1
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
2
|
Hartley MD, Imperiali B. At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch Biochem Biophys 2012; 517:83-97. [PMID: 22093697 PMCID: PMC3253937 DOI: 10.1016/j.abb.2011.10.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 11/20/2022]
Abstract
Long-chain polyprenols and polyprenyl-phosphates are ubiquitous and essential components of cellular membranes throughout all domains of life. Polyprenyl-phosphates, which include undecaprenyl-phosphate in bacteria and the dolichyl-phosphates in archaea and eukaryotes, serve as specific membrane-bound carriers in glycan biosynthetic pathways responsible for the production of cellular structures such as N-linked protein glycans and bacterial peptidoglycan. Polyprenyl-phosphates are the only form of polyprenols with a biochemically-defined role; however, unmodified or esterified polyprenols often comprise significant percentages of the cellular polyprenol pool. The strong evolutionary conservation of unmodified polyprenols as membrane constituents and polyprenyl-phosphates as preferred glycan carriers in biosynthetic pathways is poorly understood. This review surveys the available research to explore why unmodified polyprenols have been conserved in evolution and why polyprenyl-phosphates are universally and specifically utilized for membrane-bound glycan assembly.
Collapse
Affiliation(s)
- Meredith D. Hartley
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
3
|
Kharel Y, Takahashi S, Yamashita S, Koyama T. In vivo interaction between the human dehydrodolichyl diphosphate synthase and the Niemann-Pick C2 protein revealed by a yeast two-hybrid system. Biochem Biophys Res Commun 2004; 318:198-203. [PMID: 15110773 DOI: 10.1016/j.bbrc.2004.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Indexed: 12/12/2022]
Abstract
Dehydrodolichyl diphosphate (DedolPP) synthase catalyzes the sequential condensation of isopentenyl diphosphate with farnesyl diphosphate to synthesize DedolPP, a biosynthetic precursor for dolichol which plays an important role as a sugar-carrier lipid in the biosynthesis of glycoprotein in eukaryotic cells. During certain pathological processes like Alzheimer's disease or some neurological disorders, dolichol has been shown to accumulate in human brain. In order to understand the regulatory mechanism of dolichol in eukaryotes, we performed a yeast two-hybrid screen using full length human DedolPP synthase gene [Endo et al. BBA 1625 (2003) 291] as a bait to find some proteins specifically interacting with the enzyme. We identified Niemann-Pick Type C2 protein (NPC2) to show a specific interaction with human DedolPP synthase. This interaction was further confirmed by in vitro co-immunoprecipitation experiment, indicating the possible physiological interaction between NPC2 and DedolPP synthase proteins in human.
Collapse
Affiliation(s)
- Yugesh Kharel
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
4
|
Kandutsch AA. A model scientist. Biochem Biophys Res Commun 2002; 292:1227-9. [PMID: 11969218 DOI: 10.1006/bbrc.2002.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Wong WWL, Dimitroulakos J, Minden MD, Penn LZ. HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 2002; 16:508-19. [PMID: 11960327 DOI: 10.1038/sj.leu.2402476] [Citation(s) in RCA: 443] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2001] [Accepted: 01/21/2002] [Indexed: 02/07/2023]
Abstract
The statin family of drugs target HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, and have been used successfully in the treatment of hypercholesterolemia for the past 15 years. Experimental evidence suggests this key biochemical pathway holds an important role in the carcinogenic process. Moreover, statin administration in vivo can provide an oncoprotective effect. Indeed, in vitro studies have shown the statins can trigger cells of certain tumor types, such as acute myelogenous leukemia, to undergo apoptosis in a sensitive and specific manner. Mechanistic studies show bcl-2 expression is down-regulated in transformed cells undergoing apoptosis in response to statin exposure. In addition, the apoptotic response is in part due to the depletion of the downstream product geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate or other products of the mevalonate pathway including cholesterol. Clinically, preliminary phase I clinical trials have shown the achievable plasma concentration corresponds to the dose range that can trigger apoptosis of tumor types in vitro. Moreover, little toxicity was evident in vivo even at high concentrations. Clearly, additional clinical trials are warranted to further assess the safety and efficacy of statins as novel and immediately available anti-cancer agents. In this article, the experimental evidence supporting a role for the statin family of drugs to this new application will be reviewed.
Collapse
Affiliation(s)
- W W L Wong
- Department of Cellular and Molecular Biology, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Canada
| | | | | | | |
Collapse
|
6
|
Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ. Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 2001; 15:1398-407. [PMID: 11516100 DOI: 10.1038/sj.leu.2402196] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lovastatin is an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the major regulatory enzyme of the mevalonate pathway. We have previously reported that lovastatin induces a significant apoptotic response in human acute myeloid leukemia (AML) cells. To identify the critical biochemical mechanism(s) essential for lovastatin-induced apoptosis, add-back experiments were conducted to determine which downstream product(s) of the mevalonate pathway could suppress this apoptotic response. Apoptosis induced by lovastatin was abrogated by mevalonate (MVA) and geranylgeranyl pyrophosphate (GGPP), and was partially inhibited by farnesyl pyrophosphate (FPP). Other products of the mevalonate pathway including cholesterol, squalene, lanosterol, desmosterol, dolichol, dolichol phosphate, ubiquinone, and isopentenyladenine did not affect lovastatin-induced apoptosis in AML cells. Our results suggest that inhibiting geranylgeranylation of target proteins is the predominant mechanism of lovastatin-induced apoptosis in AML cells. In support of this hypothesis, the geranylgeranyl transferase inhibitor (GGTI-298) mimicked the effect of lovastatin, whereas the farnesyl transferase inhibitor (FTI-277) was much less effective at triggering apoptosis in AML cells. Inhibition of geranylgeranylation was monitored and associated with the apoptotic response induced by lovastatin and GGTI-298 in the AML cells. We conclude that blockage of the mevalonate pathway, particularly inhibition of protein geranylgeranylation holds a critical role in the mechanism of lovastatin-induced apoptosis in AML cells.
Collapse
Affiliation(s)
- Z Xia
- Department of Cellular and Molecular Biology, Ontario Cancer Institute, University Health Network, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
7
|
McCarty MF. Current prospects for controlling cancer growth with non-cytotoxic agents--nutrients, phytochemicals, herbal extracts, and available drugs. Med Hypotheses 2001; 56:137-54. [PMID: 11425277 DOI: 10.1054/mehy.2000.1126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In animal or cell culture studies, the growth and spread of cancer can be slowed by many nutrients, food factors, herbal extracts, and well-tolerated, available drugs that are still rarely used in the clinical management of cancer, in part because they seem unlikely to constitute definitive therapies in themselves. However, it is reasonable to expect that mechanistically complementary combinations of these measures could have a worthwhile impact on survival times and, when used as adjuvants, could improve the cure rates achievable with standard therapies. The therapeutic options available in this regard include measures that: down-regulate serum free IGF-I; suppress the synthesis of mevalonic acid and/or certain derivatives thereof; modulate arachidonate metabolism by inhibiting 5-lipoxygenase, 12-lipoxygenase, or COX-2; antagonize the activation of AP-1 transcription factors; promote the activation of PPAR-gamma transcription factors; and that suppress angiogenesis by additional mechanisms. Many of these measures appear suitable for use in cancer prevention.
Collapse
Affiliation(s)
- M F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA
| |
Collapse
|
8
|
McCarty MF. Suppression of dolichol synthesis with isoprenoids and statins may potentiate the cancer-retardant efficacy of IGF-I down-regulation. Med Hypotheses 2001; 56:12-6. [PMID: 11133248 DOI: 10.1054/mehy.2000.1073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Agents that inhibit the synthesis of mevalonate or of downstream isoprenoids block the G1-S transition and induce apoptosis in many cell lines; these agents include statins, phenylacetate, and a range of cyclic and acyclic isoprenoids. This cytostatic effect is mediated primarily by decreased availability of dolichol; this deficit impedes the glycosylation of nascent IGF-I receptors, preventing their transfer to the cell surface. In most tissues as well as transformed cell lines, IGF-I activity is crucial for transition to S phase, and also prevents apoptosis. Thus, down-regulation of serum levels of free IGF-I - as may be achieved by caloric restriction, low-fat vegan diets, and various estrogen agonists/antagonists - may represent a useful strategy for preventing and controlling cancer; however, a compensatory up-regulation of tissue expression of IGF-I receptors limits the efficacy of such an approach. Concurrent use of agents that inhibit dolichol synthesis can be expected to prevent an increase in plasma membrane IGF-I receptors, thus potentiating the cancer-retardant efficacy of IGF-I down-regulation. Since dolichol and IGF-I appear to be essential for angiogenesis, these measures may also prove useful for control of pathogenic neovascularization.
Collapse
Affiliation(s)
- M F McCarty
- Pantox Laboratories, San Diego, California 92109, USA
| |
Collapse
|
9
|
Madhavan S, Singh AK, Maheshawari RK. Tunicamycin enhances the anticellular activity of interferon by inhibiting G1/S phase progression in 3T3 cells. J Interferon Cytokine Res 2000; 20:281-90. [PMID: 10762075 DOI: 10.1089/107999000312414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have shown earlier that the cell growth inhibitory activity of interferon (IFN) is significantly enhanced by tunicamycin (TM) (Maheshwari et al., Science 219, 1339-1341, 1983). In this report, we investigated various regulatory points of synergistic action between TM and IFN-alpha/beta that inhibit cell growth in NIH 3T3 cells. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) viability assays showed a dose-dependent increase in percentage inhibition of the cells when treated with either TM or IFN. When doses of TM and IFN that had no significant inhibition on cell viability were used in combination, there was a pronounced suppression of DNA synthesis (tritiated thymidine incorporation). Flow cytometry studies revealed that individual treatments with either IFN or TM that did not alter the cell cycle profile, when combined, resulted in an impaired cell cycle by inhibiting G1/S progression. The blockage of G1/S transition was associated with reduction of cyclin-dependent kinase (CDK4) activity. The mRNA (analyzed by ribonuclease protection assay) and protein levels (assayed by Western blotting) of cyclins D1, D3, and CDK4 were downregulated by combined treatment with IFN and TM. An increase in the expression of p27/kipl, an inhibitor of CDK4, was observed in cells that were treated with both IFN and TM. These studies suggest that insufficient formation of the active cyclin/CDK complex could possibly be deferring the cells from normal cycling and may be responsible for the ability of TM to enhance cell growth inhibition induced by IFN.
Collapse
Affiliation(s)
- S Madhavan
- Center for Combat Casualty and Life Sustainment Research, Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
10
|
Wang M, Xie Y, Girnita L, Nilsson G, Dricu A, Wejde J, Larsson O. Regulatory role of mevalonate and N-linked glycosylation in proliferation and expression of the EWS/FLI-1 fusion protein in Ewing's sarcoma cells. Exp Cell Res 1999; 246:38-46. [PMID: 9882513 DOI: 10.1006/excr.1998.4280] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ewing's sarcoma cell line RD-ES, which carries the EWS/FLI-1 fusion gene, responded to the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor lovastatin with growth arrest. Replenishment of mevalonate (MVA) to the arrested cells restored cell growth. However, if tunicamycin (TM), which is an inhibitor of N-linked glycosylation, was present together with MVA the cells remained arrested, indicating that N-linked glycosylation is of importance for growth of Ewing's sarcoma cells. Inhibition of the biosynthesis of EWS/FLI-1 fusion protein by treatment with antisense oligonucleotides also led to growth arrest, suggesting that this protein is of importance for cell growth. We investigated whether MVA synthesis and N-linked glycosylation could be involved in regulation of the expression of the EWS/FLI-1 fusion protein, which in fact contains four potential sites for N-linked glycosylation. We found that inhibition of both HMG-CoA reductase and N-linked glycosylation drastically decreased the expression of the fusion protein, which mainly appears in the cell nuclei. There was no significant difference in the inhibitory effect on the fusion protein between the cytoplasm and the cell nuclei, indicating that the transport of the fusion protein to the cell nucleus is not affected. The fusion protein did not exhibit any gel electrophoretic mobility shift after treatment of the cells with lovastatin or TM, and it did not incorporate [3H]glucosamine. Therefore we can conclude that the fusion protein is not a glycoprotein. The decreased expression of the fusion protein following lovastatin or TM treatment was found to be due to a lowered stability of de novo-synthesized fusion protein. The down-regulation of the fusion protein was correlated to growth arrest. Furthermore, the kinetics between the expression of EWS/FLI-1 fusion protein and the initiation of DNA synthesis in MVA-stimulated cells were similar. Taken together, our data suggest that the regulatory role of N-linked glycosylation in the expression of the EWS/FLI-1 fusion protein is important for growth of Ewing's sarcoma cells. Possible mechanisms underlying TM-induced decrease in EWS/FLI-1 expression may involve the breaking of growth factor receptor pathways.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Western
- Cell Division/drug effects
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- DNA, Neoplasm/biosynthesis
- Down-Regulation/drug effects
- Gene Expression Regulation/drug effects
- Glucosamine/metabolism
- Glycosylation/drug effects
- Humans
- Hydroxymethylglutaryl CoA Reductases/metabolism
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Lovastatin/pharmacology
- Mevalonic Acid/metabolism
- Mevalonic Acid/pharmacology
- Molecular Sequence Data
- Molecular Weight
- Oligonucleotides, Antisense/genetics
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Protein c-fli-1
- RNA-Binding Protein EWS
- Sarcoma, Ewing/enzymology
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Time Factors
- Transcription Factors/biosynthesis
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
- Tunicamycin/pharmacology
Collapse
Affiliation(s)
- M Wang
- Cellular and Molecular Tumor Pathology, CCK, R8:04, Karolinska Hospital, Stockholm, S-171 76, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Wejde J, Hjertman M, Carlberg M, Egestad B, Griffiths WJ, Sjövall J, Larsson O. Dolichol-like lipids with stimulatory effect on DNA synthesis: Substrates for protein dolichylation? J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19981215)71:4<502::aid-jcb5>3.0.co;2-p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Affiliation(s)
- S S Krag
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
13
|
Hiss D, Gabriels G, Jacobs P, Folb P. Tunicamycin potentiates drug cytotoxicity and vincristine retention in multidrug resistant cell lines. Eur J Cancer 1996; 32A:2164-72. [PMID: 9014761 DOI: 10.1016/s0959-8049(96)00262-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tunicamycin (TM), an inhibitor of glycoprotein processing, was investigated for its potential to reverse the multiple drug resistance (MDR) phenotype. When TM was added in vitro to drug-resistant NIH-3T3-MDR and KB-8-5-11 cells, they developed an increased sensitivity to doxorubicin, epirubicin, vincristine and colchicine. Similarly, the sensitivity of NIH-3T3-MDR cells to cisplatin was also enhanced by TM. In the presence of TM, drug-sensitive NIH-3T3-parental cells exhibited greater susceptibility to the toxic effects of doxorubicin, epirubicin, vincristine (marginally significant), and colchicine, but not to cisplatin. Tunicamycin-treated drug-sensitive KB-3-1 cells showed an increased response to vincristine, but not to the other anticancer drugs. Pretreatment with TM inhibited glycoprotein synthesis in all the cell lines. Neither prior exposure to, nor co-incubation with TM, influenced the uptake of vincristine (VCR) in the various cell lines. However, NIH-3T3-MDR cells accumulated less VCR than their drug-sensitive controls and also exhibited reduced efflux of the drug when treated with TM. There were no significant differences in the levels of intracellular VCR uptake between drug-sensitive KB-3-1 and KB-8-5-11 cells. Tunicamycin increased intracellular VCR retention in KB-8-5-11 and NIH-3T3-MDR cells, but not in NIH-3T3-parental cells. However, drug-sensitive KB-3-1 cells expressed reduced VCR retention in response to TM exposure, indicating that correlations between VCR toxicity and its retention in the presence of TM should be made with caution. The results suggest that the enhancement of intracellular VCR retention in MDR cells lines caused by TM is likely to be the result of inhibition of VCR efflux. Inhibition of glycoprotein synthesis during TM exposure may account for the changes in VCR efflux and retention observed in the MDR cell lines. The enhancement of cisplatin cytotoxicity in NIH-3T3-MDR cells after exposure to TM is an interesting observation, since it is generally believed that agents which modify the MDR phenotype do not show a sensitising effect to cisplatin. These findings may have applications in the reversal of drug resistance.
Collapse
Affiliation(s)
- D Hiss
- Department of Pharmacology, University of Cape Town, Medical School, South Africa
| | | | | | | |
Collapse
|
14
|
Umetani N, Kanayama Y, Okamura M, Negoro N, Takeda T. Lovastatin inhibits gene expression of type-I scavenger receptor in THP-1 human macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1303:199-206. [PMID: 8908154 DOI: 10.1016/0005-2760(96)00098-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, inhibits the synthesis of mevalonic acid and is widely used as an anti-atherosclerotic drug. The macrophage scavenger receptor (SCR), a trimeric membrane glycoprotein, is postulated to play a key role in atheroma macrophage foam cell formation. HMG-CoA reductase is involved in the control of the synthesis of glycoproteins and farnesylated proteins, including ras proteins, which are involved in the transcriptional regulation of SCR gene expression. Accordingly, we examined whether lovastatin alters the gene expression of SCRs in THP-1 cell derived human macrophages. Lovastatin (5-15 microM) caused a significant dose-related reduction in steady state levels of type-I SCR mRNA in phorbol 12-myristate 13-acetate (PMA)-treated THP-1 cells. The addition of exogenous mevalonate (1 mM) completely restored the lovastatin-induced decrease of type-I SCR mRNA levels. While the addition of the isoprenoid end-product, isopentenyl adenine (50 microM), had little effect on the type-I SCR mRNA levels in lovastatin treated cells, the addition of isoprenoid farnesol (5 microM) largely restored the lovastatin-induced decrease of type-I SCR mRNA levels. Actinomycin D treatment showed that degradation rates of type-I SCR mRNA did not differ between the THP-1 derived cells with and without lovastatin treatment. Nuclear run-on assays showed that lovastatin markedly decreased the transcription of SCR gene in the cells. These results suggest that lovastatin inhibits the transcription of type-I SCR gene by affecting mevalonate metabolism, possibly through the farnesyl-pyrophosphate related end-product(s) in the THP-1-derived macrophages.
Collapse
Affiliation(s)
- N Umetani
- First Department of Internal Medicine, Osaka City University Medical School, Japan
| | | | | | | | | |
Collapse
|
15
|
Carlberg M, Dricu A, Blegen H, Wang M, Hjertman M, Zickert P, Höög A, Larsson O. Mevalonic acid is limiting for N-linked glycosylation and translocation of the insulin-like growth factor-1 receptor to the cell surface. Evidence for a new link between 3-hydroxy-3-methylglutaryl-coenzyme a reductase and cell growth. J Biol Chem 1996; 271:17453-62. [PMID: 8663239 DOI: 10.1074/jbc.271.29.17453] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Depletion of mevalonic acid (MVA), obtained by inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase using lovastatin, depressed the biosynthesis of dolichyl-phosphate and the rate of N-linked glycosylation and caused growth arrest in the melanoma cell line SK-MEL-2. The growth arrest was partially prevented by addition of high concentrations of insulin-like growth factor-1 (IGF-1) to the cells, indicating that MVA depletion may inhibit cell growth through decreasing the number of IGF-1 receptors (IGF-1R) at the cell surface. Such a decrease in receptor number might be a result of a lowered translocation of de novo synthesized receptors to the cell membrane which in turn might be a result of a decreased N-linked glycosylation of the receptor proteins. We could also demonstrate that IGF-1R became underglycosylated and that the amount of de novo synthesized IGF-1R proteins at the cell membrane was drastically decreased upon MVA depletion. Analysis of receptor proteins cross-linked with IGF-1, as well as binding assays and immunocytostaining confirmed that the number of functional membrane-bound IGF-1R was substantially reduced. The N-linked glycosylation and the expression of de novo synthesized IGF-1R proteins at the cell surface as well as the number of IGF-1 binding sites were completely restored upon replenishment of MVA. These effects of MVA were efficiently abrogated by the glycosylation inhibitor tunicamycin. The translocation of IGF-1R to the cell membrane was shown to take place just prior to initiation of DNA synthesis in arrested cells stimulated with MVA. Additionally, there was a clear correlation between IGF-1 binding and initiation of DNA synthesis with regard to the MVA dose requirement. It was confirmed that inhibition of HMG-CoA reductase activity and N-linked glycosylation also depressed the expression of functional IGF-1R in other cell types (i.e. hepatoblastoma cells and colon cancer cells). Our data suggest that this mechanism is involved in MVA-regulated cell growth.
Collapse
MESH Headings
- Base Sequence
- Cell Division/drug effects
- Cell Line
- Cell Membrane/metabolism
- Colonic Neoplasms
- DNA Primers
- DNA, Neoplasm/biosynthesis
- Dolichol Phosphates/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Glycosylation
- Growth Substances/pharmacology
- Hepatoblastoma
- Humans
- Hydroxymethylglutaryl CoA Reductases/metabolism
- Hydroxymethylglutaryl-CoA Reductase Inhibitors
- Insulin/pharmacology
- Insulin-Like Growth Factor I/pharmacology
- Kinetics
- Liver Neoplasms
- Lovastatin/pharmacology
- Melanoma
- Mevalonic Acid/metabolism
- Models, Biological
- Molecular Sequence Data
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/pharmacology
- Protein Processing, Post-Translational/drug effects
- RNA, Messenger/biosynthesis
- Receptor, IGF Type 1/biosynthesis
- Receptor, IGF Type 1/metabolism
- Transcription, Genetic/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Carlberg
- Department of Tumor Pathology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- O Larsson
- Department of Tumor Pathology, Karolinska Institute, S-171 77 Stockholm, Sweden
| |
Collapse
|
17
|
Pérez-Sala D, Mollinedo F. Inhibition of N-linked glycosylation induces early apoptosis in human promyelocytic HL-60 cells. J Cell Physiol 1995; 163:523-31. [PMID: 7775595 DOI: 10.1002/jcp.1041630312] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inhibition of protein N-glycosylation by tunicamycin induced morphological changes characteristic of apoptosis in human promyelocytic HL-60 cells. Internucleosomal DNA fragmentation could be detected after short-time incubation (between 6 and 9 h) of HL-60 cells with low doses of tunicamycin (0.05 micrograms/ml). Under these conditions the synthesis of glycoproteins was reduced to 17% of control values, while no significant changes in the rates of total protein synthesis could be observed. Tunicamycin ability to induce DNA fragmentation was in good correlation with its potency as glycosylation inhibitor in several myeloid cell lines. Tunicamycin-induced apoptosis was potentiated by activation of protein kinease C (PKC) by phorbol esters and partially prevented by the PKC inhibitor staurosporine. Inhibitors of RNA and protein synthesis displayed a protective effect. Treatment of HL-60 cells with tunicamycin did not elicit the expression of cell surface differentiation antigens or their ability to generate superoxide anion. In contrast, tunicamycin significantly inhibited these processes during dimethyl sulfoxide (DMSO)-induced myeloid differentiation. These observations indicate that the main effect of tunicamycin in HL-60 cells is the induction of apoptosis.
Collapse
Affiliation(s)
- D Pérez-Sala
- Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | | |
Collapse
|
18
|
Turner JE, Minkoff CG, Martin KH, Misra R, Swenson KI. Oocyte activation and passage through the metaphase/anaphase transition of the meiotic cell cycle is blocked in clams by inhibitors of HMG-CoA reductase activity. J Biophys Biochem Cytol 1995; 128:1145-62. [PMID: 7896878 PMCID: PMC2120409 DOI: 10.1083/jcb.128.6.1145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cell cycle progression for postembryonic cells requires the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R), the enzyme which catalyzes the production of the isoprenoid precursor, mevalonate. In this study, we examine the requirements of HMG-R activity for cell cycle progression during the meiotic and early mitotic divisions using oocytes and dividing embryos from the surf clam, Spisula solidissima. Using two different inhibitors of HMG-R, we find that the activity of this enzyme appears to be required at three distinct points of the cell cycle during meiosis. Depending on the stage at which these inhibitors are added to synchronous clam cultures, a reversible cell cycle block is triggered at the time of activation or at metaphase of either meiosis I or II, whereas there is not block to the mitotic cell cycle. Inhibition of HMG-R activity in activated oocytes does not affect the transient activation of p42MAPK but results in a block at metaphase of meiosis I that is accompanied by the stabilization of cyclins A and B and p34cdc2 kinase activity. Our results suggest that metabolites from the mevalonate biosynthetic pathway can act to influence the process of activation, as well as the events later in the cell cycle that lead to cyclin proteolysis and the exit from M phase during clam meiosis.
Collapse
Affiliation(s)
- J E Turner
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | |
Collapse
|
19
|
Chapter 5 Biosynthesis 2a. The Coenzymic Role of Phosphodolichols. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Gebert CA, Gray PP. Expression of FSH in CHO cells. II. Stimulation of hFSH expression levels by defined medium supplements. Cytotechnology 1995; 17:13-9. [DOI: 10.1007/bf00749216] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/1993] [Accepted: 10/10/1994] [Indexed: 11/25/2022] Open
|
21
|
Mallat A, Preaux AM, Blazejewski S, Dhumeaux D, Rosenbaum J, Mavier P. Effect of simvastatin, an inhibitor of hydroxy-methylglutaryl coenzyme A reductase, on the growth of human Ito cells. Hepatology 1994; 20:1589-94. [PMID: 7982659 DOI: 10.1002/hep.1840200631] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During hepatic fibrogenesis, Ito cells proliferate, acquire a myofibroblastlike phenotype and synthesize increased amounts of extracellular matrix components. In this study, we have assessed the effects of simvastatin, an inhibitor of hydroxy-methylglutaryl-coenzyme A reductase, on the growth of human myofibroblastlike Ito cells. Cells were grown from explants of normal human liver and characterized by a positive staining for desmin and smooth muscle alpha-actin. Simvastatin (0.1 to 10 mumol/L) induced a marked dose-dependent decrease of [3H]thymidine incorporation in human Ito cells, whether stimulated by human serum or by purified growth factors. Simvastatin-induced inhibition of DNA synthesis was confirmed by nuclear autoradiography and was not explained by a cytotoxic effect. The growth inhibitory effect of simvastatin was specifically due to inhibition of hydroxy-methylglutaryl-coenzyme A reductase because it was overcome by addition of mevalonic acid, the product of the enzymatic reaction. The reduction in [3H]thymidine incorporation was not affected by supplementation of culture medium with purified cholesterol-low-density lipoprotein or isopentenyl adenine. It was partially reversed by addition of farnesol. These results show that simvastatin decreases the growth of human Ito cells, independently of its effect on cholesterol synthesis. This decrease may be due in part either to reduced farnesylation of proteins involved in growth factor signaling pathway or to inhibition of N-linked protein glycosylation. Whether this effect exists in vivo and could thus lead to a parallel decrease of fibrosis deposition within the liver requires further study.
Collapse
Affiliation(s)
- A Mallat
- Unité INSERM-99, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | | | |
Collapse
|
22
|
Corsini A, Mazzotti M, Raiteri M, Soma MR, Gabbiani G, Fumagalli R, Paoletti R. Relationship between mevalonate pathway and arterial myocyte proliferation: in vitro studies with inhibitors of HMG-CoA reductase. Atherosclerosis 1993; 101:117-25. [PMID: 8216498 DOI: 10.1016/0021-9150(93)90107-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of mevalonate and its products (isoprenoids) in the control of cellular proliferation was examined by investigating the effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (vastatins) on growth and on cholesterol biosynthesis of cultured arterial myocytes (SMC). Simvastatin (S) and fluvastatin (F), but not pravastatin (P), decreased the rate of growth of rat vascular SMC. The inhibition, evaluated as cell number, was dose-dependent with IC50 values of 2.8 and 2.2 microM for S and F, respectively; P (1-500 microM) was inactive. The inhibition of cell growth induced by 3.5 microM S (70% decrease) was prevented completely by the addition of 100 microM mevalonate, partially (70-85%) by the addition of 10 microM geraniol, 10 microM farnesol and 5 microM geranylgeraniol, but not by the addition of squalene, confirming the specific role of isoprenoid metabolites in regulating cell proliferation. All the tested vastatins inhibited the incorporation of [14C]acetate into cholesterol but P had 800 times lower potency than S and F. Similar results were obtained in SMC from human femoral artery. At least 80% inhibition of cholesterol synthesis was necessary to induce a decrease in SMC proliferation. To further investigate the relationship between cholesterol synthesis and cell growth, two enantiomers of F were investigated. The enantiomer more active on HMG-CoA reductase was 70- and 1.6-fold more potent on arterial myocyte proliferation than its antipode and the racemic mixture, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
MESH Headings
- Acyclic Monoterpenes
- Animals
- Aorta/cytology
- Cell Division/drug effects
- Cells, Cultured
- Cholesterol/biosynthesis
- Diterpenes/pharmacology
- Dose-Response Relationship, Drug
- Farnesol/pharmacology
- Fatty Acids, Monounsaturated/pharmacology
- Femoral Artery/cytology
- Femoral Artery/drug effects
- Femoral Artery/metabolism
- Fluvastatin
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors
- Indoles/pharmacology
- Lovastatin/analogs & derivatives
- Lovastatin/pharmacology
- Male
- Mevalonic Acid/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pravastatin/pharmacology
- Rats
- Rats, Sprague-Dawley
- Simvastatin
- Squalene/pharmacology
- Terpenes/pharmacology
Collapse
Affiliation(s)
- A Corsini
- Institute of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Wejde J, Carlberg M, Hjertman M, Larsson O. Isoprenoid regulation of cell growth: identification of mevalonate-labelled compounds inducing DNA synthesis in human breast cancer cells depleted of serum and mevalonate. J Cell Physiol 1993; 155:539-48. [PMID: 8491791 DOI: 10.1002/jcp.1041550312] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth arrest induced by serum depletion and/or treatment with mevinolin (an inhibitor of mevalonate synthesis) in the human breast cancer cell line Hs578T was overcome by exogenous mevalonate, indicating that some product or metabolite of mevalonate may be involved in the mediation of serum-regulated growth of these cells. In the search for such compounds we first tested a variety of known end products of mevalonate with respect to their ability to counteract the inhibition of DNA synthesis caused by serum-free medium and mevinolin. Thereby high doses (10 micrograms/ml) of dolichol-20 were found to cause a partial counteraction. After straight-phase HPLC purification of endogenous lipids, isolated from 3H- or 14C-mevalonate-labelled Hs578T cultures, we found that non-sterol lipids co-eluting with dolichols efficiently induced DNA synthesis. After further purification with reverse-phase HPLC it was confirmed that virtually all of this effect was achieved by compounds(s) (seen as a single UV and radioactive peak) co-eluting with dolichol-20. Nanogram doses, at most, of this (these) compound(s) elicited a substantial stimulation of DNA synthesis. The lipid(s) also counteracted the inhibition by mevinolin of N-linked glycosylation, indicating that it (they) also interfere(s) with this processing. Since treatment with tunicamycin (an inhibitor of N-linked glycosylation) abolished this growth-stimulative effect, N-linked glycosylation seems to be a necessary event in the processes leading to lipid-induced initiation of DNA synthesis.
Collapse
Affiliation(s)
- J Wejde
- Department of Tumor Pathology, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Doyle JW, Ward-Bailey PF, Kandutsch AA. Effects of growth factors on cell cycle arrest in dolichyl phosphate-depleted cultures. J Cell Physiol 1993; 155:171-8. [PMID: 8468363 DOI: 10.1002/jcp.1041550122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previously we showed that CHO cell growth is arrested in the G1 or G0 phase within 24 h after the biosynthesis of mevalonic acid is blocked. The growth-limiting factor under these conditions appeared to be dolichyl phosphate or one of its glycosylated derivatives with consequent decrease in the synthesis of N-linked glycoproteins (Doyle, J.W., and A.A. Kandutsch, 1988, J. Cell Physiol. 137:133-140; Kabakoff, B., J.W. Doyle, and A.A. Kandutsch, 1990, Arch. Biochem. Biophys. 276:382-389). We show herein that cell surface glycoproteins are depleted in the inhibited cultures and that growth arrest is delayed when supraphysiological concentrations of insulin, insulin-like growth factor-1 (IGF-1) and bFGF are added to the culture medium. Apparently an elevated level of a growth factor increases the length of time during which a threshold level of occupied receptor is maintained as the number of glycosylated receptor molecules declines. The results support the idea that cellular levels of dolichyl phosphate and its derivatives may limit cell division by controlling the numbers of functional receptors for growth factors and of other glycoproteins on the cell surface.
Collapse
Affiliation(s)
- J W Doyle
- Jackson Laboratory, Bar Harbor, Maine 04609-0800
| | | | | |
Collapse
|
25
|
Larsson O, Wejde J. Dolichol delays G1-arrest for one cell cycle in human fibroblasts subjected to depletion of serum or mevalonate. J Cell Sci 1992; 103 ( Pt 4):1065-72. [PMID: 1487489 DOI: 10.1242/jcs.103.4.1065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well-established that some product(s) or metabolite(s) of mevalonate is (are) critical for growth of mammalian cells. In the search for this (these) compound(s) it seems meaningful to distinguish between compounds needed for cell cycle progression in proliferating cells and compounds needed for growth activation of arrested cells. By using time-lapse video recording we have studied the possible regulatory role of cholesterol, dolichol and mevalonate in the cell cycle of human diploid fibroblasts (HDF). HDF, which are serum-dependent, were rapidly growth-arrested in the first part of G1 upon removal of serum factors. They also responded to mevinolin (an HMG CoA reductase inhibitor) by a similar G1-block, indicating that a mevalonate-derived product is involved in the G1-located cell cycle control of HDF. Interestingly, dolichol counteracted the G1-block caused by both types of treatment. Hence, the early G1-cells could traverse the remainder of the cell cycle and divide despite depletion of serum or mevalonate. We also demonstrated that addition of dolichol resulted in a significant decrease in the rate of protein degradation. This protein stabilizing effect may constitute the mechanism by which dolichol delays the G1-arrest of HDF.
Collapse
Affiliation(s)
- O Larsson
- Department of Tumor Pathology, Karolinska Hospital, Stockholm, Sweden
| | | |
Collapse
|