1
|
Abstract
Type 2 diabetes is characterized by decreased insulin secretion and sensitivity. The available oral anti-diabetic drugs act on many different molecular sites. The most used of oral anti-diabetic agents is metformin that activates glucose transport vesicles to the cell surface. Others are: the sulphonylureas; agents acting on the incretin system; GLP-1 agonists; dipetidylpeptidase-4 inhibitors; meglinitide analogues; and the thiazolidinediones. Despite these many drugs acting by different mechanisms, glycaemic control often remains elusive. None of these drugs have a primary renal mechanism of action on the kidneys, where almost all glucose excreted is normally reabsorbed. That is where the inhibitors of glucose reuptake (sodium-glucose cotransporter 2, SGLT2) have a unique site of action. Promotion of urinary loss of glucose by SGLT2 inhibitors embodies a new principle of control in type 2 diabetes that has several advantages with some urogenital side-effects, both of which are evaluated in this review. Specific approvals include use as monotherapy, when diet and exercise alone do not provide adequate glycaemic control in patients for whom the use of metformin is considered inappropriate due to intolerance or contraindications, or as add-on therapy with other anti-hyperglycaemic medicinal products including insulin, when these together with diet and exercise, do not provide adequate glycemic control. The basic mechanisms are improved β-cell function and insulin sensitivity. When compared with sulphonylureas or other oral antidiabetic agents, SGLT2 inhibitors provide greater HbA1c reduction. Urogenital side-effects related to the enhanced glycosuria can be troublesome, yet seldom lead to discontinuation. On this background, studies are analysed that compare SGLT2 inhibitors with other oral antidiabetic agents. Their unique mode of action, unloading the excess glycaemic load, contrasts with other oral agents that all act to counter the effects of diabetic hyperglycaemia.
Collapse
Affiliation(s)
- L H Opie
- University of Cape Town Medical School, Cape Town, South Africa,
| |
Collapse
|
2
|
Okuda T, Osawa C, Yamada H, Hayashi K, Nishikawa S, Ushio T, Kubo Y, Satou M, Ogawa H, Haga T. Transmembrane topology and oligomeric structure of the high-affinity choline transporter. J Biol Chem 2012; 287:42826-34. [PMID: 23132865 DOI: 10.1074/jbc.m112.405027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high-affinity choline transporter CHT1 mediates choline uptake essential for acetylcholine synthesis in cholinergic nerve terminals. CHT1 belongs to the Na(+)/glucose cotransporter family (SLC5), which is postulated to have a common 13-transmembrane domain core; however, no direct experimental evidence for CHT1 transmembrane topology has yet been reported. We examined the transmembrane topology of human CHT1 using cysteine-scanning analysis. Single cysteine residues were introduced into the putative extra- and intracellular loops and probed for external accessibility for labeling with a membrane-impermeable, sulfhydryl-specific biotinylating reagent in intact cells expressing these mutants. The results provide experimental evidence for a topological model of a 13-transmembrane domain protein with an extracellular amino terminus and an intracellular carboxyl terminus. We also constructed a three-dimensional homology model of CHT1 based on the crystal structure of the bacterial Na(+)/galactose cotransporter, which supports our conclusion of CHT1 transmembrane topology. Furthermore, we examined whether CHT1 exists as a monomer or oligomer. Chemical cross-linking induces the formation of a higher molecular weight form of CHT1 on the cell surface in HEK293 cells. Two different epitope-tagged CHT1 proteins expressed in the same cells can be co-immunoprecipitated. Moreover, co-expression of an inactive mutant I89A with the wild type induces a dominant-negative effect on the overall choline uptake activity. These results indicate that CHT1 forms a homo-oligomer on the cell surface in cultured cells.
Collapse
Affiliation(s)
- Takashi Okuda
- Department of Pharmacology, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kempner ES. Molecular size determination of enzymes by radiation inactivation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 61:107-47. [PMID: 3281417 DOI: 10.1002/9780470123072.ch3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- E S Kempner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Abstract
Na+-Cl--dependent neurotransmitter transporters (or neurotransmitter:Na+ symporters, NSS) share many structural and functional features, e.g. a conserved topology of 12 transmembrane spanning alpha-helices, the capacity to operate in two directions and in an electrogenic manner. Biochemical and biophysical experiments indicate that these transporters interact in oligomeric quaternary structures. Fluorescence resonance energy transfer (FRET) microscopy has provided evidence for a constitutive physical interaction of NSS at the cell surface and throughout the biosynthetic pathway. Two interfaces for protein-protein interaction have been shown to be important in NSS; these comprise a glycophorin-like motif and a leucine heptad repeat. Upon mutational modification of the latter, surface targeting is considerably impaired without concomitant loss in uptake activity. This supports a role of oligomer formation in the passage of the quality control mechanisms of the endoplasmic reticulum and/or Golgi. In contrast, oligomerisation is dispensable for substrate binding and translocation.
Collapse
Affiliation(s)
- Harald H Sitte
- Institute of Pharmacology, University of Vienna, Währinger Str 13a, A-1090 Vienna, Austria.
| | | |
Collapse
|
5
|
Lin JT, Kormanec J, Wehner F, Wielert-Badt S, Kinne RK. High-level expression of Na+/D-glucose cotransporter (SGLT1) in a stably transfected Chinese hamster ovary cell line. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:309-20. [PMID: 9733990 DOI: 10.1016/s0005-2736(98)00116-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The coding region of the high affinity Na+/d-glucose cotransporter (SGLT1) was inserted into the eukaryotic expression vector GFP-N1 under the control of a CMV promoter. The plasmid was then stably transfected into a Chinese hamster ovary cell line (CHO). Transcription and synthesis of SGLT1 were proved by Northern and Western blot analyses. Transport activities of the transfected cells (G6D3) were examined by measuring the sodium-dependent uptake of alpha-methyl[14C]d-glucoside (AMG). Kinetic analysis revealed a Vmax of 10.3 nmol/min/mg (total cell protein) and a Km of 0.26+/-0.09 mM, respectively. The concentration of phlorizin required to inhibit AMG uptake by 50% in the presence of 0.1 mM AMG was 2.35+/-1.84 microM. Electrophysiological studies showed that AMG induces a significant depolarization of membrane voltage in stably transfected CHO cells, suggesting an electrogenic Na-AMG symport. Immunoprecipitation with an antipeptide antibody yielded a nearly homogeneous polypeptide with a molecular mass of about 72 kDa. The amount of SGLT1 present in the CHO cell plasma membranes represents at least 1% of membrane protein, which is about 30-100 times higher than in natural sources, such as renal brush border membranes. In conclusion, the stably transfected G6D3 cells with a markedly high SGLT1 expression can serve as a promising model for studying cellular events related to Na+/d-glucose cotransport and for analyzing the structure and function of the cotransporter itself.
Collapse
Affiliation(s)
- J T Lin
- Max-Planck-Institut für molekulare Physiologie, Abteilung Epithelphysiologie, Rheinlanddamm 201, 44139 Dortmund, Germany
| | | | | | | | | |
Collapse
|
6
|
Jetté M, Vachon V, Potier M, Béliveau R. Radiation-inactivation analysis of the oligomeric structure of the renal sodium/D-glucose symporter. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1327:242-8. [PMID: 9271266 DOI: 10.1016/s0005-2736(97)00069-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The radiation-inactivation size (RIS) of the rat renal brush-border membrane sodium/D-glucose cotransporter was estimated from the loss of transport activity in irradiated membrane vesicles. The RIS depended on the electrochemical conditions present when measuring transport activity. A RIS of 294 +/- 40 kDa was obtained when transport was measured in the presence of a sodium electrochemical gradient. Under sodium equilibrium conditions, the RIS was 84 +/- 25 kDa in the presence of a glucose gradient, and 92 +/- 20 kDa in its absence. In the absence of a sodium gradient, but in the presence of an electrical potential gradient, the RIS increased to 225 +/- 49 kDa. The 294 kDa result supports earlier suggestions that the Na+ gradient-dependent glucose transport activity is mediated by a tetramer. Individual monomers appear, however, to carry out glucose transport under equilibrium exchange conditions or when a glucose gradient serves as the only driving force. The electrical potential gradient-driven glucose transport RIS appears to involve three functional subunits.
Collapse
Affiliation(s)
- M Jetté
- Laboratoire d'oncologie moléculaire, Université du Québec à Montréal, Canada
| | | | | | | |
Collapse
|
7
|
Koepsell H, Spangenberg J. Function and presumed molecular structure of Na(+)-D-glucose cotransport systems. J Membr Biol 1994; 138:1-11. [PMID: 8189427 DOI: 10.1007/bf00211064] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Functional characterization of Na(+)-D-glucose cotransport in intestine and kidney indicates the existence of heterogeneous Na(+)-D-glucose cotransport systems. Target size analysis of the transporting unit and model analysis of substrate binding have been performed and proteins have been cloned which mediate (SGLT1) and modulate (RS1) the expression of Na(+)-D-glucose cotransport. The experiments support the hypothesis that functional Na(+)-D-glucose cotransport systems in mammals are composed of two SGLT1-type subunits and may contain one or two RS1-type proteins. SGLT1 contains up to twelve membrane-spanning alpha-helices, whereas RS1 is a hydrophilic extracellular protein which is anchored in the brush-border membrane by a hydrophobic alpha-helix at the C-terminus. SGLT1 alone is able to translocate glucose together with sodium; however, RS1 increases the Vmax of transport expressed by SGLT1. In addition, the biphasic glucose dependence of transport, which is typical for kidney and has been often observed in intestine, was only obtained after coexpression of SGLT1 and RS1.
Collapse
Affiliation(s)
- H Koepsell
- Anatomisches Institut, Universität Würzburg, Germany
| | | |
Collapse
|
8
|
Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-D-glucose cotransporter. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74569-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Gerardi-Laffin C, Delque-Bayer P, Sudaka P, Poiree JC. Oligomeric structure of the sodium-dependent phlorizin binding protein from kidney brush-border membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1151:99-104. [PMID: 8357822 DOI: 10.1016/0005-2736(93)90076-c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immunodetection of solubilized kidney brush-border proteins on Western blots using antibodies against the 70 kDa phlorizin binding component of sodium-glucose cotransporter allows to identify an additional protein band with apparent molecular mass of 120 kDa in the presence of reducing agent dithiothreitol. Antibodies specifically eluted from the 70 kDa protein still recognize the 120 kDa protein on Western blot. The lack of dissociation of the 120 kDa protein from native brush borders or Triton X-100 extract in the presence of dithiothreitol can be improved by an extended incubation at 25 degrees C; this protein is full dissociated when purified by electroelution from polyacrylamide gel and gives two subunits with apparent molecular masses of 70 and 60 kDa by Coomassie staining and Western blot analysis. The effect of dithiothreitol on the renal brush-border membrane phlorizin binding is studied; a decrease in the number of high-affinity phlorizin binding sites without modification of the affinity to the binding molecule is observed. These data suggest that the high-affinity phlorizin binding moiety of sodium-glucose cotransporter exists in the kidney as a dimeric structure.
Collapse
|
10
|
|
11
|
Kinne R, Kinne‐Saffran E. Renal Plasma Membranes: Isolation, General Properties, and Biochemical Components. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Burckhardt G, Greger R. Principles of Electrolyte Transport Across Plasma Membranes of Renal Tubular Cells. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Delisle MC, Vachon V, Giroux S, Potier M, Laprade R, Béliveau R. Molecular size of the renal sodium/phosphate symporter in native and reconstituted systems. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1104:132-6. [PMID: 1550840 DOI: 10.1016/0005-2736(92)90141-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The size of the renal sodium/phosphate symporter was estimated with the radiation inactivation technique in isolated bovine brush border membrane vesicles and after reconstitution in proteoliposomes. The functional unit of the native phosphate carrier had a radiation inactivation size of 172 +/- 17 kDa. Identical values were obtained for the reconstituted carrier whether it was irradiated before or after the formation of the proteoliposomes (161 +/- 9 and 159 +/- 11 kDa, respectively). The sodium-independent uptake of phosphate was not affected significantly by radiation doses up to 10 Mrad. This activity is therefore not due to the reconstitution of a large phosphate-binding protein such as alkaline phosphatase. Furthermore, bromotetramisole, a specific inhibitor of phosphate binding to this enzyme, had no significant effect on the uptake of phosphate by the proteoliposomes.
Collapse
Affiliation(s)
- M C Delisle
- Département de chimie-biochemie, Université du Québec à Montréal, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Lever JE. Molecular Biology of Na
+
/Glucose Symport. Compr Physiol 1991. [DOI: 10.1002/cphy.cp060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Birk HW, Piberhofer S, Schütterle G, Haase W, Kötting J, Koepsell H. Analysis of Na+-D-glucose cotransporter and other renal brush border proteins in human urine. Kidney Int 1991; 40:823-37. [PMID: 1762286 DOI: 10.1038/ki.1991.282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A sensitive quantitative radioimmunoassay is described by which different antigens in the urine can be assayed simultaneously. Urinary excretion of three proteins from proximal tubules was compared: 1) the Na+-D-glucose cotransporter from brush border membranes and subapical vesicles; 2) a kidney-specific hydrophobic M(r) 400,000 polypeptide from intermicrovillar invaginations and subapical vesicles; and 3) villin from microvilli cores. In the normal urine about 50% of the excreted Na+-D-glucose cotransporter and villin, and about 25% of the M(r) 400,000 polypeptide was associated with brush border membrane vesicles, whereas the remaining fractions of the three proteins formed small sedimentable aggregates which contained some cholesterol and fatty acids but no phospholipids. The normal urinary excretion of the Na+-D-glucose cotransporter was correlated with that of villin and the M(r) 400,000 polypeptide. The data show that membrane proteins from the proximal tubule are excreted by the shedding of different brush border membrane areas. They suggest that some microvilli are released in total, and that a large fraction of the brush border membrane proteins is excreted without being associated with a phospholipid bilayer. In an attempt to define protein excretion patterns during kidney malfunctions, the excretion of brush border membrane proteins was analyzed after one intravenous injection of the X-ray contrast medium, iopamidol. No change in villin excretion was observed, but a reversible increase in the excretion of brush border membrane proteins was found in patients without diabetes. With diabetes a more pronounced iopamidol effect on the excretion of brush border membrane proteins and a significant increase in the excretion of villin was observed.
Collapse
Affiliation(s)
- H W Birk
- Medizinische Klinik II, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Hoppe A, Lin J, Onsgard M, Knox F, Dousa T. Quantitation of the Na(+)-Pi cotransporter in renal cortical brush border membranes. [14C]phosphonoformic acid as a useful probe to determine the density and its change in response to parathyroid hormone. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98989-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
17
|
Kwon HM. Radiation target sizes of the Na,K-ATPase and p-aminohippurate transport system in the basolateral membrane of renal proximal tubule. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1027:253-6. [PMID: 2168757 DOI: 10.1016/0005-2736(90)90315-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Basolateral membrane vesicles made from rabbit kidney proximal tubules were frozen and irradiated with a high energy electron beam and the effects of irradiation on Na,K-ATPase activity, p-aminohippurate (PAH) transport, the membrane diffusion barrier and vesicle volume were measured. The vesicle volume and diffusion barrier were not significantly changed by radiation exposure. Na,K-ATPase activity was inactivated as a simple exponential function of radiation dose. Target size analysis of the data yielded a molecular size of 267 +/- 17 kDa, consistent with its existence as a (alpha beta)2 dimer. The carrier-mediated PAH uptake by basolateral membrane vesicles was also inactivated as a function of radiation dose. A target molecular size of 74 +/- 16 kDa was calculated for the PAH transport system. This study is the first measurement of the functional size of the organic acid transport system based directly on flux measurements.
Collapse
Affiliation(s)
- H M Kwon
- Department of Physiology, State University of New York, Buffalo
| |
Collapse
|
18
|
Koepsell H, Fritzsch G, Korn K, Madrala A. Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis of phlorizin binding and D-glucose transport measurements. J Membr Biol 1990; 114:113-32. [PMID: 2342089 DOI: 10.1007/bf01869093] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Time courses of phlorizin binding to the outside of membrane vesicles from porcine renal outer cortex and outer medulla were measured and the obtained families of binding curves were fitted to different binding models. To fit the experimental data a model with two binding sites was required. Optimal fits were obtained if a ratio of low and high affinity phlorizin binding sites of 1:1 was assumed. Na+ increased the affinity of both binding sites. By an inside-negative membrane potential the affinity of the high affinity binding site (measured in the presence of 3 mM Na+) and of the low affinity binding site (measured in the presence of 3 or 90 mM Na+) was increased. Optimal fits were obtained when the rate constants of dissociation were not changed by the membrane potential. In the presence of 90 mM Na+ on both membrane sides and with a clamped membrane potential, KD values of 0.4 and 7.9 microM were calculated for the low and high affinity phlorizin binding sites which were observed in outer cortex and in outer medulla. Apparent low and high affinity transport sites were detected by measuring the substrate dependence of D-glucose uptake in membrane vesicles from outer cortex and outer medulla which is stimulated by an initial gradient of 90 mM Na+ (out greater than in). Low and high affinity transport could be fitted with identical Km values in outer cortex and outer medulla. An inside-negative membrane potential decreased the apparent Km of high affinity transport whereas the apparent Km of low affinity transport was not changed. The data show that in outer cortex and outer medulla of pig high and low affinity Na(+)-D-glucose cotransporters are present which contain low and high affinity phlorizin binding sites, respectively. It has to be elucidated from future experiments whether equal amounts of low and high affinity transporters are expressed in both kidney regions or whether the low and high affinity transporter are parts of the same glucose transport molecule.
Collapse
Affiliation(s)
- H Koepsell
- Max-Planck-Institut für Biophysik, Frankfurt Main, Federal Republic of Germany
| | | | | | | |
Collapse
|
19
|
Koepsell H, Seibicke S. Reconstitution and fractionation of renal brush border transport proteins. Methods Enzymol 1990; 191:583-605. [PMID: 2074777 DOI: 10.1016/0076-6879(90)91037-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Affiliation(s)
- B Sacktor
- Laboratory of Biological Chemistry, NIA, NIH, Baltimore, Maryland
| |
Collapse
|
21
|
Kempner ES, Fleischer S. Radiation inactivation of membrane components and molecular mass determination by target analysis. Methods Enzymol 1989; 172:410-39. [PMID: 2546015 DOI: 10.1016/s0076-6879(89)72027-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Abstract
This contribution first reviews the distribution of transport systems within the plasma membrane of the proximal tubule cell (polarity), with particular emphasis on transport systems located in the basal-lateral plasma membranes and on the role of cascade coupling in tubular transport. Then, the differences between transport systems in the pars convoluta and the pars recta of the proximal tubule are discussed (diversity). Finally, evidence is presented that changes in the microenvironment of sodium cotransport systems can alter the mode of operation of the transporter (plasticity). The two examples mainly addressed are the sodium-D-glucose and the sodium-glutamate cotransport system.
Collapse
Affiliation(s)
- R K Kinne
- Max-Planck-Institut für Systemphysiologie, Dortmund, Federal Republic of Germany
| |
Collapse
|
23
|
Honold K, Ludeke B, Hengartner H, Semenza G. Stimulation of intestinal Na+/D-glucose cotransport by monoclonal antibodies. J Membr Biol 1988; 105:165-75. [PMID: 2464065 DOI: 10.1007/bf02009169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The small intestinal brush border membrane is endowed with a number of transport systems. Monoclonal antibodies were produced against integral membrane proteins and tested for their ability to bind to such membranes. For this purpose papain-digested, deoxycholate-extracted BBMVs from rabbit small intestine were used to immunize mice. Of the 765 hybridoma supernatants tested, 119 gave a significantly higher extent of binding to the crude antigen preparation as compared with the background. The monoclonal antibodies were also tested for their ability to influence the sodium-dependent uptake of solutes into intact BBMVs. Two monoclonal antibodies clearly showed stimulation of secondary active D-glucose transport, whereas sodium-dependent uptake of L-alanine and L-proline was not affected. Hydrophobically labeled, i.e. intrinsic, membrane proteins of 175, 78 and 65 kilodaltons could be immunoprecipitated by both monoclonal antibodies, the 78 kDa band corresponding in all likelihood to the Na+/glucose cotransporter.
Collapse
Affiliation(s)
- K Honold
- Laboratory for Biochemistry, ETH-Zentrum, Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Kitlar T, Morrison AI, Kinne R, Deutscher J. Purification of a putative Na+/D-glucose cotransporter from pig kidney brush border membranes on a phlorizin affinity column. FEBS Lett 1988; 234:115-9. [PMID: 3292280 DOI: 10.1016/0014-5793(88)81315-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, was derivatised to 3-aminophlorizin and subsequently coupled to Affi-Gel 15. Affinity chromatography of pig kidney brush border membranes solubilised in Triton X-100 allowed the purification of a 60 kDa protein on this resin. We consider this protein to be the Na+/D-glucose cotransporter, or part of it, for the following reasons: (i) binding of this protein to Affi-Gel 15 specifically requires phlorizin covalently attached to the resin and is lowered when phlorizin is replaced by phloretin; (ii) binding of the 60 kDa protein to a phlorizin affinity column requires the presence of Na+; (iii) polyclonal as well as monoclonal antibodies against the 60 kDa protein inhibit binding of phlorizin to brush border membranes from rabbit and pig kidney.
Collapse
Affiliation(s)
- T Kitlar
- Max-Planck-Institut für Systemphysiologie, Dortmund, FRG
| | | | | | | |
Collapse
|
25
|
Béliveau R, Demeule M, Ibnoul-Khatib H, Bergeron M, Beauregard G, Potier M. Radiation-inactivation studies on brush-border-membrane vesicles. General considerations, and application to the glucose and phosphate carriers. Biochem J 1988; 252:807-13. [PMID: 3421923 PMCID: PMC1149219 DOI: 10.1042/bj2520807] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Radiation-inactivation studies were performed on brush-border-membrane vesicles purified from rat kidney cortex. No alteration of the structural integrity of the vesicles was apparent in electron micrographs of irradiated and unirradiated vesicles. The size distributions of the vesicles were also similar for both populations. The molecular sizes of two-brush-border-membrane enzymes, alkaline phosphatase and 5'-nucleotidase, estimated by the radiation-inactivation technique, were 104800 +/- 3500 and 89,400 +/- 1800 Da respectively. Polyacrylamide-gel-electrophoresis patterns of membrane proteins remained unaltered by the radiation treatment, except in the region of higher-molecular-mass proteins, where destruction of the proteins was visible. The molecular size of two of these proteins was estimated from their mobilities in polyacrylamide gels and was similar to the target size, estimated from densitometric scanning of the gel. Intravesicular volume, estimated by the uptake of D-glucose at equilibrium, was unaffected by irradiation. Uptake of Na+, D-glucose and phosphate were measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Na+-independent D-glucose and phosphate uptakes were totally unaffected in the dose range used (0-9 Mrad). The Na+-dependent uptake of D-glucose was studied in irradiated vesicles, and the molecular size of the transporter was found to be 288,000 Da. The size of the Na+-dependent phosphate carrier was also estimated, and a value of 234,000 Da was obtained.
Collapse
Affiliation(s)
- R Béliveau
- Département de Chimie, Université du Québec à Montréal, Canada
| | | | | | | | | | | |
Collapse
|
26
|
High affinity phlorizin binding to the LLC-PK1 cells exhibits a sodium:phlorizin stoichiometry of 2:1. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57377-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Molitoris BA, Kinne R. Ischemia induces surface membrane dysfunction. Mechanism of altered Na+-dependent glucose transport. J Clin Invest 1987; 80:647-54. [PMID: 3624482 PMCID: PMC442286 DOI: 10.1172/jci113117] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Reversible ischemia reduced renal cortical brush border membrane (BBM) Na+-dependent D-glucose uptake (336 +/- 31 vs. 138 +/- 30 pmol/mg per 2 s, P less than 0.01) but had no effect on Na+-independent glucose or Na+-dependent L-alanine uptake. The effect on D-glucose uptake was present after only 15 min of ischemia and was due to a reduction in maximum velocity (1913 +/- 251 vs. 999 +/- 130 pmol/mg per 2 s; P less than 0.01). This reduction was not due to more rapid dissipation of the Na+ gradient, altered sidedness of the vesicles, or an alteration in membrane potential. Ischemia did, however, reduce the BBM sphingomyelin-to-phosphatidylcholine (SPH/PC) and cholesterol-to-phospholipid ratios and the number of specific high-affinity Na+-dependent phlorizin binding sites (390 +/- 43 vs. 146 +/- 24 pmol/mg; P less than 0.01) without altering the binding dissociation constant (Kd). 20 mM benzyl alcohol also reduced the number of Na+-dependent phlorizin binding sites (418 +/- 65 vs. 117 +/- 46; P less than 0.01) without altering Kd. The reduction in Na+-dependent D-glucose transport correlated with ischemic-induced changes in the BBM SPH/PC and cholesterol-to-phospholipid ratios and membrane fluidity. Taken together these data indicate the cellular site responsible for ischemic-induced reduction in renal cortical transcellular glucose transport is the BBM. We propose the mechanism involves marked alterations in BBM lipids leading to large increases in BBM fluidity which reduces the binding capacity of Na+-dependent glucose carriers. These data indicate that reversible ischemia has profound effects on the surface membrane function of epithelial cells.
Collapse
|
28
|
|
29
|
Identification of D-glucose-binding polypeptides which are components of the renal Na+-D-glucose cotransporter. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61023-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Silverman M, Speight P. Isolation and partial purification of a Na+-dependent phlorizin receptor from dog kidney proximal tubule. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67093-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Murer H, Gmaj P. Transport studies in plasma membrane vesicles isolated from renal cortex. Kidney Int 1986; 30:171-86. [PMID: 3531673 DOI: 10.1038/ki.1986.169] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Poirée JC, Starita-Geribaldi M, Sudaka P. Separation and reconstitution of sodium-dependent glucose transport activity from renal brush-border membranes using gel-filtration chromatography. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 858:83-91. [PMID: 3707963 DOI: 10.1016/0005-2736(86)90293-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pig kidney brush-border membrane vesicles were solubilized using a final concentration of 1% Triton X-100, found optimal for quantitative reconstitution of D-glucose transport into liposomes. Using reconstituted proteoliposomes, selective permeability towards D-glucose compared to other sugars tested was shown as well as the main features of D-glucose transport in native membranes, namely sodium dependence and phlorizin inhibition of D-glucose accumulation. After removal of Triton X-100 from the detergent extract, some membrane proteins (about 40%), which are insoluble in the absence of detergent, were isolated. Among these proteins resolubilized by 1% Triton X-100, the component catalyzing the D-glucose transport was located by gel-filtration chromatography separation, using reconstitution of transport as the assay. The active fraction displayed a molecular size of 50 A; when analyzed on SDS polyacrylamide gel electrophoresis, it contained one major protein subunit with an apparent molecular weight close to 65,000. We conclude that this protein fraction is involved in D-glucose transport by renal brush borders.
Collapse
|
33
|
Neeb M, Fasold H, Koepsell H. Identification of the D-glucose binding polypeptide of the renal Na+-D-glucose cotransporter with a covalently binding D-glucose analog. FEBS Lett 1985; 182:139-44. [PMID: 3838282 DOI: 10.1016/0014-5793(85)81171-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The covalently binding D-glucose analog 10-N-(bromoacetyl)amino-1-decyl-beta-D-glucopyranoside (BADG) was synthesised and shown to be a high-affinity inhibitor of the renal Na+-D-glucose contransporter. From renal brush-border membranes a protein fraction was isolated, in which the concentration of Na+-dependent phlorizin binding sites per mg protein was enriched 7-fold. In labeling experiments with this protein fraction a polypeptide of Mr approximately 79000 was identified as containing the D-glucose binding site of the renal Na+-D-glucose cotransporter.
Collapse
|
34
|
Kinne R, Koenig B, Hannafin J, Kinne-Saffran E, Scott DM, Zierold K. The use of membrane vesicles to study the NaCl/KCl cotransporter involved in active transepithelial chloride transport. Pflugers Arch 1985; 405 Suppl 1:S101-5. [PMID: 4088825 DOI: 10.1007/bf00581788] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Properties of the NaCl/KCl cotransport system were investigated in isolated membranes by flux measurements and binding studies. Chloride competes with "furosemide-like loop diuretics" for its two binding sites at the cotransporter as evidenced by the decrease in piretanide sensitivity of sodium flux and inhibition of high affinity N-methylfurosemide binding by chloride in rectal gland plasma membranes. In the rectal gland lithium inhibits sodium flux but is not translocated whereas in the renal thick ascending limb (TALH) it is also transported. Ammonium is a substrate for the sodium and potassium site in the rectal gland but only for the potassium site in the TALH. The latter finding raises the possibility that part of the ammonium reabsorption in the TALH is mediated by the cotransport system as NaCl/NH4Cl cotransport.
Collapse
|