1
|
Riederer E, Cang C, Ren D. Lysosomal Ion Channels: What Are They Good For and Are They Druggable Targets? Annu Rev Pharmacol Toxicol 2023; 63:19-41. [PMID: 36151054 DOI: 10.1146/annurev-pharmtox-051921-013755] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca2+ signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K+, Na+, H+, Ca2+, and Cl-. The channels are regulated by numerous cellular factors, ranging from H+ in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.
Collapse
Affiliation(s)
- Erika Riederer
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| | - Chunlei Cang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China;
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| |
Collapse
|
2
|
Cordeiro MM, Salvador A, Moreno MJ. Calculation of Permeability Coefficients from Solute Equilibration Dynamics: An Assessment of Various Methods. MEMBRANES 2022; 12:membranes12030254. [PMID: 35323728 PMCID: PMC8951150 DOI: 10.3390/membranes12030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Predicting the rate at which substances permeate membrane barriers in vivo is crucial for drug development. Permeability coefficients obtained from in vitro studies are valuable for this goal. These are normally determined by following the dynamics of solute equilibration between two membrane-separated compartments. However, the correct calculation of permeability coefficients from such data is not always straightforward. To address these problems, here we develop a kinetic model for solute permeation through lipid membrane barriers that includes the two membrane leaflets as compartments in a four-compartment model. Accounting for solute association with the membrane allows assessing various methods in a wide variety of conditions. The results showed that the often-used expression Papp= β × r/3 is inapplicable to very large or very small vesicles, to moderately or highly lipophilic solutes, or when the development of a significant pH gradient opposes the solute’s flux. We establish useful relationships that overcome these limitations and allow predicting permeability in compartmentalised in vitro or in vivo systems with specific properties. Finally, from the parameters for the interaction of the solute with the membrane barrier, we defined an intrinsic permeability coefficient that facilitates quantitative comparisons between solutes.
Collapse
Affiliation(s)
- Margarida M. Cordeiro
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal;
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Armindo Salvador
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal;
- CNC—Centre for Neuroscience Cell Biology, University of Coimbra, UC-Biotech, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
- Correspondence: (A.S.); (M.J.M.)
| | - Maria João Moreno
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal;
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence: (A.S.); (M.J.M.)
| |
Collapse
|
3
|
Ziglari T, Wang Z, Holian A. Contribution of Particle-Induced Lysosomal Membrane Hyperpolarization to Lysosomal Membrane Permeabilization. Int J Mol Sci 2021; 22:2277. [PMID: 33668885 PMCID: PMC7956429 DOI: 10.3390/ijms22052277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022] Open
Abstract
Lysosomal membrane permeabilization (LMP) has been proposed to precede nanoparticle-induced macrophage injury and NLRP3 inflammasome activation; however, the underlying mechanism(s) of LMP is unknown. We propose that nanoparticle-induced lysosomal hyperpolarization triggers LMP. In this study, a rapid non-invasive method was used to measure changes in lysosomal membrane potential of murine alveolar macrophages (AM) in response to a series of nanoparticles (ZnO, TiO2, and CeO2). Crystalline SiO2 (micron-sized) was used as a positive control. Changes in cytosolic potassium were measured using Asante potassium green 2. The results demonstrated that ZnO or SiO2 hyperpolarized the lysosomal membrane and decreased cytosolic potassium, suggesting increased lysosome permeability to potassium. Time-course experiments revealed that lysosomal hyperpolarization was an early event leading to LMP, NLRP3 activation, and cell death. In contrast, TiO2- or valinomycin-treated AM did not cause LMP unless high doses led to lysosomal hyperpolarization. Neither lysosomal hyperpolarization nor LMP was observed in CeO2-treated AM. These results suggested that a threshold of lysosomal membrane potential must be exceeded to cause LMP. Furthermore, inhibition of lysosomal hyperpolarization with Bafilomycin A1 blocked LMP and NLRP3 activation, suggesting a causal relation between lysosomal hyperpolarization and LMP.
Collapse
Affiliation(s)
- Tahereh Ziglari
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Zifan Wang
- Division of Chemistry and Biochemistry, College of Humanities and Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA;
| |
Collapse
|
4
|
Li Y, Mei T, Han S, Han T, Sun Y, Zhang H, An F. Cathepsin B-responsive nanodrug delivery systems for precise diagnosis and targeted therapy of malignant tumors. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Brunner JD, Jakob RP, Schulze T, Neldner Y, Moroni A, Thiel G, Maier T, Schenck S. Structural basis for ion selectivity in TMEM175 K + channels. eLife 2020; 9:e53683. [PMID: 32267231 PMCID: PMC7176437 DOI: 10.7554/elife.53683] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The TMEM175 family constitutes recently discovered K+channels that are important for autophagosome turnover and lysosomal pH regulation and are associated with the early onset of Parkinson Disease. TMEM175 channels lack a P-loop selectivity filter, a hallmark of all known K+ channels, raising the question how selectivity is achieved. Here, we report the X-ray structure of a closed bacterial TMEM175 channel in complex with a nanobody fusion-protein disclosing bound K+ ions. Our analysis revealed that a highly conserved layer of threonine residues in the pore conveys a basal K+ selectivity. An additional layer comprising two serines in human TMEM175 increases selectivity further and renders this channel sensitive to 4-aminopyridine and Zn2+. Our findings suggest that large hydrophobic side chains occlude the pore, forming a physical gate, and that channel opening by iris-like motions simultaneously relocates the gate and exposes the otherwise concealed selectivity filter to the pore lumen.
Collapse
Affiliation(s)
- Janine D Brunner
- Department of Biochemistry, University of ZürichZürichSwitzerland
- Department Biozentrum, University of BaselBaselSwitzerland
- Laboratory of Biomolecular Research, Paul Scherrer InstitutVilligenSwitzerland
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
| | - Roman P Jakob
- Department Biozentrum, University of BaselBaselSwitzerland
| | - Tobias Schulze
- Membrane Biophysics, Technical University of DarmstadtDarmstadtGermany
| | - Yvonne Neldner
- Department of Biochemistry, University of ZürichZürichSwitzerland
| | - Anna Moroni
- Department of Biosciences, University of MilanoMilanItaly
| | - Gerhard Thiel
- Membrane Biophysics, Technical University of DarmstadtDarmstadtGermany
| | - Timm Maier
- Department Biozentrum, University of BaselBaselSwitzerland
| | - Stephan Schenck
- Department of Biochemistry, University of ZürichZürichSwitzerland
- Laboratory of Biomolecular Research, Paul Scherrer InstitutVilligenSwitzerland
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
6
|
Cang C, Aranda K, Seo YJ, Gasnier B, Ren D. TMEM175 Is an Organelle K(+) Channel Regulating Lysosomal Function. Cell 2015; 162:1101-12. [PMID: 26317472 DOI: 10.1016/j.cell.2015.08.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 12/15/2022]
Abstract
Potassium is the most abundant ion to face both plasma and organelle membranes. Extensive research over the past seven decades has characterized how K(+) permeates the plasma membrane to control fundamental processes such as secretion, neuronal communication, and heartbeat. However, how K(+) permeates organelles such as lysosomes and endosomes is unknown. Here, we directly recorded organelle K(+) conductance and discovered a major K(+)-selective channel KEL on endosomes and lysosomes. KEL is formed by TMEM175, a protein with unknown function. Unlike any of the ∼80 plasma membrane K(+) channels, TMEM175 has two repeats of 6-transmembrane-spanning segments and has no GYG K(+) channel sequence signature-containing, pore-forming P loop. Lysosomes lacking TMEM175 exhibit no K(+) conductance, have a markedly depolarized ΔΨ and little sensitivity to changes in [K(+)], and have compromised luminal pH stability and abnormal fusion with autophagosomes during autophagy. Thus, TMEM175 comprises a K(+) channel that underlies the molecular mechanism of lysosomal K(+) permeability.
Collapse
Affiliation(s)
- Chunlei Cang
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Young-jun Seo
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Bruno Gasnier
- Paris Descartes University, Sorbonne Paris Cité, Neurophotonics Laboratory, Centre National de la Recherche Scientifique UMR8250, 45 rue des Saints Pères, 75006 Paris, France
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Abstract
Lysosomes must maintain an acidic luminal pH to activate hydrolytic enzymes and degrade internalized macromolecules. Acidification requires the vacuolar-type H(+)-ATPase to pump protons into the lumen and a counterion flux to neutralize the membrane potential created by proton accumulation. Early experiments suggested that the counterion was chloride, and more recently a pathway consistent with the ClC-7 Cl(-)/H(+) antiporter was identified. However, reports that the steady-state luminal pH is unaffected in ClC-7 knockout mice raise questions regarding the identity of the carrier and the counterion. Here, we measure the current-voltage characteristics of a mammalian ClC-7 antiporter, and we use its transport properties, together with other key ion regulating elements, to construct a mathematical model of lysosomal pH regulation. We show that results of in vitro lysosome experiments can only be explained by the presence of ClC-7, and that ClC-7 promotes greater acidification than Cl(-), K(+), or Na(+) channels. Our models predict strikingly different lysosomal K(+) dynamics depending on the major counterion pathways. However, given the lack of experimental data concerning acidification in vivo, the model cannot definitively rule out any given mechanism, but the model does provide concrete predictions for additional experiments that would clarify the identity of the counterion and its carrier.
Collapse
Affiliation(s)
- Yoichi Ishida
- Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
8
|
Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 2011; 439:349-74. [PMID: 21992097 DOI: 10.1042/bj20110949] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.
Collapse
|
9
|
Zhong YG, Zhang GJ, Yang L, Zheng YZ. Effects of Photoinduced Membrane Rigidification on the Lysosomal Permeability to Potassium Ions. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710627eopmro2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Wang JW, Sun L, Hu JS, Li YB, Zhang GJ. Effects of phospholipase A2 on the lysosomal ion permeability and osmotic sensitivity. Chem Phys Lipids 2006; 144:117-26. [PMID: 16982042 DOI: 10.1016/j.chemphyslip.2006.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/17/2006] [Accepted: 08/19/2006] [Indexed: 01/21/2023]
Abstract
In this study, we investigated the mechanism of PLA(2)-induced lysosomal destabilization. Through the measurements of lysosomal beta-hexosaminidase free activity, their membrane potential, the intra-lysosomal pH and the lysosomal latency loss in hypotonic sucrose medium, we established that PLA(2) could increase the lysosomal membrane permeability to both potassium ions and protons. The enzyme could also enhance the organelle osmotic sensitivity. The increases in the lysosomal ion permeability promoted influx of potassium ions into the lysosomes via K(+)/H(+) exchange. The resulted osmotic imbalance across the lysosomal membranes osmotically destabilized the lysosomes. In addition, the enhancement of the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in the osmotic stress. The results explain how PLA(2) destabilized the lysosomes.
Collapse
Affiliation(s)
- Jiong-Wei Wang
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | |
Collapse
|
11
|
Brett CL, Donowitz M, Rao R. Does the proteome encode organellar pH? FEBS Lett 2006; 580:717-9. [PMID: 16413548 DOI: 10.1016/j.febslet.2005.12.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/27/2005] [Accepted: 12/28/2005] [Indexed: 10/25/2022]
Abstract
Inherent to the proteome itself, may be information that enables proteins to buffer pH at a level that promotes their own function within a specialized compartment. We observe that the distribution of computed isoelectric points in the yeast proteome matches experimentally derived organellar pH estimates across distinct subcellular compartments. This raises an interesting evolutionary question: did the pI of proteins and the pH of organelles co-evolve to optimize function?
Collapse
Affiliation(s)
- Christopher L Brett
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
12
|
Soupene E, Ramirez RM, Kustu S. Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH(3) across the cytoplasmic membrane. Mol Cell Biol 2001; 21:5733-41. [PMID: 11486013 PMCID: PMC87293 DOI: 10.1128/mcb.21.17.5733-5741.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylammonium and ammonium (MEP) permeases of Saccharomyces cerevisiae belong to a ubiquitous family of cytoplasmic membrane proteins that transport only ammonium (NH(4)(+) + NH(3)). Transport and accumulation of the ammonium analog [(14)C]methylammonium, a weak base, led to the proposal that members of this family were capable of energy-dependent concentration of the ammonium ion, NH(4)(+). In bacteria, however, ATP-dependent conversion of methylammonium to gamma-N-methylglutamine by glutamine synthetase precludes its use in assessing concentrative transport across the cytoplasmic membrane. We have confirmed that methylammonium is not metabolized in the yeast S. cerevisiae and have shown that it is little metabolized in the filamentous fungus Neurospora crassa. However, its accumulation depends on the energy-dependent acidification of vacuoles. A Deltavph1 mutant of S. cerevisiae and a Deltavma1 mutant, which lack vacuolar H(+)-ATPase activity, had large (fivefold or greater) defects in the accumulation of methylammonium, with little accompanying defect in the initial rate of transport. A vma-1 mutant of N. crassa largely metabolized methylammonium to methylglutamine. Thus, in fungi as in bacteria, subsequent energy-dependent utilization of methylammonium precludes its use in assessing active transport across the cytoplasmic membrane. The requirement for a proton gradient to sequester the charged species CH(3)NH(3)(+) in acidic vacuoles provides evidence that the substrate for MEP proteins is the uncharged species CH(3)NH(2). By inference, their natural substrate is NH(3), a gas. We postulate that MEP proteins facilitate diffusion of NH(3) across the cytoplasmic membrane and speculate that human Rhesus proteins, which lie in the same domain family as MEP proteins, facilitate diffusion of CO(2).
Collapse
Affiliation(s)
- E Soupene
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
13
|
Zhong Y, Zhang G, Yang L, Zheng YZ. Effects of photoinduced membrane rigidification on the lysosomal permeability to potassium ions. Photochem Photobiol 2000; 71:627-33. [PMID: 10818794 DOI: 10.1562/0031-8655(2000)071<0627:eopmro>2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mechanism for the photoinduced increase in the lysosomal K+ permeability is still unknown. In this study, we investigated the effect of photodamage-induced membrane rigidification on the lysosomal K+ permeability by measuring the membrane potential with bis(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol and by monitoring proton leakage with p-nitrophenol. Membrane fluidity was measured by the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Methylene blue-mediated photodamage to lysosomes decreased their membrane fluidity and increased their K+ permeability. The photoinduced increase in the K+ permeability can be reversed by fluidizing the rigidified lysosomal membranes with benzyl alcohol. The results suggest that the membrane rigidification induced by photodamage may increase lysosomal K+ permeability. This conclusion is supported by the observation that rigidifying lysosomal membranes by the treatment with membrane rigidifier cholesteryl hemisuccinate also enhanced the lysosomal K+ permeability.
Collapse
Affiliation(s)
- Y Zhong
- Department of Cellular Biophysics, Academia Sinica, Beijing, P. R. China
| | | | | | | |
Collapse
|
14
|
Abstract
A method for quantifying active cysteine proteinases in mammalian cells has been developed using an active-site-directed inhibitor. Fluoren-9-ylmethoxycarbonyl(di-iodotyrosylalanyl)-diaz omethane (Fmoc-[I2]Tyr-Ala-CHN2) was prepared and shown to react irreversibly with cathepsins B and L, but not with cathepsin S. The non- and mono-iodo forms of the inhibitor reacted with all three enzymes. These results demonstrate that, unlike cathepsins B and L, cathepsin S has a restricted S2-binding site that cannot accommodate the bulky di-iodotyrosine. Fmoc-[I2]Tyr-Ala-CHN2 was able to penetrate cells and react with active enzymes within the cells. A radiolabelled form of the inhibitor was synthesized and the concentration of functional inhibitor was established by titration with papain. This inhibitor was used to quantify active cysteine proteinases in cultured cells. Active cathepsin B was found to be expressed by all of the cells studied, consistently with a housekeeping role for this enzyme. Active forms of cathepsin L were also expressed by all of the cells, but in different quantities. Two additional proteins were labelled in some of the cells, and these may represent other non-characterized proteinases. Higher levels of active cathepsins B and L, and an unidentified protein of Mr 39000, were found in breast tumour cells that are invasive, compared with those that are not invasive. From the data obtained, it can be calculated that the concentrations of both active cathepsins B and L in lysosomes can be as high as 1 mM, each constituting up to 20% of total protein in the organelle. This new technique provides a more direct procedure for determining the proteolytic potential of cellular lysosomes.
Collapse
Affiliation(s)
- R Xing
- Division of Developmental Biology, Nemours Research Programs, Alfred I. duPont Hospital for Children, P.O. Box 269, Wilmington, DE 19899, USA
| | | | | |
Collapse
|
15
|
Yao J, Zhang GJ. Lysosomal destabilization via increased potassium ion permeability following photodamage. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1323:334-42. [PMID: 9042355 DOI: 10.1016/s0005-2736(96)00202-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Isotonic K2SO4 solution protected lysosomes osmotically during a 20 min incubation, but lost its protective effect if the lysosomes were initially photooxidized after sensitization with Methylene blue. Increasing K2SO4 concentration promoted the latency loss of photodamaged lysosomes, but did not impair the integrity of unirradiated lysosomes. The results indicate that the photodamage enhanced lysosomal ionic permeability, with osmotic imbalance over the lysosomal membrane. Out of the decreased latency induced by the photodamage, 32% was prevented by the addition of 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid to the incubation solution, suggesting that electroneutral K+/SO4(2-) co-uptake plays a role in the lysosomal destabilization. The photooxidation increased lysosomal H+/K+ exchange, which was confirmed by monitoring the H+ leakage with the pH sensitive probe p-nitrophenol and examining the K+ entry by membrane potential measurements. Addition of K2SO4 to a lysosomal suspension lowered the delta pH of photodamaged lysosomes, presumably due to an increase in the exchange of internal H+ for external K+. Out of the photodamage-induced lysosomal latency loss, 50-60% was prevented by either lowering the external pH or preincubating the lysosomes with methylamine to elevate their internal pH. The results suggest that the photodamage-promoted K+/H+ exchange plays a major role in lysosomal osmotic destabilization.
Collapse
Affiliation(s)
- J Yao
- Department of Cellular Biophysics, Academia Sinica, Beijing, People's Republic of China
| | | |
Collapse
|
16
|
Abstract
Lysosomes, endosomes, and a variety of other intracellular organelles are acidified by a family of unique proton pumps, termed the vacuolar H(+)-ATPases, that are evolutionarily related to bacterial membrane proton pumps and the F1-F0 H(+)-ATPases that catalyze ATP synthesis in mitochondria and chloroplasts. The electrogenic vacuolar H(+)-ATPase is responsible for generating electrical and chemical gradients across organelle membranes with the magnitude of these gradients ultimately determined by both proton pump regulatory mechanisms and, more importantly, associated ion and organic solute transporters located in vesicle membranes. Analogous to Na+, K(+)-ATPase on the cell membrane, the vacuolar proton pump not only acidifies the vesicle interior but provides a potential energy source for driving a variety of coupled transporters, many of them unique to specific organelles. Although the basic mechanism for organelle acidification is now well understood, it is already apparent that there are many differences in both the function of the proton pump and the associated transporters in different organelles and different cell types. These differences and their physiologic and pathophysiologic implications are exciting areas for future investigation.
Collapse
Affiliation(s)
- R W Van Dyke
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109, USA
| |
Collapse
|
17
|
Piqueras AI, Somers M, Hammond TG, Strange K, Harris HW, Gawryl M, Zeidel ML. Permeability properties of rat renal lysosomes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C121-33. [PMID: 8304410 DOI: 10.1152/ajpcell.1994.266.1.c121] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although lysosomes maintain large pH gradients and may be subjected to significant osmotic gradients in vivo, little is known about their passive permeability properties. In recent studies, vacuolar H(+)-adenosine-triphosphatases (ATPases), such as those found in lysosomes, have been suggested to act as water channels. In addition, the erythrocyte and proximal tubule water channel CHIP28 is present on the plasma membrane of proximal tubule cells and may undergo endocytosis so that it is incorporated in lysosomes. We therefore examined water, proton, and small nonelectrolyte permeabilities in freshly purified lysosomes from rat renal proximal tubule. Lysosomes were purified by differential and Percoll gradient centrifugation. The preparation contained only lysosomes when examined by electron microscopy. Moreover, analysis by flow cytometry showed virtually all particles to be positive for acid phosphatase and cathepsin B activities. Permeabilities were measured on a stopped-flow fluorimeter by monitoring the self-quenching or pH-sensitive quenching of entrapped fluorescein derivatives. Osmotic water permeability (Pf) averaged 0.011 +/- 0.003 cm/s (n = 6), a value similar to that of biological membranes containing water channels. However, Pf was insensitive to the organic mercurial reagent p-chloromercuribenzene-sulfonate and to HgCl2 and exhibited an activation energy of 10.8 +/- 0.8 kcal/mol. These results indicate that water flux in lysosomes occurred via the lipid bilayer, and not via water channels. Addition of ATP led to lysosomal acidification (proton flux = 4.6 +/- 0.8 x 10(-11) mmol H+.s-1.cm-2), which was completely inhibited by 0.1 microM bafilomycin. Pf was insensitive to this agent as was the passive proton permeability (0.36 +/- 0.18 cm/s, n = 4). Permeabilities to small nonelectrolytes varied in proportion to the oil-water partition coefficient, confirming the applicability of Overton's rule to lysosomes. We conclude that proximal tubular lysosomes exhibit high Pf, which occurs via the lipid bilayer and not via vacuolar H(+)-ATPase.
Collapse
Affiliation(s)
- A I Piqueras
- Department of Medicine, Children's Hospital Medical Center, Boston 02115
| | | | | | | | | | | | | |
Collapse
|
18
|
Yamazaki K, Abe H, Hara K, Nohara H. Production of chemotactic factor for lymphocyte by digestion of IgG with a highly purified polymorphonuclear leukocyte neutral thiol proteinase. Inflammation 1987; 11:323-34. [PMID: 3653976 DOI: 10.1007/bf00915836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the present study, we purified a neutral thiol proteinase from dog PMN leukocytes and indicated that the proteinase elaborated the chemotactic factor for lymphocytes by cleavage of IgG. The neutral thiol proteinase was purified about 744-fold by ion-exchange chromatographies and affinity chromatography, and the final preparation was over 70% pure. After incubation of dog IgG with the proteinase, three distinct protein peaks were seen by the gel filtration on Sephadex G-200. Only the third peak, perhaps a dialyzable peptide, showed a significant chemotactic activity for dog lymphocytes.
Collapse
Affiliation(s)
- K Yamazaki
- Department of Periodontology, Niigata University School of Dentistry, Japan
| | | | | | | |
Collapse
|
19
|
Determination of the proton concentration difference across the tonoplast membrane of isolated vacuoles by means of (-amino fluorescence. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0304-4211(84)90006-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Szego CM, Pietras RJ. Lysosomal functions in cellular activation: propagation of the actions of hormones and other effectors. INTERNATIONAL REVIEW OF CYTOLOGY 1984; 88:1-302. [PMID: 6145684 DOI: 10.1016/s0074-7696(08)62759-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Fouchier F, Dang J. Evidence for an ATP-driven proton pump in rat thyroid phagolysosomes. Effects of protonophores and ionophores. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 136:553-7. [PMID: 6315434 DOI: 10.1111/j.1432-1033.1983.tb07776.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During incubations at 37 degrees C in appropriate media (buffered 0.25 M sucrose) isolated thyroid phagolysosomes degrade the thyroglobulin they contain (labelled with 131I in vivo) giving rise to trichloroacetic-acid-soluble radio-iodine. Thyroglobulin-degradation is unaffected by external pH (7 or 8) or by 20-40 mM external NaCl or KCl, while it is strongly inhibited by ionophores and protonophores. As a consequence, thyroglobulin degradation can be used as an index of the intralysosomal pH which appears to be powerfully maintained in basal conditions (no ionophore and no protonophore) by the strong impermeability of the lysosomal membranes to various compounds including ionic species MgATP which does not modify basal proteolysis prevents or minimizes the alkalinizing effects of both ionophores and protonophores. ATP can thus be concluded to promote a protonic flux inward thyroid lysosomes via the activity of a lysosomal ATP-driven proton pump regulated by the magnitude of the intralysosomal pH.
Collapse
|
22
|
Solheim AE, Seglen PO. Cellular and lysosomal uptake of methylamine in isolated rat hepatocytes. Biochem J 1983; 210:929-36. [PMID: 6870811 PMCID: PMC1154309 DOI: 10.1042/bj2100929] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Upon addition of methylamine to intact cells, this lysosomotropic weak base accumulates intracellularly as the result of at least two different mechanisms: (1) facilitated diffusion across the plasma membrane, i.e. a process which is carrier-mediated and subject to both trans-stimulation (accelerative exchange) and cis-inhibition (competition) by other amines (e.g. ammonia, methylamine and triethylamine); this transport process is furthermore non-concentrative, energy-independent, and (although moderately temperature-sensitive) operative even at 0 degrees C; (2) active uptake, i.e. an energy-dependent concentrative process which is inhibited by anoxia and energy inhibitors. With time, methylamine accumulates in lysosomes and gives rise to a lysosomal swelling which is easily visible by optical microscopy, and which causes the cells to appear coarsely granular. After a 1h incubation with 10mM-methylamine, the total cell volume is increased by about 12%. Under anoxic conditions or in the presence of energy inhibitors, lysosomal swelling is abolished regardless of there being a high concentration of methylamine intracellularly (taken up by facilitated diffusion). The continuous accumulation of methylamine in lysosomes therefore seems to depend on an energy-requiring process (such as continuous proton pumping), and not only on trapping by Donnan-equilibrium-generated protons.
Collapse
|
23
|
|
24
|
ATP-dependent acidification of membrane vesicles isolated from purified rat liver lysosomes. Acidification activity requires phosphate. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33063-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Elamrani K, Blume A. Effect of the lipid phase transition on the kinetics of H+/OH- diffusion across phosphatidic acid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 727:22-30. [PMID: 6824653 DOI: 10.1016/0005-2736(83)90364-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The kinetics of H+/OH- diffusion across dimyristoyl phosphatidic acid bilayer membranes was measured by following the absorbance of the pH-sensitive indicator Cresol red (o-cresolsulfonphthalein) entrapped in single lamellar vesicles after rapidly changing the external pH in a stopped-flow apparatus. The H+/OH- permeability coefficient was found to be in the 10(-5) to 10(-3) cm . s-1 range. The lipid phase transition has a strong influence on the permeation kinetics as the permeability coefficients in the liquid-crystalline phase are drastically higher. The permeability shows no maximum at the phase transition temperature as is the case for other ions, but displays a similar temperature dependence as water permeation. This is also reflected in the high activation energy of approx. 20 kcal/mol and supports the hypothesis (Nichols, J.W. and Deamer, D.W. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2038-2042) of H+/OH- permeation via hydrogen bonded water molecules. A second slower kinetic phase is also observed, where the permeation is obviously controlled by counterion diffusion. The temperature dependence of this slow process displays the for ion diffusion characteristic maximum in the permeability at the phase-transition temperature.
Collapse
|
26
|
Cretin H. The proton gradient across the vacuo-lysosomal membrane of lutoids from the latex of Hevea brasiliensis. I. Further evidence for a proton-translocating ATPase on the vacuo-lysosomal membrane of intact lutoids. J Membr Biol 1982; 65:175-84. [PMID: 6460867 DOI: 10.1007/bf01869961] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lutoids (vacuo-lysosomal particles) were isolated from the latex of Hevea brasiliensis. Using flow dialysis with 14C-methylamine uptake as a delta pH probe and 86Rb rubidium + valinomycin distribution for estimations of transmembrane electrical potential, intact lutoids exhibited a delta pH of 1 unit (interior more acid) and a delta psi of -70 mV (interior negative), when suspended in an isotonic medium at physiological concentrations of potassium (30 mM) and pH 7.0, in the absence of ATP. In most cases, the Donnan potential was shown to fully account for delta pH in nonenergized lutoids. The addition of MG-ATP (5 mM) resulted in a marked acidification of the lutoidic internal space (0.7 to 1 pH unit) depending on the composition of the medium, and in a membrane depolarization by 60 mV (interior becoming less negative). The resulting electrochemical potential of protons (delta approximately microH) increased by a hundred millivolts when lutoids were energized by ATP. These data strongly support an inward electrogenic proton translocating function for the ATPase of the vacuo-lysosomal membrane of lutoids. Results are discussed in terms of the in vivo maintenance of large "lutoids/cytoplasm" proton gradients, and of the rôle of these vacuo-lysosomes in the homeostasis of the cytoplasmic metabolism.
Collapse
|
27
|
Rautenberg P, Schädler R, Reinwald E, Risse HJ. Study on a proteolytic enzyme from Trypanosoma congolense. Purification and some biochemical properties. Mol Cell Biochem 1982; 47:151-9. [PMID: 6755218 DOI: 10.1007/bf00229598] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A protease has been purified from Trypanosoma congolense bloodstream forms by osmotic disruption, freeze-thawing of the cells, followed by chromatography using Thiopropyl-Sepharose and gel filtration. The enzyme is a thiolprotease. A combination of SDS-polyacrylamide gel electrophoresis and contact print zymograms using casein as substrate showed a single proteolytic band with a molecular weight of 31 000. The isoelectric point of the enzyme as ascertained by isoelectric focusing extended from pH 4.4 to 5.5 with a maximum at pH 5.0. The protease cleaved various heat denatured substrates such as casein, hemoglobin, albumin and ovalbumin. The highest enzyme activity was observed at pH 5.5 and pH 6.0 using casein and hemoglobin as substrates respectively. The max. temperature was found to be 50 degrees C. The enzyme is inactivated by mercurial compounds, iodoacetamide, iodoactate, chloromethylketones and leupeptin and is activated by dithioerythritol.
Collapse
|
28
|
Ohkuma S, Moriyama Y, Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A 1982; 79:2758-62. [PMID: 6178109 PMCID: PMC346285 DOI: 10.1073/pnas.79.9.2758] [Citation(s) in RCA: 265] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fluorescein isothiocyanate-conjugated dextran was introduced preferentially into hepatic lysosomes by intraperitoneal injection into rats. The pH in isolated lysosomes, measured by fluorescein fluorescence, was approximately 5 and gradually increased in KCl (to 7.0) at 25 degrees C. In the presence of Mg2+, ATP caused acidification of lysosomes that was reversed by the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Mn2+, Co2+, and Fe2+ could replace Mg2+ but Ca2+ could not. Cu2+, Zn2+, and Cd2+ were inhibitory. A membrane-permeant anion, in practice chloride, was required for this acidification. ATP analogues, including 5'-adenylyl imidodiphosphate, could not be substituted for ATP. ATP-driven acidification was sensitive to N-ethylmaleimide and quercetin but insensitive to oligomycin, ouabain, and vanadate. There were some differences between "normal" lysosomes and tritosomes; the acidification was resistant to azide and N,N'-dicyclohexylcarbodiimide in normal lysosomes but sensitive to these reagents in tritosomes. These results provide evidence for the presence of an electrogenic proton pump driven by MgATP (H+-ATPase) on lysosomes.
Collapse
|
29
|
Marin B, Smith JA, Lüttge U. The electrochemical proton gradient and its influence on citrate uptake in tonoplast vesicles of Hevea brasiliensis. PLANTA 1981; 153:486-493. [PMID: 24275823 DOI: 10.1007/bf00394992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/1981] [Accepted: 09/10/1981] [Indexed: 06/02/2023]
Abstract
The relationship between the electrochemical proton gradient, Δ μH+ (-) , and citrate transport has been studied in tonoplast vesicles from Hevea brasiliensis (the rubber tree). Vesicles were generated from lyophilized samples of fresh vacuoles obtained from the latex sap. Methylamine was used to measure intravesicular pH and lipophilic ions to determine the electrical potential difference (ΔΨ) across the tonoplast. When incubated at pH 7.5 in the absence of ATP, the tonoplast vesicles showed a ΔpH of 0.6 units (interior acid) and a ΔΨ of about-100 mV (interior negative). This potential is thought to be made up of contributions from an H(+) diffusion potential, diffusion potentials from other cations and a Donnan potential arising from the presence of internal citrate. In the presence of 5 mol m(-3) MgATP the ΔpH was increased to about 1.0 unit and the ΔΨ to about-10 mV. Under these conditions the proton-motive force (Δ p Δ μH+ (-) /F) became positive and reached +50 mV. These effects were specific to MgATP (ADP and Mg(2+) having no significant effect) and were prevented by the protonophore p-trifluoromethoxycarbonylcyanidephenylhydrazone (FCCP). Citrate uptake by the vesicles was markedly stimulated by MgATP; ADP and Mg(2+) again had no effect. Nigericin greatly increased ΔpH and this was associated with a large increase in citrate accumulation. The results indicate that the vesicle membrane possesses a functional H(+)-translocating ATPase. The Δ μH+ (-) generated by this ATPase can be used to drive citrate uptake into the vesicles. The properties of the tonoplast vesicles are compared with those of the fresh latex vacuoles.
Collapse
Affiliation(s)
- B Marin
- Technische Hochschule Darmstadt, Institut für Botanik, Schnittspahnstraße 3-5, D-6100, Darmstadt, Germany
| | | | | |
Collapse
|
30
|
Marin B, Marin-Lanza M, Komor E. The protonmotive potential difference across the vacuo-lysosomal membrane of Hevea brasiliensis (rubber tree) and its modification by a membrane-bound adenosine triphosphatase. Biochem J 1981; 198:365-72. [PMID: 6275844 PMCID: PMC1163257 DOI: 10.1042/bj1980365] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The vacuo-lysosomes of Hevea brasiliensis (rubber tree) constitute a suitable model system for the study of active transport and energization at the level of the membrane of plant vacuoles. The pH gradient (delta pH) and the membrane potential (delta psi) of vacuo-lysosomes were determined by means of the weak base methylamine and the lipophilic cation tetraphenylphosphonium. The values obtained depended strongly on the experimental conditions such as medium pH or K+ concentration. Under experimental conditions, i.e., pH 7.5 outside and low K+, the delta pH amounts to about 0.9 unit, interior acid, and the delta psi to -120 mV, interior negative. The delta psi is presumably caused by the imposed K+ gradient, and the internal acidification might be a consequence of the passive proton inflow along the electric field. This explanation is sustained by the ineffectiveness of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in destroying the delta pH and delta psi, whereas higher K+ concentration decreased both. Under conditions existing in vivo, the membrane potential might be significantly lower. The presence of ATP increased the acidification of the intravesicular space by 0.5pH unit to a delta pH of up to 1.4 and shifts the membrane potential at least 60mV to a more positive value. The change of the protonmotive potential did not occur with ADP; the pH-dependence of the change was identical with the pH-dependence of a vacuo-lysosomal membrane-bound ATPase, and the effect of ATPase was prevented by the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The change of protonmotive potential difference, brought about by the ATPase, was at least 90 mV. This is evidence that a vacuo-lysosomal ATPase in plants can function as an electrogenic proton pump that transfers protons into the vacuo-lysosomal space.
Collapse
|
31
|
Reeves J, Reames T. ATP stimulates amino acid accumulation by lysosomes incubated with amino acid methyl esters. Evidence for a lysosomal proton pump. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69126-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Hollemans M, Elferink RO, De Groot PG, Strijland A, Tager JM. Accumulation of weak bases in relation to intralysosomal pH in cultured human skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 643:140-51. [PMID: 7236683 DOI: 10.1016/0005-2736(81)90226-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The volume of the lysosomal compartment in cultured human skin fibroblasts was estimated from the distribution between the cells and the medium of tracer amounts of labelled methylamine and chloroquine, which accumulate in the lysosomes, 2,2-dimethyloxazolidine-2,4-dione, which accumulates in the soluble cytoplasmic compartment relative to the lysosomes, and sucrose, which is excluded by the cells. In a foetal fibroblast line, the fractional volume of the lysosomal compartment was 0.044 +/- 0.007 (n = 8). In fibroblasts from a patient with the I-cell disease, the fractional volume was 0.15. The fractional volume of the lysosomal compartment was used to calculate the intralysosomal pH from the accumulation of the weak bases in the cells. The mean value obtained was 5.29 +/- 0.04 (n = 8). In fibroblasts incubated with various concentrations of chloroquine, the fractional volume of the lysosomal compartment and the accumulation of chloroquine in the cells were used to calculate the concentration of chloroquine in the lysosomes. The intralysosomal concentration increased from 3 to 114 mM as the extracellular concentration increased from 1 to 100 microM. Concomitantly, the intralysosomal pH increased from 5.3 in the absence of chloroquine to 5.9 in the presence of 100 microM chloroquine. A similar increase in intralysosomal pH could be calculated in fibroblasts incubated with different concentrations of ammonia.
Collapse
|
33
|
Schneider D. ATP-dependent acidification of intact and disrupted lysosomes. Evidence for an ATP-driven proton pump. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69536-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Hollemans M, Donker-Koopman W, Tager JM. A critical examination of the evidence for an MgATP-dependent proton pump in rat liver lysosomes. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 603:171-7. [PMID: 6255996 DOI: 10.1016/0005-2736(80)90399-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(1) When lysosomes isolated from the livers of Triton WR 1339-treated rats were incubated for 30 min in the presence of 100 mM KCl and 14CH3NH2, a stimulation by MgATP of the calculated accumulation of the base was observed, in agreement with previous results (Schneider, D.L. (1979) Biochem. Biophys. Res. Commun. 87, 559-565). A similar stimulation was seen with MgITP. Excess EDTA had very little effect on the stimulation by MgATP. (2) There was little effect of MgATP or MgITP on the calculated accumulation of 14CH3NH2 if the base was added to the incubation medium 1, 3, 4 or 5 min before terminating the incubation instead of being present for the total incubation period of 30 min. (3) The accumulation of the basic dye, acridine orange, by a crude lysosomal preparation isolated from the livers of untreated rats was found to be stimulated by MgATP, in agreement with earlier results (Dell'Antone, P. (1979) Biochem. Biophys. Res. Commun. 86, 180-189). Similar results were obtained with a crude lysosomal preparation isolated from the livers of Triton WR 1339-treated rats. In both cases, the stimulation was partly oligomycin-sensitive. (4) There was very little or no effect of MgATP on the accumulation of acridine orange by preparations of pure lysosomes isolated from the livers of Triton WR 1339-treated rats. (5) Our data do not acquire us to postulate the existence of an MgATP-dependent proton pump in lysosomes.
Collapse
|
35
|
Blumenthal R, Klausner RD, Weinstein JN. Voltage-dependent translocation of the asialoglycoprotein receptor across lipid membranes. Nature 1980; 288:333-8. [PMID: 6253830 DOI: 10.1038/288333a0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A membrane receptor protein for asialoglycoproteins induces voltage-dependent increases in ion conductance across a lipid bilayer, probably reflecting penetration of the protein into the bilayer towards an electrically positive pole. In the presence of specific ligand for the receptor, this penetration leads to a 'translocation' of the receptor from one side of the bilayer to the other. These observations suggest a mechanism by which biological membranes might regulate the disposition of their proteins, and a way in which membrane receptors involved in endocytosis might be spared lysosomal destruction in order to be recycled to the plasma membrane.
Collapse
|
36
|
Gillies RJ, Deamer DW. Endogenously produced CO2 induces stationary phase in Tetrahymena cultures. J Cell Physiol 1980; 105:221-5. [PMID: 6780574 DOI: 10.1002/jcp.1041050205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Media concentration of total soluble CO2 increases with culture age of Tetrahymena pyriformis. CO2 is a weak acid and is capable of acidifying intracellular pH (pHi). Changes in pHi have been demonstrated to affect cell metabolism and growth in many systems. For these reasons, we investigated whether the concentrations of CO2 produced in vitro were sufficient to affect cell proliferation and pHi in Tetrahymena. In this study, we used DMO to mimic the weak acid properties of CO2. DMO is freely permeable to membranes in its uncharged form and has a pKa similar to that of CO2/HCO3(-). In addition, it has the advantages of being metabolically inert and non-volatile. At concentrations similar to endogenously produced CO2, DMO acidifies pHi and arrests culture growth. In addition, procedures are described which decrease the media CO2 concentrations in both growing and non-growing cultures. These conditions lead to increased maximum culture density at stationary phase. The data indicate that, under our conditions, accumulation of CO2 in the culture leads to cessation of growth, probably through elimination of transmembrane pH gradients, which are necessary for regulation of metabolism and growth.
Collapse
|
37
|
Grinde B, Seglen PO. Differential effects of proteinase inhibitors and amines on the lysosomal and non-lysosomal pathways of protein degradation in isolated rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 632:73-86. [PMID: 7417519 DOI: 10.1016/0304-4165(80)90250-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ammonia, which like other lysosomotropic amines inhibits protein degradation in isolated rat hepatocytes by 70---80%, was utilized as a diagnostic tool to distinguish between the relative effects of various proteinase inhibitors on the lysosomal and non-lysosomal pathways of intracellular protein degradation. Leupeptin was found to inhibit lysosomal protein degradation by 80---85%, and non-lysosomal degradation by about 15%. Antipain had a similar, but somewhat weaker effect. Pepstatin, bestatin and aprotinin (Trasylol) produced minor inhibitory effects (possibly on both degradation pathways), whereas bacitracin and soybean trypsin inhibitor were ineffective. Chymostatin inhibited lysosomal protein degradation by about 45%, whereas the non-lysosomal pathway was inhibited by more than 50%. Chymostatin was unique among the inhibitors tested in causing such a pronounced effect on non-lysosomal protein degradation, and appeared to selectively inhibit the energy-dependent portion of this pathway. The effects of the various inhibitors were additive to the extent expected on the basis of their known actions only sosomal and non-lysosomal protein degradation. Thus, a combination of methylamine, leupeptin and chymostatin inhibited overall protein degradation by about 90%, resulting in a substantial improvement of the cellular nitrogen balance. The degradation inhibitors caused a partial inhibition of protein synthesis, apparently mainly by shutting down the supply of amino acids from the lysosomes. The inhibitory effects of leupeptin and antipain were completely reversed by amino acid addition, whereas some inhibition remained in the case of chymostatin and the lysosomotropic amines, possibly reflecting a certain nonspecific toxicity.
Collapse
|
38
|
Petty HR. Response of the resident macrophage to concanavalin A. Alterations of surface morphology and anionic site distribution. Exp Cell Res 1980; 128:439-54. [PMID: 7408999 DOI: 10.1016/0014-4827(80)90079-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Chung CH, Elliott RL, Mego JL. Lysosomal membrane adenosine triphosphatase; solubilization and partial characterization. Arch Biochem Biophys 1980; 203:251-9. [PMID: 6250483 DOI: 10.1016/0003-9861(80)90175-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Nichols JW, Deamer DW. Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique. Proc Natl Acad Sci U S A 1980; 77:2038-42. [PMID: 6246519 PMCID: PMC348646 DOI: 10.1073/pnas.77.4.2038] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The net proton-hydroxyl permeability of large unilamellar liposomes has been measured by an acid-base pulse titration technique and has been determined to be several orders of magnitude greater than that measured for other monovalent ions. This permeability is relatively insensitive to variations in lipid composition. Proton permeability and hydroxyl permeability vary with pH 6 to 8, and this variation can occur in the absence of alterations in surface charge density resulting from titrations of acidic and basic groups on the lipids. In order to account for the exceptionally high proton-hydroxyl permeability with respect to other monovalent ions, we propose that protons or hydroxyls or both interact with clusters of hydrogen-bonded water molecules in the lipid bilayer, such that they are transferred across the bilayer by rearrangement of hydrogen bonds in a manner similar to their transport in water and ice.
Collapse
|
41
|
|
42
|
Hollemans M, Reijngoud DJ, Tager JM. Evidence against a MgATP-dependent proton pump in rat-liver lysosomes. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 551:55-66. [PMID: 34437 DOI: 10.1016/0005-2736(79)90352-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. The effect of MgATP has been studied on the accumulation of the lipid-soluble anion thiocyanate, the accumulation of the lipid-soluble base methylamine, and the fluorescence of bound anilinonaphthalene sulphonate in rat-liver lysosomes. The lysosomes used were isolated from the livers of rats pretreated with Triton WR 1339. 2. The accumulation of thiocyanate is stimulated by the addition of valinomycin in the presence of K+ but not by the addition of MgATP. 3. The fluorescence of anilinonaphthalene sulphonate bound to lysosomes is enhanced by valinomycin in the presence of K+, the extent of the enhancement being dependent on the concentration of K+. In contrast, MgATP has no effect on the fluorescence. 4. The intralysosomal pH, as estimated from the distribution of methylamine, is not affected by the addition of MgATP in media with or without K+, Na+ or HCO3-. 5. These data strongly suggest that there is no MgATP-dependent proton pump in rat-liver lysosomes.
Collapse
|
43
|
Dell'Antone P. Evidence for an ATP-driven "proton pump" in rat liver lysosomes by basic dyes uptake. Biochem Biophys Res Commun 1979; 86:180-9. [PMID: 35162 DOI: 10.1016/0006-291x(79)90398-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Kon SH. Biological autoxidation. I. Decontrolled iron: an ultimate carcinogen and toxicant: an hypothesis. JMIR Public Health Surveill 1978; 4:445-71. [PMID: 38381 PMCID: PMC10918547 DOI: 10.1016/0306-9877(78)90015-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 12/12/2022] Open
Abstract
Ionic iron at physiological pH hydrolyzes into insoluble aggregates, which disperse on slight acidification. Uncontrolled ionic iron promotes autoxidation, which crosslinks biomolecules and produces destructive activated oxygen. Defenses against autoxidative crosslinking include: 1. ferritin, the macromolecular scavenger of iron; 2. metabolic turnover, which prevents irreversible crosslinking through early catabolic degradation and replacement; and 3. enzymatic deactivation of oxygen. I am proposing that the anticrosslinking defenses are defeated by transient actions of metabolic perturbations, toxicants, oxidants and "foreign bodies", which cause oxidative crosslinking of proteins and lipids into irreversible tissue imprint: indigestible bodies containing porous limited-access spaces (LASs). The pores exclude the macromolecular ferritin and the digestive and antiautoxidation enzymes but admit ionic iron which, sheltered from ferritin, accumulates into decontrolled-iron pathogen (DIP). DIP utilizes the energy of ambient pH fluctuations to erupt from the LAS, swamp the available ferritin, poison the surroundings, catalyze autoxidation and crosslink cell components into additional LAS carriers. With time and sufficient promotion by pH fluctuations or metal-complexing agents, DIP and LAS expand. DIP injures through heavy-metal inhibition of life processes and catalysis of autoxidation. Typically, carcinogenic initiators are protein denaturants, cell poisons, "foreign bodies" and autoxidation catalysts. These are DIP-initiating properties, and DIP may be a preneoplastic stage of carcinogenesis. A DIP-model interpretation is given for the growth of asbestos bodies. DIP is an inorganic parasite. It may envelope and attack phagocytized particles.
Collapse
|
45
|
|
46
|
Mego JL, Farb RM. An energy requirement for the degradation of intravenously injected 125I-labeled albumin in mouse liver and kidney slices. Biochem J 1978; 172:233-8. [PMID: 666741 PMCID: PMC1185688 DOI: 10.1042/bj1720233] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liver and kidney slices prepared 30min after intravenous injections of formaldehyde-treated 125I-labelled bovine serum albumin into mice degrade approx. 25-40% of the protein to a trichloroacetic acid-soluble form during 60min incubation at 37 degrees C. The presence of bicarbonate in Krebs-Ringer phosphate medium inhibited intracellular proteolysis, and similar results were obtained at pH5 or pH7 in kidney or liver slices. Cellular integrity was required to obtain substantial rates of proteolysis. This intralysosomal intracellular degradation of an exogenous protein was partially inhibited by inhibitors of oxidative ATP formation, such as cyanide, azide, 2,4-dinitrophenol and absence of oxygen. Arsenite and iodoacetamide were also effective inhibitors, but the effects of fluoride were variable. These results suggest that an energy requirement exists for intralysosomal proteolysis in intact cells and are consistent with the hypothesis that energy may be required to maintain intralysosomal acidity.
Collapse
|
47
|
Ward W, Mortimore G. Compartmentation of intracellular amino acids in rat liver. Evidence for an intralysosomal pool derived from protein degradation. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)34841-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Casey RP, Hollemans M, Tager JM. The permeability of the lysosomal membrane to small ions. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 508:15-26. [PMID: 24472 DOI: 10.1016/0005-2736(78)90185-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The permeability of the lysosomal membrane to small anions and cations was studied at 37 degrees C and pH 7.0 in a lysosomal-mitochondrial fraction isolated from the liver of untreated rats. The extent of osmotic lysis following ion influx was used as a measure of ion permeancy. In order to preserve electroneutrality, anion influx was coupled to an influx of K+ in the presence of valinomycin, and cation influx was coupled to an efflux of H+ using the protonophore 3-tert-butyl-5,2'-dichloro-4'-nitrosalicilylanilide. Lysosomal lysis was monitored by observing the loss of latency of two lysosomal hydrolases. The order of permeability of the lysosomal membrane to anions was found to be SCN- greater than I- greater than CH3COO- greater than Cl- approximately Pi greater than SO24- and that to cations Cs+ greater than K+ greater than Na+ greater than H+. These orders are largely in agreement with the lyotropic series of anions and cations. The implications of these findings for the mechanism by means of which a low intralysosomal pH is produced and maintained are discussed.
Collapse
|
49
|
|
50
|
Reijngoud DJ, Tager JM. The permeability properties of the lysosomal membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 472:419-49. [PMID: 20954 DOI: 10.1016/0304-4157(77)90005-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|