1
|
Synthesis, theoretical and experimental spectroscopic properties, molecular docking, ADMET, and RDG analysis of copper(II) complex of dichloro(1,10-phenanthroline)(1,2,4-triazole-3-carboxcylic acid). CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
The Redox Active [2Fe-2S] Clusters: Key-Components of a Plethora of Enzymatic Reactions—Part I: Archaea. INORGANICS 2022. [DOI: 10.3390/inorganics10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The earliest forms of life (i.e., Archaea, Bacteria, and Eukarya) appeared on our planet about ten billion years after its formation. Although Archaea do not seem to possess the multiprotein machinery constituted by the NIF (Nitrogen Fixation), ISC (Iron Sulfur Cluster), SUF (sulfur mobilization) enzymes, typical of Bacteria and Eukarya, some of them are able to encode Fe-S proteins. Here we discussed the multiple enzymatic reactions triggered by the up-to-date structurally characterized members of the archaeal family that require the crucial presence of structurally characterized [2Fe-2S] assemblies, focusing on their biological functions and, when available, on their electrochemical behavior.
Collapse
|
3
|
Beloglazkina EK, Yudina AV, Pasanaev EA, Salimova IA, Tafeenko VA, Mironov AV, Moiseeva AA, Pergushov VI, Zyk NV, Majouga AG. Binuclear copper complexes with CuICuI and Cu+1.5Cu+1.5 core structures formed in the reactions of 3‑(2‑methylbutyl)‑5‑pyridylmethylene‑2‑thiohydantoin with copper(II) acetylacetonate and copper(II) chloride. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
McMoran EP, Powell DR, Perez F, Rowe GT, Yang L. Synthesis and Characterization of Copper Complexes with CuICuI, Cu1.5Cu1.5m and CuIICuII Core Structures Supported by a Flexible Dipyridylamide Ligand. Inorg Chem 2016; 55:11462-11472. [DOI: 10.1021/acs.inorgchem.6b02006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ethan P. McMoran
- Department
of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| | - Douglas R. Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Felio Perez
- Integrated Microscopy Center, University of Memphis, Memphis, Tennessee 38152, United States
| | - Gerard T. Rowe
- Department
of Chemistry and Physics, University of South Carolina—Aiken, Aiken, South Carolina 29801, United States
| | - Lei Yang
- Department
of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| |
Collapse
|
5
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
6
|
Wilson TD, Yu Y, Lu Y. Understanding copper-thiolate containing electron transfer centers by incorporation of unnatural amino acids and the CuA center into the type 1 copper protein azurin. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Wilson TD, Savelieff MG, Nilges MJ, Marshall NM, Lu Y. Kinetics of Copper Incorporation into a Biosynthetic Purple CuA Azurin: Characterization of Red, Blue, and a New Intermediate Species. J Am Chem Soc 2011; 133:20778-92. [DOI: 10.1021/ja205281t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tiffany D. Wilson
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Masha G. Savelieff
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Mark J. Nilges
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicholas M. Marshall
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
|
9
|
Savelieff MG, Lu Y. CuA centers and their biosynthetic models in azurin. J Biol Inorg Chem 2010; 15:461-83. [DOI: 10.1007/s00775-010-0625-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/20/2010] [Indexed: 11/28/2022]
|
10
|
pH dependent copper binding properties of a CuA azurin variant with both bridging cysteines replaced with serines. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Chen XB, Chen B, Li YZ, You XZ. Remarkable solvent effects in the hydro- and solvothermal synthesis of copper-1,10-phenanthroline complexes. Appl Organomet Chem 2007. [DOI: 10.1002/aoc.1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Musser SM, Stowell MH, Chan SI. Cytochrome c oxidase: chemistry of a molecular machine. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:79-208. [PMID: 8644492 DOI: 10.1002/9780470123171.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The plethora of proposed chemical models attempting to explain the proton pumping reactions catalyzed by the CcO complex, especially the number of recent models, makes it clear that the problem is far from solved. Although we have not discussed all of the models proposed to date, we have described some of the more detailed models in order to illustrate the theoretical concepts introduced at the beginning of this section on proton pumping as well as to illustrate the rich possibilities available for effecting proton pumping. It is clear that proton pumping is effected by conformational changes induced by oxidation/reduction of the various redox centers in the CcO complex. It is for this reason that the CcO complex is called a redox-linked proton pump. The conformational changes of the proton pump cycle are usually envisioned to be some sort of ligand-exchange reaction arising from unstable geometries upon oxidation/reduction of the various redox centers. However, simple geometrical rearrangements, as in the Babcock and Mitchell models are also possible. In any model, however, hydrogen bonds must be broken and reformed due to conformational changes that result from oxidation/reduction of the linkage site during enzyme turnover. Perhaps the most important point emphasized in this discussion, however, is the fact that proton pumping is a directed process and it is electron and proton gating mechanisms that drive the proton pump cycle in the forward direction. Since many of the models discussed above lack effective electron and/or proton gating, it is clear that the major difficulty in developing a viable chemical model is not formulating a cyclic set of protein conformational changes effecting proton pumping (redox linkage) but rather constructing the model with a set of physical constraints so that the proposed cycle proceeds efficiently as postulated. In our discussion of these models, we have not been too concerned about which electron of the catalytic cycle was entering the site of linkage, but merely whether an ET to the binuclear center played a role. However, redox linkage only occurs if ET to the activated binuclear center is coupled to the proton pump. Since all of the models of proton pumping presented here, with the exception of the Rousseau expanded model and the Wikström model, have a maximum stoichiometry of 1 H+/e-, they inadequately explain the 2 H+/e- ratio for the third and fourth electrons of the dioxygen reduction cycle (see Section V.B). One way of interpreting this shortfall of protons is that the remaining protons are pumped by an as yet undefined indirectly coupled mechanism. In this scenario, the site of linkage could be coupled to the pumping of one proton in a direct fashion and one proton in an indirect fashion for a given electron. For a long time, it was assumed that at least some elements of such an indirect mechanism reside in subunit III. While recent evidence argues against the involvement of subunit III in the proton pump, subunit III may still participate in a regulatory and/or structural capacity (Section II.E). Attention has now focused on subunits I and II in the search for residues intimately involved in the proton pump mechanism and/or as part of a proton channel. In particular, the role of some of the highly conserved residues of helix VIII of subunit I are currently being studied by site directed mutagenesis. In our opinion, any model that invokes heme alpha 3 or CuB as the site of linkage must propose a very effective means by which the presumedly fast uncoupling ET to the dioxygen intermediates is prevented. It is difficult to imagine that ET over the short distance from heme alpha 3 or CuB to the dioxygen intermediate requires more than 1 ns. In addition, we expect the conformational changes of the proton pump to require much more than 1 ns (see Section V.B).
Collapse
Affiliation(s)
- S M Musser
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
13
|
Hunter DJ, Oganesyan VS, Salerno JC, Butler CS, Ingledew WJ, Thomson AJ. Angular dependences of perpendicular and parallel mode electron paramagnetic resonance of oxidized beef heart cytochrome c oxidase. Biophys J 2000; 78:439-50. [PMID: 10620307 PMCID: PMC1300651 DOI: 10.1016/s0006-3495(00)76606-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytochrome c oxidase catalyzes the reduction of oxygen to water with a concomitant conservation of energy in the form of a transmembrane proton gradient. The enzyme has a catalytic site consisting of a binuclear center of a copper ion and a heme group. The spectroscopic parameters of this center are unusual. The origin of broad electron paramagnetic resonance (EPR) signals in the oxidized state at rather low resonant field, the so-called g' = 12 signal, has been a matter of debate for over 30 years. We have studied the angular dependence of this resonance in both parallel and perpendicular mode X-band EPR in oriented multilayers containing cytochrome c oxidase to resolve the assignment. The "slow" form and compounds formed by the addition of formate and fluoride to the oxidized enzyme display these resonances, which result from transitions between states of an integer-spin multiplet arising from magnetic exchange coupling between the five unpaired electrons of high spin Fe(III) heme a(3) and the single unpaired electron of Cu(B). The first successful simulation of similar signals observed in both perpendicular and parallel mode X-band EPR spectra in frozen aqueous solution of the fluoride compound of the closely related enzyme, quinol oxidase or cytochrome bo(3), has been reported recently (Oganesyan et al., 1998, J. Am. Chem. Soc. 120:4232-4233). This suggested that the exchange interaction between the two metal ions of the binuclear center is very weak (|J| approximately 1 cm(-1)), with the axial zero-field splitting (D approximately 5 cm(-1)) of the high-spin heme dominating the form of the ground state. We show that this model accounts well for the angular dependences of the X-band EPR spectra in both perpendicular and parallel modes of oriented multilayers of cytochrome c oxidase derivatives and that the experimental results are inconsistent with earlier schemes that use exchange coupling parameters of several hundred wavenumbers.
Collapse
Affiliation(s)
- D J Hunter
- School of Biological and Medical Sciences, University of St. Andrews, St. Andrews, Fife KY16 9AL, Scotland
| | | | | | | | | | | |
Collapse
|
14
|
Hunter DJ, Salerno JC, Ingledew WJ. Angular dependence of electron paramagnetic resonances of an azide-NO complex of cytochrome c oxidase: orientation of the haem-copper axis in cytochrome aa3 from ox heart. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:55-62. [PMID: 9554953 DOI: 10.1016/s0005-2728(98)00006-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The orientation dependence of the EPR signals arising from the azide-nitric oxide complex of cytochrome oxidase was investigated using oriented multilayers of mitochondrial membranes from ox heart. Variations in line shape of the DeltaMS=1 signal of the triplet state were apparent, whilst the DeltaMS=2 transitions between g=4.7 and 3.9 varied in intensity as the angle of the applied magnetic field was varied. These half-field signals were maximal with the field parallel to the membrane plane. A model of the bi-liganded azide-nitric oxide complex has been constructed, in which the nitric oxide is bound to the high-spin haem in a bent configuration, with the Fe-N=O plane at 60-90 degrees to the membrane plane and the azide bound to the copper, distal from the haem. In addition, angular variations of the signals at g'=11 and g' around 3.5, derived from an integer-spin complex, were also observed.
Collapse
Affiliation(s)
- D J Hunter
- School of Biological and Medical Sciences, University of St. Andrews, St. Andrews, Fife, Scotland, KY16 9AL, UK
| | | | | |
Collapse
|
15
|
Hay MT, Ang MC, Gamelin DR, Solomon EI, Antholine WE, Ralle M, Blackburn NJ, Massey PD, Wang X, Kwon AH, Lu Y. Spectroscopic Characterization of an Engineered Purple CuA Center in Azurin. Inorg Chem 1998. [DOI: 10.1021/ic971232a] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael T. Hay
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - Marjorie C. Ang
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - Daniel R. Gamelin
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - Edward I. Solomon
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - William E. Antholine
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - Martina Ralle
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - Ninian J. Blackburn
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - Priscilla D. Massey
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - Xiaotang Wang
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - Angela H. Kwon
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| | - Yi Lu
- Department of Chemistry, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, Oregon 97291
| |
Collapse
|
16
|
Purschke WG, Schmidt CL, Petersen A, Schäfer G. The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 1997; 179:1344-53. [PMID: 9023221 PMCID: PMC178835 DOI: 10.1128/jb.179.4.1344-1353.1997] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A terminal quinol oxidase has been isolated from the plasma membrane of the crenarchaeon Acidianus ambivalens (DSM 3772) (formerly Desulfurolobus ambivalens), cloned, and sequenced. The detergent-solubilized complex oxidizes caldariella quinol at high rates and is completely inhibited by cyanide and by quinolone analogs, potent inhibitors of quinol oxidases. It is composed of at least five different subunits of 64.9, 38, 20.4, 18.8, and 7.2 kDa; their genes are located in two different operons. doxB, the gene for subunit I, is located together with doxC and two additional small open reading frames (doxE and doxF) in an operon with a complex transcription pattern. Two other genes of the oxidase complex (doxD and doxA) are located in a different operon and are cotranscribed into a common 1.2-kb mRNA. Both operons exist in duplicate on the genome of A. ambivalens. Only subunit I exhibits clear homology to other members of the superfamily of respiratory heme-copper oxidases; however, it reveals 14 transmembrane helices. In contrast, the composition of the accessory proteins is highly unusual; none is homologous to any known accessory protein of cytochrome oxidases, nor do homologs exist in the databases. DoxA is classified as a subunit II equivalent only by analogy of molecular size and hydrophobicity pattern to corresponding polypeptides of other oxidases. Multiple alignments and phylogenetic analysis of the heme-bearing subunit I (DoxB) locate this oxidase at the bottom of the phylogenetic tree, in the branch of heme-copper oxidases recently suggested to be incapable of superstoichiometric proton pumping. This finding is corroborated by lack of the essential amino acid residues delineating the putative H+-pumping channel. It is therefore concluded that A. ambivalens copes with its strongly acidic environment simply by an extreme turnover of its terminal oxidase, generating a proton gradient only by chemical charge separation.
Collapse
Affiliation(s)
- W G Purschke
- Institute of Biochemistry, Medical University of Lübeck, Germany.
| | | | | | | |
Collapse
|
17
|
Holm RH, Kennepohl P, Solomon EI. Structural and Functional Aspects of Metal Sites in Biology. Chem Rev 1996; 96:2239-2314. [PMID: 11848828 DOI: 10.1021/cr9500390] [Citation(s) in RCA: 1872] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard H. Holm
- Departments of Chemistry, Harvard University, Cambridge, Massachusetts 02138, and Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
18
|
Ohlmann D, Marchand CM, Sch�nberg H, Gr�tzmacher H, Pritzkow H. Darstellung und Kristallstruktur der Kupfer(I)-chalkogenolat-2,2?-Bipyridin-Komplexe [CuS(2,4,6-iPr3C6H2)]4(Bipy)2 und [CuSe(2,4,6-iPr3C6H2)]2(Bipy)2. Z Anorg Allg Chem 1996. [DOI: 10.1002/zaac.19966220813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
|
20
|
|
21
|
Berks BC, Ferguson SJ, Moir JW, Richardson DJ. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:97-173. [PMID: 8534676 DOI: 10.1016/0005-2728(95)00092-5] [Citation(s) in RCA: 396] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B C Berks
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | |
Collapse
|
22
|
Zickermann V, Verkhovsky M, Morgan J, Wikström M, Anemüller S, Bill E, Steffens GC, Ludwig B. Perturbation of the CuA site in cytochrome-c oxidase of Paracoccus denitrificans by replacement of Met227 with isoleucine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:686-93. [PMID: 8536720 DOI: 10.1111/j.1432-1033.1995.686_b.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Subunit II of cytochrome-c oxidase contains a redox centre, CuA, with unusual spectroscopic properties; this site consists of two copper atoms and acts as the entry point for electrons from cytochrome c. We have constructed a site-directed mutant of cytochrome-c oxidase from Paracoccus denitrificans in which the CuA site has been disturbed by replacement of Met227 with isoleucine. The purified, fully assembled enzyme complex has been investigated with various techniques including metal analysis, EPR and visible spectroscopies, steady-state and fast kinetics. The stoichiometry of the metals in the enzyme remains unchanged but a clear perturbation of the CuA site can be observed in the EPR and near-infrared optical spectra. It is concluded that in the mutant CuA is still binuclear but that the two nuclei are no longer equivalent, converting the delocalized [Cu(1.5)....Cu(1.5)] centre of the wild type into a localized [Cu(I)....Cu(II)] system. Changes in the overall kinetics of the mutant are correlated with a diminished electron transfer rate between CuA and heme alpha.
Collapse
Affiliation(s)
- V Zickermann
- Institute of Biochemistry/Molecular Genetics, University of Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Keightley JA, Zimmermann BH, Mather MW, Springer P, Pastuszyn A, Lawrence DM, Fee JA. Molecular genetic and protein chemical characterization of the cytochrome ba3 from Thermus thermophilus HB8. J Biol Chem 1995; 270:20345-58. [PMID: 7657607 DOI: 10.1074/jbc.270.35.20345] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Thermus thermophilus HB8 cells grown under reduced dioxygen tensions contain a substantially increased amount of heme A, much of which appears to be due to the presence of the terminal oxidase, cytochrome ba3. We describe a purification procedure for this enzyme that yields approximately 100 mg of pure protein from 2 kg of wet mass of cells grown in < or = 50 microM O2. Examination of the protein by SDS-polyacrylamide gel electrophoresis followed by staining with Coomassie Blue reveals one strongly staining band at approximately 35 kDa and one very weakly staining band at approximately 18 kDa as reported earlier (Zimmermann, B.H., Nitsche, C.I., Fee, J. A., Rusnak, F., and Münck, E. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5779-5783). By contrast, treatment of the gels with AgNO3 reveals that the larger polypeptide stains quite weakly while the smaller polypeptide stains very strongly. These results suggested the presence of two polypeptides in this protein. Using partial amino acid sequences from both proteins to obtain DNA sequence information, we isolated and sequenced a portion of the Thermus chromosome containing the genes encoding the larger protein, subunit I (cbaA), and the smaller protein, subunit II (cbaB). The two polypeptides were isolated using reversed phase liquid chromatography, and their mole percent amino acid compositions are consistent with the proposed translation of their respective genes. The two genes appear to be part of a larger operon, but we have not extended the sequencing to identify initiation and termination sequences. The deduced amino acid sequence of subunit I includes the six canonical histidine residues involved in binding the low spin heme B and the binuclear center Cu(B)/heme A. These and other conserved amino acids are placed along the polypeptide among alternating hydrophobic and hydrophilic segments in a pattern that shows clear homology to other members of the heme- and copper-requiring terminal oxidases. The deduced amino acid sequence of the subunit II contains the CuA binding motif, including two cysteines, two histidines, and a methionine, but, in contrast to most other subunits II, it has only one region of hydrophobic sequence near its N terminus. Alignment of these two polypeptides with other cytochrome c and quinol oxidases, combined with secondary structure analysis and previous spectral studies, clearly establish cytochrome ba3 as a bona fide member of the superfamily of heme- and copper-requiring oxidases. The alignments further indicate that cytochrome ba3 is phylogenetically distant from other cytochrome c and quinol oxidases, and they substantially decrease the number of conserved amino acid residues.
Collapse
Affiliation(s)
- J A Keightley
- Los Alamos National Laboratory, New Mexico 87545, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Mitchell DM, Gennis RB. Rapid purification of wildtype and mutant cytochrome c oxidase from Rhodobacter sphaeroides by Ni(2+)-NTA affinity chromatography. FEBS Lett 1995; 368:148-50. [PMID: 7615070 DOI: 10.1016/0014-5793(95)00626-k] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A rapid and highly efficient method of purifying the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides has been developed. This method relies upon a six-histidine affinity tag fused to the C-terminus of subunit I, which confers to the oxidase a high affinity for Ni(2+)-nitrilotriacetic acid (NTA) agarose. The histidine-tagged oxidase can be purified rapidly and with high yield by one affinity chromatography step, starting with solubilized membranes. The purified oxidase is > 95% pure and possesses structural and functional characteristics of the wildtype enzyme. The six-histidine tag can be easily added to pre-constructed site-directed mutants of subunit I, increasing the availability of purified cytochrome c oxidase mutants for biophysical and biochemical studies.
Collapse
Affiliation(s)
- D M Mitchell
- School of Chemical Sciences, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
25
|
Henkel G, Müller A, Weißgräber S, Nolting HF, Buse G, Soulimane T, Steffens GCM. Die Metallzentren der intakten nativen Cytochrom-c-Oxidase aus Rinderherz-Mitochondrien: EXAFS-spektroskopische Identifizierung und Charakterisierung eines neuartigen homodinuclearen Kupferzentrums (CuA) sowie des heterodinuclearen Fea3-CuB-Zentrums. Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951071329] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Dennison C, Vijgenboom E, de Vries S, van der Oost J, Canters GW. Introduction of a CuA site into the blue copper protein amicyanin from Thiobacillus versutus. FEBS Lett 1995; 365:92-4. [PMID: 7774723 DOI: 10.1016/0014-5793(95)00429-d] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The C-terminal loop of the blue copper protein amicyanin, which contains three of the four active site ligands, has been replaced with a CuA binding loop. The purple protein produced has visible and EPR spectra identical to those of a CuA centre. Recent evidence strongly suggests that the CuA centre of cytochrome c oxidase and the A centre of nitrous oxide reductase are similar and are both binuclear. It therefore follows that the purple amicyanin mutant created here also possesses a binuclear CuA centre.
Collapse
Affiliation(s)
- C Dennison
- Leiden Institute of Chemistry, Gorlaeus Laboratories, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Arai H, Igarashi Y, Kodama T. The structural genes for nitric oxide reductase from Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:279-84. [PMID: 7711073 DOI: 10.1016/0167-4781(95)00018-c] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genes for nitric oxide reductase (norCB) from Pseudomonas aeruginosa were identified and sequenced. They are located about 2 kb upstream of nirS, the structural gene for nitrite reductase. norC and norB encode cytochrome c (16 kDa) and cytochrome b (52 kDa) subunits of the enzyme, respectively. norCB is immediately followed by an open reading frame encoding a protein of 612 residues.
Collapse
Affiliation(s)
- H Arai
- Department of Biotechnology, University of Tokyo, Japan
| | | | | |
Collapse
|
28
|
Bertagnolli H, Kaim W. Das zweikernige CuA-Zentrum in Cytochrom-c-Oxidase und N2O-Reduktase – eine Metall-Metall-Bindung in Proteinen? Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951070706] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Abstract
This article presents an outlook on the structure and function of terminal oxidases, the respiratory enzymes which catalyze the reduction of dioxygen to water in aerobic organisms. The structure of the redox active metals, their interactions with the protein matrix, and their role in electron transfer ligand binding and proton pumping are briefly reviewed.
Collapse
Affiliation(s)
- M Brunori
- Department of Biochemical Sciences, University of Rome La Sapienza, Italy
| | | |
Collapse
|