1
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Boucher E, Goldin-Blais L, Basiren Q, Mandato CA. Actin dynamics and myosin contractility during plasma membrane repair and restoration: Does one ring really heal them all? CURRENT TOPICS IN MEMBRANES 2019; 84:17-41. [PMID: 31610862 DOI: 10.1016/bs.ctm.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In order to survive daily insults, cells have evolved various mechanisms that detect, stabilize and repair damages done to their plasma membrane and cytoskeletal structures. Damage to the PM endangers wounded cells by exposing them to uncontrolled exchanges with the extracellular milieu. The processes and molecular machinery enabling PM repair are therefore at the center of the bulk of the investigations into single-cell repair program. Wounds are repaired by dynamically remodeling the composition and shape of the injured area through exocytosis-mediated release of intracellular membrane components to the wounded area, endocytosis-mediated removal of the injured area, or the shedding of the injury. The wound healing program of Xenopus oocytes and early Drosophila embryos is by contrast, mostly characterized by the rapid formation of a large membrane patch over the wound that eventually fuse with the plasma membrane which restores plasma membrane continuity and lead to the shedding of patch material into the extracellular space. Formation and contraction of actomyosin ring restores normal plasma membrane composition and organizes cytoskeletal repairs. The extend of the contributions of the cytoskeleton to the wound healing program of somatic cells have comparatively received little attention. This review offers a survey of the current knowledge on how actin dynamics, myosin-based contraction and other cytoskeletal structures affects PM and cortical cytoskeleton repair of somatic cells.
Collapse
Affiliation(s)
- Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laurence Goldin-Blais
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Quentin Basiren
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Topographical interrogation of the living cell surface reveals its role in rapid cell shape changes during phagocytosis and spreading. Sci Rep 2017; 7:9790. [PMID: 28851970 PMCID: PMC5575107 DOI: 10.1038/s41598-017-09761-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022] Open
Abstract
Dramatic and rapid changes in cell shape are perhaps best exemplified by phagocytes, such as neutrophils. These cells complete the processes of spreading onto surfaces, and phagocytosis within 100 s of stimulation. Although these cell shape changes are accompanied by an apparent large increase in cell surface area, the nature of the membrane “reservoir” for the additional area is unclear. One proposal is that the wrinkled cell surface topography (which forms micro-ridges on the neutrophil surface) provides the resource for neutrophils to expand their available surface area. However, it has been problematic to test this proposal in living cells because these surface structures are sub-light microscopic. In this paper, we report the development of a novel approach, a variant of FRAP (fluorescent recovery after photo-bleaching) modified to interrogate the diffusion path-lengths of membrane associated molecules. This approach provides clear evidence that the cell surface topography changes dramatically during neutrophil shape change (both locally and globally) and can be triggered by elevating cytosolic Ca2+.
Collapse
|
4
|
Plasma membrane and cytoskeleton dynamics during single-cell wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Margheri G, D’Agostino R, Becucci L, Guidelli R, Tiribilli B, Del Rosso M. Surface plasmon resonance as detection tool for lipids lateral mobility in biomimetic membranes. BIOMEDICAL OPTICS EXPRESS 2012; 3:3119-3126. [PMID: 23243563 PMCID: PMC3521305 DOI: 10.1364/boe.3.003119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 06/01/2023]
Abstract
A procedure based on surface plasmon resonance (SPR) is proposed to monitor the lateral mobility of lipid molecules in solid-supported bilayer lipid membranes (ssBLMs), an essential prerequisite for the formation of important microdomains called lipid rafts (LRs). The procedure relies on the marked tendency of the ganglioside GM1 to be recruited by LRs and to act as a specific receptor of the beta-subunit of the cholera toxin (ChTB). In the presence of both GM1 and ChTB, spontaneous formation of lipid rafts domains in mobile ssBLMs is accompanied by an appreciable increase in the amount of adsorbed ChTB, as monitored by SPR.
Collapse
Affiliation(s)
- Giancarlo Margheri
- Institute for Complex Systems of National Council of Researches, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Riccardo D’Agostino
- Department of Pathology and Experimental Oncology, Viale G.B.Morgagni 50, 50134 Firenze, Italy
| | - Lucia Becucci
- Department of Chemistry, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Rolando Guidelli
- Department of Chemistry, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Bruno Tiribilli
- Institute for Complex Systems of National Council of Researches, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Mario Del Rosso
- Department of Pathology and Experimental Oncology, Viale G.B.Morgagni 50, 50134 Firenze, Italy
| |
Collapse
|
6
|
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SED, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 2012. [PMID: 22689944 DOI: 10.1073/pnas.1202040109 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SED, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 2012; 109:12805-10. [PMID: 22689944 PMCID: PMC3411962 DOI: 10.1073/pnas.1202040109] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Irene Lavagi
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gayathri Nageswaran
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Lilly Maneta-Peyret
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - Doan-Trung Luu
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique, 34060 Montpellier, France
| | - Stanley W. Botchway
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Stephen E. D. Webb
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Sebastien Mongrand
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - Christophe Maurel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique, 34060 Montpellier, France
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; and
| | - Jirí Friml
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - John Runions
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
8
|
Macháň R, Hof M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1377-91. [DOI: 10.1016/j.bbamem.2010.02.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022]
|
9
|
Ramprasad O, Rangaraj N, Srinivas G, Thiery JP, Dufour S, Pande G. Differential regulation of the lateral mobility of plasma membrane phospholipids by the extracellular matrix and cholesterol. J Cell Physiol 2008; 215:550-61. [DOI: 10.1002/jcp.21339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Pucadyil TJ, Chattopadhyay A. Effect of cholesterol on lateral diffusion of fluorescent lipid probes in native hippocampal membranes. Chem Phys Lipids 2006; 143:11-21. [PMID: 16797513 DOI: 10.1016/j.chemphyslip.2006.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/17/2006] [Accepted: 04/26/2006] [Indexed: 01/11/2023]
Abstract
Cholesterol is an abundant lipid of mammalian membranes and plays a crucial role in membrane organization, dynamics, function and sorting. The role of cholesterol in membrane organization has been a subject of intense investigation that has largely been carried out in model membrane systems. An extension of these studies in natural membranes, more importantly in neuronal membranes, is important to establish a relationship between disease states and changes in membrane physical properties resulting from an alteration in lipid composition. We have monitored the lateral diffusion of lipid probes, DiIC(18)(3) and FAST DiI which are similar in their intrinsic fluorescence properties but differ in their structure, in native and cholesterol-depleted hippocampal membranes using the fluorescence recovery after photobleaching (FRAP) approach. Our results show that the mobility of these probes is in general higher in hippocampal membranes depleted of cholesterol. Interestingly, the increase in mobility of these probes does not linearly correlate with the extent of cholesterol depletion. These results assume significance in the light of recent reports on the requirement of cholesterol to support the function of the G-protein coupled serotonin(1A) receptor present endogenously in hippocampal membranes.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
11
|
Pucadyil TJ, Chattopadhyay A. Confocal Fluorescence Recovery After Photobleaching of Green Fluorescent Protein in Solution. J Fluoresc 2006; 16:87-94. [PMID: 16397826 DOI: 10.1007/s10895-005-0019-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) is one of the most widely used approaches to quantitatively estimate diffusion characteristics of molecules in solution and cellular systems. In general, comparison of the diffusion times (t (1/2)) from a FRAP experiment provides qualitative estimates of diffusion rates. However, obtaining consistent and reliable quantitative estimates of mobility of molecules using FRAP is hindered by the lack of appropriate standards for calibrating the FRAP set-up (microscope configuration and data fitting algorithms) used in a given experiment. In comparison with other fluorescent markers, the green fluorescent proteins (GFP) possess characteristics that are ideal for use in such experiments. We have monitored the mobility of pure enhanced green fluorescent protein (EGFP) in a viscous solution by confocal FRAP experiments. Our experimentally determined diffusion coefficient of EGFP in a glycerol-water mixture is in excellent agreement with the value predicted for GFP in a solution of comparable viscosity, calculated using the Stokes-Einstein equation. The agreement in the experimentally determined diffusion coefficient and that predicted from theoretical framework improves significantly when one takes into account the effective size of the bleached spot in such experiments. Our results therefore validate the use of GFP as a convenient standard for FRAP experiments. Importantly, we present a simple method to correct for artifacts in the accurate determination of diffusion coefficient of molecules measured using FRAP arising due to the underestimation in the effective size of the bleached spot.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | | |
Collapse
|
12
|
Goodwin JS, Drake KR, Remmert CL, Kenworthy AK. Ras diffusion is sensitive to plasma membrane viscosity. Biophys J 2005; 89:1398-410. [PMID: 15923235 PMCID: PMC1366624 DOI: 10.1529/biophysj.104.055640] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner leaflet of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC(16) and DiIC(18). However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-beta-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane.
Collapse
Affiliation(s)
- J Shawn Goodwin
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
13
|
Bacia K, Scherfeld D, Kahya N, Schwille P. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J 2004; 87:1034-43. [PMID: 15298908 PMCID: PMC1304444 DOI: 10.1529/biophysj.104.040519] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 04/29/2004] [Indexed: 11/18/2022] Open
Abstract
The lipid raft model has evoked a new perspective on membrane biology. Understanding the structure and dynamics of lipid domains could be a key to many crucial membrane-associated processes in cells. However, one shortcoming in the field is the lack of routinely applicable techniques to measure raft association without perturbation by detergents. We show that both in cell and in domain-exhibiting model membranes, fluorescence correlation spectroscopy (FCS) can easily distinguish a raft marker (cholera toxin B subunit bound to ganglioside (GM1) and a nonraft marker (dialkylcarbocyanine dye diI)) by their decidedly different diffusional mobilities. In contrast, these markers exhibit only slightly different mobilities in a homogeneous artificial membrane. Performing cholesterol depletion with methyl-beta-cyclodextrin, which disrupts raft organization, we find an analogous effect of reduced mobility for the nonraft marker in domain-exhibiting artificial membranes and in cell membranes. In contrast, cholesterol depletion has differential effects on the raft marker, cholera toxin B subunit-GM1, rendering it more mobile in artificial domain-exhibiting membranes but leaving it immobile in cell membranes, where cytoskeleton disruption is required to achieve higher mobility. Thus, fluorescence correlation spectroscopy promises to be a valuable tool to elucidate lipid raft associations in native cells and to gain deeper insight into the correspondence between model and natural membranes.
Collapse
Affiliation(s)
- Kirsten Bacia
- Dresden University of Technology, Department of Biophysics, c/o Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
14
|
Cassera MB, Silber AM, Gennaro AM. Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface. An electron paramagnetic resonance (EPR) spin label study. Biophys Chem 2002; 99:117-27. [PMID: 12377363 DOI: 10.1016/s0301-4622(02)00139-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this work is to analyze the effects of cholesterol modulation on acyl chain ordering in the membrane of human erythrocytes as a function of depth from the surface. Partial cholesterol depletion was achieved by incubation of erythrocytes with liposomes containing saturated phospholipids, or with methyl-beta-cyclodextrin (MbetaCD). Cholesterol enrichment was achieved by incubation with liposomes formed by phospholipids/cholesterol, or with the complex MbetaCD/cholesterol. Acyl chain order was studied with electron paramagnetic resonance spectroscopy (EPR) using spin labels that sense the lipid bilayer at different depths. It is shown that the increase in cholesterol stiffens acyl chains but decreases the interaction among lipid headgroups, while cholesterol depletion causes the opposite behavior. It is likely that the observed cholesterol effects are related to those stabilizing the cholesterol-rich detergent-insoluble membrane domains (rafts), recently shown to exist in erythrocytes.
Collapse
Affiliation(s)
- M B Cassera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional de Litoral, Paraje El Pozo S/N, 3000, Santa Fe, Argentina
| | | | | |
Collapse
|
15
|
Oghalai JS, Zhao HB, Kutz JW, Brownell WE. Voltage- and tension-dependent lipid mobility in the outer hair cell plasma membrane. Science 2000; 287:658-61. [PMID: 10650000 PMCID: PMC1976274 DOI: 10.1126/science.287.5453.658] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanism responsible for electromotility of outer hair cells in the ear is unknown but is thought to reside within the plasma membrane. Lipid lateral diffusion in the outer hair cell plasma membrane is a sigmoidal function of transmembrane potential and bathing media osmolality. Cell depolarization or hyposmotic challenge shorten the cell and reduce membrane fluidity by half. Changing the membrane tension with amphipathic drugs results in similar reductions. These dynamic changes in membrane fluidity represent the modulation of membrane tension by lipid-protein interactions. The voltage dependence may be associated with the force-generating motors that contribute to the exquisite sensitivity of mammalian hearing.
Collapse
Affiliation(s)
- John S. Oghalai
- Department of Otolaryngology and Communicative Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hong-Bo Zhao
- Department of Otolaryngology and Communicative Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - J. Walter Kutz
- Department of Otolaryngology and Communicative Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - William E. Brownell
- Department of Otolaryngology and Communicative Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
16
|
Oghalai JS, Tran TD, Raphael RM, Nakagawa T, Brownell WE. Transverse and lateral mobility in outer hair cell lateral wall membranes. Hear Res 1999; 135:19-28. [PMID: 10491950 DOI: 10.1016/s0378-5955(99)00077-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cochlear outer hair cell (OHC) electromotility is associated with the cell's lateral wall. The lateral wall contains two distinct membranes: the plasma membrane (PM) and the subsurface cisternae (SSC). We explored biophysical characteristics of these lipid structures using membrane-specific fluorescent dyes. We have previously demonstrated that di-8-ANEPPS stains the PM while NBD-C6-ceramide partitions to the SSC. In this report we show that NBD-cholesterol also partitions to the SSC. Transmigration of the SSC dyes across the PM was visualized under confocal microscopy, after separating the two membranes using the micropipette aspiration technique. The transverse mobility of NBD-cholesterol was faster than that of NBD-C6-ceramide. We then measured the lateral mobility of the dyes within both the PM and the SSC using fluorescence recovery after photobleaching (FRAP). The diffusion coefficients at 12 37 degrees C and the activation energies for diffusion were found to be similar to those of other biological membranes. These data indicate that both the PM and the SSC are membranes in the fluid phase, with no evidence of temperature-dependent phase transitions. Our observations are consistent with a fluid-mosaic model of the lateral wall membranes.
Collapse
Affiliation(s)
- J S Oghalai
- Bobby R. Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
17
|
Sadana A. Adsorption Influence on Bioseparation and Inactivation. SEP SCI TECHNOL 1998. [DOI: 10.1016/s0149-6395(98)80035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Yoshida H, Satoh K, Ishida H, Imaizumi T, Koyama M, Hiramoto M, Nakazawa H, Takamatsu S. Density-associated changes in platelet-activating factor acetylhydrolase activity and membrane fluidity of human erythrocytes. Ann Hematol 1994; 69:139-45. [PMID: 8086509 DOI: 10.1007/bf01695695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platelet-activating factor acetylhydrolase is known to degrade oxidatively fragmented phospholipids which are similar in structure to platelet-activating factor. We examined changes of acetylhydrolase activity during in vivo aging of human erythrocytes and tried to assess its role in maintaining the membrane properties of erythrocytes. Higher-density erythrocytes are enriched with older cells. Erythrocytes obtained from seven healthy colleagues were separated into four density fractions by centrifugation in discontinuous Percoll density gradients. Both membrane and cytosolic acetylhydrolase decreased with increasing erythrocyte density. Membrane and cytosolic acetylhydrolase activities in the lightest fraction were 2.0 +/- 1.0 (SD) nkat/g protein and 362 +/- 58 pkat/g protein, respectively, and these values were significantly higher than those in the densest fraction: 1.3 +/- 0.7 nkat/g protein and 286 +/- 70 pkat/g protein, respectively. Membrane acyltransferase activity also decreased with red cell density and the average values in the lightest and densest fractions were 51.2 +/- 23.6 and 27.0 +/- 20.2 mukat/g protein, respectively. Generation of thiobarbituric acid-reactive substances induced by t-butyl hydroperoxide treatment decreased with increasing cell density, and the inhibition of acetylhydrolase with diisopropylfluorophosphate resulted in enhanced peroxide-induced lipid oxidation, particularly in lower-density fractions. There was no significant change in basal levels of thiobarbituric acid-reactive substances in red cell membrane. Membrane fluidity was evaluated by fluorescence recovery after photo-bleaching and it decreased as erythrocyte density increased. We conclude that the activity of the deacylation/reacylation cycle maintained by acetylhydrolase and acyltransferase is gradually reduced during in vivo aging of erythrocytes. This may be connected with decreases of polyunsaturated fatty acids and membrane fluidity in old erythrocytes.
Collapse
Affiliation(s)
- H Yoshida
- Department of Pathological Physiology, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Greenberg ML, Axelrod D. Anomalously slow mobility of fluorescent lipid probes in the plasma membrane of the yeast Saccharomyces cerevisiae. J Membr Biol 1993; 131:115-27. [PMID: 8441175 DOI: 10.1007/bf02791320] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We measured the lateral mobility of two fluorescent lipid probes dioctadecylindocarbocyanine (diI) and tetramethyl rhodamine phosphatidylethanolamine (R-PE) in the plasma membranes of Saccharomyces cerevisiae ino1 and opi3 spheroplasts. These are well-characterized strains with mutations in the inositol and phosphatidylcholine biosynthetic pathways. Membrane phospholipid composition was altered by growing these mutants in the presence or absence of inositol and choline. Lateral mobility was measured by fluorescence recovery after photobleaching (FRAP). Microscopic fluorescence polarization employing CCD digital imaging produced an ordered orientation distribution of the lipid probe diI, confirming that at least one of the probes was largely incorporated into the bilayer membrane. Our results demonstrated anomalously slow mobility of both lipid probes for both mutants, regardless of whether the lipid composition was near normal or dramatically altered in relative composition of phosphatidylinositol and phosphatidylcholine. Trypsinization of the spheroplasts to remove surface proteins resulted in markedly increased lateral mobility. However, even in trypsinized spheroplasts, mobility was still somewhat lower than the mobility observed in the membrane of mammalian cells, such as rat smooth muscle culture cells tested here for comparison.
Collapse
Affiliation(s)
- M L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
21
|
Weisz K, Gröbner G, Mayer C, Stohrer J, Kothe G. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Biochemistry 1992; 31:1100-12. [PMID: 1734959 DOI: 10.1021/bi00119a019] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The influence of cholesterol on the dynamic organization of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers was studied by deuteron nuclear magnetic resonance (2H NMR) using unoriented and macroscopically aligned samples. Analysis of the various temperature- and orientation-dependent experiments were performed using a comprehensive NMR model based on the stochastic Liouville equation. Computer simulations of the relaxation data obtained from phospholipids deuterated at the 6-, 13- and 14-position of the sn-2 chain and cholesterol labeled at the 3 alpha-position of the rigid steroid ring system allowed the unambiguous assignment of the various motional modes and types of molecular order present in the system. Above the phospholipid gel-to-liquid-crystalline phase transition, TM, 40 mol % cholesterol was found to significantly increase the orientational and conformational order of the phospholipid with substantially increased trans populations even at the terminal sn-2 acyl chain segments. Lowering the temperature continuously increases both inter- and intramolecular ordering, yet indicates less ordered chains than found for the pure phospholipid in its paracrystalline gel phase. Trans-gauche isomerization rates on all phospholipid alkyl chain segments are slowed down by incorporated cholesterol to values characteristic of gel-state lipid. However, intermolecular dynamics remain fast on the NMR time scale up to 30 K below TM, with rotational correlation times tau R parallel for DMPC ranging from 10 to 100 ns and an activation energy of ER = 35 kJ/mol. Below 273 K a continuous noncooperative condensation of both phospholipid and cholesterol is observed in the mixed membranes, and at about 253 K only a motionally restricted component is left, exhibiting slow fluctuations with correlation times of tau R perpendicular greater than 1 microsecond. In the high-temperature region (T greater than TM), order director fluctuations are found to constitute the dominant transverse relaxation process. Analysis of these collective lipid motions provides the viscoelastic parameters of the membranes. The results (T = 318 K) show that cholesterol significantly reduces the density of the cooperative motions by increasing the average elastic constant of the membrane from K = 1 x 10(-11) N for the pure phospholipid bilayers to K = 3.5 x 10(-11) N for the mixed system.
Collapse
Affiliation(s)
- K Weisz
- Institut für Physikalische Chemie, Universität Stuttgart, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
22
|
Tilton RD, Robertson CR, Gast AP. Lateral diffusion of bovine serum albumin adsorbed at the solid-liquid interface. J Colloid Interface Sci 1990. [DOI: 10.1016/0021-9797(90)90056-t] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Cribier S, Morrot G, Neumann JM, Devaux PF. Lateral diffusion of erythrocyte phospholipids in model membranes comparison between inner and outer leaflet components. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1990; 18:33-41. [PMID: 2155112 DOI: 10.1007/bf00185418] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The physical properties of lipid bilayers with a similar composition to the outer and inner leaflets of the human erythrocyte membrane have been examined in protein-free model systems. The outer leaflet (OL) was represented by a phospholipid mixture containing phosphatidylcholine and sphingomyelin extracted from human erythrocytes, while a mixture of phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine represented the inner leaflet (IL). The ratio of cholesterol to phospholipid was varied in both mixtures. The lateral diffusion coefficient of fluorescent phospholipids diluted in such lipid mixtures was determined by the modulated fringe pattern photobleaching technique. Contrast curves with a single exponential decay, indicative of homogeneous samples, were obtained only for temperatures above 15 degrees C and for a cholesterol to phospholipid molar ratio below 0.8. The rate of lateral diffusion was approximately five times faster in IL than in OL multilayers, in agreement with former results obtained in human erythrocytes (Morrot et al. 1986). Varying the cholesterol to phospholipid ratio from 0 to 0.8 (mol/mol) enabled us to decrease the diffusion constant by only a factor of approximately 2 for both IL and OL mixtures. The order parameter of a spin-labeled phospholipid was determined in the different systems and found to be systematically smaller in IL mixtures than in OL mixtures. The present study indicates that the difference in lipid diffusivity of the two erythrocyte leaflets may be accounted for solely by a difference in phospholipid composition, and may be independent of cholesterol and protein asymmetry.
Collapse
Affiliation(s)
- S Cribier
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | |
Collapse
|
24
|
Nothnagel EA. Synthesis and characterization of fluorescent Lucifer yellow-lipid conjugates. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 980:209-19. [PMID: 2930788 DOI: 10.1016/0005-2736(89)90401-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The syntheses of fluorescent lipid probes composed of Lucifer yellow dyes linked to either cholesterol or phospholipids are described. The spectral properties of these probes are characterized, and the probes are evaluated for use with model membranes and with live animal and plant cells. Of the probes synthesized, the cholesterol derivative is the easiest to prepare and appears to be the most useful because it readily labels the plasma membrane of live cells and maintains a high ratio of cell surface-to-cytoplasmic fluorescence.
Collapse
Affiliation(s)
- E A Nothnagel
- Department of Botany and Plant Sciences, University of California, Riverside 92521
| |
Collapse
|
25
|
Peters R. Lateral mobility of proteins and lipids in the red cell membrane and the activation of adenylate cyclase by beta-adrenergic receptors. FEBS Lett 1988; 234:1-7. [PMID: 2839357 DOI: 10.1016/0014-5793(88)81290-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Models of beta-adrenergic signal transduction in red blood cell membranes frequently assume that at least one of the membrane-bound components is laterally mobile and distributes the hormonal signal in the membrane plane. However, direct measurements reveal that protein lateral mobility in the red cell membrane is severely restricted. Furthermore, the spectrin-actin compartmentalizes the cytoplasmic face of the red cell membrane into a regular array of small elementary areas. These considerations support models in which the beta-adrenergic signal is spread in the membrane plane by a molecule which has binding sites on the membrane but diffuses in the aqueous compartment.
Collapse
Affiliation(s)
- R Peters
- Max-Planck-Institut für Biophysik, Frankfurt, FRG
| |
Collapse
|
26
|
Michalak J, Kadziolka A, Pruszkowska R, Ledwozyw A, Madejczyk A. Compensatory mechanisms in erythrocyte lipids in patients with atherosclerosis. Lipids 1988; 23:476-80. [PMID: 3412128 DOI: 10.1007/bf02535523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The quantitative composition of phospholipids and fatty acids of erythrocytes was investigated in patients with atherosclerosis. It was stated that the erythrocyte lipids of atherosclerotic patients contained smaller quantities of phosphatidylcholine and phosphatidylinositol, a significantly larger quantity of sphingomyelin, and higher sphingomyelin/phosphatidylcholine and cholesterol/phospholipid ratios. The existence of compensatory changes was stated, which was evident in the reduction of palmitic and stearic acids and the increase of linoleic and eicosatrienoic acids in erythrocyte phospholipids. These changes in fatty acid composition probably cause minimal changes in the membrane fluidity induced by an increased cholesterol/phospholipid and sphingomyelin/phosphatidylcholine ratios. This paper was the first evidence of occurrence of those changes in erythrocytes during spontaneous atherosclerosis in human.
Collapse
Affiliation(s)
- J Michalak
- Clinic of Vascular Surgery, Medical Academy, Lublin, Poland
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Johansson B, Sundqvist T, Magnusson KE. Regulation of the lateral diffusion of WGA-labeled glycoconjugates in human leukocytes. Comparison between adult granulocytes and differentiating promyelocytic HL60 cells. CELL BIOPHYSICS 1987; 10:233-44. [PMID: 2446769 DOI: 10.1007/bf02797343] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The regulation of the membrane mobility of glycoconjugates in human polymorphonuclear leukocytes (PMNL) was studied by comparing adult PMNL with promyelocytic HL60 cells before and after stimulation of differentiation in HL60 cells with phorbol-myristate acetate (PMA) with respect to lateral diffusion of wheat germ agglutinin (WGA)-labeled glycoconjugates. For this purpose we developed a novel variant of microscope equipment for the study of fluorescence recovery after photobleaching (FRAP) and continuous fluorescence microphotolysis (CFM) using a mini-computer for handling of shutters, data acquisition, and calculations. This equipment is presented in the report. We found that PMA-induced differentiation in HL60 cells reduced the lateral diffusion coefficient (D) of WGA-labeled membrane entities from about 1.5 to 1.0 x 10(-10) cm2/s, which was close to that found for adult blood PMNL, i.e., 1-1.2 x 10(-10) cm2/s. The lateral mobility (D x 10(10)) of succinylated WGA (S-WGA) was 2.3 and 1.7 cm2/s in undifferentiated and PMA-differentiated HL60 cells, respectively, indicating that WGA might have cross-linked membrane receptors, resulting in the slower diffusion. The results are discussed in relation to the effect of phagocyte maturation on the mobility of membrane components.
Collapse
Affiliation(s)
- B Johansson
- Department of Medical Microbiology, Faculty of Health Sciences, University of Linköping, Sweden
| | | | | |
Collapse
|
29
|
Golan DE, Brown CS, Cianci CM, Furlong ST, Caulfield JP. Schistosomula of Schistosoma mansoni use lysophosphatidylcholine to lyse adherent human red blood cells and immobilize red cell membrane components. J Cell Biol 1986; 103:819-28. [PMID: 3745271 PMCID: PMC2114313 DOI: 10.1083/jcb.103.3.819] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human red blood cells (RBCs) adhere to and are lysed by schistosomula of Schistosoma mansoni. We have investigated the mechanism of RBC lysis by comparing the dynamic properties of transmembrane protein and lipid probes in adherent ghost membranes with those in control RBCs and in RBCs treated with various membrane perturbants. Fluorescence photobleaching recovery was used to measure the lateral mobility of two integral membrane proteins, glycophorin and band 3, and two lipid analogues, fluorescein phosphatidylethanolamine (Fl-PE) and carbocyanine dyes, in RBCs and ghosts adherent to schistosomula. Adherent ghosts manifested 95-100% immobilization of both membrane proteins and 45-55% immobilization of both lipid probes. In separate experiments, diamide-induced cross-linking of RBC cytoskeletal proteins slowed transmembrane protein diffusion by 30-40%, without affecting either transmembrane protein fractional mobility or lipid probe lateral mobility. Wheat germ agglutinin- and polylysine-induced cross-linking of glycophorin at the extracellular surface caused 80-95% immobilization of the transmembrane proteins, without affecting the fractional mobility of the lipid probe. Egg lysophosphatidylcholine (lysoPC) induced both lysis of RBCs and a concentration-dependent decrease in the lateral mobility of glycophorin, band 3, and Fl-PE in ghost membranes. At a concentration of 8.4 micrograms/ml, lysoPC caused a pattern of protein and lipid immobilization in RBC ghosts identical to that in ghosts adherent to schistosomula. Schistosomula incubated with labeled palmitate released lysoPC into the culture medium at a rate of 1.5 fmol/h per 10(3) organisms. These data suggest that lysoPC is transferred from schistosomula to adherent RBCs, causing their lysis.
Collapse
|
30
|
Foley M, MacGregor AN, Kusel JR, Garland PB, Downie T, Moore I. The lateral diffusion of lipid probes in the surface membrane of Schistosoma mansoni. J Cell Biol 1986; 103:807-18. [PMID: 3745270 PMCID: PMC2114297 DOI: 10.1083/jcb.103.3.807] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The technique of fluorescence recovery after photobleaching was used to measure the lateral diffusion of fluorescent lipid analogues in the surface membrane of Schistosoma mansoni. Our data reveal that although some lipids could diffuse freely others exhibited restricted lateral diffusion. Quenching of lipid fluorescence by a non-permeant quencher, trypan blue, showed that there was an asymmetric distribution of lipids across the double bilayer of mature parasites. Those lipids that diffused freely were found to reside mainly in the external monolayer of the outer membrane whereas lipids with restricted lateral diffusion were located mainly in one or more of the monolayers beneath the external monolayer. Formation of surface membrane blebs allowed us to measure the lateral diffusion of lipids in the membrane without the influence of underlying cytoskeletal structures. The restricted diffusion found on the normal surface membrane of mature parasites was found to be released in membrane blebs. Quenching of fluorescent lipids on blebs indicated that all probes were present almost entirely in the external monolayer. Juvenile worms exhibited lower lateral diffusion coefficients than mature parasites: in addition, the lipids partitioned into the external monolayer. The results are discussed in terms of membrane organization, cytoskeletal contacts, and biological significance.
Collapse
|
31
|
Morrot G, Cribier S, Devaux PF, Geldwerth D, Davoust J, Bureau JF, Fellmann P, Herve P, Frilley B. Asymmetric lateral mobility of phospholipids in the human erythrocyte membrane. Proc Natl Acad Sci U S A 1986; 83:6863-7. [PMID: 3462734 PMCID: PMC386610 DOI: 10.1073/pnas.83.18.6863] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fluorescent phospholipid 1-acyl-2-[12-(7-nitrobenz-2-oxa-1,3-diazol-4- yl)aminododecanoyl]phosphatidylcholine (NBD-phosphatidylcholine) and the corresponding aminophospholipid derivatives (NBD-phosphatidylethanolamine and NBD-phosphatidylserine) were introduced in the human erythrocyte membrane by a nonspecific phospholipid exchange protein purified from corn. The lateral mobility of the fluorescent phospholipids was measured by using an extension of the classical photobleaching recovery technique that takes advantage of a modulated fringe pattern and provides a high sensitivity. In intact erythrocytes and in ghosts resealed in the presence of ATP, the fluorescence-contrast curves after photobleaching decayed biexponentially corresponding to two lateral diffusion constants. With NBD-phosphatidylcholine, the majority of the signal corresponded to a "slow" component (1.08 X 10(-9) cm2/sec at 20 degrees C), whereas with the amino derivatives the majority of the signal corresponded to a "fast" component (5.14 X 10(-9) cm2/sec at 20 degrees C). If the ghosts were resealed without ATP, the fast component of the aminophospholipids disappeared. We interpret these results as follows: (i) Provided the cells or the ghosts contain ATP, the three fluorescent phospholipids distribute spontaneously between inner and outer leaflets as endogenous phospholipids, namely NBD-phosphatidylcholine is located in the outer leaflet, while both aminophospholipids are preferentially located in the inner leaflet. (ii) The viscosity of the inner leaflet of human erythrocyte membranes is lower than that of the outer leaflet.
Collapse
|
32
|
Rooney M, Tamura-Lis W, Lis LJ, Yachnin S, Kucuk O, Kauffman JW. The influence of oxygenated sterol compounds on dipalmitoylphosphatidylcholine bilayer structure and packing. Chem Phys Lipids 1986; 41:81-92. [PMID: 3757150 DOI: 10.1016/0009-3084(86)90126-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fourier Transform Infra-red and Raman Spectroscopies indicate that 7 alpha-hydroxycholesterol and 7-ketocholesterol have a diminished capacity to condense (increase the packing order of) fluid-state dipalmitoylphosphatidylcholine (DPPC) acyl chains when compared with the effects of cholesterol and the other oxidized sterols studied. DPPC head groups were also more ordered by 7-ketocholesterol over the temperature range 10 degrees - 70 degrees C. Primary effects of these sterols appear to be associated with the hydrophillic regions of the DPPC bilayer, although packing arrangements with acyl chains are also involved. Phosphate and acyl chain ester groups were observed to possess a packing order which was invariant which indicates that these may be the target groups in the interaction with 7-ketocholesterol. A surprising observation was the synergistic amplification of the effects of 7-ketocholesterol by the presence of cholesterol in the DPPC bilayer.
Collapse
|
33
|
Eisinger J, Flores J, Petersen WP. A milling crowd model for local and long-range obstructed lateral diffusion. Mobility of excimeric probes in the membrane of intact erythrocytes. Biophys J 1986; 49:987-1001. [PMID: 3778578 PMCID: PMC1329679 DOI: 10.1016/s0006-3495(86)83727-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A new model for lateral diffusion, the milling crowd model (MC), is proposed and is used to derive the dependence of the monomeric and excimeric fluorescence yields of excimeric membrane probes on their concentration. According to the MC model, probes migrate by performing spatial exchanges with a randomly chosen nearest neighbor (lipid or probe). Only nearest neighbor probes, one of which is in the excited state, may form an excimer. The exchange frequency, and hence the local lateral diffusion coefficient, may then be determined from experiment with the aid of computer simulation of the excimer formation kinetics. The same model is also used to study the long-range lateral diffusion coefficient of probes in the presence of obstacles (e.g., membrane proteins). The dependence of the monomeric and excimeric fluorescence yields of 1-pyrene-dodecanoic acid probes on their concentration in the membranes of intact erythrocytes was measured and compared with the prediction of the MC model. The analysis yields an excimer formation rate for nearest neighbor molecules of approximately 1 X 10(7) s-1 and an exchange frequency of approximately greater than 2 X 10(7) s-1, corresponding to a local diffusion coefficient of greater than 3 X 10(-8) cm2 s-1. This value is several times larger than the long-range diffusion coefficient for a similar system measured in fluorescence photobleaching recovery experiments. The difference is explained by the fact that long-range diffusion is obstructed by dispersed membrane proteins and is therefore greatly reduced when compared to free diffusion. The dependence of the diffusion coefficient on the fractional area covered by obstacles and on their size is derived from MC simulations and is compared to those of other theories lateral diffusibility.
Collapse
|
34
|
Gawrisch K, Stibenz D, Möps A, Arnold K, Linss W, Halbhuber KJ. The rate of lateral diffusion of phospholipids in erythrocyte microvesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 856:443-7. [PMID: 3964689 DOI: 10.1016/0005-2736(86)90135-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
31P-NMR spectra of phospholipids in membranes of erythrocyte microvesicles isolated from outdated blood units were recorded in the temperature range 5 to 55 degrees C. Within that range the lineshape is strongly influenced by an increasing rate of lateral diffusion of phospholipids. At 36 degrees C a diffusion constant, D, of (2 +/- 1) X 10(-12) m2/s was obtained. The diffusion rate is by a factor of 3 to 10 greater than in erythrocyte membranes measured by the photobleaching technique and is comparable with values obtained for several lipid model membranes. The differences in lateral diffusion rates are probably connected with the depletion of microvesicle membranes in membrane proteins.
Collapse
|
35
|
Boullier JA, Brown BA, Bush JC, Barisas BG. Lateral mobility of a lipid analog in the membrane of irreversible sickle erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 856:301-9. [PMID: 3754156 DOI: 10.1016/0005-2736(86)90040-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The major feature of sickle cell anemia is the tendency of erythrocytes to sickle when exposed to decreased oxygen tension and to unsickle when reoxygenated. Irreversible sickle cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation. ISCs are believed to owe their biophysical abnormalities to acquired membrane alterations which decrease membrane deformability. While increased membrane surface viscosity has been measured in ISCs, the lateral dynamics of membrane lipids in these cells have not heretofore been examined. We have measured the lateral diffusion of the lipid analog 3,3'-dioctadecylindocyanine iodide (DiI) in the plasma membrane of intact normal erythrocytes, reversible sickle cells (RSCs), and irreversible sickle cells by fluorescence photobleaching recovery (FPR). The diffusion coefficients +/- standard errors of the mean of DiI in intact normal red blood cells (RBCs), RSCs, and ISCs at 37 degrees C are (8.06 +/- 0.29) X 10(-9) cm2 X s-1, (7.74 +/- 0.22) X 10(-9) cm2 X s-1, and (7.29 +/- 0.24) X 10(-9) cm2 X s-1, respectively. A similar decrease in the diffusion coefficient of DiI in the plasma membranes of the three cell types was observed at 4, 10, 17, 23, and 30 degrees C. ANOVA analysis of the changes in DiI diffusion showed significant differences between the RBC and ISC membranes at all temperatures examined. The characteristic breaks in Arrhenius plots of the diffusion coefficients for the RBCs, RSCs, and ISCs occurred at 20, 19, and 18.6 degrees C, respectively. Photobleaching recovery data were used to estimate (Boullier, J.A., Melnykovich, G. and Barisas, B.G. (1982) Biochim. Biophys. Acta 692, 278-286) the microviscosities of the plasma membranes of the three cell types at 25 degrees C. We find significant differences between our microviscosity values and those obtained in previous fluorescence depolarization studies. However, both methods indicate qualitatively similar differences in membrane microviscosity among the various cell types.
Collapse
|
36
|
Wolf DE, Hagopian SS, Ishijima S. Changes in sperm plasma membrane lipid diffusibility after hyperactivation during in vitro capacitation in the mouse. J Cell Biol 1986; 102:1372-7. [PMID: 3958052 PMCID: PMC2114162 DOI: 10.1083/jcb.102.4.1372] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have used the technique of fluorescence recovery after photobleaching to measure the diffusibility of the fluorescent lipid analogue, 1,1'-dihexadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate on the morphologically distinct regions of the plasma membranes of mouse spermatozoa, and the changes in lipid diffusibility that result from in vitro hyperactivation and capacitation with bovine serum albumin. We found that, as previously observed on ram spermatozoa, lipid analogue diffusibility is regionalized on mouse spermatozoa, being fastest on the flagellum. The bovine serum albumin induced changes in diffusibility that occur with hyperactivation are also regionalized. Specifically, if we compare serum incubated in control medium, which maintains normal motility, with those hyperactivated in capacitating medium, we observe with hyperactivation an increase in lipid analogue diffusion rate in the anterior region of the head, the midpiece, and tail, and a decrease in diffusing fraction in the anterior region of the head.
Collapse
|
37
|
Brass JM, Higgins CF, Foley M, Rugman PA, Birmingham J, Garland PB. Lateral diffusion of proteins in the periplasm of Escherichia coli. J Bacteriol 1986; 165:787-95. [PMID: 3005237 PMCID: PMC214497 DOI: 10.1128/jb.165.3.787-795.1986] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have introduced biologically active, fluorescently labeled maltose-binding protein into the periplasmic space of Escherichia coli and measured its lateral diffusion coefficient by the fluorescence photobleaching recovery method. Diffusion of this protein in the periplasm was found to be surprisingly low (lateral diffusion coefficient, 0.9 X 10(-10) cm2 s-1), about 1,000-fold lower than would be expected for diffusion in aqueous medium and almost 100-fold lower than for an equivalent-size protein in the cytoplasm. Galactose-binding protein, myoglobin, and cytochrome c were also introduced into the periplasm and had diffusion coefficients identical to that determined for the maltose-binding protein. For all proteins nearly 100% recovery of fluorescence was obtained after photobleaching, indicating that the periplasm is a single contiguous compartment surrounding the cell. These data have considerable implications for periplasmic structure and for the role of periplasmic proteins in transport and chemotaxis.
Collapse
|
38
|
Arvinte T, Hildenbrand K, Wahl P, Nicolau C. Lysozyme-induced fusion of liposomes with erythrocyte ghosts at acidic pH. Proc Natl Acad Sci U S A 1986; 83:962-6. [PMID: 3456575 PMCID: PMC322990 DOI: 10.1073/pnas.83.4.962] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lysozyme that was covalently bound to the outer surface of sonicated vesicles induced fusion of the vesicles with human white erythrocyte ghosts. The kinetics of membrane mixing were evaluated by the resonance-energy-transfer method using L-alpha-dipalmitoyl phosphatidylethanolamine labeled at the free amino group with the energy donor 7-nitro-2,1,3-benzoxadiazol-4-yl or with the energy acceptor tetramethylrhodamine. The equilibrium state after fusion was characterized by using fluorescence photobleaching and recovery techniques. Rates and equilibrium percentages of fusion were maximal at the pH optimum of the enzyme, and rates were strongly reduced by the addition of N,N',N''-triacetylchitotriose, a competitive inhibitor of lysozyme. An apparent activation energy of 28 +/- kcal/mol was obtained for the lipid-mixing process. At 37 degrees C, the fusion half-time was 0.5 min. After 30 min at 37 degrees C, 40% of the labeled lipids initially present in the fusion mixture had a lateral diffusion constant, D, of 1.1 +/- 0.5 X 10(-9) cm2 X sec-1 in the ghost membrane. The strong induction of fusion at the lysozyme pH optimum was not observed in the absence of lysozyme or when free lysozyme was added to the solution. Bound lysozyme did not induce fusion of electrically neutral liposomes with each other. These observations indicate that it is the liposome-bound lysozyme that induces fusion between liposomes and erythrocyte ghosts.
Collapse
|
39
|
He NB, Hui SW. Electron microscopic observation of domain movement in reconstituted erythrocyte membranes. Proc Natl Acad Sci U S A 1985; 82:7304-8. [PMID: 3864161 PMCID: PMC391332 DOI: 10.1073/pnas.82.21.7304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The movement of labeled concanavalin A (Con A) receptors in reconstituted human erythrocyte membranes was observed directly in an electron microscope, using an environmental stage that kept the sample fully hydrated at all experimental temperatures. Human erythrocyte membrane ghosts were spread on the air/water interface in a Langmuir trough. The surface monolayer film contained most native proteins and lipids of the erythrocyte membrane. The Con A receptors in the film were labeled with Con A-conjugated, 25-nm-diameter gold microspheres. Unsupported bilayer membranes were reconstituted by dipping a 1000-mesh grid through the labeled surface film. The reconstituted membrane samples were observed under low beam current and photographed by timed exposures with sensitive x-ray films. The total radiation per exposure was kept below the damage threshold of 5 X 10(-4) coulomb/cm2. The Con A-gold labels were observed to move in unison within local areas (domains) of the reconstituted membrane. The size of the domains and the velocity of the labels were measured as functions of temperature. The typical domain size was 10 micron2 and the typical velocity of the labels was 7 nm/sec. The minimum domain size and velocity were found at 17 degrees-28 degrees C. Reduction of the amount of cholesterol in the precursor erythrocyte membrane caused the domain velocity at 7 degrees C to decrease and the domain size to increase; the opposite effect was observed with cholesterol enrichment. The results indicate that the components of the erythrocyte membrane tended to form moving domains and that the motion was related to lipid phase separation in the bilayer.
Collapse
|
40
|
Sowers AE. Movement of a fluorescent lipid label from a labeled erythrocyte membrane to an unlabeled erythrocyte membrane following electric-field-induced fusion. Biophys J 1985; 47:519-25. [PMID: 3986281 PMCID: PMC1435133 DOI: 10.1016/s0006-3495(85)83946-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A short burst of electric field pulses was used to induce nearly simultaneous fusion among 50% or more of a population composed of unlabeled erythrocytes and erythrocytes labeled with the fluorescent lipid analogue DiI (1,1'-dihexadecyl-3,3,3'',3'-tetra-methylindo carbocyanine perchlorate). Fusion products that ended in an hourglass shape were selected for analysis. The net movement of the label from the labeled membrane to the adjacent unlabeled membrane in each of the hourglass-shaped fusion products was recorded by micrography at various known times after the fusion took place, but before equilibrium was achieved. The lateral concentration gradients were measured by densitometry and compared with predictions based on Huang's model (Huang, H.-W., 1973, J. Theor. Biol., 40:11-17) for lateral diffusion on a spherical membrane. The average lateral diffusion coefficients, 3.8 and 8.1 X 10(-9) cm2/s in pH 7.4 isotonic phosphate buffer at 23-25 degrees C and 35-37 degrees C, respectively, compare very favorably with the results of three published photobleaching studies of the lateral diffusion of DiI in erythrocyte membranes. While the fusion approach to measuring lateral diffusion is not new, it has not enjoyed widespread use because of the uncertainty in the degree of fusion synchrony and low fusion yield. This study shows that the use of pulsed electric fields to induce synchronous fusion is a promising approach to overcome both of these drawbacks and yield results comparable to those obtainable by the photobleaching approach.
Collapse
|
41
|
Abstract
A model has been developed for 5-nitroxide stearate, I(12,3), distribution in human erythrocyte ghosts which accurately predicts ESR spectral alterations observed with increased probe/total lipid (P/L) at 37 degrees C. This spin probe occupies a class of high-affinity, noninteracting sites at low loading. Saturation occurs with increasing probe concentration, and, at higher loading, the probe inserts itself at initially dilute sites to form membrane-bound clusters of variable size. No 'low' probe remains at high P/L where all I(12,3) clusters in a 'concentrated' phase. This model allows determination of the dilute/clustered probe ratio, and shows that I(12,3) segregates in erythrocytes at what might otherwise be considered low P/L (e.g., 1/359). These findings validate the earlier use of empirical parameters to estimate probe sequestration in biological membranes.
Collapse
|
42
|
Acyl chain organization and protein secondary structure in cholesterol-modified erythrocyte membranes. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39724-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Peters R. Fluorescence microphotolysis. Diffusion measurements in single cells. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1983; 70:294-302. [PMID: 6877390 DOI: 10.1007/bf00404836] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Abstract
The lateral diffusion of fluorescent lipid analogues in the plasma membrane of intact erythrocytes from man, mouse, rabbit, and frog has been measured by fluorescence photobleaching recovery (FPR). Intact cells from dystrophic, normoblastic, hemolytic, and spherocytotic mouse mutants; from hypercholesterolemic rabbits and humans; and from prenatal, neonatal, and juvenile mice have been compared with corresponding normals. The lateral diffusion coefficient (D) for 3,3'-dioctadecylindodicarbocyanine iodide (DiI[5]) in intact normal human erythrocytes is D = 8.2 +/- 1.2 X 10(-9) cm2/s at 25 degrees C and D = 2.1 +/- 0.4 X 10(-8) cm2/s at 37 degrees C, and varies approximately 50-fold between 1 degree and 42 degrees C. The diffusion constants of lipid analogue rhodamine-B phosphatidylethanolamine (RBPE) are about twice those of DiI[5]. The temperature dependence and magnitude of D vary by up to a factor of 3 between species and are only influenced by donor age in prenatals. DiI[5] diffusibility is not perturbed by the presence of calcium or local anesthetics or by spectrin depletion (via mutation). However, lipid-analogue diffusibility in erythrocyte ghosts may differ from intact cells. Dietary hypercholesterolemia in rabbits reduces the diffusion coefficient and eliminates the characteristic break in Arrhenius plots of D found in all other cells studied except frog.
Collapse
|
45
|
Davison MT, Garland PB. Immunochemical demonstration of zonal growth of the cell envelope of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 130:589-97. [PMID: 6337852 DOI: 10.1111/j.1432-1033.1983.tb07190.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
|
47
|
Koski G, Streaty RA, Klee WA. Modulation of sodium-sensitive GTPase by partial opiate agonists. An explanation for the dual requirement for Na+ and GTP in inhibitory regulation of adenylate cyclase. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)45339-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Haest CW. Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 694:331-52. [PMID: 6218824 DOI: 10.1016/0304-4157(82)90001-6] [Citation(s) in RCA: 205] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Boullier JA, Melnykovych G, Barisas BG. A photobleaching recovery study of glucocorticoid effects on lateral mobilities of a lipid analog in S3G HeLa cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 692:278-86. [PMID: 7171596 DOI: 10.1016/0005-2736(82)90532-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Ott P, Binggeli Y, Brodbeck U. A rapid and sensitive assay for determination of cholesterol in membrane lipid extracts. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 685:211-3. [PMID: 7059603 DOI: 10.1016/0005-2736(82)90101-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A commercially available enzymatic assay (Boehringer Monotest) was modified to allow a rapid and sensitive determination of cholesterol in membrane lipid extracts. This was achieved by adding 0.5% Triton X-100 to the reagent solution. The detergent did not interfere with the assay. The relationship between the amount of cholesterol per assay and the absorbance at 500 nm was linear up to 100 micrograms. The recovery in the assay was better than 95%. The assay was applied to the determination of cholesterol in erythrocyte membrane lipid extracts.
Collapse
|