1
|
Tu YC, Chao FY, Tsai MF. Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543936. [PMID: 37333420 PMCID: PMC10274775 DOI: 10.1101/2023.06.06.543936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The mitochondrial Ca 2 + uniporter mediates the crucial cellular process of mitochondrial Ca 2 + uptake, which regulates cell bioenergetics, intracellular Ca 2 + signaling, and cell death initiation. The uniporter contains the pore-forming MCU subunit, an EMRE protein that binds to MCU, and the regulatory MICU1 subunit, which can dimerize with MICU1 or MICU2 and under resting cellular [Ca 2 + ] occludes the MCU pore. It has been known for decades that spermine, which is ubiquitously present in animal cells, can enhance mitochondrial Ca 2 + uptake, but the underlying mechanisms remain unclear. Here, we show that spermine exerts dual modulatory effects on the uniporter. In physiological concentrations of spermine, it enhances uniporter activity by breaking the physical interactions between MCU and the MICU1-containing dimers to allow the uniporter to constitutively take up Ca 2 + even in low [Ca 2 + ] conditions. This potentiation effect does not require MICU2 or the EF-hand motifs in MICU1. When [spermine] rises to millimolar levels, it inhibits the uniporter by targeting the pore region in a MICU-independent manner. The MICU1-dependent spermine potentiation mechanism proposed here, along with our previous finding that cardiac mitochondria have very low MICU1, can explain the puzzling observation in the literature that mitochondria in the heart show no response to spermine.
Collapse
Affiliation(s)
- Yung-Chi Tu
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Fan-Yi Chao
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ming-Feng Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
2
|
Salvi M, Toninello A. Effects of polyamines on mitochondrial Ca2+ transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1661:113-24. [PMID: 15003874 DOI: 10.1016/j.bbamem.2003.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 11/27/2003] [Accepted: 12/04/2003] [Indexed: 11/26/2022]
Abstract
Mammalian mitochondria are able to enhance Ca(2+) accumulation in the presence of polyamines by activating the saturable systems of Ca(2+) inward transport and buffering extramitochondrial Ca(2+) concentrations to levels similar to those in the cytosol of resting cells. This effect renders them responsive to regulate free Ca(2+) concentrations in the physioloical range. The mechanism involved is due to a rise in the affinity of the Ca(2+) transport system, induced by polyamines, most probably exhibiting allosteric behaviour. The regulatory site of this mechanism is the so-called S(1) binding site of polyamines, which operates in physiological conditions and is located in the energy well between the two peaks present in the energy profile of mitochondrial spermine transport. Spermine is bidirectionally transported across teh inner membrane by cycling, in which influx and efflux are driven by electrical and pH gradients, respectively. Most probably, polyamine affects the Ca(2+) transport system when it acts from the outside-that is, in the direction of its uniporter channel, in order to reach the S(1) site. Important physiological functions are related to activation of Ca(2+) transport systems by polyamines and their interactions with the S(1) site. These functions include a rise in the metabolic rate for energy supply and modulation of mitochondrial permeability transition induction, with consequent effects on the triggering of the apoptotic pathway.
Collapse
Affiliation(s)
- Mauro Salvi
- Dipartimento di Chimica Biologica, Universita' di Padova, Istituto di Neuroscienze del C.N.R., Unita' per lo Studio delle Biomembrane, Via G. Colombo 3, 35121 Padua, Italy
| | | |
Collapse
|
3
|
Abstract
This review provides a selective history of how studies of mitochondrial cation transport (K+, Na+, Ca2+) developed in relation to the major themes of research in bioenergetics. It then covers in some detail specific transport pathways for these cations, and it introduces and discusses open problems about their nature and physiological function, particularly in relation to volume regulation and Ca2+ homeostasis. The review should provide the basic elements needed to understand both earlier mitochondrial literature and current problems associated with mitochondrial transport of cations and hopefully will foster new interest in the molecular definition of mitochondrial cation channels and exchangers as well as their roles in cell physiology.
Collapse
Affiliation(s)
- P Bernardi
- Department of Biomedical Sciences, University of Padova, and Consiglio Nazionale delle Ricerche Center for the Study of Biomembranes, Padova, Italy.
| |
Collapse
|
4
|
Votyakova TV, Wallace HM, Dunbar B, Wilson SB. The covalent attachment of polyamines to proteins in plant mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:250-7. [PMID: 10091605 DOI: 10.1046/j.1432-1327.1999.00147.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant mitochondria from both potato and mung bean incorporated radioactivity into acid insoluble material when incubated with labelled polyamines (spermine, spermidine and putrescine). Extensive washing of mitochondrial precipitates with trichloroacetic acid and the excess of cold polyamine failed to remove bound radioactivity. Addition of nonradioactive polyamine stopped further incorporation of radioactivity but did not release radioactivity already bound. The radioactivity is incorporated into the membrane fraction. The labelling process has all the features of an enzymatic reaction: it is long lasting with distinctive kinetics peculiar to each polyamine, it is temperature dependent and is affected by N-ethylmaleimide. The latter inhibits the incorporation of putrescine but stimulates the incorporation of spermine and spermidine. Treatment of prelabelled mitochondria with pepsin releases bound radioactivity thus indicating protein to be the ligand for the attachment of polyamines. HPLC of mitochondrial hydrolysates revealed that the radioactivity bound to mitochondria is polyamines; traces of acetyl polyamines were also found in some samples. On autoradiograms of SDS/PAGE gels several radioactive bands of proteins were detected. Protein sequencing of labelled spots from a 2D gel gave a sequence which was 60% identical to catalase. We suggest that the attachment of polyamines to mitochondrial proteins occurs cotranslationally possibly via transglutaminases.
Collapse
Affiliation(s)
- T V Votyakova
- Department of Molecular and Cell Biology, University of Aberdeen, Scotland
| | | | | | | |
Collapse
|
5
|
Rustenbeck I, Eggers G, Reiter H, Münster W, Lenzen S. Polyamine modulation of mitochondrial calcium transport. I. Stimulatory and inhibitory effects of aliphatic polyamines, aminoglucosides and other polyamine analogues on mitochondrial calcium uptake. Biochem Pharmacol 1998; 56:977-85. [PMID: 9776308 DOI: 10.1016/s0006-2952(98)00232-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, the regulation of mitochondrial Ca2+ transport by polyamines structurally related to spermine and by analogous polycationic compounds was characterized. Similar to spermine, a number of amino groups containing cationic compounds exerted a dual effect on Ca2+ transport of isolated rat liver mitochondria: a decrease in Ca2+ uptake velocity and an enhancement of Ca2+ accumulation. In contrast to the effects of spermine and other aliphatic polyamines, however, the accumulation-enhancing effect of aminoglucosides, basic polypeptides, and metal-amine complexes turned into an inhibition of Ca2+ accumulation at higher concentrations. Within groups of structurally related compounds, the potency to decrease Ca2+ uptake velocity and to enhance Ca2+ accumulation correlated with the number of cationic charges. The presence of multiple, distributed cationic charges was a necessary, but not sufficient criterion for effects on mitochondrial Ca2+ transport, because cationic polyamines and basic oligopeptides which did not enhance mitochondrial Ca2+ accumulation could be identified. Spermine was not able to antagonize the blocking of Ca2+ uptake by ruthenium red, but rather showed an apparent synergism, which can be explained as a displacement of membrane-bound Ca2+ by spermine. The aminoglucosides, gentamicin and neomycin, but not the inactive polyamine bis(hexamethylene)-triamine, inhibited the binding of spermine to intact mitochondria. Apparently, the binding of spermine, gentamicin, and a number of polyamine analogues to low-affinity binding sites at mitochondria, which have low, but distinct structural requirements and which may correspond to phospholipid headgroups, indirectly influences the activity state of the mitochondrial Ca2+ uniporter. The ability of aminoglucosides to displace spermine from the mitochondria and to inhibit mitochondrial Ca2+ accumulation may contribute to the mitochondrial lesions, which are known to occur early in the course of aminoglucoside-induced nephrotoxicity.
Collapse
Affiliation(s)
- I Rustenbeck
- Institute of Pharmacology and Toxicology, University of Göttingen, Germany
| | | | | | | | | |
Collapse
|
6
|
Johnson TD. Polyamines and cerebral ischemia. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1998; 50:193-258. [PMID: 9670780 DOI: 10.1007/978-3-0348-8833-2_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been well established that alterations in polyamine metabolism are associated with animal models of global ischemia. Recently, this has been extended to include models of focal ischemia and traumatic brain injury. There is much evidence to support the idea that polyamines may play a multifaceted detrimental role following ischemia reperfusion. Due to the deficit of knowledge about their physiology in the CNS, the link between ischemia-induced alterations in polyamine metabolism and neuronal injury remains to be substantiated. With the recent revelation that polyamines are major intracellular modulators of inward rectifier potassium channels and certain types of NMDA and AMPA receptors, the long wait for the physiologic relevance of these ubiquitous compounds may be in sight. Therefore, it is now conceivable that the alterations in polyamines could have major effects on ion homeostasis in the CNS, especially potassium, and thus account for the observed injury after cerebral ischemia.
Collapse
Affiliation(s)
- T D Johnson
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Magnus G, Keizer J. Model of beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1158-73. [PMID: 9575813 DOI: 10.1152/ajpcell.1998.274.4.c1158] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We continue our development of a kinetic model of bursting electrical activity in the pancreatic beta-cell (J. Keizer and G. Magnus. Biophys. J. 56: 229-242, 1989), including the influence of Ca2+ handling by the mitochondria. Our minimal model of mitochondrial Ca2+ handling [G. Magnus and J. Keizer. Am. J. Physiol. 273 (Cell Physiol. 42): C717-C733, 1997] is expanded to include the D-glucose dependence of the rate of production of mitochondrial reducing equivalents. The Ca2+ dependence of the mitochondrial dehydrogenases, which is also included in the model, plays only a small role in the simulations, since the dehydrogenases appear to be maximally activated when D-glucose concentrations are sufficient to produce bursting. A previous model of ionic currents in the plasma membrane is updated using a recent experimental characterization of the dependence of the conductance of the ATP-sensitive K+ (KATP) current on adenine nucleotides. The resulting whole cell model is complex, involving 12 dynamic variables that couple Ca2+ handling in the cytoplasm and the mitochondria with electrical activity in the plasma and inner mitochondrial membranes. Simulations with the whole cell model give rise to bursting electrical activity similar to that seen in pancreatic islets and clusters of pancreatic beta-cells. The full D-glucose dose response of electrical activity is obtained if the cytosolic rate of ATP hydrolysis is a sigmoidal function of glucose. The simulations give the correct shape, period, and phase of the associated oscillations in cytosolic Ca2+, predict that the conductance of the KATP current oscillates out of phase with electrical activity [as recently observed in ob/ob mice (O. Larsson, H. Kindmark, R. Bränstrom, B. Fredholm, and P.-O. Berggren. Proc. Natl. Acad. Sci. USA 93: 5161-5165, 1996)], and make other novel predictions. In this model, bursting results because Ca2+ uptake into mitochondria during the active phase reduces the mitochondrial inner membrane potential, reducing the rate of production of ATP, which in turn activates the KATP current and repolarizes the plasma membrane.
Collapse
Affiliation(s)
- G Magnus
- Institute of Theoretical Dynamics, University of California, Davis 95616, USA
| | | |
Collapse
|
8
|
Bazhenova EN, Deryabina YI, Eriksson O, Zvyagilskaya RA, Saris NE. Characterization of a high capacity calcium transport system in mitochondria of the yeast Endomyces magnusii. J Biol Chem 1998; 273:4372-7. [PMID: 9468487 DOI: 10.1074/jbc.273.8.4372] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ca2+ transport system of Endomyces magnusii mitochondria has been shown previously to be activated by spermine. Here we report it to be regulated also by low, physiological ADP concentrations, by the intramitochondrial NADH/NAD+ ratio, and by Ca2+ ions. The combination of all these physiological modulators induced high initial rates of Ca2+ uptake and high Ca2+-buffering capacity of yeast mitochondria, enabling them to lower the medium [Ca2+] to approximately 0.2 microM. The mechanisms of stimulation by these agents are discussed.
Collapse
Affiliation(s)
- E N Bazhenova
- Laboratory of Biological Oxidation, Bach Institute of Biochemistry, Russian Academy of Sciences, 117071 Moscow, Russia
| | | | | | | | | |
Collapse
|
9
|
Kakkar P, Mehrotra S, Viswanathan PN. tBHP induced in vitro swelling of rat liver mitochondria. Mol Cell Biochem 1996; 154:39-45. [PMID: 8717415 DOI: 10.1007/bf00248459] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tert-butyl hydroperoxide induced swelling of freshly isolated rat liver mitochondria was inhibited by butylated hydroxytoluene, butylated hydroxyanisole and alpha-tocopherol by acting at the initial phase. EDTA was more effective than EGTA in reducing the initial swelling and so were desferal and bipyrridyl. Spermine, an allosteric activator of calcium uptake, enhanced swelling whereas lanthanum and ruthenium red, the Ca2+ uniport blockers, reduced it. Inhibition of phospholipase A2 by dibucaine and Ca2+ activated proteases by antipain and leupeptin also reduced t-BHP induced swelling. The data indicate that peroxidative mitochondrial swelling involves an iron mediated initial rapid phase and a subsequent calcium dependent propagation phase.
Collapse
Affiliation(s)
- P Kakkar
- Ecotoxicology Section, Industrial Toxicology Research Centre, Lucknow, India
| | | | | |
Collapse
|
10
|
Seiler N, Hardy A, Moulinoux JP. Aminoglycosides and polyamines: targets and effects in the mammalian organism of two important groups of natural aliphatic polycations. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1996; 46:183-241. [PMID: 8754206 DOI: 10.1007/978-3-0348-8996-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- N Seiler
- Groupe de Recherche en Thérapeutique Anticancereuse URA CNRS 1529 DRED 1266, Faculté de Médecine, Université de Rennes, France
| | | | | |
Collapse
|
11
|
Abstract
The identification of intramitochondrial free calcium ([Ca2+]m) as a primary metabolic mediator [see Hansford (this volume) and Gunter, T. E., Gunter, K. K., Sheu, S.-S., and Gavin, C. E. (1994) Am. J. Physiol. 267, C313-C339, for reviews] has emphasized the importance of understanding the characteristics of those mechanisms that control [Ca2+]m. In this review, we attempt to update the descriptions of the mechanisms that mediate the transport of Ca2+ across the mitochondrial inner membrane, emphasizing the energetics of each mechanism. New concepts within this field are reviewed and some older concepts are discussed more completely than in earlier reviews. The mathematical forms of the membrane potential dependence and concentration dependence of the uniporter are interpolated in such a way as to display the convenience of considering Vmax to be an explicit function of the membrane potential. Recent evidence for a transient rapid conductance state of the uniporter is discussed. New evidence concerning the energetics and stoichiometries of both Na(+)-dependent and Na(+)-independent efflux mechanisms is reviewed. Explicit mathematical expressions are used to describe the energetics of the system and the kinetics of transport via each Ca2+ transport mechanism.
Collapse
Affiliation(s)
- K K Gunter
- Department of Biophysics, University of Rochester Medical School, New York 14642
| | | |
Collapse
|
12
|
Votyakova TV, Bazhenova EN, Zvjagilskaya RA. Yeast mitochondrial calcium uptake: regulation by polyamines and magnesium ions. J Bioenerg Biomembr 1993; 25:569-74. [PMID: 8132496 DOI: 10.1007/bf01108413] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spermine, spermidine, and magnesium ions modulate the kinetic parameters of the Ca2+ transport system of Endomyces magnusii mitochondria. Mg2+ at concentrations up to 5 mM partially inhibits Ca2+ transport with a half-maximal inhibiting concentration of approximately 0.5 mM. In the presence of 2 mM MgCl2, the S0.5 value of the Ca2+ transport system increases from 220 to 490 microM, which indicates decreased affinity for the system. Spermine and spermidine exert an activating effect, having half-maximal concentrations of 12 and 50 microM, respectively. In the case of spermine, the S0.5 value falls to 50-65 microM, which implies an increase in the transport system affinity for Ca2+. Both Mg2+ and spermine cause a decrease of the Hill coefficient, giving evidence for a smaller degree of cooperativity. Spermine and spermidine enable yeast mitochondria to remove Ca2+ from the media completely. In contrast, Mg2+ lowers the mitochondrial buffer capacity. When both Mg2+ and spermine are present in the medium, their effects on the S0.5 value and the free extramitochondrial Ca2+ concentration are additive. The ability of spermine and Mg2+ to regulate yeast mitochondrial Ca2+ transport is discussed.
Collapse
Affiliation(s)
- T V Votyakova
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
13
|
Saris NE, Sirota TV, Virtanen I, Niva K, Penttilä T, Dolgachova LP, Mironova GD. Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycoproteinT. J Bioenerg Biomembr 1993; 25:307-12. [PMID: 7688718 DOI: 10.1007/bf00762591] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyclonal rabbit antibodies against a Ca(2+)-binding mitochondrial glycoprotein were found to inhibit the uniporter-mediated transport of Ca2+ in mitoplasts prepared from rat liver mitochondria. Spermine, a modulator of the uniporter, decreased the inhibition. This glycoprotein of M(r) 40,000, isolated from beef heart mitochondria and earlier shown to form Ca(2+)-conducting channels in black-lipid membranes, thus is a good candidate for being a component of the uniporter. Antibody-IgG was found to specifically bind to mitochondria in human fibroblasts.
Collapse
Affiliation(s)
- N E Saris
- Department of Medical Chemistry, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
14
|
Paschen W, Cleef M, Röhn G, Müller M, Pajunen AE. Ischemia-induced disturbances of polyamine synthesis. PROGRESS IN BRAIN RESEARCH 1993; 96:147-60. [PMID: 8332738 DOI: 10.1016/s0079-6123(08)63264-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W Paschen
- Max-Planck Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| | | | | | | | | |
Collapse
|
15
|
Abstract
Biosynthesis of the polyamines spermidine and spermine and their precursor putrescine is controlled by the activity of the two key enzymes ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC). In the adult brain, polyamine synthesis is activated by a variety of physiological and pathological stimuli, resulting most prominently in an increase in ODC activity and putrescine levels. The sharp rise in putrescine levels observed following severe cellular stress is most probably the result of an increase in ODC activity and decrease in SAMDC activity or an activation of the interconversion of spermidine into putrescine via the enzymes spermidine N-acetyltransferase and polyamine oxidase. Spermidine and spermine levels are usually less affected by stress and are reduced in severely injured areas. Changes of polyamine synthesis and metabolism are most pronounced in those pathological conditions that induce cell injury, such as severe metabolic stress, exposure to neurotoxins or seizure. Putrescine levels correlate closely with the density of cell necrosis. Because of the close relationship between the extent of post-stress changes in polyamine metabolism and density of cellular injury, it has been suggested that polyamines play a role in the manifestation of structural defects. Four different mechanisms of polyamine-dependent cell injury are plausible: (1) an overactivation of calcium fluxes and neurotransmitter release in areas with an overshoot in putrescine formation; (2) disturbances of the calcium homeostasis resulting from an impairment of the calcium buffering capacity of mitochondria in regions in which spermine levels are reduced; (3) an overactivation of the NMDA receptor complex caused by a release of polyamines into the extracellular space during ischemia or after ischemia and prolonged recirculation in the tissue surrounding severely damaged areas; (4) an overproduction of hydrogen peroxide resulting from an activation of the interconversion of spermidine into putrescine via the enzymes spermidine N-acetyltransferase and polyamine oxidase. Insofar as a sharp activation of polyamine synthesis is a common response to a variety of physiological and pathological stimuli, studying stress-induced changes in polyamine synthesis and metabolism may help to elucidate the molecular mechanisms involved in the development of cell injury induced by severe stress.
Collapse
Affiliation(s)
- W Paschen
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| |
Collapse
|
16
|
Lenzen S, Münster W, Rustenbeck I. Dual effect of spermine on mitochondrial Ca2+ transport. Biochem J 1992; 286 ( Pt 2):597-602. [PMID: 1530590 PMCID: PMC1132939 DOI: 10.1042/bj2860597] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. A dual effect of the polyamine spermine on Ca2+ uptake by isolated rat liver, brain and heart mitochondria could be demonstrated by using a high-resolution system for studying mitochondrial Ca2+ transport. Depending on the experimental situation, spermine had an inhibiting or accelerating effects on mitochondrial Ca(2+)-uptake rate, but invariably increased the mitochondrial Ca2+ accumulation. 2. Both effects were concentration-dependent and clearly discernible on the basis of their different kinetic characteristics. For mitochondria from all three tissues the half-maximally effective concentration for inhibition of the initial rate of Ca2+ uptake was approx. 180 microM, whereas that for the subsequent stimulation of Ca2+ accumulation was approx. 50 microM. 3. Acceleration of the initial uptake rate could be seen when the mitochondria were preloaded with spermine during a 2 min preincubation period and thereafter incubated in a medium without spermine. 4. When such spermine-preloaded mitochondria were incubated in a spermine-containing medium, the increase in Ca(2+)-accumulation capacity was maintained in spite of an unchanged rate of Ca2+ uptake. 5. Mg2+ interacted with the effects of spermine in a differential manner, enhancing the initial inhibition of the rate of mitochondrial Ca2+ uptake and diminishing the subsequent stimulation of mitochondrial Ca2+ accumulation. 6. This dual effect of spermine on mitochondrial Ca2+ transport resolves the apparent paradox that a polycationic compound can act as a stimulator of Ca2+ uptake.
Collapse
Affiliation(s)
- S Lenzen
- Institute of Pharmacology and Toxicology, University of Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
17
|
Awasthi S, Kakkar P, Viswanathan PN. Inhibition of liposomal lipid peroxidation by spermidine. J Microencapsul 1992; 9:237-42. [PMID: 1593407 DOI: 10.3109/02652049109021240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spermidine was found to inhibit the in vitro formation of thiobarbituric acid-reactive material from sonicated vesicles of rat brain and individual phospholipids, especially in the presence of externally added iron. With arachidonic acid incorporated liposomes spermidine inhibited lipid peroxidation in the presence or the absence of Fe2+, to similar extent. Thus spermidine inhibition of lipid peroxidation may not be entirely iron-dependent.
Collapse
Affiliation(s)
- S Awasthi
- Department of Pathology, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
18
|
Scalabrino G, Lorenzini EC, Ferioli ME. Polyamines and mammalian hormones. Part I: Biosynthesis, interconversion and hormone effects. Mol Cell Endocrinol 1991; 77:1-35. [PMID: 1815994 DOI: 10.1016/0303-7207(91)90056-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G Scalabrino
- Institute of General Pathology, University of Milan, Italy
| | | | | |
Collapse
|
19
|
Seiler N. Pharmacological properties of the natural polyamines and their depletion by biosynthesis inhibitors as a therapeutic approach. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1991; 37:107-59. [PMID: 1763181 DOI: 10.1007/978-3-0348-7139-6_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- N Seiler
- Marion Merrell Dow Research Institute, Strasbourg, France
| |
Collapse
|
20
|
Missiaen L, Wuytack F, Raeymaekers L, De Smedt H, Droogmans G, Declerck I, Casteels R. Ca2+ extrusion across plasma membrane and Ca2+ uptake by intracellular stores. Pharmacol Ther 1991; 50:191-232. [PMID: 1662401 DOI: 10.1016/0163-7258(91)90014-d] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this review is to summarize the various systems that remove Ca2+ from the cytoplasm. We will initially focus on the Ca2+ pump and the Na(+)-Ca2+ exchanger of the plasma membrane. We will review the functional regulation of these systems and the recent progress obtained with molecular-biology techniques, which pointed to the existence of different isoforms of the Ca2+ pump. The Ca2+ pumps of the sarco(endo)plasmic reticulum will be discussed next, by summarizing the discoveries obtained with molecular-biology techniques, and by reviewing the physiological regulation of these proteins. We will finally briefly review the mitochondrial Ca(2+)-uptake mechanism.
Collapse
Affiliation(s)
- L Missiaen
- Laboratory of Molecular Signalling, Department of Zoology, Cambridge, U.K
| | | | | | | | | | | | | |
Collapse
|
21
|
Submicromolar Ca2+ regulates phosphorylating respiration by normal rat liver and AS-30D hepatoma mitochondria by different mechanisms. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)86979-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Rottenberg H, Marbach M. Regulation of Ca2+ transport in brain mitochondria. I. The mechanism of spermine enhancement of Ca2+ uptake and retention. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1016:77-86. [PMID: 2310743 DOI: 10.1016/0005-2728(90)90009-s] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.
Collapse
Affiliation(s)
- H Rottenberg
- Pathology Department, Hahnemann University, Philadelphia, PA 19102
| | | |
Collapse
|
23
|
Kröner H. Activation of calcium uptake in rat liver mitochondria by aminoglucoside antibiotics. Biochem Pharmacol 1990; 39:891-4. [PMID: 2310413 DOI: 10.1016/0006-2952(90)90204-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ca uptake in rat liver mitochondria is accelerated by various aminoglucoside antibiotics and, to a lesser degree, by triethylenetetramine and by protamine. With 1 mM Mg2+ and at a concentration of Ca2+ = 2 microM maximal (about six-fold) activation is achieved with 20 microM neomycin; at higher concentrations of the antibiotic the velocity of Ca uptake decreases. Activation to the same degree by gentamicin, kanamycin or streptomycin requires higher concentrations of the antibiotics. The reason for the acceleration of Ca uptake by neomycin is an allosteric alteration of the kinetics corresponding to that previously observed in the presence of spermine. The conformity with effects of spermine and possible inferences of that conformity are discussed.
Collapse
Affiliation(s)
- H Kröner
- Institut für Physiologische Chemie I, Universität Düsseldorf, Federal Republic of Germany
| |
Collapse
|
24
|
Votyakova TV, Bazhenova EN, Zvjagilskaya RA. Polyamines improve Ca2+ transport system of the yeast mitochondria. FEBS Lett 1990; 261:139-41. [PMID: 2307229 DOI: 10.1016/0014-5793(90)80655-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spermine at concentrations of 12-100 microM considerably activates the Ca2+ transport system of the Endomyces magnusii yeast mitochondria. As a result, in the presence of spermine the mitochondria are able to decrease extramitochondrial Ca2+ to the physiological level. At Ca2+ concentrations up to 200 microM, spermine enhances the initial rate of Ca2+ uptake (a half-maximal effect at 12 microM spermine). The Ca2+ concentrations required for half-maximal Ca2+ uptake rate to be achieved were 160 and 60 microM Ca2+ without and with spermine, respectively. Spermidine is shown to be less effective (a half-maximal effect at 50-100 microM spermidine). The polyamines do not change the parameters of energy coupling of mitochondria. The data obtained enabled the yeast mitochondria to be considered to take part in regulation of cytoplasmic and matrix Ca2+.
Collapse
Affiliation(s)
- T V Votyakova
- A.N. Bach Institute of Biochemistry, Academy of Sciences of the USSR, Moscow
| | | | | |
Collapse
|
25
|
Saris NE, Kröner H. Regulation of Ca2+ fluxes in rat liver mitochondria by Ca2+. Effects on Ca2+ distribution. J Bioenerg Biomembr 1990; 22:81-90. [PMID: 2341385 DOI: 10.1007/bf00762847] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rat liver mitochondria are able to temporarily lower the steady-state concentration of external Ca2+ after having accumulated a pulse of added Ca2+. This has been attributed to inhibition of a putative delta psi-modulated efflux pathway [Bernardi, P. (1984) Biochim. Biophys. Acta 766, 277-282]. On the other hand, the rebounding could be due to stimulation of the uniporter by Ca2+ [Kröner, H. (1987) Biol. Chem. Hoppe-Seyler 369, 149-155]. By measuring unidirectional Ca2+ fluxes, it was found that the uniporter was stimulated during the rebounding peak both under Bernardi's and Kröner's conditions, while no effects on the efflux could be demonstrated. The rate of unidirectional efflux of Ca2+ was not affected by inhibition of the uniporter. It appears likely that the rebounding is due to stimulation of the uniporter rather than inhibition of efflux.
Collapse
Affiliation(s)
- N E Saris
- Department of Medical Chemistry, University of Helsinki, Finland
| | | |
Collapse
|
26
|
Bloom TJ, Combest WL, Gilbert LI. Spermine stimulation of phosphoprotein dephosphorylation in the brain of Manduca sexta. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0020-1790(90)90018-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
McCormack JG. Effects of spermine on mitochondrial Ca2+ transport and the ranges of extramitochondrial Ca2+ to which the matrix Ca2+-sensitive dehydrogenases respond. Biochem J 1989; 264:167-74. [PMID: 2604711 PMCID: PMC1133560 DOI: 10.1042/bj2640167] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Spermine has previously been reported to be an activator of mitochondrial Ca2+ uptake [Nicchitta & Williamson (1984) J. Biol. Chem. 259, 12978-12983]. This is confirmed in the present studies on rat heart, liver and kidney mitochondria by using the activities of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) as probes for matrix Ca2+, and also, for the heart mitochondria, by using entrapped fura-2. 2. As also found previously [Damuni, Humphreys & Reed (1984) Biochem. Biophys. Res. Commun. 124, 95-99], spermine activated extracted pyruvate dehydrogenase phosphate phosphatase. However, it was found to have no effects at all on the extracted NAD+-isocitrate or 2-oxoglutarate dehydrogenases. It also had no effects on activities of the enzymes in mitochondria incubated in the absence of Ca2+, or on the Ca2+-sensitivity of the enzymes in uncoupled mitochondria. 3. Spermine clearly activated 45Ca uptake by coupled mitochondria, but had no effect on Ca2+ egress from mitochondria previously loaded with 45Ca. 4. Spermine (with effective Km values of around 0.2-0.4 mM) caused an approx. 2-3-fold decrease in the effective ranges of extramitochondrial Ca2+ in the activation of the Ca2+-sensitive matrix enzymes in coupled mitochondria from all of the tissues. The effects of spermine appeared to be largely independent of the other effectors of mitochondrial Ca2+ transport, such as Mg2+ (inhibitor of uptake) and Na+ (promoter of egrees). 5. In the most physiological circumstance, coupled mitochondria incubated with Na+ and Mg2+, the presence of saturating spermine (2 mM) resulted in an effective extramitochondrial Ca2+ range for matrix enzyme activation of from about 30-50 nM up to about 800-1200 nM, with half-maximal effects around 250-400 nM-Ca2+. The implications of these findings for the regulation of matrix and extramitochondrial Ca2+ are discussed.
Collapse
Affiliation(s)
- J G McCormack
- Department of Biochemistry, University of Leeds, U.K
| |
Collapse
|