1
|
Yuan S, Schmidt HM, Wood KC, Straub AC. CoenzymeQ in cellular redox regulation and clinical heart failure. Free Radic Biol Med 2021; 167:321-334. [PMID: 33753238 DOI: 10.1016/j.freeradbiomed.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Coenzyme Q (CoQ) is ubiquitously embedded in lipid bilayers of various cellular organelles. As a redox cycler, CoQ shuttles electrons between mitochondrial complexes and extramitochondrial reductases and oxidases. In this way, CoQ is crucial for maintaining the mitochondrial function, ATP synthesis, and redox homeostasis. Cardiomyocytes have a high metabolic rate and rely heavily on mitochondria to provide energy. CoQ levels, in both plasma and the heart, correlate with heart failure in patients, indicating that CoQ is critical for cardiac function. Moreover, CoQ supplementation in clinics showed promising results for treating heart failure. This review provides a comprehensive view of CoQ metabolism and its interaction with redox enzymes and reactive species. We summarize the clinical trials and applications of CoQ in heart failure and discuss the caveats and future directions to improve CoQ therapeutics.
Collapse
Affiliation(s)
- Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Gazaryan IG, Shchedrina VA, Klyachko NL, Zakhariants AA, Kazakov SV, Brown AM. Zinc Switch in Pig Heart Lipoamide Dehydrogenase: Steady-State and Transient Kinetic Studies of the Diaphorase Reaction. BIOCHEMISTRY (MOSCOW) 2020; 85:908-919. [PMID: 33045951 DOI: 10.1134/s0006297920080064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Elevation of intracellular Zn2+ following ischemia contributes to cell death by affecting mitochondrial function. Zn2+ is a differential regulator of the mitochondrial enzyme lipoamide dehydrogenase (LADH) at physiological concentrations (Ka = 0.1 µM free zinc), inhibiting lipoamide and accelerating NADH dehydrogenase activities. These differential effects have been attributed to coordination of Zn2+ by LADH active-site cysteines. A detailed kinetic mechanism has now been developed for the diaphorase (NADH-dehydrogenase) reaction catalyzed by pig heart LADH using 2,6-dichlorophenol-indophenol (DCPIP) as a model quinone electron acceptor. Anaerobic stopped-flow experiments show that two-electron reduced LADH is 15-25-fold less active towards DCPIP reduction than four-electron reduced enzyme, or Zn2+-modified reduced LADH (the corresponding values of the rate constants are (6.5 ± 1.5) × 103 M-1·s-1, (9 ± 2) × 104 M-1·s-1, and (1.6 ± 0.5) × 105 M-1·s-1, respectively). Steady-state kinetic studies with different diaphorase substrates show that Zn2+ accelerates reaction rates exclusively for two-electron acceptors (duroquinone, DCPIP), but not for one-electron acceptors (benzoquinone, ubiquinone, ferricyanide). This implies that the two-electron reduced form of LADH, prevalent at low NADH levels, is a poor two-electron donor compared to the four-electron reduced or Zn2+-modified reduced LADH forms. These data suggest that zinc binding to the active-site thiols switches the enzyme from one- to two-electron donor mode. This zinc-activated switch has the potential to alter the ratio of superoxide and H2O2 generated by the LADH oxidase activity.
Collapse
Affiliation(s)
- I G Gazaryan
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10605, USA.,Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY 10570, USA.,Department of Chemical Enzymology, Lomonosov Moscow State University, Moscow, 119899, Russia.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - V A Shchedrina
- Department of Chemical Enzymology, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - N L Klyachko
- Department of Chemical Enzymology, Lomonosov Moscow State University, Moscow, 119899, Russia.,Derzhavin Tambov State University, Tambov, 392000, Russia
| | - A A Zakhariants
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S V Kazakov
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY 10570, USA
| | - A M Brown
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10605, USA.
| |
Collapse
|
3
|
Zischka H, Einer C. Mitochondrial copper homeostasis and its derailment in Wilson disease. Int J Biochem Cell Biol 2018; 102:71-75. [PMID: 29997057 DOI: 10.1016/j.biocel.2018.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 01/07/2023]
Abstract
In mitochondria, copper is a Janus-faced trace element. While it is the essential cofactor of the mitochondrial cytochrome c oxidase, a surplus of copper can be highly detrimental to these organelles. On the one hand, mitochondria are strictly dependent on adequate copper supply for proper respiratory function, and the molecular mechanisms for metalation of the cytochrome c oxidase have been largely characterized. On the other hand, copper overload impairs mitochondria and uncertainties exist concerning the molecular mechanisms for mitochondrial metal uptake, storage and release. The latter issue is of fundamental importance in Wilson disease, a genetic disease characterized by dysfunctional copper excretion from the liver. Prime consequences of the progressive copper accumulation in hepatocytes are increasing mitochondrial biophysical and biochemical deficits. Focusing on this two-sided aspect of mitochondrial copper, we review mitochondrial copper homeostasis but also the impact of excessive mitochondrial copper in Wilson disease.
Collapse
Affiliation(s)
- Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University of Munich, 80802 Munich, Germany.
| | - Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
The exceptional sensitivity of brain mitochondria to copper. Toxicol In Vitro 2018; 51:11-22. [PMID: 29715505 DOI: 10.1016/j.tiv.2018.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Wilson disease (WD) is characterized by a disrupted copper homeostasis resulting in dramatically increased copper levels, mainly in liver and brain. While copper damage to mitochondria is an established feature in WD livers, much less is known about such detrimental copper effects in other organs. We therefore assessed the mitochondrial sensitivity to copper in a tissue specific manner, namely of isolated rat liver, kidney, heart, and brain mitochondria. Brain mitochondria presented with exceptional copper sensitivity, as evidenced by a comparatively early membrane potential loss, profound structural changes already at low copper dose, and a dose-dependent reduced capacity to produce ATP. This sensitivity was likely due to a copper-dependent attack on free protein thiols and due to a decreased copper reactive defense system, as further evidenced in neuroblastoma SHSY5Y cells. In contrast, an increased production of reactive oxygen species was found to be a late-stage event, only occurring in destroyed mitochondria. We therefore propose mitochondrial protein thiols as major targets of mitochondrial copper toxicity.
Collapse
|
6
|
Wiraswati HL, Hangen E, Sanz AB, Lam NV, Reinhardt C, Sauvat A, Mogha A, Ortiz A, Kroemer G, Modjtahedi N. Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione. Oncotarget 2018; 7:76496-76507. [PMID: 27738311 PMCID: PMC5363526 DOI: 10.18632/oncotarget.12562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/30/2016] [Indexed: 01/27/2023] Open
Abstract
Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione. This cytoprotective effect was accompanied by the maintenance of high levels of reduced glutathione (GSH), which are normally depleted by menadione. In addition, AIF depletion reduced the arylation of cellular proteins induced by menadione. This menadione-triggered arylation, which can be measured by a fluorescence assay, is completely suppressed by addition of exogenous glutathione or N-acetyl cysteine. Complex I inhibition by Rotenone did not mimic the cytoprotective action of AIF depletion. Altogether, these results are compatible with the hypothesis that mitochondrion-sessile AIF facilitates lethal redox cycling of menadione, thereby precipitating protein arylation and glutathione depletion.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.,Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Emilie Hangen
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Ana Belén Sanz
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.,Laboratory of Nephrology, IIS-Fundacion Jimenez Diaz UAM and REDINREN, Madrid, Spain
| | - Ngoc-Vy Lam
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Camille Reinhardt
- Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.,INSERM, U1030, Villejuif, France
| | - Allan Sauvat
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ariane Mogha
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Alberto Ortiz
- Laboratory of Nephrology, IIS-Fundacion Jimenez Diaz UAM and REDINREN, Madrid, Spain
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Nazanine Modjtahedi
- Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.,INSERM, U1030, Villejuif, France
| |
Collapse
|
7
|
Belorgey D, Lanfranchi DA, Davioud-Charvet E. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Curr Pharm Des 2013; 19:2512-28. [PMID: 23116403 DOI: 10.2174/1381612811319140003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022]
Abstract
The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in developmental arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages.
Collapse
Affiliation(s)
- Didier Belorgey
- European School of Chemistry, Polymers and Materials (ECPM), UMR7509 CNRS - Universite de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | | | |
Collapse
|
8
|
Yan LJ, Sumien N, Thangthaeng N, Forster MJ. Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide. Free Radic Res 2012. [PMID: 23205777 DOI: 10.3109/10715762.2012.752078] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Under oxidative stress conditions, mitochondria are the major site for cellular production of reactive oxygen species (ROS) such as superoxide anion and H2O2 that can attack numerous mitochondrial proteins including dihydrolipoamide dehydrogenase (DLDH). While DLDH is known to be vulnerable to oxidative inactivation, the mechanisms have not been clearly elucidated. The present study was therefore designed to investigate the mechanisms of DLDH oxidative inactivation by mitochondrial reactive oxygen species (ROS). Mitochondria, isolated from rat brain, were incubated with mitochondrial respiratory substrates such as pyruvate/malate or succinate in the presence of electron transport chain inhibitors such as rotenone or antimycin A. This is followed by enzyme activity assay and gel-based proteomic analysis. The present study also examined whether ROS-induced DLDH oxidative inactivation could be reversed by reducing reagents such as DTT, cysteine, and glutathione. Results show that DLDH could only be inactivated by complex III- but not complex I-derived ROS; and the accompanying loss of activity due to the inactivation could be restored by cysteine and glutathione, indicating that DLDH oxidative inactivation by complex III-derived ROS was a reversible process. Further studies using catalase indicate that it was H2O2 instead of superoxide anion that was responsible for DLDH inactivation. Moreover, using sulfenic acid-specific labeling techniques in conjunction with two-dimensional Western blot analysis, we show that protein sulfenic acid formation (also known as sulfenation) was associated with the loss of DLDH enzymatic activity observed under our experimental conditions. Additionally, such oxidative modification was shown to be associated with preventing DLDH from further inactivation by the thiol-reactive reagent N-ethylmaleimide. Taken together, the present study provides insights into the mechanisms of DLDH oxidative inactivation by mitochondrial H2O2.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
9
|
Ojha S, Meng EC, Babbitt PC. Evolution of function in the "two dinucleotide binding domains" flavoproteins. PLoS Comput Biol 2008; 3:e121. [PMID: 17658942 PMCID: PMC1924876 DOI: 10.1371/journal.pcbi.0030121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 05/14/2007] [Indexed: 12/22/2022] Open
Abstract
Structural and biochemical constraints force some segments of proteins to evolve more slowly than others, often allowing identification of conserved structural or sequence motifs that can be associated with substrate binding properties, chemical mechanisms, and molecular functions. We have assessed the functional and structural constraints imposed by cofactors on the evolution of new functions in a superfamily of flavoproteins characterized by two-dinucleotide binding domains, the “two dinucleotide binding domains” flavoproteins (tDBDF) superfamily. Although these enzymes catalyze many different types of oxidation/reduction reactions, each is initiated by a stereospecific hydride transfer reaction between two cofactors, a pyridine nucleotide and flavin adenine dinucleotide (FAD). Sequence and structural analysis of more than 1,600 members of the superfamily reveals new members and identifies details of the evolutionary connections among them. Our analysis shows that in all of the highly divergent families within the superfamily, these cofactors adopt a conserved configuration optimal for stereospecific hydride transfer that is stabilized by specific interactions with amino acids from several motifs distributed among both dinucleotide binding domains. The conservation of cofactor configuration in the active site restricts the pyridine nucleotide to interact with FAD from the re-side, limiting the flow of electrons from the re-side to the si-side. This directionality of electron flow constrains interactions with the different partner proteins of different families to occur on the same face of the cofactor binding domains. As a result, superimposing the structures of tDBDFs aligns not only these interacting proteins, but also their constituent electron acceptors, including heme and iron-sulfur clusters. Thus, not only are specific aspects of the cofactor-directed chemical mechanism conserved across the superfamily, the constraints they impose are manifested in the mode of protein–protein interactions. Overlaid on this foundation of conserved interactions, nature has conscripted different protein partners to serve as electron acceptors, thereby generating diversification of function across the superfamily. The sequencing of genomes from different species has provided a unique opportunity for comparative analysis and opened the door to a higher level of understanding of living organisms. However, identifying the biochemical functions of the protein products coded by these genes has proved to be a major challenge. Computational methods that have been used to assign functions to such sequences often result in high levels of misannotations. Nature's strategy of evolving new function provides clues for formulating an accurate predictive scheme for functional annotation. Constraints associated with substrate binding properties and chemistry have been shown to be major determinants of guiding the evolution of new function. In this study, the authors have explored the functional and structural constraints imposed by complex cofactors on the evolution of new functions. Analysis of the large “two dinucleotide binding domains” flavoproteins (tDBDF) superfamily using structural comparisons and other bioinformatics approaches shows how structural requirements associated with cofactor reactivity constrain the mode of protein–protein interactions while providing the major route for evolution of functional diversification. The evolutionary framework established in this work may be generally useful for the analysis of functional divergence in other enzyme superfamilies that use complex cofactors.
Collapse
Affiliation(s)
- Sunil Ojha
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Elaine C Meng
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Patricia C Babbitt
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Boudalis AK, Policand X, Sournia-Saquet A, Donnadieu B, Tuchagues JP. Synthesis, spectroscopic, structural and electrochemical studies of carboxyl substituted 1,4-naphthoquinones. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Håkansson AP, Smith AW. Enzymatic characterization of dihydrolipoamide dehydrogenase from Streptococcus pneumoniae harboring its own substrate. J Biol Chem 2007; 282:29521-30. [PMID: 17690105 DOI: 10.1074/jbc.m703144200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes the enzymatic characterization of dihydrolipoamide dehydrogenase (DLDH) from Streptococcus pneumoniae and is the first characterization of a DLDH that carries its own substrate (a lipoic acid covalently attached to a lipoyl protein domain) within its own sequence. Full-length recombinant DLDH (rDLDH) was expressed and compared with enzyme expressed in the absence of lipoic acid (rDLDH(-LA)) or with enzyme lacking the first 112 amino acids constituting the lipoyl protein domain (rDLDH(-LIPOYL)). All three proteins contained 1 mol of FAD/mol of protein, had a higher activity for the conversion of NAD(+) to NADH than for the reaction in the reverse direction, and were unable to use NADP(+) and NADPH as substrates. The enzymes had similar substrate specificities, with the K(m) for NAD(+) being approximately 20 times higher than that for dihydrolipoamide. The kinetic pattern suggested a Ping Pong Bi Bi mechanism, which was verified by product inhibition studies. The protein expressed without lipoic acid was indistinguishable from the wild-type protein in all analyses. On the other hand, the protein without a lipoyl protein domain had a 2-3-fold higher turnover number, a lower K(I) for NADH, and a higher K(I) for lipoamide compared with the other two enzymes. The results suggest that the lipoyl protein domain (but not lipoic acid alone) plays a regulatory role in the enzymatic characteristics of pneumococcal DLDH.
Collapse
Affiliation(s)
- Anders P Håkansson
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA.
| | | |
Collapse
|
12
|
Jeitner TM, Xu H, Gibson GE. Inhibition of the alpha-ketoglutarate dehydrogenase complex by the myeloperoxidase products, hypochlorous acid and mono-N-chloramine. J Neurochem 2005; 92:302-10. [PMID: 15663478 DOI: 10.1111/j.1471-4159.2004.02868.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract alpha-Ketoglutarate dehydrogenase (KGDHC) complex activity is diminished in a number of neurodegenerative disorders and its diminution in Alzheimer Disease (AD) is thought to contribute to the major loss of cerebral energy metabolism that accompanies this disease. The loss of KGDHC activity appears to be predominantly due to post-translation modifications. Thiamine deficiency also results in decreased KGDHC activity and a selective neuronal loss. Recently, myeloperoxidase has been identified in the activated microglia of brains from AD patients and thiamine-deficient animals. Myeloperoxidase produces a powerful oxidant, hypochlorous acid that reacts with amines to form chloramines. The aim of this study was to investigate the ability of hypochlorous acid and chloramines to inhibit the activity of KGDHC activity as a first step towards investigating the role of myeloperoxidase in AD. Hypochlorous acid and mono-N-chloramine both inhibited purified and cellular KGDHC and the order of inhibition of the purified complex was hypochlorous acid (1x) > mono-N-chloramine (approximately 50x) > hydrogen peroxide (approximately 1,500). The inhibition of cellular KGDHC occurred with no significant loss of cellular viability at all exposure times that were examined. Thus, hypochlorous acid and chloramines have the potential to inactivate a major target in neurodegeneration.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
13
|
Klyachko NL, Shchedrina VA, Efimov AV, Kazakov SV, Gazaryan IG, Kristal BS, Brown AM. pH-dependent substrate preference of pig heart lipoamide dehydrogenase varies with oligomeric state: response to mitochondrial matrix acidification. J Biol Chem 2005; 280:16106-14. [PMID: 15710613 DOI: 10.1074/jbc.m414285200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cycling of intracellular pH has recently been shown to play a critical role in ischemia-reperfusion injury. Ischemia-reperfusion also leads to mitochondrial matrix acidification and dysfunction. However, the mechanism by which matrix acidification contributes to mitochondrial dysfunction, oxidative stress, and the resultant cellular injury has not been elucidated. We observe pH-dependent equilibria between monomeric, dimeric, and a previously undescribed tetrameric form of pig heart lipoamide dehydrogenase (LADH), a mitochondrial matrix enzyme. Dynamic light scattering studies of native LADH in aqueous solution indicate that lowering pH favors a shift in average molecular mass from higher oligomeric states to monomer. Sedimentation velocity of LADH entrapped in reverse micelles reveals dimer and tetramer at both pH 5.8 and 7.5, but monomer was observed only at pH 5.8. Enzyme activity measurements in reverse Aerosol OT micelles in octane indicate that LADH dimer and tetramer possess lipoamide dehydrogenase and diaphorase activities at pH 7.5. Upon acidification to pH 5.8 only the LADH monomer is active and only the diaphorase activity is observed. These results indicate a correlation between pH-dependent changes in the LADH reaction specificity and its oligomeric state. The acidification of mitochondrial matrix that occurs during ischemia-reperfusion injury is sufficient to alter the structure and enzymatic specificity of LADH, thereby reducing mitochondrial defenses, increasing oxidative stress, and slowing the recovery of energy metabolism. Matrix acidification may also disrupt the quaternary structure of other mitochondrial protein complexes critical for cellular homeostasis and survival.
Collapse
Affiliation(s)
- Natalia L Klyachko
- Department of Chemical Enzymology, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
14
|
Kim WH, Chung JH, Back JH, Choi J, Cha JH, Koh HY, Han YS. Molecular cloning and characterization of an NADPH quinone oxidoreductase from Kluyveromyces marxianus. BMB Rep 2003; 36:442-9. [PMID: 14536026 DOI: 10.5483/bmbrep.2003.36.5.442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAD(P)H quinone oxidoreductase is a ubiquitous enzyme that is known to directly reduce quinone substrates to hydroquinones by a two-electron reaction. We report the identification of NADPH quinone oxidoreductase from Kluyveromyces marxianus (KmQOR), which reduces quinone substrates directly to hydroquinones. The KmQOR gene was sequenced, expressed in Escherichia coli, purified, and characterized. The open-reading frame of the KmQOR gene consists of 1143 nucleotides, encoding a 380 amino acid polypeptide. The nucleotide sequence of the KmQOR gene was assigned to EMBL under accession number AY040868. The M(r) that was determined by SDS-PAGE for the protein subunit was about 42 kDa, and the molecular mass of the native KmQOR was 84 kDa, as determined by column calibration, indicating that the native protein is a homodimer. The KmQOR protein efficiently reduced 1,4-benzoquinone, whereas no activities were found for menadiones and methoxyquinones. These observations, and the result of an extended sequence analysis of known NADPH quinone oxidoreductase, suggest that KmQOR possesses a different action mechanism.
Collapse
Affiliation(s)
- Wook Hyun Kim
- Biomedical Research Center, Korea Institute of Science and Technology, Cheongryang P.O. Box 131, Seoul 130-650, Korea.
| | | | | | | | | | | | | |
Collapse
|
15
|
Cenas N, Nivinskas H, Anusevicius Z, Sarlauskas J, Lederer F, Arnér ESJ. Interactions of quinones with thioredoxin reductase: a challenge to the antioxidant role of the mammalian selenoprotein. J Biol Chem 2003; 279:2583-92. [PMID: 14604985 DOI: 10.1074/jbc.m310292200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian thioredoxin reductases (TrxR) are important selenium-dependent antioxidant enzymes. Quinones, a wide group of natural substances, human drugs, and environmental pollutants may act either as TrxR substrates or inhibitors. Here we systematically analyzed the interactions of TrxR with different classes of quinone compounds. We found that TrxR catalyzed mixed single- and two-electron reduction of quinones, involving both the selenium-containing motif and a second redox center, presumably FAD. Compared with other related pyridine nucleotide-disulfide oxidoreductases such as glutathione reductase or trypanothione reductase, the k(ca)(t)/K(m) value for quinone reduction by TrxR was about 1 order of magnitude higher, and it was not directly related to the one-electron reduction potential of the quinones. A number of quinones were reduced about as efficiently as the natural substrate thioredoxin. We show that TrxR mainly cycles between the four-electron reduced (EH(4)) and two-electron reduced (EH(2)) states in quinone reduction. The redox potential of the EH(2)/EH(4) couple of TrxR calculated according to the Haldane relationship with NADPH/NADP(+) was -0.294 V at pH 7.0. Antitumor aziridinylbenzoquinones and daunorubicin were poor substrates and almost inactive as reversible TrxR inhibitors. However, phenanthrene quinone was a potent inhibitor (approximate K(i) = 6.3 +/- 1 microm). As with other flavoenzymes, quinones could confer superoxide-producing NADPH oxidase activity to mammalian TrxR. A unique feature of this enzyme was, however, the fact that upon selenocysteine-targeted covalent modification, which inactivates its normal activity, reduction of some quinones was not affected, whereas that of others was severely impaired. We conclude that interactions with TrxR may play a considerable role in the complex mechanisms underlying the diverse biological effects of quinones.
Collapse
Affiliation(s)
- Narimantas Cenas
- Institute of Biochemistry, Mokslininku 12, LT-2600 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
16
|
Kadiiska MB, Mason RP. In vivo copper-mediated free radical production: an ESR spin-trapping study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2002; 58:1227-1239. [PMID: 11993471 DOI: 10.1016/s1386-1425(01)00713-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Copper has been suggested to facilitate oxidative tissue injury through a free radical-mediated pathway analogous to the Fenton reaction. By applying the electron spin resonance (ESR) spin-trapping technique, evidence for hydroxyl radical formation in vivo was obtained in rats treated simultaneously with copper and ascorbic acid or paraquat. A secondary radical spin-trapping technique was used in which the hydroxyl radical formed the methyl radical upon reaction with dimethylsulfoxide. The methyl radical was then detected by ESR spectroscopy as its adduct with the spin trap phenyl-N-t-butyl- nitrone (PBN). In contrast, lipid derived radical was detected in vivo in copper-challenged, vitamin E and selenium-deficient rats. These findings support the proposal that dietary selenium and vitamin E can protect against lipid peroxidation and copper toxicity. Since copper excreted into the bile from treated animals is expected to be maintained in the Cu(I) state (by ascorbic acid or glutathione), a chelating agent that would redox-stablilize it in the Cu(I) state was used to prevent ex vivo redox chemistry. Bile samples were collected directly into solutions of bathocuproinedisulfonic acid, a Cu(I)-stabilizing agent, and 2,2'-dipyridyl, a Fe(II)-stabilizing agent. If these precautions were not taken, radical adducts generated ex vivo could be mistaken for radical adducts produced in vivo and excreted into the bile.
Collapse
Affiliation(s)
- Maria B Kadiiska
- National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709-2233, USA.
| | | |
Collapse
|
17
|
Gutierrez PL. The role of NAD(P)H oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: a review. Free Radic Biol Med 2000; 29:263-75. [PMID: 11035255 DOI: 10.1016/s0891-5849(00)00314-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioactivation of quinone-containing anticancer agents has been studied extensively within the context of the chemistry and structure of the individual quinones which may result in various mechanisms of bioactivation and activity. In this review we focus on the two electron enzymatic reduction/activation of quinone-containing anticancer agents by DT Diaphorase (DTD). This enzyme has become important in oncopharmacology because its activity varies with tissues and it has been found to be elevated in tumors. Thus, a selective tumor cell kill can exist for agents that are good substrates for this enzyme. In addition, the enzyme can be induced by a variety of agents, a fact that can be used in chemotherapy. That is induction by a nontoxic agent followed by treatment with a good DT-Diaphorase substrate. A wide variety of anticancer drugs are discussed some of which are not good substrates such as Adriamycin, and some of which are excellent substrates. The latter category includes a variety of quinone containing alkylating agents.
Collapse
Affiliation(s)
- P L Gutierrez
- The University of Maryland Greenebaum Cancer Center, University of Maryland Medical School, Baltimore, 21201, USA.
| |
Collapse
|
18
|
Zhai Q, Ji H, Zheng Z, Yu X, Sun L, Liu X. Copper induces apoptosis in BA/F3beta cells: Bax, reactive oxygen species, and NFkappaB are involved. J Cell Physiol 2000; 184:161-70. [PMID: 10867640 DOI: 10.1002/1097-4652(200008)184:2<161::aid-jcp3>3.0.co;2-n] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Copper, an essential trace element, can be toxic to some cells when present in excess. But thorough investigations into the cytotoxicity of copper and subsequent molecular mechanisms are rare, although the cytotoxicity of copper has been applied to cancer chemotherapy. The present study demonstrates that Cu(2+) inhibits [(3)H] thymidine incorporation in mouse pro-B cell line BA/F3beta and induces apoptosis. Apoptosis was mainly judged by morphology of cells, quantification of subdiploid DNA contents by flow cytometry, and detection of DNA fragmentation by gel electrophoresis. The apoptotic effect is dose and time dependent. Western blotting shows Bax is upregulated by Cu(2+). Bcl-2 overexpression can partially inhibit this apoptosis. Moreover, Cu(2+) increases the production of reactive oxygen species (ROS) in a dose-dependent manner. The antioxidant N-acetylcysteine (NAC) not only significantly inhibited copper-induced apoptosis but also totally blocked generation of ROS, while Bcl-2 overexpression has no effect on the generation of ROS. Furthermore, our results show that NFkappaB is downregulated by Cu(2+). Bcl-2 overexpression or NAC can sustain the activity of NFkappaB. These data indicate that Cu(2+) might induce apoptosis in BA/F3beta cells via upregulation of Bax and ROS and subsequent inactivation of NFkappaB.
Collapse
Affiliation(s)
- Q Zhai
- Shanghai Institute of Biochemistry, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
19
|
Youn H, Kang SO. Enhanced sensitivity of Streptomyces seoulensis to menadione by superfluous lipoamide dehydrogenase. FEBS Lett 2000; 472:57-61. [PMID: 10781805 DOI: 10.1016/s0014-5793(00)01437-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Lipoamide dehydrogenase from Streptomyces seoulensis could facilitate menadione-mediated cytochrome c reduction, which was mostly inhibited by superoxide dismutase, indicating the obvious involvement of superoxide radical anion. In this reaction, the production of superoxide radical anion occurred via a menadione semiquinone radical anion. When exposed to menadione, lipoamide dehydrogenase-overexpressing cells showed a much lower survival rate with a concomitant decrease of intracellular protein thiol than the wild-type strain. These results suggest that lipoamide dehydrogenase is a facilitating agent in the redox cycling of quinone compounds in vivo as well as in vitro and could inevitably increase the potential toxicity of the compounds.
Collapse
Affiliation(s)
- H Youn
- Laboratory of Biophysics, Department of Microbiology, College of Natural Sciences, and Research Center for Molecular Microbiology, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
20
|
Youn H, Kwak J, Youn HD, Hah YC, Kang SO. Lipoamide dehydrogenase from streptomyces seoulensis: biochemical and genetic properties. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:405-18. [PMID: 9858775 DOI: 10.1016/s0167-4838(98)00200-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lipoamide dehydrogenase was purified around 22-fold relative to the crude extracts of Streptomyces seoulensis with an overall yield of 9. 5%. The enzyme was composed of two identical subunits with a molecular mass of 54 kDa and contained 1 mol of FAD per mol of subunit. The absorption spectra of the enzyme revealed the absorption maxima of flavoprotein at 272, 349, and 457 nm. Catalytically active two-electron reduced lipoamide dehydrogenase was produced by anaerobic reduction with one equivalent of NADH. Addition of excess amount of NADH led to the four-electron reduced lipoamide dehydrogenase. The reaction of the enzyme in the reduction reaction of lipoamide or lipoic acid could be explained by a ping-pong mechanism like many other lipoamide dehydrogenases reported earlier. The enzyme also catalysed the reduction of various quinone compounds with NADH as electron donor via a ping-pong mechanism. The enzyme can catalyse a single electron transfer in case of quinone-reducing process, evidenced by the production of 1, 4-naphthosemiquinone radical anion. The quinone-reducing activity of the enzyme was dramatically inhibited by NAD+, indicating the involvement of four-electron reduced form. The structural gene for the enzyme was cloned using a DNA fragment PCR-amplified with the primers designed from N-terminal and internal amino acid sequences. The deduced amino acid sequence shared striking similarity with those of lipoamide dehydrogenases from prokaryotes and eukaryotes. The gene was named lpd. All tested Streptomyces contained one homologue of the lpd gene, which is consistent with the fact that most organisms contain only one lipoamide dehydrogenase.
Collapse
Affiliation(s)
- H Youn
- Department of Microbiology, College of Natural Sciences, and Research Centre for Molecular Microbiology, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | |
Collapse
|
21
|
Abstract
Copper ions stimulate proliferation of human umbilical artery and vein endothelial cells but not human dermal fibroblasts or arterial smooth muscle cells. Incubation of human umbilical vein endothelial cells for 48 h with 500 microM CuSO4 in a serum-free medium in the absence of exogenous growth factors results in a twofold increase in cell number, similar to the cell number increase induced by 20 ng/ml of basic fibroblast growth factor under the same conditions. Copper-induced proliferation of endothelial cells is not inhibited by 10% fetal bovine serum or by the presence of antibodies against a variety of angiogenic, growth, and chemotactic factors including angiogenin, fibroblast growth factors, epidermal growth factor, platelet-derived growth factor, tumor necrosis factor-alpha, transforming growth factor-beta, macrophage/monocyte chemotactic and activating factor, and macrophage inflammatory protein-1alpha. Moreover, despite the previous observations that copper increased total specific binding of 125I-angiogenin to endothelial cells, binding to the 170 kDa receptor is not changed; hence, the mitogenic activity of angiogenin is not altered by copper. Copper-induced proliferation, along with early reports that copper induces migration of endothelial cells, may suggest a possible mechanism for the involvement of copper in the process of angiogenesis.
Collapse
Affiliation(s)
- G F Hu
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
22
|
Bironaite D, Anusevicius Z, Jacquot JP, Cenas N. Interaction of quinones with Arabidopsis thaliana thioredoxin reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1383:82-92. [PMID: 9546049 DOI: 10.1016/s0167-4838(97)00190-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In view of the ubiquitous role of the thioredoxin/thioredoxin reductase (TRX/TR) system in living cells, the interaction of Arabidopsis thaliana NADPH-thioredoxin reductase (EC 1.6.4.5) with quinones, an important class of redox cycling and alkylating xenobiotics, was studied. The steady-state reactions of A. thaliana TR with thioredoxin (TRX) and reaction product NADP+ inhibition patterns were in agreement with a proposed model of E. coli enzyme (B.W. Lennon, C.H. Williams, Jr., Biochemistry, vol. 35 (1996), pp. 4704-4712), that involved enzyme cycling between four- and two-electron reduced forms with FAD being reduced. Quinone reduction by TR proceeded via a mixed single- and two-electron transfer, the percentage of single-electron flux being equal to 12-16%. Bimolecular rate constants of quinone reduction (kcat/km) and reaction catalytic constants (kcat) increased upon an increase in quinone single-electron reduction potential. E(1)7. In several cases, the kcat of quinone reduction exceeded kcat of TRX reduction, suggesting that quinones intercepted electron flux from TR to TRX. Incubation of reduced TR with alkylating quinones resulted in a rapid loss of TRX-reductase activity, while quinone reduction rate was unchanged. In TRX-reductase and quinone reductase reactions of TR, NADP+ exhibited different inhibition patterns. These data point out that FAD and not the catalytic disulfide of TR is responsible for quinone reduction, and that quinones may oxidize FADH2 before it reduces catalytic disulfide. Most probably, quinones may oxidize the two-electron reduced form of TR, and the enzyme may cycle between two-electron reduced and oxidized forms in this reaction. The relatively high rate of quinone reduction by A. thaliana thioredoxin reductase accompanied by their redox cycling, confers pro-oxidant properties to this antioxidant enzyme. These factors make plant TR an attractive target for redox active and alkylating pesticide action.
Collapse
Affiliation(s)
- D Bironaite
- Institute of Biochemistry, Vilnius, Lithuania
| | | | | | | |
Collapse
|
23
|
Miura T, Muraoka S, Ogiso T. Lipid peroxidation of erythrocyte membrane induced by lipoamide dehydrogenase in the presence of ADP-Fe3+. PHARMACOLOGY & TOXICOLOGY 1992; 71:297-301. [PMID: 1454754 DOI: 10.1111/j.1600-0773.1992.tb00987.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lipid peroxidation of rat erythrocyte membranes was induced by lipoamide dehydrogenase (LADH) (EC 1.8.1.4) in the presence of ADP-Fe3+. Superoxide dismutase (SOD) (EC 1.15.1.1) strongly inhibited the peroxidation reaction but catalase did not. Hydroxyl radical scavengers, mannitol and dimethylsulfoxide did not inhibit the lipid peroxidation. These results indicated that the lipid peroxidation was a superoxide (O2-)-dependent reaction, but the hydroxyl radical was not involved. ADP-Fe3+, in the presence of LADH, was reduced more rapidly under aerobic than anaerobic conditions and SOD under aerobic conditions strongly inhibited the iron reduction, indicating that O2- plays a predominant role in iron reduction. Hydrogen peroxide enhanced O2- generation by LADH, but the peroxidation reaction was not affected. In the presence of lipoamide, lipid peroxidation was also induced but the reactions were not inhibited by SOD. Evidently, the lipid peroxidation induced in the presence of lipoamide was O2(-)-independent. Dihydrolipoamide may be involved in the peroxidation reaction.
Collapse
Affiliation(s)
- T Miura
- Hokkaido Institute of Pharmaceutical Sciences, Otaru, Japan
| | | | | |
Collapse
|
24
|
Hanaki A, Yokoi H. Cu(II) Complexes of Glutathione. Coordination Mode, Spectroscopic Properties, and Lability. CHEM LETT 1991. [DOI: 10.1246/cl.1991.1311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Sreider CM, Grinblat L, Stoppani AO. Catalysis of nitrofuran redox-cycling and superoxide anion production by heart lipoamide dehydrogenase. Biochem Pharmacol 1990; 40:1849-57. [PMID: 2173592 DOI: 10.1016/0006-2952(90)90366-s] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heart lipoamide dehydrogenase (LADH) catalyzed redox-cycling and O2-. production by (5-nitro-2-furfurylidene)amino derivatives using NADH as electron donor. NADH was a much more effective electron donor than NADPH for the nitroreductase activity. O2-. production was demonstrated by cytochrome c reduction, adrenochrome formation and the effect of superoxide dismutase. Under optimum conditions, nitroreductase activity was about 1% of LADH activity. One electron oxygen reduction and NADH oxidation correlated in 2:1 stoichiometry. The nitroreductase kinetics was in accordance with an ordered bi-bi mechanism. Nitrofuran derivatives bearing unsaturated five- or six-membered nitrogen heterocycles were more effective substrates than those bearing other groups, namely nifurtimox, nitrofurazone, nitrofurantoin and 5-nitro-2-furoic acid. Other nitro compounds (chloramphenicol, benznidazole, 2-nitroimidazole and 5-nitroindole) were ineffective. With the triazole, traizine and imidazole nitrofuran derivatives, the nitroreductase pH curve showed a maximum at pH 8.8, different from the pH optimum for the lipoamide reductase and diaphorase activities. Spectroscopic observations demonstrated pH-dependent structural changes in the triazole(I) and triazine derivatives which would affect their behavior as nitroreductase substrates. The nitroreductase activity was inhibited by p-chloromercuribenzoate and enhanced by cadmium and arsenite, whereas the NADH-induced LADH inactivation failed to affect the nitroreductase activity. In the absence of oxygen. LADH catalyzed nitrofuran reduction to products more reduced than the nitroanion, which were not reoxidized by oxygen. The anaerobic nitrofuran reduction was inhibited by cadmium and arsenite. The assayed nitrofuran compounds did not inhibit LADH lipoamide reductase activity, at variance with their action on glutathione reductase (Grinblat et al., Biochem Pharmacol 38: 767-772, 1989).
Collapse
Affiliation(s)
- C M Sreider
- Centro de Investigaciones Bioenergéticas, Facultad de Medicina, Buenos Aires, Argentina
| | | | | |
Collapse
|
26
|
Vienozinskis J, Butkus A, Cenas N, Kulys J. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase. Biochem J 1990; 269:101-5. [PMID: 2375745 PMCID: PMC1131537 DOI: 10.1042/bj2690101] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed.
Collapse
Affiliation(s)
- J Vienozinskis
- Institute of Biochemistry, Lithuanian Academy of Sciences, Vilnius, U.S.S.R
| | | | | | | |
Collapse
|
27
|
Lipid peroxidation inactivates rat liver microsomal glycerol-3-phosphate acyl transferase. Effect of iron and copper salts and carbon tetrachloride. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39856-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Yu HS, Pastor SA, Lam KW, Yee RW. Ascorbate-enhanced copper toxicity on bovine corneal endothelial cells in vitro. Curr Eye Res 1990; 9:177-82. [PMID: 2335113 DOI: 10.3109/02713689008995204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present results indicate that 30 micrograms/ml copper was toxic to bovine corneal endothelial cells (BCEC) cultured in a serum-free medium (SFM) when the duration of treatment was 72 hours or more. Copper at 10 micrograms/ml, if mixed with 50 micrograms/ml ascorbate 2 to 3 hours before treatment, caused a transient decrease in the number of nuclei/mm2 at 72 hour, whereas 10 micrograms/ml copper alone was apparently non-toxic. When 10 micrograms/ml copper was added to 50 micrograms/ml ascorbate at the time of treatment, the toxicity was increased. All the treated cells failed to survive beyond 24 hours, and copper at a lower concentration of 1 microgram/ml could inhibit the proliferation of BCEC. We propose that copper toxicity on BCEC is augmented by ascorbate possibly through the increased replenishment of Cu+ and the subsequent enhanced production of free radicals by copper auto-oxidation.
Collapse
Affiliation(s)
- H S Yu
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio
| | | | | | | |
Collapse
|
29
|
Willson RL. Quinones, semiquinone free radicals and one-electron transfer reactions: a walk in the literature from Peru to S.O.D. FREE RADICAL RESEARCH COMMUNICATIONS 1990; 8:201-17. [PMID: 2191902 DOI: 10.3109/10715769009053354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R L Willson
- Department of Biology and Biochemistry, Brunel University, Uxbridge, Middlesex
| |
Collapse
|
30
|
Freedman JH, Ciriolo MR, Peisach J. The Role of Glutathione in Copper Metabolism and Toxicity. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83589-x] [Citation(s) in RCA: 205] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Cénas NK, Rakauskiené GA, Kulys JJ. One- and two-electron reduction of quinones by glutathione reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 973:399-404. [PMID: 2647141 DOI: 10.1016/s0005-2728(89)80381-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Yeast glutathione reductase (E.C. 1.6.4.2) catalyzes the oxidation of NADPH by p-quinones and ferricyanide with a maximal turnover number (TNmax) of 4-5 s-1.NADP+ stimulates the reaction and the TNmax/Km value of acceptors is reached at NADP+/NADPH greater than or equal to 100. TNmax is increased up to 30-33 s-1. The stimulatory effect of NADP+ may be associated with its complexation with the NADPH-binding site in the reduced enzyme (Kd = 40-60 microM). It is suggested that NADP+ shifts the electron density towards FAD in the two-electron-reduced enzyme and, evidently, changes its one-electron-reduction potentials, while quinones oxidize an equilibrium form of glutathione reductase containing reduced FAD. In the absence of NADP+ the reduction of quinones by glutathione reductase proceeds mainly in a two-electron manner. At NADP+/NADPH = 100 a one-electron reduction makes up 44% of the total process. At pH 6.0-7.0 the reduced forms of naphthoquinones undergo cyclic redox conversions. A hyperbolic dependence exists of the log TN/Km of quinones on their one-electron-reduction potentials.
Collapse
Affiliation(s)
- N K Cénas
- Institute of Biochemistry, Lithuanian Academy of Sciences, Vilnus, U.S.S.R
| | | | | |
Collapse
|
32
|
Abstract
Quinones are among the most frequently used drugs to treat human cancer. All of the antitumor quinones can undergo reversible enzymatic reduction and oxidation, and form semiquinone and oxygen radicals. For several antitumor quinones enzymatic reduction also leads to formation of alkylating species but whether this involves reduction to the semiquinone or the hydroquinone is not always clear. The antitumor activity of quinones is frequently linked to DNA damage caused by alkylating species or oxygen radicals. Some other effects of the antitumor quinones, such as cardiotoxicity and skin toxicity, may also be related to oxygen radical formation. The evidence for a relationship between radical formation and the biological activity of the antitumor quinones is evaluated.
Collapse
Affiliation(s)
- G Powis
- Department of Pharmacology, Mayo Clinic & Foundation, Rochester, MN 55905
| |
Collapse
|
33
|
Abstract
The role of nonprotein thiols (NPSH) in the enzymatic reduction of the nitro function in 2-nitroimidazoles (2-NI) has been investigated. The addition of NPSH has been shown previously to protect cells from the hypoxic cytotoxicity of 2-NI, whereas depletion of NPSH enhances the hypoxic cytotoxicity. In this report, we have investigated the effects of thiol depleting agents, N-ethylmaleimide (NEM) and diethyl maleate (DEM), on the enzymatic reduction of the nitro group. Cytosolic and microsomal fractions of rat hepatic tissue and xanthine oxidase were employed as sources of nitro reductases. Addition of NPSH caused an enhancement in the reduction of the nitro group of 2-NI; cysteine was significantly more effective than glutathione (GSH) in stimulating the enzymatic reduction. The reduction of the nitro function was decreased markedly in the presence of NEM or DEM. Addition of cysteine or GSH reversed the inhibition with NEM. Both NEM and DEM also attenuated the enhancement of reduction observed after the addition of NPSH. These results suggest that the addition of NPSH facilities the reduction of the nitro function to the reduced intermediates that may be inactivated by an excess of NPSH, whereas the depletion of NPSH allows the accumulation of the toxic nitro radicals causing increased cytotoxicity.
Collapse
Affiliation(s)
- K H Wong
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112
| | | |
Collapse
|
34
|
Moore GA, Rossi L, Nicotera P, Orrenius S, O'Brien PJ. Quinone toxicity in hepatocytes: studies on mitochondrial Ca2+ release induced by benzoquinone derivatives. Arch Biochem Biophys 1987; 259:283-95. [PMID: 3426229 DOI: 10.1016/0003-9861(87)90495-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hepatocyte cytotoxicity caused by substituted benzoquinones was associated with increased cytosolic Ca2+ concentration. p-Benzoquinone-induced hepatotoxicity was enhanced when the hepatocytes were loaded with Ca2+ by preincubation with ATP. A similar order of potency of the substituted benzoquinones in releasing Ca2+ from isolated mitochondria and inducing hepatocyte cytotoxicity was found; in decreasing order, this was 2-Br-, unsubstituted-, 2-CH3-, 2,6-(CH3O)2-, 2,6-(CH3)2-, 2,5-(CH3)2-, 2,3,5-(CH3)3-, and 2,3,5,6-(CH3)4-benzoquinones (duroquinone). The cellular products of quinone metabolism, hydroquinones and glutathione conjugates, did not cause mitochondrial Ca2+ release. Benzoquinone-induced mitochondrial Ca2+ release was preceded by GSH conjugate formation and NAD(P)H oxidation but followed by mitochondrial swelling. With duroquinone, a slow GSH and NADPH oxidation preceded Ca2+ release, but GSH oxidation did not occur with Se-deficient mitochondria lacking glutathione peroxidase activity. Cyanide-insensitive respiration was also observed with duroquinone but not with benzoquinone, suggesting that duroquinone undergoes redox cycling. GSH was depleted by both arylation and oxidation with 2,6-(CH3O)2-, 2,6-(CH3)2-, 2,5(CH3)2-, and 2,3,5-(CH3)3-benzoquinones. Benzoquinone concentrations that totally depleted GSH did not cause Ca2+ release until intramitochondrial NAD(P)H was oxidized. Ca2+ release was also prevented when NAD(P)H generation was stimulated by the presence of isocitrate or 3-hydroxybutyrate. This suggests that mitochondrial Ca2+ release is associated with NAD(P)H oxidation catalyzed by NADH dehydrogenase with benzoquinone or by the glutathione peroxidase-glutathione reductase system with duroquinone.
Collapse
Affiliation(s)
- G A Moore
- Department of Toxicology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- G Powis
- Department of Pharmacology, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| |
Collapse
|
36
|
|
37
|
Nakamura M, Yamazaki I. Salts- induced oxidase activity of lipoamide dehydrogenase from pig heart. EUROPEAN JOURNAL OF BIOCHEMISTRY 1979; 96:417-22. [PMID: 37086 DOI: 10.1111/j.1432-1033.1979.tb13053.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A weak NADH oxidase activity of lipoamide dehydrogenase at neutral pH is increased as much as 15-fold by the addition of KI or (NH4)2SO4. The addition of NAD+ shifts the optimum pH for the KI-induced oxidase activity from 6.3 to 5.5 without changing the maximum activity. The optimum pH is similarly shifted to 5.6 when sulfhyldryl groups of the enzyme are oxidized in the presence of small amount of cupric ion. The NADH: lipoamide and NADH: p-benzoquinone reductase activities are strongly inhibited by KI but both are increased by the presence of (NH4)2SO4. The known intermediate having a charge-transfer band at 530 nm can be seen upon an addition of NADH to the enzyme in the presence of (NH4)2SO4 but not in the presence of KI. The enzyme flavin is reductase by a stoichiometric amount of NADH when KI is present.
Collapse
|
38
|
Nakamura M, Yamazaki I. One-electron transfer reactions in biochemical systems. VII. Two types of electron outlets in milk xanthine oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1973; 327:247-56. [PMID: 4360425 DOI: 10.1016/0005-2744(73)90407-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Rao PS, Hayon E. One-electron redox reactions of free radicals in solution. Rate of electron transfer processes to quinones. BIOCHIMICA ET BIOPHYSICA ACTA 1973; 292:516-33. [PMID: 4705443 DOI: 10.1016/0005-2728(73)90002-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|