1
|
Liguori N, van Stokkum IH, Muzzopappa F, Kennis JTM, Kirilovsky D, Croce R. The Orange Carotenoid Protein Triggers Cyanobacterial Photoprotection by Quenching Bilins via a Structural Switch of Its Carotenoid. J Am Chem Soc 2024; 146:21913-21921. [PMID: 39058977 PMCID: PMC11311238 DOI: 10.1021/jacs.4c06695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Cyanobacteria were the first microorganisms that released oxygen into the atmosphere billions of years ago. To do it safely under intense sunlight, they developed strategies that prevent photooxidation in the photosynthetic membrane, by regulating the light-harvesting activity of their antenna complexes-the phycobilisomes-via the orange-carotenoid protein (OCP). This water-soluble protein interacts with the phycobilisomes and triggers nonphotochemical quenching (NPQ), a mechanism that safely dissipates overexcitation in the membrane. To date, the mechanism of action of OCP in performing NPQ is unknown. In this work, we performed ultrafast spectroscopy on a minimal NPQ system composed of the active domain of OCP bound to the phycobilisome core. The use of this system allowed us to disentangle the signal of the carotenoid from that of the bilins. Our results demonstrate that the binding to the phycobilisomes modifies the structure of the ketocarotenoid associated with OCP. We show that this molecular switch activates NPQ, by enabling excitation-energy transfer from the antenna pigments to the ketocarotenoid.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H.M. van Stokkum
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Fernando Muzzopappa
- Institute
for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette ,France
| | - John T. M. Kennis
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute
for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette ,France
| | - Roberta Croce
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Moore V, Vermaas W. Functional consequences of modification of the photosystem I/photosystem II ratio in the cyanobacterium Synechocystis sp. PCC 6803. J Bacteriol 2024; 206:e0045423. [PMID: 38695523 PMCID: PMC11112997 DOI: 10.1128/jb.00454-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/16/2024] [Indexed: 05/24/2024] Open
Abstract
The stoichiometry of photosystem II (PSII) and photosystem I (PSI) varies between photoautotrophic organisms. The cyanobacterium Synechocystis sp. PCC 6803 maintains two- to fivefold more PSI than PSII reaction center complexes, and we sought to modify this stoichiometry by changing the promoter region of the psaAB operon. We thus generated mutants with varied psaAB expression, ranging from ~3% to almost 200% of the wild-type transcript level, but all showing a reduction in PSI levels, relative to wild type, suggesting a role of the psaAB promoter region in translational regulation. Mutants with 25%-70% of wild-type PSI levels were photoautotrophic, with whole-chain oxygen evolution rates on a per-cell basis comparable to that of wild type. In contrast, mutant strains with <10% of the wild-type level of PSI were obligate photoheterotrophs. Variable fluorescence yields of all mutants were much higher than those of wild type, indicating that the PSI content is localized differently than in wild type, with less transfer of PSII-absorbed energy to PSI. Strains with less PSI saturate at a higher light intensity, enhancing productivity at higher light intensities. This is similar to what is found in mutants with reduced antennae. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea present, P700+ re-reduction kinetics in the mutants were slower than in wild type, consistent with the notion that there is less cyclic electron transport if less PSI is present. Overall, strains with a reduction in PSI content displayed surprisingly vigorous growth and linear electron transport. IMPORTANCE Consequences of reduction in photosystem I content were investigated in the cyanobacterium Synechocystis sp. PCC 6803 where photosystem I far exceeds the number of photosystem II complexes. Strains with less photosystem I displayed less cyclic electron transport, grew more slowly at lower light intensity and needed more light for saturation but were surprisingly normal in their whole-chain electron transport rates, implying that a significant fraction of photosystem I is dispensable for linear electron transport in cyanobacteria. These strains with reduced photosystem I levels may have biotechnological relevance as they grow well at higher light intensities.
Collapse
Affiliation(s)
- Vicki Moore
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona, USA
| | - Wim Vermaas
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Miao R, Jahn M, Shabestary K, Peltier G, Hudson EP. CRISPR interference screens reveal growth-robustness tradeoffs in Synechocystis sp. PCC 6803 across growth conditions. THE PLANT CELL 2023; 35:3937-3956. [PMID: 37494719 PMCID: PMC10615215 DOI: 10.1093/plcell/koad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Barcoded mutant libraries are a powerful tool for elucidating gene function in microbes, particularly when screened in multiple growth conditions. Here, we screened a pooled CRISPR interference library of the model cyanobacterium Synechocystis sp. PCC 6803 in 11 bioreactor-controlled conditions, spanning multiple light regimes and carbon sources. This gene repression library contained 21,705 individual mutants with high redundancy over all open reading frames and noncoding RNAs. Comparison of the derived gene fitness scores revealed multiple instances of gene repression being beneficial in 1 condition while generally detrimental in others, particularly for genes within light harvesting and conversion, such as antennae components at high light and PSII subunits during photoheterotrophy. Suboptimal regulation of such genes likely represents a tradeoff of reduced growth speed for enhanced robustness to perturbation. The extensive data set assigns condition-specific importance to many previously unannotated genes and suggests additional functions for central metabolic enzymes. Phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, and the small protein CP12 were critical for mixotrophy and photoheterotrophy, which implicates the ternary complex as important for redirecting metabolic flux in these conditions in addition to inactivation of the Calvin cycle in the dark. To predict the potency of sgRNA sequences, we applied machine learning on sgRNA sequences and gene repression data, which showed the importance of C enrichment and T depletion proximal to the PAM site. Fitness data for all genes in all conditions are compiled in an interactive web application.
Collapse
Affiliation(s)
- Rui Miao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, SE-17165,Sweden
| | - Michael Jahn
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, SE-17165,Sweden
- Max Planck Unit for the Science of Pathogens, 10117 Berlin,Germany
| | - Kiyan Shabestary
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, SE-17165,Sweden
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ,UK
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-Lez-Durance,France
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, SE-17165,Sweden
| |
Collapse
|
4
|
Sengupta A, Bandyopadhyay A, Schubert MG, Church GM, Pakrasi HB. Antenna Modification in a Fast-Growing Cyanobacterium Synechococcus elongatus UTEX 2973 Leads to Improved Efficiency and Carbon-Neutral Productivity. Microbiol Spectr 2023; 11:e0050023. [PMID: 37318337 PMCID: PMC10433846 DOI: 10.1128/spectrum.00500-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Our planet is sustained by sunlight, the primary energy source made accessible to all life forms by photoautotrophs. Photoautotrophs are equipped with light-harvesting complexes (LHCs) that enable efficient capture of solar energy, particularly when light is limiting. However, under high light, LHCs can harvest photons in excess of the utilization capacity of cells, causing photodamage. This damaging effect is most evident when there is a disparity between the amount of light harvested and carbon available. Cells strive to circumvent this problem by dynamically adjusting the antenna structure in response to the changing light signals, a process known to be energetically expensive. Much emphasis has been laid on elucidating the relationship between antenna size and photosynthetic efficiency and identifying strategies to synthetically modify antennae for optimal light capture. Our study is an effort in this direction and investigates the possibility of modifying phycobilisomes, the LHCs present in cyanobacteria, the simplest of photoautotrophs. We systematically truncate the phycobilisomes of Synechococcus elongatus UTEX 2973, a widely studied, fast-growing model cyanobacterium and demonstrate that partial truncation of its antenna can lead to a growth advantage of up to 36% compared to the wild type and an increase in sucrose titer of up to 22%. In contrast, targeted deletion of the linker protein which connects the first phycocyanin rod to the core proved detrimental, indicating that the core alone is not enough, and it is essential to maintain a minimal rod-core structure for efficient light harvest and strain fitness. IMPORTANCE Light energy is essential for the existence of life on this planet, and only photosynthetic organisms, equipped with light-harvesting antenna protein complexes, can capture this energy, making it readily accessible to all other life forms. However, these light-harvesting antennae are not designed to function optimally under extreme high light, a condition which can cause photodamage and significantly reduce photosynthetic productivity. In this study, we attempt to assess the optimal antenna structure for a fast-growing, high-light tolerant photosynthetic microbe with the goal of improving its productivity. Our findings provide concrete evidence that although the antenna complex is essential, antenna modification is a viable strategy to maximize strain performance under controlled growth conditions. This understanding can also be translated into identifying avenues to improve light harvesting efficiency in higher photoautotrophs.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Zheng L, Zhang Z, Wang H, Zheng Z, Wang J, Liu H, Chen H, Dong C, Wang G, Weng Y, Gao N, Zhao J. Cryo-EM and femtosecond spectroscopic studies provide mechanistic insight into the energy transfer in CpcL-phycobilisomes. Nat Commun 2023; 14:3961. [PMID: 37407580 DOI: 10.1038/s41467-023-39689-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Phycobilisomes (PBS) are the major light harvesting complexes of photosynthesis in the cyanobacteria and red algae. CpcL-PBS is a type of small PBS in cyanobacteria that transfers energy directly to photosystem I without the core structure. Here we report the cryo-EM structure of the CpcL-PBS from the cyanobacterium Synechocystis sp. PCC 6803 at 2.6-Å resolution. The structure shows the CpcD domain of ferredoxin: NADP+ oxidoreductase is located at the distal end of CpcL-PBS, responsible for its attachment to PBS. With the evidence of ultrafast transient absorption and fluorescence spectroscopy, the roles of individual bilins in energy transfer are revealed. The bilin 1Iβ822 located near photosystem I has an enhanced planarity and is the red-bilin responsible for the direct energy transfer to photosystem I.
Collapse
Affiliation(s)
- Lvqin Zheng
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Zhengdong Zhang
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Hongrui Wang
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heyuan Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunxia Dong
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Guopeng Wang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ning Gao
- School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China.
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Mummadisetti M, Su X, Liu H. An approach to nearest neighbor analysis of pigment-protein complexes using chemical cross-linking in combination with mass spectrometry. Methods Enzymol 2023; 680:139-162. [PMID: 36710009 DOI: 10.1016/bs.mie.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protein cross-linking is the process of chemically joining two amino acids in a protein or protein complex by a covalent bond. When combined with mass spectrometry, it becomes one of the structural mass spectrometry techniques gaining in importance for deriving valuable three-dimensional structural information on proteins and protein complexes. This platform complements existing structural methods, such as NMR spectroscopy, X-ray crystallography, and cryo-EM. Photosynthetic pigment protein complexes serve as light-energy harvesting systems and perform photochemical conversion as part of the "early events" of photosynthesis. This chapter outlines how to prepare cross-linking pigment protein complex samples for LC-MS/MS analysis, including identification of the cross-linked species, network analysis in a protein complex, and structural modeling and justification.
Collapse
Affiliation(s)
| | - Xinyang Su
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
7
|
Akhtar P, Biswas A, Balog-Vig F, Domonkos I, Kovács L, Lambrev PH. Trimeric photosystem I facilitates energy transfer from phycobilisomes in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2022; 189:827-838. [PMID: 35302607 PMCID: PMC9157137 DOI: 10.1093/plphys/kiac130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 05/31/2023]
Abstract
In cyanobacteria, phycobilisomes (PBS) serve as peripheral light-harvesting complexes of the two photosystems, extending their antenna size and the wavelength range of photons available for photosynthesis. The abundance of PBS, the number of phycobiliproteins they contain, and their light-harvesting function are dynamically adjusted in response to the physiological conditions. PBS are also thought to be involved in state transitions that maintain the excitation balance between the two photosystems. Unlike its eukaryotic counterpart, PSI is trimeric in many cyanobacterial species and the physiological significance of this is not well understood. Here, we compared the composition and light-harvesting function of PBS in cells of Synechocystis sp. PCC 6803, which has primarily trimeric PSI, and the ΔpsaL mutant, which lacks the PsaL subunit of PSI and is unable to form trimers. We also investigated a mutant additionally lacking the PsaJ and PsaF subunits of PSI. Both strains with monomeric PSI accumulated significantly more allophycocyanin per chlorophyll, indicating higher abundance of PBS. On the other hand, a higher phycocyanin:allophycocyanin ratio in the wild type suggests larger PBS or the presence of APC-less PBS (CpcL-type) that are not assembled in cells with monomeric PSI. Steady-state and time-resolved fluorescence spectroscopy at room temperature and 77 K revealed that PSII receives more energy from the PBS at the expense of PSI in cells with monomeric PSI, regardless of the presence of PsaF. Taken together, these results show that the oligomeric state of PSI impacts the excitation energy flow in Synechocystis.
Collapse
Affiliation(s)
- Parveen Akhtar
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Avratanu Biswas
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged 6726, Hungary
| | - Fanny Balog-Vig
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Ildikó Domonkos
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - László Kovács
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Petar H Lambrev
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
8
|
Puzorjov A, Dunn KE, McCormick AJ. Production of thermostable phycocyanin in a mesophilic cyanobacterium. Metab Eng Commun 2021; 13:e00175. [PMID: 34168957 PMCID: PMC8209669 DOI: 10.1016/j.mec.2021.e00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 11/01/2022] Open
Abstract
Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (cpcBACD) is functional in the mesophile Synechocystis sp. PCC 6803. Expression of cpcBACD in an 'Olive' mutant strain of Synechocystis lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g-1 DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from T. elongatus, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from T. elongatus in Synechocystis cultures. Our model showed that the higher yields and lower cultivation temperatures of Synechocystis resulted in a 3.5-fold increase in energy efficiency compared to T. elongatus, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Katherine E. Dunn
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - Alistair J. McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
9
|
Zhan J, Steglich C, Scholz I, Hess WR, Kirilovsky D. Inverse regulation of light harvesting and photoprotection is mediated by a 3'-end-derived sRNA in cyanobacteria. THE PLANT CELL 2021; 33:358-380. [PMID: 33793852 PMCID: PMC8136909 DOI: 10.1093/plcell/koaa030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.
Collapse
Affiliation(s)
- Jiao Zhan
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Steglich
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Ingeborg Scholz
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Diana Kirilovsky
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| |
Collapse
|
10
|
Liu H, Zhang MM, Weisz DA, Cheng M, Pakrasi HB, Blankenship RE. Structure of cyanobacterial phycobilisome core revealed by structural modeling and chemical cross-linking. SCIENCE ADVANCES 2021; 7:7/2/eaba5743. [PMID: 33523959 PMCID: PMC7787483 DOI: 10.1126/sciadv.aba5743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 11/16/2020] [Indexed: 05/28/2023]
Abstract
In cyanobacteria and red algae, the structural basis dictating efficient excitation energy transfer from the phycobilisome (PBS) antenna complex to the reaction centers remains unclear. The PBS has several peripheral rods and a central core that binds to the thylakoid membrane, allowing energy coupling with photosystem II (PSII) and PSI. Here, we have combined chemical cross-linking mass spectrometry with homology modeling to propose a tricylindrical cyanobacterial PBS core structure. Our model reveals a side-view crossover configuration of the two basal cylinders, consolidating the essential roles of the anchoring domains composed of the ApcE PB loop and ApcD, which facilitate the energy transfer to PSII and PSI, respectively. The uneven bottom surface of the PBS core contrasts with the flat reducing side of PSII. The extra space between two basal cylinders and PSII provides increased accessibility for regulatory elements, e.g., orange carotenoid protein, which are required for modulating photochemical activity.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mengru M Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daniel A Weisz
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ming Cheng
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
11
|
Xu W, Wang Y. Post-translational Modifications of Serine/Threonine and Histidine Kinases and Their Roles in Signal Transductions in Synechocystis Sp. PCC 6803. Appl Biochem Biotechnol 2020; 193:687-716. [PMID: 33159456 DOI: 10.1007/s12010-020-03435-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
Cyanobacterium Synechocystis sp. PCC 6803, a popular model organism for researches in photosynthesis and biofuel production, contains plant-like photosynthetic machineries which significantly contribute to global carbon fixation. There are 12 eukaryotic-type Ser/Thr kinases (SpkA-L) and 49 His kinases (Hik1-49) of two-component systems in the genome of Synechocystis sp. PCC 6803. They are the key regulators in sensing and transmitting stimuli including light- and glucose-mediate signal transduction. Proteomic studies were able to identify all the kinases. The majority of kinases no matter whether they have a predicted transmembrane domain were identified in the membrane fractions. Six Ser/Thr kinases (SpkA-D, F and G) and ten His kinases (Hik4, 12, 14, 21, 26-27, 29, 36, 43, and 46) were identified to have one or more of the three types of post-translational modifications: phosphorylation, acetylation, and thiol oxidation. Interestingly, SpkG has the phosphorylatable threonine residue that was aligned with the phosphorylated threonine residue in the activation loop of human CDK7, demonstrating conserved phosphorylation between cyanobacterial and human kinases. Transcriptomics and proteomics revealed differential expression of the kinases in heterotrophic and photoheterotrophic compared with photoautotrophic conditions, indicating their roles in regulating the growth modes of cyanobacteria. In summary, this review focuses on the discussions on post-transcriptional modifications, transcriptomic, and proteomic studies of Ser/Thr and His kinases. This together with our published review in 2019 present a complete story of an overview of sequences, domain architectures, and biochemical and physiological functions of cyanobacterial kinases with adequate details in the context of high throughput systems. We also emphasize the importance of discovering upstream molecules and substrates to understand the exact functions of the kinases in vivo. As an attempt, a model is proposed in which Hik31, His33, Sll1334, and IcfG are hypothesized to be critical for switching between autotrophic and heterotrophic modes based on the results from the phenotypes of the gene knockout strains combined with their post-translational modifications, and gene expression profiles.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China.
| |
Collapse
|
12
|
Bhatti AF, Choubeh RR, Kirilovsky D, Wientjes E, van Amerongen H. State transitions in cyanobacteria studied with picosecond fluorescence at room temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148255. [PMID: 32619427 DOI: 10.1016/j.bbabio.2020.148255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
Abstract
Cyanobacteria can rapidly regulate the relative activity of their photosynthetic complexes photosystem I and II (PSI and PSII) in response to changes in the illumination conditions. This process is known as state transitions. If PSI is preferentially excited, they go to state I whereas state II is induced either after preferential excitation of PSII or after dark adaptation. Different underlying mechanisms have been proposed in literature, in particular i) reversible shuttling of the external antenna complexes, the phycobilisomes, between PSI and PSII, ii) reversible spillover of excitation energy from PSII to PSI, iii) a combination of both and, iv) increased excited-state quenching of the PSII core in state II. Here we investigated wild-type and mutant strains of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 using time-resolved fluorescence spectroscopy at room temperature. Our observations support model iv, meaning that increased excited-state quenching of the PSII core occurs in state II thereby balancing the photochemistry of photosystems I and II.
Collapse
Affiliation(s)
- Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | | | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
13
|
Zheng Z, Gu W, Gao S, Wang G. Characterization of photosynthetic protein complexes in conchocelis and blades of Pyropia yezoensis (Rhodophyta). ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Wahadoszamen M, Krüger TPJ, Ara AM, van Grondelle R, Gwizdala M. Charge transfer states in phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148187. [PMID: 32173383 DOI: 10.1016/j.bbabio.2020.148187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Phycobilisomes (PBs) absorb light and supply downstream photosynthetic processes with excitation energy in many cyanobacteria and algae. In response to a sudden increase in light intensity, excess excitation energy is photoprotectively dissipated in PBs by means of the orange carotenoid protein (OCP)-related mechanism or via a light-activated intrinsic decay channel. Recently, we have identified that both mechanisms are associated with far-red emission states. Here, we investigate the far-red states involved with the light-induced intrinsic mechanism by exploring the energy landscape and electro-optical properties of the pigments in PBs. While Stark spectroscopy showed that the far-red states in PBs exhibit a strong charge-transfer (CT) character at cryogenic temperatures, single molecule spectroscopy revealed that CT states should also be present at room temperature. Owing to the strong environmental sensitivity of CT states, the knowledge gained from this study may contribute to the design of a new generation of fluorescence markers.
Collapse
Affiliation(s)
- Md Wahadoszamen
- Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa
| | - Anjue Mane Ara
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Rienk van Grondelle
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa; Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
15
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Krasilnikov PM, Zlenko DV, Stadnichuk IN. Rates and pathways of energy migration from the phycobilisome to the photosystem II and to the orange carotenoid protein in cyanobacteria. FEBS Lett 2019; 594:1145-1154. [PMID: 31799708 DOI: 10.1002/1873-3468.13709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 02/01/2023]
Abstract
The phycobilisome (PBS) is the cyanobacterial antenna complex which transfers absorbed light energy to the photosystem II (PSII), while the excess energy is nonphotochemically quenched by interaction of the PBS with the orange carotenoid protein (OCP). Here, the molecular model of the PBS-PSII-OCP supercomplex was utilized to assess the resonance energy transfer from PBS to PSII and, using the excitonic theory, the transfer from PBS to OCP. Our estimates show that the effective energy migration from PBS to PSII is realized due to the existence of several transfer pathways from phycobilin chromophores of the PBS to the neighboring antennal chlorophyll molecules of the PSII. At the same time, the single binding site of photoactivated OCP and the PBS is sufficient to realize the quenching.
Collapse
Affiliation(s)
| | - Dmitry V Zlenko
- Faculty of Biology, M.V. Lomonosov State University, Moscow, Russia
| | | |
Collapse
|
17
|
Luimstra VM, Schuurmans JM, de Carvalho CFM, Matthijs HCP, Hellingwerf KJ, Huisman J. Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes. PHOTOSYNTHESIS RESEARCH 2019; 141:291-301. [PMID: 30820745 PMCID: PMC6718569 DOI: 10.1007/s11120-019-00630-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/19/2019] [Indexed: 05/28/2023]
Abstract
The ubiquitous chlorophyll a (Chl a) pigment absorbs both blue and red light. Yet, in contrast to green algae and higher plants, most cyanobacteria have much lower photosynthetic rates in blue than in red light. A plausible but not yet well-supported hypothesis is that blue light results in limited energy transfer to photosystem II (PSII), because cyanobacteria invest most Chl a in photosystem I (PSI), whereas their phycobilisomes (PBS) are mostly associated with PSII but do not absorb blue photons. In this paper, we compare the photosynthetic performance in blue and orange-red light of wildtype Synechocystis sp. PCC 6803 and a PBS-deficient mutant. Our results show that the wildtype had much lower biomass, Chl a content, PSI:PSII ratio and O2 production rate per PSII in blue light than in orange-red light, whereas the PBS-deficient mutant had a low biomass, Chl a content, PSI:PSII ratio, and O2 production rate per PSII in both light colors. More specifically, the wildtype displayed a similar low photosynthetic efficiency in blue light as the PBS-deficient mutant in both light colors. Our results demonstrate that the absorption of light energy by PBS and subsequent transfer to PSII are crucial for efficient photosynthesis in cyanobacteria, which may explain both the low photosynthetic efficiency of PBS-containing cyanobacteria and the evolutionary success of chlorophyll-based light-harvesting antennae in environments dominated by blue light.
Collapse
Affiliation(s)
- Veerle M Luimstra
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - J Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Carolina F M de Carvalho
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Hans C P Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Niedzwiedzki DM, Liu H, Blankenship RE. Excitation Energy Transfer in Intact CpcL-Phycobilisomes from Synechocystis sp. PCC 6803. J Phys Chem B 2019; 123:4695-4704. [PMID: 31042029 DOI: 10.1021/acs.jpcb.9b02696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work highlights spectroscopic studies performed on a CpcL-phycobilisome (CpcL-PBS) light-harvesting complex from cyanobacterium Synechocystis sp. PCC 6803 ΔAB strain. The CpcL-PBS antenna has the form of a single rod made up exclusively of phycocyanins (PCs), a structure that is much simpler compared to the better known and broadly studied CpcG-PBS that consists of a cylindrical core with a set of protruding PC rods. Steady-state and time-resolved fluorescence studies demonstrated that the CpcL-PBS antenna comprises two spectral forms of phycocyanobilin (PCB), one emitting at 650 nm and a second emitting at 670 nm. The latter one presumably serves as the so-called terminal energy emitter without allophycocyanin. Studies of excitation energy migration between those two PCB forms demonstrated that even small buffer alterations, commonly applied by spectroscopists to tweak buffers to be more friendly for a certain type of spectroscopy, may lead to very different experimental outcomes and, in consequence, to differences in models of excitation migration pathway in this antenna complex.
Collapse
|
19
|
Calzadilla PI, Muzzopappa F, Sétif P, Kirilovsky D. Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:488-498. [PMID: 31029593 DOI: 10.1016/j.bbabio.2019.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
The phycobilisome, the cyanobacterial light harvesting complex, is a huge phycobiliprotein containing extramembrane complex, formed by a core from which rods radiate. The phycobilisome has evolved to efficiently absorb sun energy and transfer it to the photosystems via the last energy acceptors of the phycobilisome, ApcD and ApcE. ApcF also affects energy transfer by interacting with ApcE. In this work we studied the role of ApcD and ApcF in energy transfer and state transitions in Synechococcus elongatus and Synechocystis PCC6803. Our results demonstrate that these proteins have different roles in both processes in the two strains. The lack of ApcD and ApcF inhibits state transitions in Synechocystis but not in S. elongatus. In addition, lack of ApcF decreases energy transfer to both photosystems only in Synechocystis, while the lack of ApcD alters energy transfer to photosystem I only in S. elongatus. Thus, conclusions based on results obtained in one cyanobacterial strain cannot be systematically transferred to other strains and the putative role(s) of phycobilisomes in state transitions need to be reconsidered.
Collapse
Affiliation(s)
- Pablo I Calzadilla
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Pierre Sétif
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| |
Collapse
|
20
|
Liu H, Weisz DA, Zhang MM, Cheng M, Zhang B, Zhang H, Gerstenecker GS, Pakrasi HB, Gross ML, Blankenship RE. Phycobilisomes Harbor FNR L in Cyanobacteria. mBio 2019; 10:e00669-19. [PMID: 31015331 PMCID: PMC6479007 DOI: 10.1128/mbio.00669-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cyanobacterial phycobilisomes (PBSs) are photosynthetic antenna complexes that harvest light energy and supply it to two reaction centers (RCs) where photochemistry starts. PBSs can be classified into two types, depending on the presence of allophycocyanin (APC): CpcG-PBS and CpcL-PBS. Because the accurate protein composition of CpcL-PBS remains unclear, we describe here its isolation and characterization from the cyanobacterium Synechocystis sp. strain 6803. We found that ferredoxin-NADP+ oxidoreductase (or FNRL), an enzyme involved in both cyclic electron transport and the terminal step of the electron transport chain in oxygenic photosynthesis, is tightly associated with CpcL-PBS as well as with CpcG-PBS. Room temperature and low-temperature fluorescence analyses show a red-shifted emission at 669 nm in CpcL-PBS as a terminal energy emitter without APC. SDS-PAGE and quantitative mass spectrometry reveal an increased content of FNRL and CpcC2, a rod linker protein, in CpcL-PBS compared to that of CpcG-PBS rods, indicative of an elongated CpcL-PBS rod length and its potential functional differences from CpcG-PBS. Furthermore, we combined isotope-encoded cross-linking mass spectrometry with computational protein structure predictions and structural modeling to produce an FNRL-PBS binding model that is supported by two cross-links between K69 of FNRL and the N terminus of CpcB, one component in PBS, in both CpcG-PBS and CpcL-PBS (cross-link 1), and between the N termini of FNRL and CpcB (cross-link 2). Our data provide a novel functional assembly form of phycobiliproteins and a molecular-level description of the close association of FNRL with phycocyanin in both CpcG-PBS and CpcL-PBS.IMPORTANCE Cyanobacterial light-harvesting complex PBSs are essential for photochemistry in light reactions and for balancing energy flow to carbon fixation in the form of ATP and NADPH. We isolated a new type of PBS without an allophycocyanin core (i.e., CpcL-PBS). CpcL-PBS contains both a spectral red-shifted chromophore, enabling efficient energy transfer to chlorophyll molecules in the reaction centers, and an increased FNRL content with various rod lengths. Identification of a close association of FNRL with both CpcG-PBS and CpcL-PBS brings new insight to its regulatory role for fine-tuning light energy transfer and carbon fixation through both noncyclic and cyclic electron transport.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel A Weisz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mengru M Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ming Cheng
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hao Zhang
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gary S Gerstenecker
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Squires AH, Dahlberg PD, Liu H, Magdaong NCM, Blankenship RE, Moerner WE. Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein. Nat Commun 2019; 10:1172. [PMID: 30862823 PMCID: PMC6414729 DOI: 10.1038/s41467-019-09084-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
The Orange Carotenoid Protein (OCP) is a cytosolic photosensor that is responsible for non-photochemical quenching (NPQ) of the light-harvesting process in most cyanobacteria. Upon photoactivation by blue-green light, OCP binds to the phycobilisome antenna complex, providing an excitonic trap to thermally dissipate excess energy. At present, both the binding site and NPQ mechanism of OCP are unknown. Using an Anti-Brownian ELectrokinetic (ABEL) trap, we isolate single phycobilisomes in free solution, both in the presence and absence of activated OCP, to directly determine the photophysics and heterogeneity of OCP-quenched phycobilisomes. Surprisingly, we observe two distinct OCP-quenched states, with lifetimes 0.09 ns (6% of unquenched brightness) and 0.21 ns (11% brightness). Photon-by-photon Monte Carlo simulations of exciton transfer through the phycobilisome suggest that the observed quenched states are kinetically consistent with either two or one bound OCPs, respectively, underscoring an additional mechanism for excitation control in this key photosynthetic unit. Upon photoactivation the Orange Carotenoid Protein (OCP) binds to the phycobilisome and prevents damage by thermally dissipating excess energy. Here authors use an Anti-Brownian ELectrokinetic trap to determine the photophysics of single OCP-quenched phycobilisomes and observe two distinct OCP-quenched states with either one or two OCPs bound.
Collapse
Affiliation(s)
- Allison H Squires
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Haijun Liu
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nikki Cecil M Magdaong
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
Zlenko DV, Elanskaya IV, Lukashev EP, Bolychevtseva YV, Suzina NE, Pojidaeva ES, Kononova IA, Loktyushkin AV, Stadnichuk IN. Role of the PB-loop in ApcE and phycobilisome core function in cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:155-166. [DOI: 10.1016/j.bbabio.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022]
|
23
|
Elanskaya IV, Zlenko DV, Lukashev EP, Suzina NE, Kononova IA, Stadnichuk IN. Phycobilisomes from the mutant cyanobacterium Synechocystis sp. PCC 6803 missing chromophore domain of ApcE. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:280-291. [DOI: 10.1016/j.bbabio.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/22/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
24
|
Gwizdala M, Krüger TPJ, Wahadoszamen M, Gruber JM, van Grondelle R. Phycocyanin: One Complex, Two States, Two Functions. J Phys Chem Lett 2018; 9:1365-1371. [PMID: 29504765 DOI: 10.1021/acs.jpclett.8b00621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Solar energy captured by pigments embedded in light-harvesting complexes can be transferred to neighboring pigments, dissipated, or emitted as fluorescence. Only when it reaches a reaction center is the excitation energy stabilized in the form of a charge separation and converted into chemical energy. Well-directed and regulated energy transfer within the network of pigments is therefore of crucial importance for the success of the photosynthetic processes. Using single-molecule spectroscopy, we show that phycocyanin can dynamically switch between two spectrally distinct states originating from two different conformations. Unexpectedly, one of the two states has a red-shifted emission spectrum. This state is not involved in energy dissipation; instead, we propose that it is involved in direct energy transfer to photosystem I. Finally, our findings suggest that the function of linker proteins in phycobilisomes is to stabilize one state or the other, thus controlling the light-harvesting functions of phycocyanin.
Collapse
Affiliation(s)
- Michal Gwizdala
- Department of Physics , University of Pretoria , Pretoria 0023 , South Africa
- Department of Physics and Astronomy , Vrije Universiteit Amsterdam , Amsterdam 1081 HV , The Netherlands
| | - Tjaart P J Krüger
- Department of Physics , University of Pretoria , Pretoria 0023 , South Africa
| | - Md Wahadoszamen
- Department of Physics and Astronomy , Vrije Universiteit Amsterdam , Amsterdam 1081 HV , The Netherlands
- Department of Physics , University of Dhaka , Dhaka 1000 , Bangladesh
| | - J Michael Gruber
- Department of Physics and Astronomy , Vrije Universiteit Amsterdam , Amsterdam 1081 HV , The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy , Vrije Universiteit Amsterdam , Amsterdam 1081 HV , The Netherlands
| |
Collapse
|
25
|
Nguyen AY, Bricker WP, Zhang H, Weisz DA, Gross ML, Pakrasi HB. The proteolysis adaptor, NblA, binds to the N-terminus of β-phycocyanin: Implications for the mechanism of phycobilisome degradation. PHOTOSYNTHESIS RESEARCH 2017; 132:95-106. [PMID: 28078551 PMCID: PMC5576716 DOI: 10.1007/s11120-016-0334-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Phycobilisome (PBS) complexes are massive light-harvesting apparati in cyanobacteria that capture and funnel light energy to the photosystem. PBS complexes are dynamically degraded during nutrient deprivation, which causes severe chlorosis, and resynthesized during nutrient repletion. PBS degradation occurs rapidly after nutrient step down, and is specifically triggered by non-bleaching protein A (NblA), a small proteolysis adaptor that facilitates interactions between a Clp chaperone and phycobiliproteins. Little is known about the mode of action of NblA during PBS degradation. In this study, we used chemical cross-linking coupled with LC-MS/MS to investigate the interactions between NblA and phycobiliproteins. An isotopically coded BS3 cross-linker captured a protein interaction between NblA and β-phycocyanin (PC). LC-MS/MS analysis identified the amino acid residues participating in the binding reaction, and demonstrated that K52 in NblA is cross-linked to T2 in β-PC. These results were modeled onto the existing crystal structures of NblA and PC by protein docking simulations. Our data indicate that the C-terminus of NblA fits in an open groove of β-PC, a region located inside the central hollow cavity of a PC rod. NblA may mediate PBS degradation by disrupting the structural integrity of the PC rod from within the rod. In addition, M1-K44 and M1-K52 cross-links between the N-terminus of NblA and the C-terminus of NblA are consistent with the NblA crystal structure, confirming that the purified NblA is structurally and biologically relevant. These findings provide direct evidence that NblA physically interacts with β-PC.
Collapse
Affiliation(s)
- Amelia Y Nguyen
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- US Environmental Protection Agency, 1200 Pennsylvania Ave, NW (MC-7403M), Washington, DC, 20460, USA
| | - William P Bricker
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Daniel A Weisz
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA.
| |
Collapse
|
26
|
Liberton M, Chrisler WB, Nicora CD, Moore RJ, Smith RD, Koppenaal DW, Pakrasi HB, Jacobs JM. Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803. PLoS One 2017; 12:e0173251. [PMID: 28253354 PMCID: PMC5333879 DOI: 10.1371/journal.pone.0173251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/17/2017] [Indexed: 11/18/2022] Open
Abstract
In cyanobacteria such as Synechocystis sp. PCC 6803, large antenna complexes called phycobilisomes (PBS) harvest light and transfer the energy to the photosynthetic reaction centers. Modification of the light harvesting machinery in cyanobacteria has widespread consequences, causing changes in cell morphology and physiology. In the current study, we investigated the effects of PBS truncation on the proteomes of three Synechocystis 6803 PBS antenna mutants. These range from the progressive truncation of phycocyanin rods in the CB and CK strains, to full removal of PBS in the PAL mutant. Comparative quantitative protein results revealed surprising changes in protein abundances in the mutant strains. Our results showed that PBS truncation in Synechocystis 6803 broadly impacted core cellular mechanisms beyond light harvesting and photosynthesis. Specifically, we observed dramatic alterations in membrane transport mechanisms, where the most severe PBS truncation in the PAL strain appeared to suppress the cellular utilization and regulation of bicarbonate and iron. These changes point to the role of PBS as a component critical to cell function, and demonstrate the continuing need to assess systems-wide protein based abundances to understand potential indirect phenotypic effects.
Collapse
Affiliation(s)
- Michelle Liberton
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - William B. Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - David W. Koppenaal
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Himadri B. Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
27
|
Gwizdala M, Berera R, Kirilovsky D, van Grondelle R, Krüger TP. Controlling Light Harvesting with Light. J Am Chem Soc 2016; 138:11616-22. [DOI: 10.1021/jacs.6b04811] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michal Gwizdala
- Department
of Physics and Astronomy, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rudi Berera
- Department
of Food Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Diana Kirilovsky
- Centre National de la Recherche Scientifique (CNRS), I2BC, UMR 9198, 91191 Gif-sur-Yvette, France
- Commissariat
à l’Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Rienk van Grondelle
- Department
of Physics and Astronomy, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department
of Physics, University of Pretoria, 0028 Hatfield, South Africa
| | - Tjaart P.J. Krüger
- Department
of Physics, University of Pretoria, 0028 Hatfield, South Africa
| |
Collapse
|
28
|
Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proc Natl Acad Sci U S A 2016; 113:E1655-62. [PMID: 26957606 DOI: 10.1073/pnas.1523680113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cyanobacteria, photoprotection from overexcitation of photochemical centers can be obtained by excitation energy dissipation at the level of the phycobilisome (PBS), the cyanobacterial antenna, induced by the orange carotenoid protein (OCP). A single photoactivated OCP bound to the core of the PBS affords almost total energy dissipation. The precise mechanism of OCP energy dissipation is yet to be fully determined, and one question is how the carotenoid can approach any core phycocyanobilin chromophore at a distance that can promote efficient energy quenching. We have performed intersubunit cross-linking using glutaraldehyde of the OCP and PBS followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS) to identify cross-linked residues. The only residues of the OCP that cross-link with the PBS are situated in the linker region, between the N- and C-terminal domains and a single C-terminal residue. These links have enabled us to construct a model of the site of OCP binding that differs from previous models. We suggest that the N-terminal domain of the OCP burrows tightly into the PBS while leaving the OCP C-terminal domain on the exterior of the complex. Further analysis shows that the position of the small core linker protein ApcC is shifted within the cylinder cavity, serving to stabilize the interaction between the OCP and the PBS. This is confirmed by a ΔApcC mutant. Penetration of the N-terminal domain can bring the OCP carotenoid to within 5-10 Å of core chromophores; however, alteration of the core structure may be the actual source of energy dissipation.
Collapse
|
29
|
Stadnichuk IN, Krasilnikov PM, Zlenko DV, Freidzon AY, Yanyushin MF, Rubin AB. Electronic coupling of the phycobilisome with the orange carotenoid protein and fluorescence quenching. PHOTOSYNTHESIS RESEARCH 2015; 124:315-335. [PMID: 25948498 DOI: 10.1007/s11120-015-0148-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Using computational modeling and known 3D structure of proteins, we arrived at a rational spatial model of the orange carotenoid protein (OCP) and phycobilisome (PBS) interaction in the non-photochemical fluorescence quenching. The site of interaction is formed by the central cavity of the OCP monomer in the capacity of a keyhole to the characteristic external tip of the phycobilin-containing domain (PB) and folded loop of the core-membrane linker LCM within the PBS core. The same central protein cavity was shown to be also the site of the OCP and fluorescence recovery protein (FRP) interaction. The revealed geometry of the OCP to the PBLCM attachment is believed to be the most advantageous one as the LCM, being the major terminal PBS fluorescence emitter, gathers, before quenching by OCP, the energy from most other phycobilin chromophores of the PBS. The distance between centers of mass of the OCP carotenoid 3'-hydroxyechinenone (hECN) and the adjacent phycobilin chromophore of the PBLCM was determined to be 24.7 Å. Under the dipole-dipole approximation, from the point of view of the determined mutual orientation and the values of the transition dipole moments and spectral characteristics of interacting chromophores, the time of the direct energy transfer from the phycobilin of PBLCM to the S1 excited state of hECN was semiempirically calculated to be 36 ps, which corresponds to the known experimental data and implies the OCP is a very efficient energy quencher. The complete scheme of OCP and PBS interaction that includes participation of the FRP is proposed.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- K. A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya, 35, 127726, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
30
|
Aikawa S, Ho SH, Nakanishi A, Chang JS, Hasunuma T, Kondo A. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnol J 2015; 10:886-98. [DOI: 10.1002/biot.201400344] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 02/20/2015] [Accepted: 03/05/2015] [Indexed: 01/20/2023]
|
31
|
Zhang P, Frankel LK, Bricker TM. Integration of apo-α-phycocyanin into phycobilisomes and its association with FNRL in the absence of the phycocyanin α-subunit lyase (CpcF) in Synechocystis sp. PCC 6803. PLoS One 2014; 9:e105952. [PMID: 25153076 PMCID: PMC4143364 DOI: 10.1371/journal.pone.0105952] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022] Open
Abstract
Phycocyanin is an important component of the phycobilisome, which is the principal light-harvesting complex in cyanobacteria. The covalent attachment of the phycocyanobilin chromophore to phycocyanin is catalyzed by the enzyme phycocyanin lyase. The photosynthetic properties and phycobilisome assembly state were characterized in wild type and two mutants which lack holo-α-phycocyanin. Insertional inactivation of the phycocyanin α-subunit lyase (ΔcpcF mutant) prevents the ligation of phycocyanobilin to α-phycocyanin (CpcA), while disruption of the cpcB/A/C2/C1 operon in the CK mutant prevents synthesis of both apo-α-phycocyanin (apo-CpcA) and apo-β-phycocyanin (apo-CpcB). Both mutants exhibited similar light saturation curves under white actinic light illumination conditions, indicating the phycobilisomes in the ΔcpcF mutant are not fully functional in excitation energy transfer. Under red actinic light illumination, wild type and both phycocyanin mutant strains exhibited similar light saturation characteristics. This indicates that all three strains contain functional allophycocyanin cores associated with their phycobilisomes. Analysis of the phycobilisome content of these strains indicated that, as expected, wild type exhibited normal phycobilisome assembly and the CK mutant assembled only the allophycocyanin core. However, the ΔcpcF mutant assembled phycobilisomes which, while much larger than the allophycocyanin core observed in the CK mutant, were significantly smaller than phycobilisomes observed in wild type. Interestingly, the phycobilisomes from the ΔcpcF mutant contained holo-CpcB and apo-CpcA. Additionally, we found that the large form of FNR (FNRL) accumulated to normal levels in wild type and the ΔcpcF mutant. In the CK mutant, however, significantly less FNRL accumulated. FNRL has been reported to associate with the phycocyanin rods in phycobilisomes via its N-terminal domain, which shares sequence homology with a phycocyanin linker polypeptide. We suggest that the assembly of apo-CpcA in the phycobilisomes of ΔcpcF can stabilize FNRL and modulate its function. These phycobilisomes, however, inefficiently transfer excitation energy to Photosystem II.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Laurie K. Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Terry M. Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Leganés F, Martínez-Granero F, Muñoz-Martín MÁ, Marco E, Jorge A, Carvajal L, Vida T, González-Pleiter M, Fernández-Piñas F. Characterization and responses to environmental cues of a photosynthetic antenna-deficient mutant of the filamentous cyanobacterium Anabaena sp. PCC 7120. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:915-926. [PMID: 24913049 DOI: 10.1016/j.jplph.2014.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
The cyanobacterial phycobilisome (PBS) is a giant pigment-protein complex which harvests light energy for photosynthesis and comprises two structures: a core and peripheral rods. Most studies on PBS structure and function are based on mutants of unicellular strains. In this report, we describe the phenotypic and genetic characterization of a transposon mutant of the filamentous Anabaena sp. strain PCC 7120, denoted LC1, which cannot synthesize the phycobiliprotein phycocyanin (PC), the main component of the rods; in this mutant, the transposon had inserted into the cpcB gene (orf alr0528) which putatively encodes PC-β chain. Mutant LC1 was able to synthesize phycoerythrocyanin (PEC), a phycobiliprotein (PBP) located at the terminal region of the rods; but in the absence of PC, PEC did not attach to the PBSs that only retained the allophycocyanin (APC) core; ferredoxin: NADP+-oxidoreductase (FNR) that is associated with the PBS in the wild type, was not found in isolated PBSs from LC1. The performance of the mutant exposed to different environmental conditions was evaluated. The mutant phenotype was successfully complemented by cloning and transfer of the wild type complete cpc operon to mutant LC1. Interestingly, LC1 compensated its mutation by significantly increasing the number of its core-PBS and the effective quantum yield of photosystem II (PSII) photochemistry; this feature suggests a more efficient energy conversion in the mutant which may be useful for biotechnological applications.
Collapse
Affiliation(s)
- Francisco Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | - M Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Eduardo Marco
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alberto Jorge
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Laura Carvajal
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Teresa Vida
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| |
Collapse
|
33
|
Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp. PCC 6803. AMB Express 2014; 4:17. [PMID: 24949254 PMCID: PMC4052703 DOI: 10.1186/s13568-014-0017-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 01/14/2023] Open
Abstract
The effect of phycobilisome antenna-truncation in the cyanobacterium Synechocystis sp. PCC 6803 on biomass production and glycogen accumulation have not yet been fully clarified. To investigate these effects here, the apcE gene, which encodes the anchor protein linking the phycobilisome to the thylakoid membrane, was deleted in a glucose tolerant strain of Synechocystis sp. PCC 6803. Biomass production of the apcE-deleted strain under photoautotrophic and atmospheric air conditions was 1.6 times higher than that of strain PCC 6803 (1.32 ± 0.01 versus 0.84 ± 0.07 g cell-dry weight L(-1), respectively) after 15 days of cultivation. In addition, the glycogen content of the apcE-deleted strain (24.2 ± 0.7%) was also higher than that of strain PCC 6803 (11.1 ± 0.3%). Together, these results demonstrate that antenna truncation by deleting the apcE gene was effective for increasing biomass production and glycogen accumulation under photoautotrophic and atmospheric air conditions in Synechocystis sp. PCC 6803.
Collapse
|
34
|
Jallet D, Thurotte A, Leverenz RL, Perreau F, Kerfeld CA, Kirilovsky D. Specificity of the cyanobacterial orange carotenoid protein: influences of orange carotenoid protein and phycobilisome structures. PLANT PHYSIOLOGY 2014; 164:790-804. [PMID: 24335507 PMCID: PMC3912106 DOI: 10.1104/pp.113.229997] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome (PB), the extramembranous light-harvesting antenna. This mechanism is triggered by the photoactive Orange Carotenoid Protein (OCP), which acts both as the photosensor and the energy quencher. The OCP binds the core of the PB. The structure of this core differs in diverse cyanobacterial strains. Here, using two isolated OCPs and four classes of PBs, we demonstrated that differences exist between OCPs related to PB binding, photoactivity, and carotenoid binding. Synechocystis PCC 6803 (hereafter Synechocystis) OCP, but not Arthrospira platensis PCC 7345 (hereafter Arthrospira) OCP, can attach echinenone in addition to hydroxyechinenone. Arthrospira OCP binds more strongly than Synechocystis OCP to all types of PBs. Synechocystis OCP can strongly bind only its own PB in 0.8 m potassium phosphate. However, if the Synechocystis OCP binds to the PB at very high phosphate concentrations (approximately 1.4 m), it is able to quench the fluorescence of any type of PB, even those isolated from strains that lack the OCP-mediated photoprotective mechanism. Thus, the determining step for the induction of photoprotection is the binding of the OCP to PBs. Our results also indicated that the structure of PBs, at least in vitro, significantly influences OCP binding and the stabilization of OCP-PB complexes. Finally, the fact that the OCP induced large fluorescence quenching even in the two-cylinder core of Synechococcus elongatus PBs strongly suggested that OCP binds to one of the basal allophycocyanin cylinders.
Collapse
|
35
|
Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 2013; 342:1104-7. [PMID: 24288334 PMCID: PMC3947847 DOI: 10.1126/science.1242321] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In photosynthetic organisms, photons are captured by light-harvesting antenna complexes, and energy is transferred to reaction centers where photochemical reactions take place. We describe here the isolation and characterization of a fully functional megacomplex composed of a phycobilisome antenna complex and photosystems I and II from the cyanobacterium Synechocystis PCC 6803. A combination of in vivo protein cross-linking, mass spectrometry, and time-resolved spectroscopy indicates that the megacomplex is organized to facilitate energy transfer but not intercomplex electron transfer, which requires diffusible intermediates and the cytochrome b6f complex. The organization provides a basis for understanding how phycobilisomes transfer excitation energy to reaction centers and how the energy balance of two photosystems is achieved, allowing the organism to adapt to varying ecophysiological conditions.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hao Zhang
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mindy Prado
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Guannan He
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E. Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
36
|
Liberton M, Collins AM, Page LE, O'Dell WB, O'Neill H, Urban VS, Timlin JA, Pakrasi HB. Probing the consequences of antenna modification in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2013; 118:17-24. [PMID: 24132812 DOI: 10.1007/s11120-013-9940-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic organisms rely on antenna systems to harvest and deliver energy from light to reaction centers. In fluctuating photic environments, regulation of light harvesting is critical for a photosynthetic organism's survival. Here, we describe the use of a suite of phycobilisome mutants to probe the consequences of antenna truncation in the cyanobacterium Synechocystis sp. PCC 6803. Studies using transmission electron microscopy (TEM), hyperspectral confocal fluorescence microscopy (HCFM), small-angle neutron scattering (SANS), and an optimized photobioreactor system have unraveled the adaptive strategies that cells employ to compensate for antenna reduction. As the phycobilisome antenna size decreased, changes in thylakoid morphology were more severe and physical segregation of the two photosystems increased. Repeating distances between thylakoid membranes measured by SANS were correlated with TEM data, and corresponded to the degree of phycobilisome truncation. Thylakoid membranes were found to have a high degree of structural flexibility, and changes in the membrane system upon illumination were rapid and reversible. Phycobilisome truncation in Synechocystis 6803 reduced the growth rate and lowered biomass accumulation. Together, these results lend a dynamic perspective to the intracellular membrane organization in cyanobacteria cells and suggest an adaptive mechanism that allows cells to adjust to altered light absorption capabilities, while highlighting the cell-wide implications of antenna truncation.
Collapse
Affiliation(s)
- Michelle Liberton
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO, 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fluorescence quenching of the phycobilisome terminal emitter LCM from the cyanobacterium Synechocystis sp. PCC 6803 detected in vivo and in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 125:137-45. [DOI: 10.1016/j.jphotobiol.2013.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 11/21/2022]
|
38
|
Kwon JH, Bernát G, Wagner H, Rögner M, Rexroth S. Reduced light-harvesting antenna: Consequences on cyanobacterial metabolism and photosynthetic productivity. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Chiu YF, Chen YH, Roncel M, Dilbeck PL, Huang JY, Ke SC, Ortega JM, Burnap RL, Chu HA. Spectroscopic and functional characterization of cyanobacterium Synechocystis PCC 6803 mutants on the cytoplasmic-side of cytochrome b559 in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:507-19. [PMID: 23399490 DOI: 10.1016/j.bbabio.2013.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/18/2013] [Accepted: 01/30/2013] [Indexed: 11/19/2022]
Abstract
We performed spectroscopic and functional characterization on cyanobacterium Synechocystis PCC6803 with mutations of charged residues of the cytoplasmic side of cytochrome (Cyt) b559 in photosystem II (PSII). All of the mutant cells grew photoautotrophically and assembled stable PSII. However, R7Eα, R17Eα and R17Lβ mutant cells grew significantly slower and were more susceptible to photoinhibition than wild-type cells. The adverse effects of the arginine mutations on the activity and the stability of PSII were in the following order (R17Lβ>R7Eα>R17Eα and R17Aα). All these arginine mutants exhibited normal period-four oscillation in oxygen yield. Thermoluminescence characteristics indicated a slight decrease in the stability of the S3QB(-)/S2QB(-) charge pairs in the R7Eα and R17Lβ mutant cells. R7Eα and R17Lβ PSII core complexes contained predominantly the low potential form of Cyt b559. EPR results indicated the displacement of one of the two axial ligands to the heme of Cyt b559 in R7Eα and R17Lβ mutant reaction centers. Our results demonstrate that the electrostatic interactions between these arginine residues and the heme propionates of Cyt b559 are important to the structure and redox properties of Cyt b559. In addition, the blue light-induced nonphotochemical quenching was significantly attenuated and its recovery was accelerated in the R7Lα and R17Lβ mutant cells. Furthermore, ultra performance liquid chromatography-mass spectrometry results showed that the PQ pool was more reduced in the R7Eα and R17Lβ mutant cells than wild-type cells in the dark. Our data support a functional role of Cyt b559 in protection of PSII under photoinhibition conditions in vivo.
Collapse
Affiliation(s)
- Yi-Fang Chiu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dobrikova AG, Domonkos I, Sözer Ö, Laczkó-Dobos H, Kis M, Párducz Á, Gombos Z, Apostolova EL. Effect of partial or complete elimination of light-harvesting complexes on the surface electric properties and the functions of cyanobacterial photosynthetic membranes. PHYSIOLOGIA PLANTARUM 2013; 147:248-260. [PMID: 22582961 DOI: 10.1111/j.1399-3054.2012.01648.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Influence of the modification of the cyanobacterial light-harvesting complex [i.e. phycobilisomes (PBS)] on the surface electric properties and the functions of photosynthetic membranes was investigated. We used four PBS mutant strains of Synechocystis sp. PCC6803 as follows: PAL (PBS-less), CK (phycocyanin-less), BE (PSII-PBS-less) and PSI-less/apcE(-) (PSI-less with detached PBS). Modifications of the PBS content lead to changes in the cell morphology and surface electric properties of the thylakoid membranes as well as in their functions, such as photosynthetic oxygen-evolving activity, P700 kinetics and energy transfer between the pigment-protein complexes. Data reveal that the complete elimination of PBS in the PAL mutant causes a slight decrease in the electric dipole moments of the thylakoid membranes, whereas significant perturbations of the surface charges were registered in the membranes without assembled PBS-PSII macrocomplex (BE mutant) or PSI complex (PSI-less mutant). These observations correlate with the detected alterations in the membrane structural organization. Using a polarographic oxygen rate electrode, we showed that the ratio of the fast to the slow oxygen-evolving PSII centers depends on the partial or complete elimination of light-harvesting complexes, as the slow operating PSII centers dominate in the PBS-less mutant and in the mutant with detached PBS.
Collapse
Affiliation(s)
- Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tian L, van Stokkum IHM, Koehorst RBM, van Amerongen H. Light Harvesting and Blue-Green Light Induced Non-Photochemical Quenching in Two Different C-Phycocyanin Mutants of Synechocystis PCC 6803. J Phys Chem B 2012; 117:11000-6. [DOI: 10.1021/jp309570u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lijin Tian
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
| | - Ivo H. M. van Stokkum
- Biophysics
Group, Department
of Physics and Astronomy, Faculty of Sciences, VU University, DeBoelelaan1081, 1081 HV Amsterdam, The Netherlands
| | - Rob B. M. Koehorst
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
- MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
- MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
| |
Collapse
|
42
|
Collins AM, Liberton M, Jones HD, Garcia OF, Pakrasi HB, Timlin JA. Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants. PLANT PHYSIOLOGY 2012; 158:1600-9. [PMID: 22331410 PMCID: PMC3320172 DOI: 10.1104/pp.111.192849] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/09/2012] [Indexed: 05/03/2023]
Abstract
Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, which drive the oxidation of water and the reduction of NADP+, respectively. While thylakoid morphology has been studied in some strains of cyanobacteria, the global distribution of PSI and PSII within the thylakoid membrane and the corresponding location of the light-harvesting phycobilisomes are not known in detail, and such information is required to understand the functioning of cyanobacterial photosynthesis on a larger scale. Here, we have addressed this question using a combination of electron microscopy and hyperspectral confocal fluorescence microscopy in wild-type Synechocystis species PCC 6803 and a series of mutants in which phycobilisomes are progressively truncated. We show that as the phycobilisome antenna is diminished, large-scale changes in thylakoid morphology are observed, accompanied by increased physical segregation of the two photosystems. Finally, we quantified the emission intensities originating from the two photosystems in vivo on a per cell basis to show that the PSI:PSII ratio is progressively decreased in the mutants. This results from both an increase in the amount of photosystem II and a decrease in the photosystem I concentration. We propose that these changes are an adaptive strategy that allows cells to balance the light absorption capabilities of photosystems I and II under light-limiting conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jerilyn A. Timlin
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (A.M.C., H.D.T.J., O.F.G., J.A.T); and Department of Biology, Washington University, St. Louis, Missouri 63130 (M.L., H.B.P.)
| |
Collapse
|
43
|
DeSantis MC, Zareh SK, Li X, Blankenship RE, Wang YM. Single-image axial localization precision analysis for individual fluorophores. OPTICS EXPRESS 2012; 20:3057-65. [PMID: 22330542 PMCID: PMC3482922 DOI: 10.1364/oe.20.003057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/13/2012] [Accepted: 01/19/2012] [Indexed: 05/21/2023]
Abstract
Bio-mechanism investigations demand single particle tracking with high spatial and temporal resolutions which require single fluorophore 3D localization measurements with matching precision and speed. Although the precision for lateral-localization measurements is well described by an analytical expression, for the axial direction, it is often obtained by repeating location measurements or by estimating a lower bound. Here, we report a precision expression for an axial-localization method that analyzes the standard deviations of single fluorophores' intensity profiles. Like the lateral-localization precision, this expression includes all relevant experimental effects measurable from a gaussian intensity profile of the fluorophore. This expression completes the precision analysis for single-image 3D localization of individual fluorophores and lifts the temporal resolution to the typical exposure timescales of milliseconds.
Collapse
Affiliation(s)
| | | | - Xianglu Li
- Departments of Biology and Chemistry, Washington University, St. Louis, MO 63130,
USA
| | - Robert E. Blankenship
- Departments of Biology and Chemistry, Washington University, St. Louis, MO 63130,
USA
| | - Y. M. Wang
- Department of Physics, Washington University, St. Louis, MO 63130,
USA
| |
Collapse
|
44
|
Jallet D, Gwizdala M, Kirilovsky D. ApcD, ApcF and ApcE are not required for the Orange Carotenoid Protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1418-27. [PMID: 22172739 DOI: 10.1016/j.bbabio.2011.11.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
In cyanobacteria, strong blue-green light induces a photoprotective mechanism involving an increase of energy thermal dissipation at the level of phycobilisome (PB), the cyanobacterial antenna. This leads to a decrease of the energy arriving to the reaction centers. The photoactive Orange Carotenoid Protein (OCP) has an essential role in this mechanism. The binding of the red photoactivated OCP to the core of the PB triggers energy and PB fluorescence quenching. The core of PBs is constituted of allophycocyanin trimers emitting at 660 or 680nm. ApcD, ApcF and ApcE are the responsible of the 680nm emission. In this work, the role of these terminal emitters in the photoprotective mechanism was studied. Single and double Synechocystis PCC 6803 mutants, in which the apcD or/and apcF genes were absent, were constructed. The Cys190 of ApcE which binds the phycocyanobilin was replaced by a Ser. The mutated ApcE attached an unusual chromophore emitting at 710nm. The activated OCP was able to induce the photoprotective mechanism in all the mutants. Moreover, in vitro reconstitution experiments showed similar amplitude and rates of fluorescence quenching. Our results demonstrated that ApcD, ApcF and ApcE are not required for the OCP-related fluorescence quenching and they strongly suggested that the site of quenching is one of the APC trimers emitting at 660nm. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Denis Jallet
- Institut de Biologie et Technologies de Saclay, Gif sur Yvette, France
| | | | | |
Collapse
|
45
|
Dartnell LR, Storrie-Lombardi MC, Mullineaux CW, Ruban AV, Wright G, Griffiths AD, Muller JP, Ward JM. Degradation of cyanobacterial biosignatures by ionizing radiation. ASTROBIOLOGY 2011; 11:997-1016. [PMID: 22149884 DOI: 10.1089/ast.2011.0663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Primitive photosynthetic microorganisms, either dormant or dead, may remain today on the martian surface, akin to terrestrial cyanobacteria surviving endolithically in martian analog sites on Earth such as the Antarctic Dry Valleys and the Atacama Desert. Potential markers of martian photoautotrophs include the red edge of chlorophyll reflectance spectra or fluorescence emission from systems of light-harvesting pigments. Such biosignatures, however, would be modified and degraded by long-term exposure to ionizing radiation from the unshielded cosmic ray flux onto the martian surface. In this initial study into this issue, three analytical techniques--absorbance, reflectance, and fluorescence spectroscopy--were employed to determine the progression of the radiolytic destruction of cyanobacteria. The pattern of signal loss for chlorophyll reflection and fluorescence from several biomolecules is characterized and quantified after increasing exposures to ionizing gamma radiation. This allows estimation of the degradation rates of cyanobacterial biosignatures on the martian surface and the identification of promising detectable fluorescent break-down products.
Collapse
Affiliation(s)
- Lewis R Dartnell
- UCL Institute for Origins, University College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang X, Dong LL, Zhang CX, Zhu KZ, Zhao JQ, Zhao KH, Zhou M. Sll1466, a glycosyl transferase homolog involved in global cellular regulation and high-light tolerance of Synechocystis PCC6803. Biochem Biophys Res Commun 2011; 408:674-9. [DOI: 10.1016/j.bbrc.2011.04.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/19/2011] [Indexed: 11/28/2022]
|
47
|
Santabarbara S, Kuprov I, Poluektov O, Casal A, Russell CA, Purton S, Evans MCW. Directionality of Electron-Transfer Reactions in Photosystem I of Prokaryotes: Universality of the Bidirectional Electron-Transfer Model. J Phys Chem B 2010; 114:15158-71. [PMID: 20977227 DOI: 10.1021/jp1044018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Santabarbara
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Ilya Kuprov
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Oleg Poluektov
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Antonio Casal
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Charlotte A. Russell
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Saul Purton
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Michael C. W. Evans
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| |
Collapse
|
48
|
Busch A, Nield J, Hippler M. The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:886-97. [PMID: 20230507 DOI: 10.1111/j.1365-313x.2010.04202.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Red algae contain two types of light-harvesting antenna systems, the phycobilisomes and chlorophyll a binding polypeptides (termed Lhcr), which expand the light-harvesting capacity of the photosynthetic reaction centers. In this study, photosystem I (PSI) and its associated light-harvesting proteins were isolated from the red alga Cyanidioschyzon merolae. The structural and functional properties of the largest PSI particles observed were investigated by biochemical characterization, mass spectrometry, fluorescence emission and excitation spectroscopy, and transmission electron microscopy. Our data provide strong evidence for a stable PSI complex in red algae that possesses two distinct types of functional peripheral light-harvesting antenna complex, comprising both Lhcr and a PSI-linked phycobilisome sub-complex. We conclude that the PSI antennae system of red algae represents an evolutionary intermediate between the prokaryotic cyanobacteria and other eukaryotes, such as green algae and vascular plants.
Collapse
Affiliation(s)
- Andreas Busch
- Department of Biology, Institute of Plant Biochemistry and Biotechnology, University of Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | | | | |
Collapse
|
49
|
Hung CH, Hwang HJ, Chen YH, Chiu YF, Ke SC, Burnap RL, Chu HA. Spectroscopic and functional characterizations of cyanobacterium Synechocystis PCC 6803 mutants on and near the heme axial ligand of cytochrome b559 in photosystem II. J Biol Chem 2009; 285:5653-63. [PMID: 20007972 DOI: 10.1074/jbc.m109.044719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The functional role of cytochrome (cyt) b(559) in photosystem II (PSII) was investigated in H22K alpha and Y18S alpha cyt b(559) mutants of the cyanobacterium Synechocystis sp. PCC6803. H22K alpha and Y18S alpha cyt b(559) mutant carries one amino acid substitution on and near one of heme axial ligands of cyt b(559) in PSII, respectively. Both mutants grew photoautotrophically, assembled stable PSII, and exhibited the normal period-four oscillation in oxygen yield. However, both mutants showed several distinct chlorophyll a fluorescence properties and were more susceptible to photoinhibition than wild type. EPR results indicated the displacement of one of the two axial ligands to the heme of cyt b(559) in H22K alpha mutant reaction centers, at least in isolated reaction centers. The maximum absorption of cyt b(559) in Y18S alpha mutant PSII core complexes was shifted to 561 nm. Y18S alpha and H22K alpha mutant PSII core complexes contained predominately the low potential form of cyt b(559). The findings lend support to the concept that the redox properties of cyt b(559) are strongly influenced by the hydrophobicity and ligation environment of the heme. When the cyt b(559) mutations placed in a D1-D170A genetic background that prevents assembly of the manganese cluster, accumulation of PSII is almost completely abolished. Overall, our data support a functional role of cyt b(559) in protection of PSII under photoinhibition conditions in vivo.
Collapse
Affiliation(s)
- Chung-Hsien Hung
- Institute of Plant and Microbial Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
50
|
Korn A, Ajlani G, Lagoutte B, Gall A, Sétif P. Ferredoxin:NADP+ oxidoreductase association with phycocyanin modulates its properties. J Biol Chem 2009; 284:31789-97. [PMID: 19759024 DOI: 10.1074/jbc.m109.024638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In photosynthetic organisms, ferredoxin:NADP(+) oxidoreductase (FNR) is known to provide NADPH for CO(2) assimilation, but it also utilizes NADPH to provide reduced ferredoxin. The cyanobacterium Synechocystis sp. strain PCC6803 produces two FNR isoforms, a small one (FNR(S)) similar to the one found in plant plastids and a large one (FNR(L)) that is associated with the phycobilisome, a light-harvesting complex. Here we show that a mutant lacking FNR(L) exhibits a higher NADP(+)/NADPH ratio. We also purified to homogeneity a phycobilisome subcomplex comprising FNR(L,) named FNR(L)-PC. The enzymatic activities of FNR(L)-PC were compared with those of FNR(S). During NADPH oxidation, FNR(L)-PC exhibits a 30% decrease in the Michaelis constant K(m)((NADPH)), and a 70% increase in K(m)((ferredoxin)), which is in agreement with its predicted lower activity of ferredoxin reduction. During NADP(+) reduction, the FNR(L)-PC shows a 29/43% decrease in the rate of single electron transfer from reduced ferredoxin in the presence/absence of NADP(+). The increase in K(m)((ferredoxin)) and the rate decrease of single reduction are attributed to steric hindrance by the phycocyanin moiety of FNR(L)-PC. Both isoforms are capable of catalyzing the NADP(+) reduction under multiple turnover conditions. Furthermore, we obtained evidence that, under high ionic strength conditions, electron transfer from reduced ferredoxin is rate limiting during this process. The differences that we observe might not fully explain the in vivo properties of the Synechocystis mutants expressing only one of the isoforms. Therefore, we advocate that FNR localization and/or substrates availability are essential in vivo.
Collapse
Affiliation(s)
- Anja Korn
- Institut de Biologie et de Technologie de Saclay, Commissariat à L'Energie Atomique, CNRS, F-91191 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|