1
|
Guo S, Wu Y, Aboueldahab M. Rapid oxygen isotopic exchange between bicarbonate and water during photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112924. [PMID: 38688041 DOI: 10.1016/j.jphotobiol.2024.112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Whether rapid oxygen isotopic exchange between bicarbonate and water occurs in photosynthesis is the key to determine the source of oxygen by classic 18O-labeled photosynthetic oxygen evolution experiments. Here we show that both Microcystis aeruginosa and Chlamydomonas reinhardtii utilize a significant proportion (>16%) of added bicarbonate as a carbon source for photosynthesis. However, oxygen isotopic signal in added bicarbonate cannot be traced in the oxygen in organic matter synthesized by these photosynthetic organisms. This contradicts the current photosynthesis theory, which states that photosynthetic oxygen evolution comes only from water, and oxygen in photosynthetic organic matter comes only from carbon dioxide. We conclude that the photosynthetic organisms undergo rapid exchange of oxygen isotope between bicarbonate and water during photosynthesis. At the same time, this study also provides isotopic evidence for a new mechanism that half of the oxygen in photosynthetic oxygen evolution comes from bicarbonate photolysis and half comes from water photolysis, which provides a new explanation for the bicarbonate effect, and suggests that the Kok-Joliot cycle of photosynthetic oxygen evolution, must be modified to include a molecule of bicarbonate in addition to one molecule of water which in turn must be incorporated into the cycle instead of two water molecules. Furthermore, this study provides a theoretical basis for constructing a newer artificial photosynthetic reactor coupling light reactions with the dark reactions.
Collapse
Affiliation(s)
- Shaogang Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyou Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Mohamed Aboueldahab
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| |
Collapse
|
2
|
Allakhverdiev SI, Zharmukhamedov SK, Rodionova MV, Shuvalov VA, Dismukes C, Shen JR, Barber J, Samuelsson G. Vyacheslav (Slava) Klimov (1945-2017): A scientist par excellence, a great human being, a friend, and a Renaissance man. PHOTOSYNTHESIS RESEARCH 2018; 136:1-16. [PMID: 28921410 DOI: 10.1007/s11120-017-0440-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Vyacheslav Vasilevich (V.V.) Klimov (or Slava, as most of us called him) was born on January 12, 1945 and passed away on May 9, 2017. He began his scientific career at the Bach Institute of Biochemistry of the USSR Academy of Sciences (Akademy Nauk (AN) SSSR), Moscow, Russia, and then, he was associated with the Institute of Photosynthesis, Pushchino, Moscow Region, for about 50 years. He worked in the field of biochemistry and biophysics of photosynthesis. He is known for his studies on the molecular organization of photosystem II (PSII). He was an eminent scientist in the field of photobiology, a well-respected professor, and, above all, an outstanding researcher. Further, he was one of the founding members of the Institute of Photosynthesis in Pushchino, Russia. To most, Slava Klimov was a great human being. He was one of the pioneers of research on the understanding of the mechanism of light energy conversion and of water oxidation in photosynthesis. Slava had many collaborations all over the world, and he is (and will be) very much missed by the scientific community and friends in Russia as well as around the World. We present here a brief biography and some comments on his research in photosynthesis. We remember him as a friendly and enthusiastic person who had an unflagging curiosity and energy to conduct outstanding research in many aspects of photosynthesis, especially that related to PSII.
Collapse
Affiliation(s)
- Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276.
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Sergey K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
| | - Margarita V Rodionova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
| | - Vladimir A Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Charles Dismukes
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 7008530, Japan
| | - James Barber
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Göran Samuelsson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736, Umeå, Sweden
| |
Collapse
|
3
|
|
4
|
Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R. Photosynthetic hydrogen production. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2010. [DOI: 10.1016/j.jphotochemrev.2010.07.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Study on the effects of chloride depletion on photosystem II using different chloride depletion methods. J Bioenerg Biomembr 2010; 42:47-53. [PMID: 20054625 DOI: 10.1007/s10863-009-9260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/25/2009] [Indexed: 11/27/2022]
Abstract
Chloride is an indispensable factor for the functioning of oxygen evolving complex (OEC) and has protective and activating effects on photosystem II. In this study we have investigated mainly by EPR, the properties of chloride-sufficient, chloride-deficient and chloride-depleted thylakoid membranes and photosystem II enriched membranes from spinach. The results on the effects of different chloride depletion methods on the structural and functional aspects of photosystem II showed that chloride-depletion by treating PS II membranes with high pH is a relatively harsh way causing a significant and irreparable damage to the PS II donor side. Damage to the acceptor side of PS II was recovered almost fully in chloride-deficient as well as chloride-depleted PS II membranes.
Collapse
|
6
|
Aoyama C, Suzuki H, Sugiura M, Noguchi T. Flash-Induced FTIR Difference Spectroscopy Shows No Evidence for the Structural Coupling of Bicarbonate to the Oxygen-Evolving Mn Cluster in Photosystem II. Biochemistry 2008; 47:2760-5. [DOI: 10.1021/bi702241t] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chika Aoyama
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan, and Department of Plant Biosciences, School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Hiroyuki Suzuki
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan, and Department of Plant Biosciences, School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Miwa Sugiura
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan, and Department of Plant Biosciences, School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Takumi Noguchi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan, and Department of Plant Biosciences, School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
7
|
Shevela D, Klimov V, Messinger J. Interactions of photosystem II with bicarbonate, formate and acetate. PHOTOSYNTHESIS RESEARCH 2007; 94:247-64. [PMID: 17653834 DOI: 10.1007/s11120-007-9200-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 05/16/2007] [Indexed: 05/16/2023]
Abstract
In this study, we probe the effects of bicarbonate (hydrogencarbonate), BC, removal from photosystem II in spinach thylakoids by measuring flash-induced oxygen evolution patterns (FIOPs) with a Joliot-type electrode. For this we compared three commonly employed methods: (1) washing in BC-free medium, (2) formate addition, and (3) acetate addition. Washing of the samples with buffers depleted of BC and CO2 by bubbling with argon (Method 1) under our conditions leads to an increase in the double hit parameter of the first flash (beta 1), while the miss parameter and the overall activity remain unchanged. In contrast, addition of 40-50 mM formate or acetate results in a significant increase in the miss parameter and to an approximately 50% (formate) and approximately 10% (acetate) inhibition of the overall oxygen evolution activity, but not to an increased beta 1 parameter. All described effects could be reversed by washing with formate/acetate free buffer and/or addition of 2-10 mM bicarbonate. The redox potential of the water-oxidizing complex (WOC) in samples treated by Method 1 is compared to samples containing 2 mM bicarbonate in two ways: (1) The lifetimes of the S0, S2, and S3 states were measured, and no differences were found between the two sample types. (2) The S1, S0, S(-1), and S(-2) states were probed by incubation with small concentrations of NH2OH. These experiments displayed a subtle, yet highly reproducible difference in the apparent Si/S(-i) state distribution which is shown to arise from the interaction of BC with PSII in the already reduced states of the WOC. These data are discussed in detail by also taking into account the CO2 concentrations present in the buffers after argon bubbling and during the measurements. These values were measured by membrane-inlet mass spectrometry (MIMS).
Collapse
Affiliation(s)
- Dmitriy Shevela
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
8
|
Jajoo A, Katsuta N, Kawamori A. An EPR study of the pH dependence of formate effects on Photosystem II. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:186-92. [PMID: 16762561 DOI: 10.1016/j.plaphy.2006.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Indexed: 05/10/2023]
Abstract
Effects of formate on rates of O(2) evolution and electron paramagnetic resonance (EPR) signals were observed in the oxygen evolving PS II membranes as a function of pH. In formate treated PS II membranes, decrease in pH value resulted in the inhibition of the O(2) evolving activity, a decrease in the intensity of S(2) state multiline signal but an increase in the intensity of the Q(A)(-)Fe(2+) EPR signal. Time-resolved EPR study of the Y(Z)(*) decay kinetics showed that the light-induced intensity of Y(Z)(*) EPR signal was proportional to the formate concentration. The change in the pH affected both the light-induced intensities and the decay rates of Y(Z)(*), which was found to be faster at lower pH. At 253 K, t(1/e) value of Y(Z)(*) decay kinetics was found to be 8-10 s at pH 6.0 and 18-21 s at pH 5.0. The results presented here indicate that the extent of inhibition at the donor and the acceptor side of PS II due to formate is pH dependent, being more effective at lower pH.
Collapse
Affiliation(s)
- Anjana Jajoo
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore 452 017, India.
| | | | | |
Collapse
|
9
|
|
10
|
Jajoo A, Bharti S, Kawamori A. EPR characteristics of chloride-depleted photosystem II membranes in the presence of other anions. Photochem Photobiol Sci 2005; 4:459-62. [PMID: 15920629 DOI: 10.1039/b414849e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chloride is an essential cofactor for the oxidation of water to oxygen. Anion substitution (Br(-), I(-), NO(2)(-), F(-)) in Cl(-)-depleted PS II membranes brings out significant changes in the EPR signals arising from the S(2) state and from the iron-quinone complex of PS II. On the basis of the changes observed in the S(2) state multiline signal and the Q(A)Fe(3+) EPR signal in Cl(-)-depleted PS II membranes after substituting with various anions, we report a possible binding site of anions such as chloride and bromide at the PS II donor side as well as at the acceptor side.
Collapse
Affiliation(s)
- Anjana Jajoo
- School of Life Sciences, Vigyan Bhawan Khandwa Road, Devi Ahilya Vishwavidyalaya, Indore 452 017, M.P., India.
| | | | | |
Collapse
|
11
|
Kozlov YN, Zharmukhamedov SK, Tikhonov KG, Dasgupta J, Kazakova AA, Charles Dismukes G, Klimov VV. Oxidation potentials and electron donation to photosystem II of manganese complexes containing bicarbonate and carboxylate ligands. Phys Chem Chem Phys 2004. [DOI: 10.1039/b406569g] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A 2001; 98:2170-5. [PMID: 11226211 PMCID: PMC30111 DOI: 10.1073/pnas.061514798] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Indexed: 01/17/2023] Open
Abstract
The evolution of O(2)-producing cyanobacteria that use water as terminal reductant transformed Earth's atmosphere to one suitable for the evolution of aerobic metabolism and complex life. The innovation of water oxidation freed photosynthesis to invade new environments and visibly changed the face of the Earth. We offer a new hypothesis for how this process evolved, which identifies two critical roles for carbon dioxide in the Archean period. First, we present a thermodynamic analysis showing that bicarbonate (formed by dissolution of CO(2)) is a more efficient alternative substrate than water for O(2) production by oxygenic phototrophs. This analysis clarifies the origin of the long debated "bicarbonate effect" on photosynthetic O(2) production. We propose that bicarbonate was the thermodynamically preferred reductant before water in the evolution of oxygenic photosynthesis. Second, we have examined the speciation of manganese(II) and bicarbonate in water, and find that they form Mn-bicarbonate clusters as the major species under conditions that model the chemistry of the Archean sea. These clusters have been found to be highly efficient precursors for the assembly of the tetramanganese-oxide core of the water-oxidizing enzyme during biogenesis. We show that these clusters can be oxidized at electrochemical potentials that are accessible to anoxygenic phototrophs and thus the most likely building blocks for assembly of the first O(2) evolving photoreaction center, most likely originating from green nonsulfur bacteria before the evolution of cyanobacteria.
Collapse
Affiliation(s)
- G C Dismukes
- Department of Chemistry, Hoyt Laboratory, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Klimov VV, Baranov SV. Bicarbonate requirement for the water-oxidizing complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:187-96. [PMID: 11115633 DOI: 10.1016/s0005-2728(00)00222-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that bicarbonate stimulates electron transfer between the primary and secondary electron acceptors, Q(A) and Q(B), in formate-inhibited photosystem II; the non-heme Fe between Q(A) and Q(B) plays an essential role in the bicarbonate binding. Strong evidence of a bicarbonate requirement for the water-oxidizing complex (WOC), both O2 evolving and assembling from apo-WOC and Mn2+, of photosystem II (PSII) preparations has been presented in a number of publications during the last 5 years. The following explanations for the involvement of bicarbonate in the events on the donor side of PSII are considered: (1) bicarbonate serves as an electron donor (alternative to water or as a way of involvement of water molecules in the oxidative reactions) to the Mn-containing O2 center; (2) bicarbonate facilitates reassembly of the WOC from apo-WOC and Mn2+ due to formation of the complexes MnHCO3+ and Mn(HCO3)2 leading to an easier oxidation of Mn2+ with PSII; (3) bicarbonate is an integral component of the WOC essential for its function and stability; it may be considered a direct ligand to the Mn cluster; (4) the WOC is stabilized by bicarbonate through its binding to other components of PSII.
Collapse
Affiliation(s)
- V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.
| | | |
Collapse
|
14
|
|
15
|
Yruela I, Allakhverdiev SI, Ibarra JV, Klimov VV. Bicarbonate binding to the water-oxidizing complex in the photosystem II. A Fourier transform infrared spectroscopy study. FEBS Lett 1998; 425:396-400. [PMID: 9563501 DOI: 10.1016/s0014-5793(98)00271-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The light-induced Fourier transform infrared difference (FT-IR) spectrum originating from the donor side of O2-evolving photosystem (PS) II was obtained in non-depleted and CO2-depleted PSII membrane preparations. The observed spectrum free of contributions from the acceptor side signals was achieved by employing 2 mM/18 mM ferri-/ferrocyanide as a redox couple. This spectrum showed main positive bands at 1589 and 1365 cm(-1) and negative bands at 1560, 1541, 1522 and 1507 cm(-1). CO-depleted PSII preparations showed a quite different spectrum. The main positive and negative bands disappeared after depletion of bicarbonate. The addition of bicarbonate partially restored those bands again. Comparison between difference FT-IR spectra of untreated and bicarbonate-depleted PSII membranes indicated that the positive bands at 1589 and 1365 cm(-1) can be assigned to COO- stretching modes from bicarbonate. The higher frequency corresponds to u[as] (COO-) and the lower frequency to u[s] (COO-). 13C-Labeling FT-IR measurements confirmed these findings and also suggested that the negative band at 1560 cm(-1) can be ascribed to u[as] (COO-). The data are discussed in the framework of the suggestion that bicarbonate can be a ligand to the Mn-containing water-oxidizing complex of PSII.
Collapse
Affiliation(s)
- I Yruela
- Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain.
| | | | | | | |
Collapse
|
16
|
Hulsebosch RJ, Allakhverdiev SI, Klimov VV, Picorel R, Hoff AJ. Effect of bicarbonate on the S2 multiline EPR signal of the oxygen-evolving complex in photosystem II membrane fragments. FEBS Lett 1998; 424:146-8. [PMID: 9539139 DOI: 10.1016/s0014-5793(98)00163-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Removal of bicarbonate from spinach photosystem II BBY particles by means of washing in a CO2-free medium results in the loss of their capability to accumulate the S2 multiline EPR signal upon continuous illumination at 190 K. Addition of 1 mM NaHCO3 before illumination leads to a 50-60% restoration of the multiline signal. Similarly, in BBY particles depleted of Mn by treatment with 1 M Tris-HCl (pH 8.0) and 0.5 M MgCl2, re-addition of MnCl2 in the presence of 1 mM NaHCO3 results in a partial restoration (approximately 30%) of the S2 multiline EPR signal of the Mn cluster, while in the absence of NaHCO3 no restoration is observed. The results provide further evidence that bicarbonate is essential for maintaining the Mn-containing oxygen-evolving complex of PS II in a functionally active form.
Collapse
Affiliation(s)
- R J Hulsebosch
- Department of Biophysics, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Klimov VV, Baranov SV, Allakhverdiev SI. Bicarbonate protects the donor side of photosystem II against photoinhibition and thermoinactivation. FEBS Lett 1997; 418:243-6. [PMID: 9428721 DOI: 10.1016/s0014-5793(97)01392-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The rate of photoinhibition of photosystem II (PSII) activities (photoinduced change of chlorophyll fluorescence yield, deltaF, and photoreduction of 2,6-dichlorophenol-indophenol) in O2-evolving pea subchloroplast membrane fragments in medium depleted of CO2 was considerably decreased upon addition of 5 mM NaHCO3 before the light treatment. A similar effect was observed when 100 microM MnCl2 was added before the photoinhibition. In PSII membrane fragments depleted of Mn, the preillumination led to irreversible loss of the capability of PSII to be reactivated by Mn2+, and the rate of the photoinhibition was decreased by a factor of 2 or 5 if the pre-illumination was done in the presence of 0.2 microM MnCl2 (approximately 4 Mn per PSII reaction center) added alone or in combination with 5 mM NaHCO3, respectively. A similar protective effect of bicarbonate was also revealed in the dark, during thermoinactivation of O2-evolving PSII at 40 degrees C: the rate of thermoinactivation of deltaF was decreased by a factor of 3 if 5 mM NaHCO3 was added to the medium. The results are consistent with the idea that bicarbonate is an essential component of the Mn-containing water-oxidizing complex of PSII, which decreases its susceptibility to photoinhibition and thermoinactivation.
Collapse
Affiliation(s)
- V V Klimov
- Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Pushchino, Moscow.
| | | | | |
Collapse
|
18
|
Xiong J, Hutchison RS, Sayre RT. Modification of the photosystem II acceptor side function in a D1 mutant (arginine-269-glycine) of Chlamydomonas reinhardti. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1322:60-76. [PMID: 9398079 DOI: 10.1016/s0005-2728(97)00063-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bicarbonate anions have a strong positive influence on the electron and proton transfers in photosystem II (PS II). It has been suggested that bicarbonate binds to the non-heme iron and the QB binding niche of the PS II reaction center. To investigate the potential amino acid binding environment of bicarbonate, an arginine residue (R269) of the D1 protein of PS II of Chlamydomonas reinhardtii was mutated into a glycine; our characterization of the resultant mutant (D1-R269G) shows that both the TyrD+ and QA- Fe2+ EPR signals are substantially reduced and assembly of the tetranuclear Mn is lost (R.S. Hutchison, J. Xiong, R.T. Sayre, Govindjee, Biochim. Biophys. Acta 1277 (1996) 83-92). In order to understand the molecular implications of this mutation on the electron acceptor side of PS II, we used chlorophyll (Chl) a fluorescence as a probe of PS II structure and function, and herbicide binding as a probe for changes in the QB binding niche of PS II. Chl fluorescence measurements with the heterotrophically grown D1-R269G mutant cells (or thylakoids), as compared to that of the wild type, show that: rate of electron transfer from QA to the plastoquinone pool, measured by flash-induced Chl a fluorescence decay kinetics, is reduced by - 17 fold; the minimum Chl a fluorescence yield when all QA- is oxidized, is elevated by 2 fold; the level of stable charge separation as inferred from variable Chl fluorescence is reduced by 44%; binary oscillation pattern of variable Chl a fluorescence obtained after a series of light flashes is absent, indicative of the loss of functioning of the two-electron gate on the PS II acceptor side; 77 K PS II Chl a fluorescence emission bands (F685 and F695) are reduced by 20-30% (assuming no change in the PS I emission band). Thermoluminescence data with thylakoids show the absence of the S2QA- and S2QB- bands in the mutant. Herbicide 14C-terbutryn binding measurements, also with thylakoids, show that the QB niche of the mutant is significantly modified, at least 7-8 fold increased terbutryn dissociation constant is shown (220 nM in the mutant versus 29 nM in the wild type); the PS II sensitivity to bicarbonate-reversible formate inhibition is reduced by 5 fold in the mutant, although the formate/bicarbonate binding site still exists in the mutant. This suggests that D1-R269 must play some role in the binding niche of bicarbonate. On the basis of the above observations, we conclude that the D1-R269G mutation has not only altered the structure and function of PS II (QB niche being abnormal), but may also have a decreased net excitation energy transfer from the PS II core to the reaction center and/or an increased number of inactivated reaction center II. We also discuss a possible scenario for these effects using a recently constructed three dimensional model of the PS II reaction center.
Collapse
Affiliation(s)
- J Xiong
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana 61801-3707, USA
| | | | | |
Collapse
|
19
|
Allakhverdiev SI, Yruela I, Picorel R, Klimov VV. Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Proc Natl Acad Sci U S A 1997; 94:5050-4. [PMID: 11038543 PMCID: PMC24629 DOI: 10.1073/pnas.94.10.5050] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is shown that restoration of photoinduced electron flow and O2 evolution with Mn2+ in Mn-depleted photosystem II (PSII) membrane fragments isolated from spinach chloroplasts is considerably increased with bicarbonate in the region pH 5.0-8.0 in bicarbonate-depleted medium. In buffered solutions equilibrated with the atmosphere (nondepleted of bicarbonate), the bicarbonate effect is observed only at pH lower than the pK of H2CO3 dissociation (6.4), which indicates that HCO3- is the essential species for the restoration effect. The addition of just 2 Mn2+ atoms per one PSII reaction center is enough for the maximal reactivation when bicarbonate is present in the medium. Analysis of bicarbonate concentration dependence of the restoration effect reveals two binding sites for bicarbonate with apparent dissociation constant (Kd) of approximately 2.5 microM and 20-34 microM when 2,6-dichloro-p-benzoquinone is used as electron acceptor, while in the presence of silicomolybdate only the latter one remains. Similar bicarbonate concentration dependence of O2 evolution was obtained in untreated Mn-containing PSII membrane fragments. It is suggested that the Kd of 20-34 microM is associated with the donor side of PSII while the location of the lower Kd binding site is not quite clear. The conclusion is made that bicarbonate is an essential constituent of the water-oxidizing complex of PSII, important for its assembly and maintenance in the functionally active state.
Collapse
Affiliation(s)
- S I Allakhverdiev
- Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russian Federation
| | | | | | | |
Collapse
|
20
|
Xiong J, Subramaniam S. Modeling of the D1/D2 proteins and cofactors of the photosystem II reaction center: implications for herbicide and bicarbonate binding. Protein Sci 1996; 5:2054-73. [PMID: 8897606 PMCID: PMC2143261 DOI: 10.1002/pro.5560051012] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A three-dimensional model of the photosystem II (PSII) reaction center from the cyanobacterium Synechocystis sp. PCC 6803 was generated based on homology with the anoxygenic purple bacterial photosynthetic reaction centers of Rhodobacter sphaeroides and Rhodopseudomonas viridis, for which the X-ray crystallographic structures are available. The model was constructed with an alignment of D1 and D2 sequences with the L and M subunits of the bacterial reaction center, respectively, and by using as a scaffold the structurally conserved regions (SCRs) from bacterial templates. The structurally variant regions were built using a novel sequence-specific approach of searching for the best-matched protein segments in the Protein Data Bank with the "basic local alignment search tool" (Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990, J Mol Biol 215:403-410), and imposing the matching conformational preference on the corresponding D1 and D2 regions. The structure thus obtained was refined by energy minimization. The modeled D1 and D2 proteins contain five transmembrane alpha-helices each, with cofactors (4 chlorophylls, 2 pheophytins, 2 plastoquinones, and a non-heme iron) essential for PSII primary photochemistry embedded in them. A beta-carotene, considered important for PSII photoprotection, was also included in the model. Four different possible conformations of the primary electron donor P680 chlorophylls were proposed, one based on the homology with the bacterial template and the other three on existing experimental suggestions in literature. The P680 conformation based on homology was preferred because it has the lowest energy. Redox active tyrosine residues important for P680+ reduction as well as residues important for PSII cofactor binding were analyzed. Residues involved in interprotein interactions in the model were also identified. Herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modeled in the plastoquinone QB binding niche using the structural information available from a DCMU-binding bacterial reaction center. A bicarbonate anion, known to play a role in PSII, but not in anoxygenic photosynthetic bacteria, was modeled in the non-heme iron site, providing a bidentate ligand to the iron. By modifying the previous hypothesis of Blubaugh and Govindjee (1988, Photosyn Res 19:85-128), we modeled a second bicarbonate and a water molecule in the QB site and we proposed a hypothesis to explain the mechanism of QB protonation mediated by bicarbonate and water. The bicarbonate, stabilized by D1-R257, donates a proton to QB2- through the intermediate of D1-H252; and a water molecule donates another proton to QB2-. Based on the discovery of a "water transport channel" in the bacterial reaction center, an analogous channel for transporting water and bicarbonate is proposed in our PSII model. The putative channel appears to be primarily positively charged near QB and the non-heme iron, in contrast to the polarity distribution in the bacterial water transport channel. The constructed model has been found to be consistent with most existing data.
Collapse
Affiliation(s)
- J Xiong
- Department of Plant Biology, University of Illinois at Urbana-Champaign 61801, USA
| | | |
Collapse
|