial Ca(2+), indicated by an increase in Oregon Green fluorescence. Conversely, the mPTP blocker cyclosporin A prevented the anoxia-mediated increase in [Ca(2+)]c and reduction in NMDAR currents. Mitochondrial membrane potential (Ψm) was determined using rhodamine-123 fluorescence and decreased with the onset of anoxia in a time frame that coincided with the increase in [Ca(2+)]c. Activation of mitochondrial ATP-sensitive potassium (mK(+)ATP) channels also releases mitochondrial Ca(2+) and we show that activation of mK(+)ATP channels during normoxia with diazoxide leads to Ψm depolarization and inhibition with 5-hydroxydecanoic acid blocked anoxia-mediated Ψm depolarization. Ψm does not collapse during anoxia but rather reaches a new steady-state level that is maintained via ATP hydrolysis by the F1-F0 ATPase, as inhibition with oligomycin depolarizes Ψm further than the anoxic level. We conclude that anoxia activates mK(+)ATP channels, which leads to matrix depolarization, Ca(2+) release via the mPTP, and ultimately silencing of NMDARs.
Collapse
Affiliation(s)
- Peter John Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | | |
Collapse
|
4
|
Franco M, Chávez E, Pérez-Méndez O. Pleiotropic effects of thyroid hormones: learning from hypothyroidism. J Thyroid Res 2011; 2011:321030. [PMID: 21760977 PMCID: PMC3134217 DOI: 10.4061/2011/321030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 11/20/2022] Open
Abstract
Hypothyroidism induces several metabolic changes that allow understanding some physiopathological mechanisms. Under experimental hypothyroid conditions in rats, heart and kidney are protected against oxidative damage induced by ischemia reperfusion. An increased resistance to opening of the permeability transition pore seems to be at the basis of such protection. Moreover, glomerular filtration rate of hypothyroid kidney is low as a result of adenosine receptors-induced renal vasoconstriction. The vascular tone of aorta is also regulated by adenosine in hypothyroid conditions. In other context, thyroid hormones regulate lipoprotein metabolism. High plasma level of LDL cholesterol is a common feature in hypothyroidism, due to a low expression of the hepatic LDL receptor. In contrast, HDL-cholesterol plasma levels are variable in hypothyroidism; several proteins involved in HDL metabolism and structure are expressed at lower levels in experimental hypothyroidism. Based on the positive influence of thyroid hormones on lipoprotein metabolism, thyromimetic drugs are promising for the treatment of dyslipidemias. In summary, hypothyroid status has been useful to understand molecular mechanisms involved in ischemia reperfusion, regulation of vascular function and intravascular metabolism of lipoproteins.
Collapse
Affiliation(s)
- Martha Franco
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, 14080 Mexico City, DF, Mexico
| | | | | |
Collapse
|
5
|
Hernández-Esquivel L, Natalia-Pavón, Zazueta C, García N, Correa F, Chávez E. Protective action of tamoxifen on carboxyatractyloside-induced mitochondrial permeability transition. Life Sci 2011; 88:681-7. [DOI: 10.1016/j.lfs.2011.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 01/06/2011] [Accepted: 01/27/2011] [Indexed: 01/29/2023]
|
6
|
Effect of malonyl-CoA on calcium uptake and pyridine nucleotide redox state in rat liver mitochondria. FEBS Lett 2001. [DOI: 10.1016/0014-5793(79)81296-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Chávez E, Franco M, Reyes-Vivas H, Zazueta C, Ramírez J, Carrillo R. Hypothyroidism renders liver mitochondria resistant to the opening of membrane permeability transition pore. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1407:243-8. [PMID: 9748606 DOI: 10.1016/s0925-4439(98)00048-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Membrane permeability was examined in liver mitochondria isolated from hypothyroid rats. It was found that such a thyroid status provides substantial protection from membrane leakiness as induced by Ca2+ loading. Thus, these mitochondria are less prone to undergoing permeability transition than mitochondria from euthyroid rats. The above conclusion was reached on the basis of the following two facts: (1) hypothyroid mitochondria are not strictly dependent on the addition of ADP to retain high matrix Ca2+ concentrations, and (2) carboxyatractyloside, antimycin A or carbonyl cyanide-m-chlorophenyl hydrazone failed to promote Ca2+ efflux. We discuss the possible relevance of the low content of membrane cardiolipin as well as the low expression of the adenine nucleotide translocase as responsible for the resistance to membrane damage.
Collapse
Affiliation(s)
- E Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
8
|
Zazueta C, Reyes-Vivas H, Zafra G, Sánchez CA, Vera G, Chávez E. Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase. Int J Biochem Cell Biol 1998; 30:517-27. [PMID: 9675885 DOI: 10.1016/s1357-2725(97)00157-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial permeability transition is caused by the opening of a transmembrane pore whose chemical nature has not been well established yet. The present work was aimed to further contribute to the knowledge of the membrane entity comprised in the formation of the non-specific channel. The increased permeability was established by analyzing the inability of rat kidney mitochondria to take up and accumulate Ca2+, as well as their failure to build up a transmembrane potential, after the cross-linking of membrane proteins by copper plus ortho-phenanthroline. To identify the cross-linked proteins, polyacrylamide gel electrophoresis was performed. The results are representative of at least three separate experiments. It is indicated that 30 microM Cu2+ induced the release of 4.3 nmol Ca2+ per mg protein. However, in the presence of 100 microM ortho-phenanthroline only 2 microM Cu2+ was required to attain the total release of the accumulated Ca2+; it should be noted that such a reaction is not inhibited by cyclosporin. The increased permeability corresponds to cross-linking of membrane proteins in which approximately 4 nmol thiol groups per mg protein appear to be involved. Such a linking process is inhibited by carboxyatractyloside. By using the fluorescent probe eosin-5-maleimide the label was found in a cross-linking 60 kDa dimer of two 30 kDa monomers. From the data presented it is concluded that copper-o-phenanthroline induces the intermolecular cross-linking of the adenine nucleotide translocase which in turn is converted to non-specific pore.
Collapse
Affiliation(s)
- C Zazueta
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico, D.F., Mexico
| | | | | | | | | | | |
Collapse
|
9
|
Simbula G, Glascott PA, Akita S, Hoek JB, Farber JL. Two mechanisms by which ATP depletion potentiates induction of the mitochondrial permeability transition. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C479-88. [PMID: 9277345 DOI: 10.1152/ajpcell.1997.273.2.c479] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present and a previous study [J. W. Snyder, J. G. Pastorino, A. M. Attie, and J. L. Farber, Am. J. Physiol. 264 (Cell Physiol. 33): C709-C714, 1993] define two mechanisms whereby ATP depletion promotes liver cell death. ATP depletion and cell death are linked by the mitochondrial permeability transition (MPT). Mitochondrial deenergization promotes the MPT, and ATP maintains a membrane potential by reversal of ATP synthase. With an increased influx of Ca2+ induced by the ionophore A-23187, oligomycin depleted the cells of ATP without loss of the mitochondrial membrane potential and further elevated the intracellular Ca2+ concentration. Cyclosporin A (CyA) prevented the accompanying cell killing. Fructose also preserved the viability of the cells. With the increased cytosolic Ca2+ imposed by A-23187, viability is maintained by ATP-dependent processes. Upon depletion of ATP, Ca2+ homeostasis cannot be maintained, and the MPT is induced. Rotenone also depleted the cells of ATP, and A-23187 accelerated the loss of the mitochondrial membrane potential occurring with rotenone alone. CyA and fructose prevented the cell killing with rotenone and A-23187. Oligomycin did not prevent this action of fructose. We conclude that ATP is needed to maintain Ca2+ homeostasis to prevent the MPT and the resultant liver cell death. ATP is also needed to maintain mitochondrial energization when electron transport is inhibited.
Collapse
Affiliation(s)
- G Simbula
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
10
|
Chávez E, Moreno-Sánchez R, Torres-Marquez ME, Zazueta C, Bravo C, Rodríquez-Enríquez S, García C, Rodriguez JS, Martinez F. Modulation of matrix Ca2+ content by the ADP/ATP carrier in brown adipose tissue mitochondria. Influence of membrane lipid composition. J Bioenerg Biomembr 1996. [DOI: 10.1007/bf02150680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Affiliation(s)
- M Zoratti
- CNR Unit for the Physiology of Mitochondria, Department of Biomedical Sciences, Padova, Italy
| | | |
Collapse
|
12
|
Chávez E, Moreno-Sánchez R, Zazueta C, Reyes-Vivas H, Arteaga D. Intramitochondrial K+ as activator of carboxyatractyloside-induced Ca2+ release. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1070:461-6. [PMID: 1764458 DOI: 10.1016/0005-2736(91)90087-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of intramitochondrial K+ content on the increase in membrane permeability to Ca2+, as induced by carboxyatractyloside was studied. In mitochondria containing a high K+ concentration (83 nmol/mg), carboxyatractyloside induced a fast and extensive mitochondrial Ca2+ release, membrane de-energization, and swelling. Conversely, in K(+)-depleted mitochondria (11 nmol/mg), carboxyatractyloside was ineffective. The addition of 40 mM K+ to K(+)-depleted mitochondria restored the capability of atractyloside to induce an increase in membrane permeability to Ca2+ release. The determination of matrix free Ca2+ concentration showed that, at an external free-Ca2+ concentration of 0.8 microM, control mitochondria contained 3.9 microM of free Ca2+ whereas K(+)-depleted mitochondria contained 0.9 microM free Ca2+. It is proposed that intramitochondrial K+ affects the matrix free Ca2+ concentration required to induce a state of high membrane permeability.
Collapse
Affiliation(s)
- E Chávez
- Departamento de Bioquímica, Ignacio Chávez, México, D.F
| | | | | | | | | |
Collapse
|
13
|
Chávez E, Zazueta C, Díaz E. Dicyclohexylcarbodiimide as inducer of mitochondrial Ca2+ release. J Bioenerg Biomembr 1990; 22:679-89. [PMID: 2249979 DOI: 10.1007/bf00809071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of the alkylating reagent dicyclohexylcarbodiimide (DCCD) on mitochondrial Ca2+ content was studied. The results obtained indicate that DCCD at a concentration of 100 microM induces mitochondrial Ca2+ efflux. This reaction is accompanied by an increasing energy drain on the system, stimulation of oxygen consumption, and mitochondrial swelling. These DCCD effects can be partially suppressed by supplementing the incubation medium with 1 mM phosphate. By electrophoretic analysis on polyacrylamide-sodium dodecyl sulfate, it was found that DCCD binds to a membrane component with an Mr of 20 to 29 kDa.
Collapse
Affiliation(s)
- E Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, D. F., Mexico
| | | | | |
Collapse
|
14
|
Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C755-86. [PMID: 2185657 DOI: 10.1152/ajpcell.1990.258.5.c755] [Citation(s) in RCA: 1270] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been firmly established that the rapid uptake of Ca2+ by mitochondria from a wide range of sources is mediated by a uniporter which permits transport of the ion down its electrochemical gradient. Several mechanisms of Ca2+ efflux from mitochondria have also been extensively discussed in the literature. Energized mitochondria must expend a significant amount of energy to transport Ca2+ against its electrochemical gradient from the matrix space to the external space. Two separate mechanisms have been found to mediate this outward transport: a Ca2+/nNa+ exchanger and a Na(+)-independent efflux mechanism. These efflux mechanisms are considered from the perspective of available energy. In addition, a reversible Ca2(+)-induced increase in inner membrane permeability can also occur. The induction of this permeability transition is characterized by swelling of the mitochondria, leakiness to small ions such as K+, Mg2+, and Ca2+, and loss of the mitochondrial membrane potential. It has been suggested that the permeability transition and its reversal may also function as a mitochondrial Ca2+ efflux mechanism under some conditions. The characteristics of each of these mechanisms are discussed, as well as their possible physiological functions.
Collapse
Affiliation(s)
- T E Gunter
- Department of Biophysics, University of Rochester, New York 14642
| | | |
Collapse
|
15
|
Rottenberg H, Marbach M. Regulation of Ca2+ transport in brain mitochondria. II. The mechanism of the adenine nucleotides enhancement of Ca2+ uptake and retention. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1016:87-98. [PMID: 2310744 DOI: 10.1016/0005-2728(90)90010-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ADP greatly enhances the rate of Ca2+ uptake and retention in Ca2+ loaded mitochondria. Atractyloside, a specific inhibitor of the ADP/ATP translocator, completely inhibits the ADP effect, while bongkrekate, another specific inhibitor of the translocator enhances the effect of ADP. These results indicate that locking the ADP/ATP translocator in the M-state is sufficient to produce the ADP effect. Cyclosporin A, a specific inhibitor of the Ca2(+)-induced membrane permeabilization does not substitute for ADP, indicating that ADP directly affect the rate of electrogenic Ca2+ uptake. The effect of the translocator conformation on the rate of electrogenic Ca2+ uptake is independent of the concentration of Pi and is not caused by changes in membrane potential. However, locking the carrier in the M-state appears to increase the negative surface charge on the matrix face of the inner membrane. This may lead to an enhanced rate of Ca2+ dissociation from the electrogenic carrier at the matrix surface. The rate of Na(+)-independent Ca2+ efflux is only slightly inhibited by locking the carrier in the M-state, presumably due to the same mechanism. In the presence of ADP, Pi inhibits the Na(+)-independent efflux. In the presence of physiological concentrations of spermine, Pi and Mg2+, the rate of Ca2+ uptake, Ca2+ retention and Ca2+ set points depend sharply on ADP concentration at the physiological range of ADP. Thus, changes of cytosolic ADP concentration may lead to change in the rate of Ca2+ uptake by mitochondria and thus modulate the excitation-relaxation cycles of cytoplasmic free calcium.
Collapse
Affiliation(s)
- H Rottenberg
- Pathology Department, Hahnemann University, Philadelphia, PA 19102
| | | |
Collapse
|
16
|
Chávez E, Zazueta C, Díaz E, Holquín JA. Characterization by Hg2+ of two different pathways for mitochondrial Ca2+ release. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 986:27-32. [PMID: 2819096 DOI: 10.1016/0005-2736(89)90268-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The addition of Hg2+ to loaded kidney mitochondria induces the fast release of the accumulated cation. The Ca2+-efflux reaction exhibits kinetics characteristics that depend on the extent of the binding of Hg2+ to the membrane. At high levels of Hg2+ bound (approx. 11 nmol/mg), Ca2+ efflux rate is highly insensitive to the temperature of incubation, and the efflux seems to be directly related to the internal free Ca2+ concentration. At these levels of bound Hg2+, accumulated Sr2+ is released with characteristics similar to those observed with Ca2+. At lower levels of Hg2+ binding (2.5 nmol/mg), the efflux reaction is highly dependent on the incubation temperature and on the internal free Ca2+ concentration; under these conditions Sr2+ is not released. NAD(P)H oxidation as induced by the low Hg2+ concentration is inhibited at the lower temperatures. Radiolabeled Hg2+ incorporates into two clearly defined regions of membrane proteins separated through sodium dodecyl sulfate gel electrophoresis. One of the regions corresponds to proteins of apparent high molecular mass (i.e., 150 kDa), and the other to proteins with apparent molecular masses of 37-25 kDa. Mitochondria incubated with 2 microM 203Hg2+ incorporate the radionuclide in proteins that have molecular masses of around 41 and 26 kDa. The results indicate that, depending on the amount of Hg2+ bound to the inner membrane, two clearly distinct Ca2+ release mechanisms can be distinguished.
Collapse
Affiliation(s)
- E Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico City
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- G Y Sun
- Department of Biochemistry, University of Missouri, Columbia 65203
| | | |
Collapse
|
18
|
Lê Quôc K, Lê Quôc D. Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 1988; 265:249-57. [PMID: 2844116 DOI: 10.1016/0003-9861(88)90125-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Compounds which induce calcium efflux from calcium-loaded mitochondria generally provoke membrane leakiness. The involvement of the ADP/ATP carrier in modification of mitochondrial membrane properties was studied. The addition of impermeant inhibitors of the ADP/ATP carrier, namely carboxyatractylate, palmitoyl coenzyme A (in the absence of carnitine), and pyridoxal 5-phosphate, to calcium-loaded mitochondria triggered the release of accumulated calcium, the leakage of endogenous ADP, and the swelling of mitochondria. Permeant ligands, such as bongkrekic acid or ADP, showed no damaging effect on membrane permeability; in fact, they impeded the membrane perturbation which was induced by the three impermeant effectors. In addition, both bongkrekic acid and ADP were able to cancel the calcium loss and swelling resulting from the oxidation of intramitochondrial pyridine nucleotides by acetoacetate. In acetoacetate-treated mitochondria, the ADP/ATP carrier was shown to be mainly in a c-state conformation (i.e., the nucleotide binding site had an external orientation). It was concluded that induction of membrane leakiness by calcium ions depends on the conformational state of the adenine nucleotide carrier. The ability of intramitochondrial calcium ions to modify membrane properties is determined by the orientation of the nucleotide binding site. Only the c-state conformation allows membrane destabilization. Consequently, all compounds which stabilize the ADP/ATP carrier in the c-state conformation will have a deleterious effect on calcium-loaded mitochondria.
Collapse
Affiliation(s)
- K Lê Quôc
- Laboratoire de Biochimie, UA CNRS 040531, UFR Sciences et Techniques, Besançon, France
| | | |
Collapse
|
19
|
Carbonera D, Azzone GF. Permeability of inner mitochondrial membrane and oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 943:245-55. [PMID: 3401479 DOI: 10.1016/0005-2736(88)90556-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mechanism of increase in the inner membrane permeability induced by Ca2+ plus Pi, diamide and hydroperoxides has been analyzed. (1) The permeability increase is antagonized by oligomycin and favoured by atractyloside. The promoting effect of atractyloside is strongly reduced if the mitochondria are simultaneously treated with oligomycin. (2) Addition of the free-radical scavenger, butylhydroxytoluene, results in a complete protection of the membrane with respect to the permeability increase. (3) Although membrane damage and depression of the GSH concentration are often associated, there is no direct correlation between extent of membrane damage and concentration of reduced glutathione. Abolition of the permeability increase by butylhydroxytoluene or by oligomycin is not accompanied by maintenance of a high GSH concentration in the presence of diamide or hydroperoxides. The membrane damage induced by Ca2+ plus Pi is not accompanied by a depression of the GSH concentration. (4) It is proposed that a variety of processes causing an increased permeability of the inner mitochondrial membrane merge into some ultimate common steps involving the action of oxygen radicals.
Collapse
Affiliation(s)
- D Carbonera
- CNR Unit for Physiology of Mitochondria, University of Padova, Italy
| | | |
Collapse
|
20
|
Sokolove PM, Shinaberry RG. Na+-independent release of Ca2+ from rat heart mitochondria. Induction by adriamycin aglycone. Biochem Pharmacol 1988; 37:803-12. [PMID: 3345198 DOI: 10.1016/0006-2952(88)90165-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effect of adriamycin aglycones on Ca2+ retention by isolated, preloaded rat heart mitochondria was assessed. After an initial lag, which decreased with increasing drug concentration, the 7-hydroxy-aglycone (5-20 microM) triggered Ca2+ release. Aglycone-induced Ca2+ release was correlated with Ca2+-dependent mitochondrial swelling, Ca2+-dependent collapse of the mitochondrial membrane potential, Ca2+-dependent oxidation of mitochondrial pyridine nucleotides, and a transition from the condensed to the orthodox configuration. Aglycone-induced Ca2+ release was inhibited by dibucaine, dithiothreitol, ATP, and bovine serum albumin. It can be concluded, therefore, that aglycone-induced Ca2+ release reflects the Ca2+-dependent increase in the permeability of the inner mitochondrial membrane to solutes of molecular weight less than 1000 which has been observed with other triggering agents [R. A. Haworth and D. R. Hunter, Archs Biochem. Biophys. 195, 460 (1979); I. Al-Nasser and M. Crompton, Biochem. J. 239, 19 (1986)]. In particular, the 7-hydroxy-aglycone decreased the amount of Ca2+ required to trigger the permeability increase. No effect of the aglycone on Ca2+ uptake could be discerned. 7-Deoxy-adriamycin aglycone, the more prominent biological metabolite of adriamycin, was similarly effective in inducing Ca2+ release, and both aglycones were substantially more effective than the parent drug. Adriamycin and related anthracyclines are potent antineoplastic agents, the clinical use of which is limited by severe cardiotoxicity. These results suggest that aglycone formation and the resultant disruption of both cellular Ca2+ homeostasis and metabolite compartmentation may mediate anthracycline cardiotoxicity.
Collapse
Affiliation(s)
- P M Sokolove
- Department of Pharmacology and Experimental Therapeutics, University of Maryland Medical School, Baltimore 21201
| | | |
Collapse
|
21
|
|
22
|
Chávez E, Osornio A. Temperature dependence of the atractyloside-induced mitochondrial Ca2+ release. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1988; 20:731-6. [PMID: 3181602 DOI: 10.1016/0020-711x(88)90169-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. Mitochondrial Ca2+, accumulated by succinate oxidation was released by addition of 50 microM atractyloside. Beside this Ca2+ efflux, a large oxidation of pyridine nucleotides and sustained membrane depolarization occurs. An absolute requirement for acetate to support Ca2+ release is demonstrated. 2. Membrane de-energization, NAD(P)H oxidation, and Ca2+ efflux as induced by atractyloside were temperature-dependent, since it occurs when mitochondria are incubated at 22 degrees C and was abolished at 4 degrees C. 3. Taking into account this latter, the effects of atractyloside on mitochondrial Ca2+ release appears not to be a simple result of the binding of the inhibitor to adenine nucleotide translocase. 4. It is proposed that the mechanism involved in atractyloside-driven membrane permeability to Ca2+ must be related with the transference of the conformational change of the carrier, to another membrane structure responsible for the maintenance permeability to ions.
Collapse
Affiliation(s)
- E Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, D.F
| | | |
Collapse
|
23
|
Wolkowicz P. Evidence for hexagonal II phase lipid involvement in mitochondrial Ca2+ movements. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 232:131-8. [PMID: 3213682 DOI: 10.1007/978-1-4757-0007-7_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- P Wolkowicz
- Department of Medicine, University of Alabama, School of Medicine at Birmingham 35294
| |
Collapse
|
24
|
Sokolove PM. Na+-independent, pyridine nucleotide-linked efflux of Ca2+ from preloaded rat heart mitochondria: induction by chlortetracycline. Biochem Pharmacol 1987; 36:4020-4. [PMID: 3689435 DOI: 10.1016/0006-2952(87)90475-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- P M Sokolove
- Department of Pharmacology and Experimental Therapeutics, University of Maryland Medical School, Baltimore 21201
| |
Collapse
|
25
|
Vercesi AE. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria. Arch Biochem Biophys 1987; 252:171-8. [PMID: 3813533 DOI: 10.1016/0003-9861(87)90021-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pyridine nucleotide specificity, the participation of delta psi, and the energy-linked transhydrogenase in the process of Ca2+ efflux stimulated by the oxidized state of NAD(P) were examined in rat liver mitochondria energized by ascorbate + TMPD. The following observations were made: The Ca2+ efflux rate is independent of the redox state of mitochondrial NAD, but is at a minimum when mitochondrial NADP is in the reduced state and accelerated several-fold when it is in the oxidized state. When the redox state of NADP is shifted to a more oxidized state, the steady-state level of Ca2+ in the medium increased and delta psi decreased in proportion to the mitochondrial NADP+ level. The activity of the energy-linked NAD(P) transhydrogenase seems to be a key element in determining the redox state of NADP and thus of Ca2+ retention and efflux from mitochondria.
Collapse
|
26
|
Al-Nasser I, Crompton M. The reversible Ca2+-induced permeabilization of rat liver mitochondria. Biochem J 1986; 239:19-29. [PMID: 3099778 PMCID: PMC1147234 DOI: 10.1042/bj2390019] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rat liver mitochondria became permeabilized to sucrose according to an apparent first-order process after accumulating 35 nmol of Ca2+/mg of protein in the presence of 2.5 mM-Pi, but not in its absence. A fraction (24-32%) of the internal space remains sucrose-inaccessible. The rate constant for permeabilization to sucrose decreases slightly when the pH is decreased from 7.5 to 6.5, whereas the rate of inner-membrane potential (delta psi) dissipation is markedly increased, which indicates that H+ permeation precedes sucrose permeation. Permeabilization does not release mitochondrial proteins. [14C]Sucrose appears to enter permeabilized mitochondria instantaneously. Chelation of Ca2+ with EGTA restores delta psi and entraps sucrose in the matrix space. With 20 mM-sucrose at the instant of resealing, about 21 nmol of sucrose/mg of protein becomes entrapped. The amount of sucrose entrapped is proportional to the degree of permeabilization. Entrapped sucrose is not removed by dilution of the mitochondrial suspension. Resealed mitochondria washed three times retain about 74% of the entrapped sucrose. In the presence of Ruthenium Red and Ca2+ buffers permeabilized mitochondria reseal only partially with free [Ca2+] greater than 3 microM. [14C]Sucrose enters partially resealed mitochondria continuously with time, despite maintenance of delta psi, in accordance with continued interconversion of permeable and impermeable forms. Kinetic analyses of [14C]sucrose entry indicate two Ca2+-sensitive reactions in permeabilization. This conclusion is supported by the biphasic time courses of resealing and repolarization of permeabilized mitochondria and the acute dependence of the rapid repolarization on the free [Ca2+]. A hypothetical model of permeabilization and resealing is suggested and the potential of the procedure for matrix entrapment of substances is discussed.
Collapse
|
27
|
De Villiers M, Lochner A. Mitochondrial Ca2+ fluxes: role of free fatty acids, acyl-CoA and acylcarnitine. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 876:309-17. [PMID: 3955069 DOI: 10.1016/0005-2760(86)90289-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It has been suggested that accumulation of lipid metabolites, such as fatty acids, fatty acyl-CoA and acylcarnitine, in the ischaemic myocardium, may be responsible for disturbances in mitochondrial Ca2+ fluxes. In view of the presence of an intracellular fatty acid binding protein, the question arose whether these intermediates affect mitochondrial Ca2+ uptake and release similarly in vivo. In this study the effects of linoleic acid, palmitic acid, palmitoyl-CoA and palmitoylcarnitine were studied on mitochondrial Ca2+ fluxes in the absence and presence of albumin, an avid binder of fatty acid derivatives. Albumin reversed the effects of the above compounds on mitochondrial Ca2+ uptake and release, suggesting that the presence of an intracellular fatty acid binding protein may protect the ischaemic myocardial cell against the deleterious effects of accumulated fatty acid derivatives.
Collapse
|
28
|
Valle VG, Pereira-da-Silva L, Vercesi AE. Undesirable feature of safranine as a probe for mitochondrial membrane potential. Biochem Biophys Res Commun 1986; 135:189-95. [PMID: 3954769 DOI: 10.1016/0006-291x(86)90961-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This communication describes experiments showing that safranine, at the concentrations usually employed as a probe of mitochondrial membrane potential, causes significant undesirable side effects on Ca2+ transport by liver mitochondria. The major observations are: (i) safranine potentiates the spontaneous Ca2+ release from liver mitochondria induced by phosphate or acetoacetate. This is paralelled by potentiation of the release of state-4 respiration and of the rate of mitochondrial swelling, indicating a generalized effect of the dye on the mitochondrial membrane; (ii) the efflux of mitochondrial Ca2+ stimulated by hydroperoxide is irreversible in the presence of safranine even if membrane stabilizers such as Mg2+ and ATP are present. It is concluded that the use of safranine to monitor the changes in membrane potential during Ca2+ transport by mitochondria should be avoided or special care be taken.
Collapse
|
29
|
Tang W, Sun GY. Metabolic relationship between arachidonate activation and its transfer to lysophospholipids by brain microsomes. Neurochem Res 1985; 10:1343-53. [PMID: 3934574 DOI: 10.1007/bf00964977] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evidence is presented to indicate a metabolic relationship between arachidonic acid activation and its transfer to lysophospholipids by brain microsomes. Thus, in the presence of 1-acylglycerophosphocholines or 1-acyl-glycerophosphoinositols, the activation of labeled arachidonate to its acyl-CoA was enhanced, and the acyl-CoA formed was, in turn, transferred to the lysophospholipids to form the respective diacyl-glycerophospholipids. The "coupling effect" seems to pertain mainly to the lysophospholipids which are good substrates of the acyltransferase. Other lyso-compounds were either not effective or inhibitory to the arachidonate activation process. The activation-transfer activity mediated by the fatty acid ligase and acyltransferase could be dissociated by Triton X-100, which apparently stimulated the acyl-CoA ligase activity but inhibited the acyltransferase. These results suggest that fatty acid ligase and acyltransferase are located in close proximity within the membrane domain. The existence of a close metabolic relationship between these two enzymic reactions is important for maintaining a dynamic equilibrium between the free fatty acids and the membrane phospholipids. The mechanism is also useful in regulating the cellular acyl-CoA and lysophospholipid metabolism, because both compounds have membrane perturbing properties when present in excessive quantity.
Collapse
|
30
|
Lin AY, Sun GY, MacQuarrie R. Partial purification and properties of long-chain acyl-CoA hydrolase from rat brain cytosol. Neurochem Res 1984; 9:1571-91. [PMID: 6151625 DOI: 10.1007/bf00964592] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Long-chain acyl-CoA hydrolase (EC 3.1.2.2) has been partially purified from the 100,000 X g supernatant fraction of rat brain tissue. The purification procedure included chromatography on gel filtration media, DEAE-cellulose, CM-cellulose, and hydroxyapatite. The partially purified enzyme had a specific activity of 7.1 mumol/min-mg, and when analyzed by polyacrylamide gel electrophoresis, revealed one major and three minor bands of protein in the presence of dodecyl sulfate and two major bands of protein in the absence of dodecyl sulfate. The enzyme had a molecular weight of 65,000 and showed no evidence of aggregated or dissociated forms. The highest catalytic activity was exhibited with palmitoyl-CoA and oleoyl-CoA as substrates. Lower activity was found with decanoyl-CoA as the substrate and little or no activity was found with acetyl-CoA, malonyl-CoA, butyryl-CoA, or acetoacetyl-CoA. The enzyme was inhibited by CoA, various metal ions, including Mn2+, Mg2+ and Ca2+, and by bovine serum albumin. Heating the enzyme produced a loss of activity which corresponded to a first-order kinetic process, the rate of which was independent of the choice of substrate used to measure enzyme activity. This finding supports the idea that the purification procedure yields a single species of long-chain acyl-CoA hydrolase.
Collapse
|
31
|
|
32
|
Somers CJ, McLoughlin JV. Malignant hyperthermia in pigs: calcium ion uptake by mitochondria from skeletal muscle of susceptible animals given neuroleptic drugs and halothane. J Comp Pathol 1982; 92:191-8. [PMID: 6123529 DOI: 10.1016/0021-9975(82)90077-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Strosznajder J, Tang W, Manning R, Lin AY, MacQuarrie R, Sun GY. Metabolism of oleoyl-CoA in rat brain synaptosomes: effects of calcium and post-decapitative ischemia. Neurochem Res 1981; 6:1231-40. [PMID: 6123958 DOI: 10.1007/bf00966680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The hydrolysis of acyl-CoA by acyl-CoA hydrolase (EC 3.1.2.2.) in brain synaptosomes was inhibited by calcium. This inhibition was partly due to interaction of Ca2+ with the acyl-CoA, which was present in the soluble form, and partly due to complex formation among acyl-CoA, Ca2+ and membrane phospholipids. The inhibition of acyl-CoA hydrolase activity, as well as the complex formation, could be reversed if incubation was carried out in the presence of Ca2+ chelating agents. Synaptosomes isolated from brain samples after 1 min of postdecapitative treatment showed a decrease in oleoyl-CoA hydrolase activity. The physiological implication of acyl-CoA metabolism in relation to synaptic function is discussed.
Collapse
|
34
|
Ruthenium red-sensitive and Ruthenium Red-insensitive release of calcium by mitochondria isolated from rat liver and from rat heart. Cell Calcium 1981. [DOI: 10.1016/0143-4160(81)90001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
|
36
|
Zoccarato F, Rugolo M, Siliprandi D, Siliprandi N. Correlated effluxes of adenine nucleotides, Mg2+ and Ca2+ induced in rat-liver mitochondria by external Ca2+ and phosphate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 114:195-9. [PMID: 7215353 DOI: 10.1111/j.1432-1033.1981.tb05136.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The presence of inorganic phosphate and Ca2+ in the external medium induces a closely parallel efflux of both endogenous adenine nucleotides and Mg2+ from rat liver mitochondria. These effluxes are (a) pH-dependent and inhibited by uncouplers, respiration inhibitors and external Mg2+; (b) completely prevented by bongkrekate, but stimulated by atractylate. ATP, ADP or AMP each inhibit the release of Mg2+ promoted by Ca2+ and phosphate; however, in the presence of oligomycin and P1,P5-di(adenosine-5')-pentaphosphate (an inhibitor of adenylate kinase) only ADP is effective. Also the release of accumulated Ca2+ observed when approximately 50% Mg2+ is discharged is retarded by bongkrekate and added Mg2+ whereas it is accelerated by atractylate. All adenine nucleotides have a significant effect in retarding the efflux of accumulated Ca2+ but, in the presence of oligomycin and P1,P5-di(adenosine-5')-pentaphosphate, only ADP is active. From these results we conclude that effluxes of Mg2+, Ca2+ and adenine nucleotide from rat liver mitochondria induced by external phosphate are interconnected and regulated by external ADP and Mg2+ levels.
Collapse
|
37
|
Beatrice MC, Pfeiffer DR. The mechanism of palmitoyl-CoA inhibition of Ca2+ uptake in liver and heart mitochondria. Biochem J 1981; 194:71-7. [PMID: 7305993 PMCID: PMC1162718 DOI: 10.1042/bj1940071] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mechanism by which palmitoyl-CoA inhibits Ca2+ uptake in liver and heart mitochondria was examined. At a given concentration of palmitoyl-CoA, the extent of inhibition is inversely related to the concentration of the respiratory substrate succinate. Palmitoyl-CoA inhibition of uncoupler-stimulated respiration and respiration stimulated by ionophore-A23187-induced Ca2+ cycling is also relieved by high succinate concentrations. These effects of palmitoyl-CoA and succinate concentration are distinct from the increase in inner-membrane permeability, which can be produced by palmitoyl-CoA and Ca2+ [Beatrice, Palmer & Pfeiffer (1980) J. Biol. Chem. 255, 8663-8671]. The apparent K0.5 of the mitochondrial Ca2+ pump is not altered by palmitoyl-CoA. No or negligible effects of palmitoyl-CoA on the Ca2+-uptake rate are observed when ascorbate replaces succinate as an energy source. These findings, together with the known activity of palmitoyl-CoA as a competitive inhibitor of the dicarboxylate carrier [Morel, Lauquin, Lunardi, Duszynski & Vignais (1974) FEBS Lett. 39, 133-138], indicate that palmitoyl-CoA inhibits energy-linked Ca2+ transport by limiting the rate of electron transport through limitation of succinate entry into the mitochondria rather than by directly inhibiting the Ca2+ carrier.
Collapse
|
38
|
Arshad JH, Holdsworth ES. Stimulation of calcium efflux from rat liver mitochondria by adenosine 3'5 cyclic monophosphate. J Membr Biol 1980; 57:207-12. [PMID: 6259364 DOI: 10.1007/bf01869588] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The uptake or release of Ca2+ from rat liver mitochondria was studied by means of a sensitive Ca-electrode. It was found that using palmitoyl coenzyme A together with carnitine and ATP as substrates that Ca2+ was released gradually from mitochondria by adenosine 3'5' cyclic monophosphate. The effect was obtained with either mitochondria preloaded with Ca2+ or with their physiological content of Ca2+. No such release was obtained with the usual substrates used to provide energy for Ca2+ uptake by mitochondria.
Collapse
|
39
|
Arshad JH, Holdsworth ES. Calcium uptake and release by rat liver mitochondria in the presence of rat liver cytosol or the components of cytosol. J Membr Biol 1980; 57:195-205. [PMID: 7205946 DOI: 10.1007/bf01869587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A study has been made of factors present in rat liver cytosol that might regulate the calcium content of mitochondria. A cytosol preparation containing all the components of molecular weight greater than 10,000 prevented uptake and caused early release of accumulated calcium. These effects were due to free long-chain fatty acids and their coenzyme A derivatives present in the cytosol, and these inhibitory effects were controlled by inclusion of Mg2+, carnitine, and adenosine triphosphate at physiological levels in the incubation medium. Palmitoyl carnitine was a good substrate for calcium uptake and did not cause release of calcium from mitochondria. A specific fatty acid-binding protein was found in cytosol which may be the intracellular transport protein for fatty acids.
Collapse
|
40
|
Abstract
Studies were undertaken to determine the mechanisms leading to altered mitochondrial function in ischemic myocardium. A new procedure has been developed to routinely isolate 60-70% of the total mitochondrial protein from heart tissue. After 1 hour of ischemia, mitochondria exhibit decreases of more than 50% in phosphorylating respiration for both NADH- and succinate-linked substrates compared to controls. However, no significant decreases in the efficiency of mitochondrial ATP synthesis (ADP:0) or ATPase activity are observed. Rates of substrate-driven Ca2+ uptake exhibit decreases greater than that seen with phosphorylating respiration with incomplete uptake and premature release of Ca2+. Spectrophotometric measurements in ischemic heart reveal rapid oxidation or loss of mitochondrial NADH with marked "swelling" of the inner membrane compartment; both changes parallel the loss of Ca2+. Significant losses in intramitochondrial adenine nucleotides also are found. Mitochondrial retention of accumulated Ca2+ can be restored by addition of small amounts of exogenous adenine nucleotides (ATP or ADP) with concomitant attenuation of both NADH oxidation and "swelling." The data indicate that, following 1 hour of ischemia, the efficiency of mitochondrial ATP production is still relatively intact whereas both electron transport chain activity and calcium transport are severely compromised. These decreases appear to be related to selective membrane damage in the mitochondrial inner membrane.
Collapse
|
41
|
Wolkowicz P, McMillin-Wood J. Dissociation between mitochondria calcium ion release and pyridine nucleotide oxidation. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)70471-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(18)43551-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Becker GL. Steady state regulation of extramitochondrial Ca2+ by rat liver mitochondria: effects of Mg2+ and ATP. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 591:234-9. [PMID: 7397122 DOI: 10.1016/0005-2728(80)90155-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An electrode-based system capable of monitoring ionized Ca2+ concentrations ([Ca2+]) < 1 microM was used to examine the regulation of extramitochondrial [Ca2+] by rat liver mitochondria. At the point of steady state balance between Ca2+ uptake and release, [Ca2+] ranged between 0.5 and 1.0 microM in a KCl/Hepes/succinate medium. When 1 mM Mg2+ was included in this basal medium, the range of steady state [Ca2+] values was 1-2 microM. Further additions (3 mM MgATP and 2 mM Pi) lowered extramitochondrial [Ca2+] to 0.4-0.8 microM. Thus under experimental conditions simulating the control of cytosolic [Ca2+], liver mitochondria buffered extramitochondrial [Ca2+] at constant values within the range of [Ca2+] estimated for liver cytosol; and cytosolic levels of Mg2+ and ATP significantly affected those steady state [Ca2+] values in directions consistent with previously reported effects of those modulators on mitochondrial Ca2+ uptake and release.
Collapse
|
44
|
Bikle DD, Askew EW, Zolock DT, Morrissey RL, Herman RH. Calcium accumulation by chick intestinal mitochondria. Regulation by vitamin D-3 and 1,25-dihydroxyvitamin D-3. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 598:561-74. [PMID: 6155944 DOI: 10.1016/0005-2736(80)90036-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have the evaluated the effect of vitamin D-3 and its metabolite 1,25-dihydroxyvitamin D-3 on Ca2+ accumulation by chick intestinal mitochondria. Ca2+ accumulation appears to occur in two phases: an early, transient accumulation into an Na+-labile pool followed by an ATP-dependent accumulation into an Na+-resistant pool. Ca2+ accumulation is extensive at free Ca2+ concentrations greater than 3 . 10(-6) M in the presence of ATP. Ruthenium red and dinitrophenol block Ca2+ accumulation, but atractyloside does not. Oligomycin blocks ATP-supported accumulation completely with a partial inhibition of ATP and malate-supported accumulation. Little difference could be found in mitochondrial preparations from vitamin D-deficient chicks compared to those from vitamin D-3 (or 1,25(OH)2D-3)-supplemented chicks with respect to respiratory control, oxygen consumption, efficiency of oxidative phosphorylation, affinity for Ca2+, or the rate and extent of ATP-supported Ca2+ accumulation. Intestinal cytosol stimulated Ca2+ accumulation, but this was not specific with respect to vitamin D status or tissue of origin, nor was it duplicated by chick intestinal Ca2+-binding protein. 30 ng/ml 1,25(OH)2D-3 stimulated Ca2+ accumulation directly, regardless of the presence of intestinal cytosol. Other vitamin D metabolites were less potent: 25-hydroxyvitamin D-3 greater than 24,25-dihydroxyvitamin D-3 = vitamin D-3. Since increasing the free Ca2+ concentration from 3 . 10(-6) to 1 . 10(-5) M increased Ca2+ accumulation approx. 50-fold, whereas direct stimulation by 1,25(OH)2D-3 in vitro increased Ca2+ accumulation less than 2-fold, we conclude that 1,25(OH)2D-3 influences mitochondrial accumulation of Ca2+ in vivo primarily by altering cytosol concentrations of free Ca2+.
Collapse
|
45
|
Nicholls DG, Brand MD. The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides. Biochem J 1980; 188:113-8. [PMID: 7406874 PMCID: PMC1162544 DOI: 10.1042/bj1880113] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ca2+ efflux from rat liver mitochondria can occur when endogenous nicotinamide nucleotides are oxidized. It is suggested that nicotinamide nucleotide induced by acetoacetate sensitizes the mitochondria to damaage resulting from the accumulation of Ca2+ in the presence of Pi. Thus, acetoacetate-induced Ca2+ efflux is associated with a loss of respiratory control. Both the effluxes induced by acetoacetate and by high Ca2+ accumulation are prevented by ATP plus oligomycin, although these agents do not prevent the endoagenous nicotinamide nucleotides from becoming oxidized on addition of acetoacetate. Acetoacetate addition only results in Ca2+ release if the Ca2+ and Pi concentration are above a critical value. The acetoacetate-induced Ca2+ effflux is exactly paralled by the virtually complete collapse of the membrane potential. The presence of acetoacetate decreases the concentration of total Ca2+ necessary to induced mitochondrial damage by about 130 nmol of Ca2+/mg of protein. It is concluded that acetoacetate-induced efflux occurs by reversal of the Ca2+ uniporter after the collapse of the membrane potential.
Collapse
|
46
|
Nicholls DG, Scott ID. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J 1980; 186:833-9. [PMID: 7396840 PMCID: PMC1161720 DOI: 10.1042/bj1860833] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria from guinea-pig cerebral cortex incubated in the presence of Pi or acetate are unable to regulate the extramitochondrial free Ca2+ at a steady-state which is independent of the Ca2+ accumulated in the matrix. This is due to the superimposition on kinetically regulated Ca2+ cycling of a membrane-potential-dependent reversal of the Ca2+ uniporter. The latter efflux is a consequence of a low membrane potential, which correlates with a loss of adenine nucleotide loss from the matrix, enable the mitochondria to maintain a high membrane potential and allow the mitochondria to buffer the extramitochondrial free Ca2+ precisely when up to 200 nmol of Ca2+/mg of protein is accumulated in the matrix. The steady-state extramitochondrial free Ca2+ is maintained as low as 0.3 microM. The Na+-activated efflux pathway is functional in the presence of ATP and oligomycin and accounts precisely for the change in steady-state free Ca2+ induced by Na+ addition. The need to distinguish carefully between kinetic and membrane-potential-dependent efflux pathways is emphasized and the competence of brain mitochondria to regulate cytosolic free Ca2+ concentrations in vivo is discussed.
Collapse
|
47
|
|
48
|
Wolkowicz PE, McMillin-Wood J. Respiration-dependent calcium ion uptake by two preparations of cardiac mitochondria. Effects of palmitoyl-coenzyme A and palmitoylcarnitine on calcium ion cycling and nicotinamide nucleotide reduction state. Biochem J 1980; 186:257-66. [PMID: 6154457 PMCID: PMC1161526 DOI: 10.1042/bj1860257] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ca(2+) uptake and the effect of the uptake inhibitors palmitoyl-CoA and palmitoylcarnitine were examined in two preparations of dog cardiac mitochondria. Mitochondria prepared by using the Nagarse technique was 2.5-fold more active in respiration-dependent Ca(2+) uptake than were mitochondria isolated by using the Polytron procedure. Palmitoyl-CoA and palmitoylcarnitine inhibited Ca(2+) uptake in both preparations uncompetitively, with K(i,app) 0.4 and 20mum. Ca(2+)-uptake rates were related to, or influenced by, the concentration of mitochondrial reduced nicotinamide nucleotides, with uptake slowing as this concentration decreased. When most of the nicotinamide nucleotides was oxidized, Ca(2+) release and respiratory stimulation were observed. In the presence of Ruthenium Red and palmitoyl-CoA, oxidation of nicotinamide nucleotides was abolished and the time to Ca(2+) release was shortened corresponding to the time of onset of nicotinamide nucleotide oxidation in the absence of Ruthenium Red. The results suggest that NAD(P)H oxidation in the presence of rotenone was a consequence of Ca(2+) re-uptake and that net Ca(2+) release could be observed as reduced nicotinamide nucleotide concentrations declined. Although nicotinamide nucleotide oxidation occurred in the presence of rotenone, it was not linked in an apparent manner to acyl-group metabolism (palmitoylcarnitine was less effective than palmitoyl-CoA). Therefore either a by-pass of the rotenone block or a direct interaction of NAD(P)H with the Ca(2+)-uptake process was possible. Loss of NADH occurred before respiratory stimulation, and this loss may relate to decreased coupling efficiency at sites 2 and 3 of the respiratory chain, as suggested by others [Bhuvaneswaran & Wadkins (1978) Biochem. Biophys. Res. Commun.82, 648-654].
Collapse
|
49
|
SARIS NILSERIK, ÅKERMAN KARLE. Uptake and Release of Bivalent Cations in Mitochondria1 1Dedicated to Eva. CURRENT TOPICS IN BIOENERGETICS 1980. [DOI: 10.1016/b978-0-12-152510-1.50010-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 1979; 195:468-77. [PMID: 112926 DOI: 10.1016/0003-9861(79)90373-4] [Citation(s) in RCA: 370] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|