1
|
Alekseeva AS, Volynsky PE, Krylov NA, Chernikov VP, Vodovozova EL, Boldyrev IA. Phospholipase A2 way to hydrolysis: Dint formation, hydrophobic mismatch, and lipid exclusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183481. [PMID: 33002451 DOI: 10.1016/j.bbamem.2020.183481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
Phospholipase A2 (PLA2) exerts a wide range of biological effects and attracts a lot of attention of researchers. Two sites are involved in manifestation of PLA2 enzymatic activity: catalytic site responsible for substrate binding and fatty acid cleavage from the sn-2 position of a glycerophospholipid, and interface binding site (IBS) responsible for the protein binding to lipid membrane. IBS is formed by positively charged and hydrophobic amino acids on the outer surface of the protein molecule. Understanding the mechanism of PLA2 interaction with the lipid membrane is the most challenging step in biochemistry of this enzyme. We used a combination of experimental and computer simulation techniques to clarify molecular details of bee venom PLA2 interaction with lipid bilayers formed by palmitoyloleoylphosphatidylcholine or dipalmitoylphosphatidylcholine. We found that after initial enzyme contact with the membrane, a network of hydrogen bonds was formed. This led to deformation of the interacting leaflet and dint formation. The bilayer response to the deformation depended on its phase state. In a gel-phase bilayer, diffusion of lipids is restricted therefore chain melting occurred in both leaflets of the bilayer. In the case of a fluid-phase bilayer, lateral diffusion is possible, and lipid polar head groups were excluded from the contact area. As a result, the bilayer became thinner and a large hydrophobic area was formed. We assume that relative ability of a bilayer to come through lipid redistribution process defines the rate of initial stages of the catalysis.
Collapse
Affiliation(s)
- Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Valery P Chernikov
- Scientific Research Institute of Human Morphology, Tsyurupy st., 3, 117418 Moscow, Russia
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia.
| |
Collapse
|
2
|
Qin SS, Yu YX, Li QK, Yu ZW. Interaction of Human Synovial Phospholipase A2 with Mixed Lipid Bilayers: A Coarse-Grain and All-Atom Molecular Dynamics Simulation Study. Biochemistry 2013; 52:1477-89. [DOI: 10.1021/bi3012687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shan-Shan Qin
- Key Laboratory of Bioorganic
Phosphorous Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yang-Xin Yu
- Laboratory of Chemical Engineering
Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Qi-Kai Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic
Phosphorous Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Assay of phospholipases A(2) and their inhibitors by kinetic analysis in the scooting mode. Mediators Inflamm 2012; 1:85-100. [PMID: 18475447 PMCID: PMC2365326 DOI: 10.1155/s0962935192000164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Several cellular processes are regulated by interfacial catalysis on biomembrane surfaces. Phospholipases A2 (PLA2) are interesting not only as prototypes for interfacial catalysis, but also because they mobilize precursors for the biosynthesis of eicosanoids and platelet activating factor, and these agents ultimately control a wide range of secretory and inflammatory processes. Since PLA2 carry out their catalytic function at membrane surfaces, the kinetics of these enzymes depends on what the enzyme ‘sees’ at the interface, and thus the observed rate is profoundly influenced by the organization and dynamics of the lipidwater interface (‘quality of the interface’). In this review we elaborate the advantages of monitoring interfacial catalysis in the scooting mode, that is, under the conditions where the enzyme remains bound to vesicles for several thousand catalytic turnover cycles. Such a highly processive catalytic turnover in the scooting mode is useful for a rigorous and quantitative characterization of the kinetics of interfacial catalysis. This analysis is now extended to provide insights into designing strategy for PLA2 assays and screens for their inhibitors.
Collapse
|
4
|
Berg OG, Yu BZ, Jain MK. Thermodynamic reciprocity of the inhibitor binding to the active site and the interface binding region of IB phospholipase A2. Biochemistry 2009; 48:3209-18. [PMID: 19301847 DOI: 10.1021/bi801244u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interfacial activation of pig pancreatic IB phospholipase A(2) (PLA2) is modeled in terms of the three discrete premicellar complexes (E(i)(#), i = 1, 2, or 3) consecutively formed by the cooperative binding of a monodisperse amphiphile to the i-face (the interface binding region of the enzyme) without or with an occupied active site. Monodisperse PCU, the sn-2-amide analogue of the zwitterionic substrate, is a competitive inhibitor. PCU cooperatively binds to the i-face to form premicellar complexes (E(i), i = 1 or 2) and also binds to the active site of the premicellar complexes in the presence of calcium. In the E(i)I complex formed in the presence of PCU and calcium, one inhibitor molecule is bound to the active site and a number of others are bound to the i-face. The properties of the E(i) complexes with PCU are qualitatively similar to those of E(i)(#) formed with decylsulfate. Decylsulfate binds to the i-face but does not bind to the active site in the presence of calcium, nor does it interfere with the binding of PCU to the active site in the premicellar complexes. Due to the strong coupling between binding at the i-face and at the active site, it is difficult to estimate the primary binding constants for each site in these complexes. A model is developed that incorporates the above boundary conditions in relation to a detailed balance between the complexes. A key result is that a modest effect on cooperative amphiphile binding corresponds to a large change in the affinity of the inhibitor for the active site. We suggest that besides the binding to the active site, PCU also binds to another site and that full activation requires additional amphiphiles on the i-face. Thus, the activation of the inhibitor binding to the active site of the E(2)(#) complex or, equivalently, the shift in the E(1)(#) to E(2)(#) equilibrium by the inhibitor is analogous to the allosteric activation of the substrate binding to the enzyme bound to the interface.
Collapse
Affiliation(s)
- Otto G Berg
- Department of Molecular Evolution, Uppsala University Evolutionary Biology Center, Uppsala, Sweden
| | | | | |
Collapse
|
5
|
Bai S, Jain MK, Berg OG. Contiguous binding of decylsulfate on the interface-binding surface of pancreatic phospholipase A2. Biochemistry 2008; 47:2899-907. [PMID: 18260608 DOI: 10.1021/bi702164n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pig pancreatic IB phospholipase A 2 (PLA2) forms three distinguishable premicellar E i (#) ( i = 1, 2, and 3) complexes at successively higher decylsulfate concentrations. The Hill coefficient for E 1 (#) is n 1 = 1.6, and n 2 and n 3 for E 2 (#) and E 3 (#) are about 8 each. Saturation-transfer difference nuclear magnetic resonance (NMR) and other complementary results with PLA2 show that decylsulfate molecules in E 2 (#) and E 3 (#) are contiguously and cooperatively clustered on the interface-binding surface or i-face that makes contact with the substrate interface. In these complexes, the saturation-transfer difference NMR signatures of (1)H in decylsulfate are different. The decylsulfate epitope for the successive E i (#) complexes increasingly resembles the micellar complex formed by the binding of PLA2 to preformed micelles. Contiguous cooperative amphiphile binding is predominantly driven by the hydrophobic effect with a modest electrostatic shielding of the sulfate head group in contact with PLA2. The formation of the complexes is also associated with structural change in the enzyme. Calcium affinity of E 2 (#) appears to be modestly lower than that of the free enzyme and E 1 (#). Binding of decylsulfate to the i-face does not require the catalytic calcium required for the substrate binding to the active site and for the chemical step. These results show that E i (#) complexes are useful to structurally characterize the cooperative sequential and contiguous binding of amphiphiles on the i-face. We suggest that the allosteric changes associated with the formation of discrete E i (#) complexes are surrogates for the catalytic and allosteric states of the interface activated PLA2.
Collapse
Affiliation(s)
- Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
6
|
Birts CN, Barton CH, Wilton DC. A Catalytically Independent Physiological Function for Human Acute Phase Protein Group IIA Phospholipase A2. J Biol Chem 2008; 283:5034-45. [DOI: 10.1074/jbc.m708844200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Winget JM, Pan YH, Bahnson BJ. The interfacial binding surface of phospholipase A2s. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1260-9. [PMID: 16962825 DOI: 10.1016/j.bbalip.2006.08.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 07/19/2006] [Accepted: 08/01/2006] [Indexed: 11/17/2022]
Abstract
For membrane-associated enzymes, which access substrate from either a monolayer or bilayer of the aggregate substrate, the partitioning from the aqueous phase to this phospholipid interface is critical for catalysis. Despite a large and expanding body of knowledge regarding interfacial enzymes, the biophysical steps involved in interfacial recognition and adsorption remain relatively poorly understood. The surface of the enzyme that contacts the phospholipid surface is referred to as its interfacial binding surface, or more simply, its i-face. The interaction of a protein's i-face with the aggregate substrate may simply control access to substrate. However, it can be more complex, and this interaction often serves to allosterically activate the enzyme on this surface. First we briefly review what is currently known about i-face structure and function for a prototypical interfacial enzyme, the secreted Phospholipase A2 (PLA2). Then we develop, characterize, compare, and discuss models of the PLA2 i-face across a subset of five homologous PLA2 family members, groups IA, IB, IIA, V, and X. A homology model of human group-V is included in this comparison, suggesting that a similar approach could be used to explore interfacial function of any of the PLA2 family members. Despite moderate sequence identity, structural homology and sequence similarity are well conserved. We find that the residues predicted to be interfacial, while conserved structurally, are not highly conserved in sequence. Implications for this divergence on interfacial selectivity are discussed.
Collapse
Affiliation(s)
- Jason M Winget
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
8
|
Tsai YC, Yu BZ, Wang YZ, Chen J, Jain MK. Desolvation map of the i-face of phospholipase A2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:653-65. [PMID: 16730646 DOI: 10.1016/j.bbamem.2006.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/06/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
The changes in the microenvironment of the Trp-3 on the i-face of pig pancreatic IB phospholipase A2 (PLA2) provide a measure of the tight contact (Ramirez and Jain, Protein Sci. 9, 229-239, 1991) with the substrate interface during the processive interfacial turnover. Spectral changes from the single Trp-substituent at position 1, 2, 6, 10, 19, 20, 31, 53, 56 or 87 on the surface of W3F PLA2 are used to probe the Trp-environment. Based on our current understanding only the residue 87 is away from i-face, therefore all other mutants are well suited to report modest differences along the i-face. All Trp-mutants bind tightly to anionic vesicles. Only those with Trp at 1, 2 or 3 near the rim of the active site on the i-face cause significant perturbation of the catalytic functions. Most other Trp-mutants showed < 3-fold change in the interfacial processive turnover rate and the competitive inhibition by MJ33. Binding of calcium to the enzyme in the aqueous phase had modest effect on the Trp-emission intensity. However, on the binding of the enzyme to the interface the fluorescence change is large, and the rate of oxidation of the Trp-substituent with N-bromosuccinimide depends on the location of the Trp-substituent. These results show that the solvation environment of the Trp-substituents on the i-face is shielded in the enzyme bound to the interface. Additional changes are noticeable if the active site of the bound enzyme is also occupied, however, the catalytically inert zymogen of PLA2 (proPLA2) does not show such changes. Significance of these results in relation to the changes in the solvent accessibility and desolvation of the i-face of PLA2 at the interface is discussed.
Collapse
Affiliation(s)
- Yu-Cheng Tsai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
9
|
Tatulian SA, Qin S, Pande AH, He X. Positioning Membrane Proteins by Novel Protein Engineering and Biophysical Approaches. J Mol Biol 2005; 351:939-47. [PMID: 16055150 DOI: 10.1016/j.jmb.2005.06.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/07/2005] [Accepted: 06/30/2005] [Indexed: 11/22/2022]
Abstract
Membrane proteins are unique, in that they can function properly only when they are bound to cellular membranes in a distinct manner. Therefore, positioning of membrane proteins with respect to the membrane is required in addition to the three-dimensional structures in order to understand their detailed molecular mechanisms. Atomic-resolution structures of membrane proteins that have been determined to date provide the atom coordinates in arbitrary coordinate systems with no relation to the membrane and therefore provide little or no information on how the protein would interact with the membrane. This is especially true for peripheral membrane proteins, because they, unlike integral proteins, are devoid of well-defined hydrophobic transmembrane domains. Here, we present a novel technique for determination of the configuration of a protein-membrane complex that involves protein ligation, segmental isotope labeling, polarized infrared spectroscopy, membrane depth-dependent fluorescence quenching, and analytical geometry algorithms. We have applied this approach to determine the structure of a membrane-bound phospholipase A2. Our results provide an unprecedented structure of a membrane-bound protein in which the z-coordinate of each atom is the distance from the membrane center and therefore allows precise location of each amino acid relative to the membrane. Given the functional significance of the orientation and location of membrane-bound proteins with respect to the membrane, we propose to specify this structural feature as the "quinary" structure of membrane proteins.
Collapse
Affiliation(s)
- Suren A Tatulian
- Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| | | | | | | |
Collapse
|
10
|
Justesen PH, Kristensen T, Ebdrup T, Otzen D. Investigating porcine pancreatic phospholipase A2 action on vesicles and supported planar bilayers using a quartz crystal microbalance with dissipation. J Colloid Interface Sci 2004; 279:399-409. [PMID: 15464804 DOI: 10.1016/j.jcis.2004.06.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 06/27/2004] [Indexed: 11/15/2022]
Abstract
We present an investigation of the activity of porcine pancreatic phospholipase A2 towards phospholipids. The phospholipids are presented in three different ways, namely as tethered vesicles, intact surface-bound vesicles, and supported planar bilayers (SPBs). The process is followed using a quartz crystal microbalance which measures both the frequency shift and the energy dissipation factor. This technique is very sensitive not only to the mass of the material deposited on the crystal, but also to its viscoelasticity. The breakdown of the phospholipid vesicles and bilayers consequently gives rise to very large signal changes. Enzyme binding is separated from vesicle hydrolysis using nonhydrolyzable ether lipids. Intact and tethered vesicles give rise to the same profile, indicating that direct immobilization of the vesicles does not affect hydrolysis significantly. The data fit well to a Voight-based model describing the change in film structure with time. Initial enzyme binding to intact vesicles is accompanied by a significant increase in layer thickness as well as a decrease in viscosity and shear modulus. This effect, which is less pronounced in SPBs, is probably mainly due to the accumulation of hydrolysis products in the vesicle prior to rupture of the vesicles and release of bound water, since it disappears when lysolipid is included in the vesicles prior to hydrolysis.
Collapse
Affiliation(s)
- Pernille H Justesen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | |
Collapse
|
11
|
Tatulian SA. Structural effects of covalent inhibition of phospholipase A2 suggest allosteric coupling between membrane binding and catalytic sites. Biophys J 2003; 84:1773-83. [PMID: 12609879 PMCID: PMC1302746 DOI: 10.1016/s0006-3495(03)74985-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) binds to membranes and catalyzes phospholipid hydrolysis, thus initiating the biosynthesis of lipid-derived mediators of inflammation. A snake-venom PLA(2) was completely inhibited by covalent modification of the catalytic histidine 48 by p-bromophenacyl bromide. Moreover, His(48) modification affected PLA(2) structure, its membrane-binding affinity, and the effects of PLA(2) on the membrane structure. The native PLA(2) increased the order parameter of fluid membranes, whereas the opposite effect was observed for gel-state membranes. The data suggest membrane dehydration by PLA(2) and the formation of PLA(2)-membrane hydrogen bonding. The inhibited PLA(2) had lower membrane-binding affinity and exerted weaker effects on membrane hydration and on the lipid-order parameter. Although membrane binding resulted in formation of more flexible alpha-helices in the native PLA(2), which corresponds to faster amide hydrogen exchange, the modified enzyme was more resistant to hydrogen exchange and experienced little structural change upon membrane binding. The data suggest that 1), modification of a catalytic residue of PLA(2) induces conformational changes that propagate to the membrane-binding surface through an allosteric mechanism; 2), the native PLA(2) acquires more dynamic properties during interfacial activation via membrane binding; and 3), the global conformation of the inhibited PLA(2), including the alpha-helices, is less stable and is not influenced by membrane binding. These findings provide further evidence for an allosteric coupling between the membrane-binding (regulatory) site and the catalytic center of PLA(2), which contributes to the interfacial activation of the enzyme.
Collapse
Affiliation(s)
- Suren A Tatulian
- Biomolecular Science Center and Department of Molecular Biology and Microbiology, University of Central Florida, Orlando 32826, USA.
| |
Collapse
|
12
|
Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, Rouault M, Sadilek M, Nguyen E, Lazdunski M, Lambeau G, Gelb MH. Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2. J Biol Chem 2002; 277:48535-49. [PMID: 12359733 DOI: 10.1074/jbc.m205855200] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the full set of human and mouse groups I, II, V, X, and XII secreted phospholipases A(2) (sPLA(2)s) in Escherichia coli and insect cells has provided pure recombinant enzymes for detailed comparative interfacial kinetic and binding studies. The set of mammalian sPLA(2)s display dramatically different sensitivity to dithiothreitol. The specific activity for the hydrolysis of vesicles of differing phospholipid composition by these enzymes varies by up to 4 orders of magnitude, and yet all enzymes display similar catalytic site specificity toward phospholipids with different polar head groups. Discrimination between sn-2 polyunsaturated versus saturated fatty acyl chains is <6-fold. These enzymes display apparent dissociation constants for activation by calcium in the 1-225 microm range, depending on the phospholipid substrate. Analysis of the inhibition by a set of 12 active site-directed, competitive inhibitors reveals a large variation in the potency among the mammalian sPLA(2)s, with Me-Indoxam being the most generally potent sPLA(2) inhibitor. A dramatic correlation exists between the ability of the sPLA(2)s to hydrolyze phosphatidylcholine-rich vesicles efficiently in vitro and the ability to release arachidonic acid when added exogenously to mammalian cells; the group V and X sPLA(2)s are uniquely efficient in this regard.
Collapse
Affiliation(s)
- Alan G Singer
- Department of Chemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Berg OG, Gelb MH, Tsai MD, Jain MK. Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem Rev 2001; 101:2613-54. [PMID: 11749391 DOI: 10.1021/cr990139w] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- O G Berg
- Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
14
|
Bezzine S, Koduri RS, Valentin E, Murakami M, Kudo I, Ghomashchi F, Sadilek M, Lambeau G, Gelb MH. Exogenously added human group X secreted phospholipase A(2) but not the group IB, IIA, and V enzymes efficiently release arachidonic acid from adherent mammalian cells. J Biol Chem 2000; 275:3179-91. [PMID: 10652303 DOI: 10.1074/jbc.275.5.3179] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian secreted phospholipases A(2) (sPLA2s) comprise a group of at least eight enzymes, including the recently identified group X sPLA2. A bacterial expression system was developed to produce human group X sPLA2 (hGX). Inhibition studies show that the sPLA2 inhibitor LY311727 binds modestly more tightly to human group IIA sPLA2 than to hGX and that a pyrazole-based inhibitor of group IIA sPLA2 is much less active against hGX. The phospholipid head group preference of vesicle-bound hGX was determined. hGX binds tightly to phosphatidylcholine vesicles, which is thought to be required to act efficiently on cells. Tryptophan 67 hGX makes a significant contribution to interfacial binding to zwitterionic vesicles. As little as 10 ng/ml hGX releases arachidonic acid for cyclooxygenase-2- dependent prostaglandin E(2) generation when added exogenously to adherent mammalian cells. In contrast, human group IIA, rat group V, and mouse group IB sPLA2s are virtually inactive at releasing arachidonate when added exogenously to adherent cells. Dislodging cells from the growth surface enhances the ability of all the sPLA2s to release fatty acids. Studies with CHO-K1 cell mutants show that binding of sPLA2s to glycosaminoglycans is not the basis for poor plasma membrane hydrolysis by group IB, IIA, and V sPLA2s.
Collapse
Affiliation(s)
- S Bezzine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Valentin E, Koduri RS, Scimeca JC, Carle G, Gelb MH, Lazdunski M, Lambeau G. Cloning and recombinant expression of a novel mouse-secreted phospholipase A2. J Biol Chem 1999; 274:19152-60. [PMID: 10383420 DOI: 10.1074/jbc.274.27.19152] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) form a class of structurally related enzymes that are involved in a variety of physiological and pathological effects including inflammation and associated diseases, cell proliferation, cell adhesion, and cancer, and are now known to bind to specific membrane receptors. Here, we report the cloning and expression of a novel sPLA2 isolated from mouse thymus. Based on its structural features, this sPLA2 is most similar to the previously cloned mouse group IIA sPLA2 (mGIIA sPLA2). As for mGIIA sPLA2, the novel sPLA2 is made up of 125 amino acids with 14 cysteines, is basic (pI = 8.71) and its gene has been mapped to mouse chromosome 4. However, the novel sPLA2 has only 48% identity with mGIIA and displays similar levels of identity with the other mouse group IIC and V sPLA2s, indicating that the novel sPLA2 is not an isoform of mGIIA sPLA2. This novel sPLA2 has thus been called mouse group IID (mGIID) sPLA2. In further contrast with mGIIA, which is found mainly in intestine, transcripts coding for mGIID sPLA2 are found in several tissues including pancreas, spleen, thymus, skin, lung, and ovary, suggesting distinct functions for the two enzymes. Recombinant expression of mGIID sPLA2 in Escherichia coli indicates that the cloned sPLA2 is an active enzyme that has much lower specific activity than mGIIA and displays a distinct specificity for binding to various phospholipid vesicles. Finally, recombinant mGIID sPLA2 did not bind to the mouse M-type sPLA2 receptor, while mGIIA was previously found to bind to this receptor with high affinity.
Collapse
Affiliation(s)
- E Valentin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UPR 411, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Koduri RS, Baker SF, Snitko Y, Han SK, Cho W, Wilton DC, Gelb MH. Action of human group IIa secreted phospholipase A2 on cell membranes. Vesicle but not heparinoid binding determines rate of fatty acid release by exogenously added enzyme. J Biol Chem 1998; 273:32142-53. [PMID: 9822691 DOI: 10.1074/jbc.273.48.32142] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human group IIa phospholipase A2 (hIIa-PLA2) is a highly basic protein that is secreted from a number of cells during inflammation and may play a role in arachidonate liberation and in destruction of invading bacteria. It has been proposed that rodent group IIa PLA2 is anchored to cell surfaces via attachment to heparan sulfate proteoglycan and that this interaction facilitates lipolysis. hIIa-PLA2 contains 13 lysines, 2 histidines, and 10 arginines that fall into 10 clusters. A panel of 26 hIIa-PLA2 mutants were prepared in which 1-4 basic residues in each cluster were changed to glutamate or aspartate (charge reversal). A detailed analysis of the affinities of these mutants for anionic vesicles and for heparin and heparan sulfate in vitro and of the specific activities of these proteins for hydrolysis of vesicles in vitro and of living cell membranes reveal the following trends: 1) the affinity of hIIa-PLA2 for heparin and heparan sulfate is modulated not by a highly localized site of basic residues but by diffuse sites that partially overlap with the interfacial binding site. In contrast, only those residues on the interfacial binding site of hIIa-PLA2 are involved in binding to membranes; 2) the relative ability of these mutants to hydrolyze cellular phospholipids when enzymes were added exogenously to CHO-K1, NIH-3T3, and RAW 264.7 cells correlates with their relative in vitro affinity for vesicles and not with their affinity for heparin and heparan sulfate. 3) The rates of exogenous hIIa-PLA2-catalyzed fatty acid release from wild type CHO-K1 cells and two mutant lines, one lacking glycosaminoglycan and one lacking heparan sulfate, were similar. Thus basic residues that modulate interfacial binding are important for plasma membrane fatty acid release by exogenously added hIIa-PLA2. Binding of hIIa-PLA2 to cell surface heparan sulfate does not modulate plasma membrane phospholipid hydrolysis by exogenously added hIIa-PLA2.
Collapse
Affiliation(s)
- R S Koduri
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Costabel MD, Vallejo DF, Grigera JR. Electrostatics of the phospholipase-membrane interaction. Int J Biol Macromol 1998; 23:185-9. [PMID: 9777705 DOI: 10.1016/s0141-8130(98)00045-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electrostatic interaction of the Phospholipase A2 (PLA2)-membrane complex in the presence and absence of calcium is analysed by the computation of the electrostatic profiles of the components and the complex. The electrostatic potential was computed by using of the program MOLPOT that implement the boundary element method to solve the electrostatic problem. It considers a closed surface in three dimensions that contains the macromolecule that follows as close as possible the macromolecule shape. The results show that the presence of calcium ions contributes to the stability of the complex and at the same time creates a favourable electrostatic potential pattern that may be favourable for the lipolysis of the membrane components.
Collapse
Affiliation(s)
- M D Costabel
- Departamento de Física, Universidad Nacional del Sur, Bahia Blanca, Argentina
| | | | | |
Collapse
|
18
|
Kinkaid AR, Wilton DC. The hydrolysis of phosphatidyl-alcohols by phospholipases A2: effect of head group size and polarity. Biochem Pharmacol 1997; 54:1331-9. [PMID: 9393676 DOI: 10.1016/s0006-2952(97)00323-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability of a variety of secretory phospholipases A2 (sPLA2: EC 3.1.1.4) to bind to and hydrolyse a series of phosphatidyl-alcohol substrates, in the absence of detergent, was explored by both fluorescence-based kinetic and interfacial binding assays. The enzymes used were sPLA2 from porcine pancreas, Naja naja venom and a recombinant human non-pancreatic enzyme. Four dioleoyl phosphatidyl-alcohols were used with different headgroups, methanol, ethanol, propanol and butanol. Comparative kinetic analyses with dioleoyl phosphatidyl-choline, dioleoyl phosphatidyl-glycerol and wheat germ phosphatidyl-inositol are also described. With the phosphatidyl-alcohol series, as the headgroup acyl-chain length increased the susceptibility to hydrolysis decreased. This effect was much more pronounced with the human non-pancreatic and the Naja naja venom enzymes than with the pancreatic enzyme. Maximum activity in this assay system was observed with porcine pancreatic sPLA2 and dioleoyl phosphatidyl-methanol (1440 +/- 167 micromol/min/mg). We demonstrate that the slow rate of hydrolysis of dioleoyl phosphatidyl-propanol by the human non-pancreatic secretory enzyme (4.56 +/- 0.90 micromol/min/mg) is not due to a lack of interfacial binding. The hydrolysis of mixtures of dioleoyl phosphatidyl-choline and dioleoyl phosphatidyl-propanol in various molar proportions by Naja naja sPLA2 suggests good mixing of the two phospholipids with minimal phospholipid domain formation under these assay conditions. We present strong evidence for a stimulation of hydrolysis of phosphatidyl-choline by human non-pancreatic sPLA2 in the presence of as little as 1 mol% phosphatidyl-methanol (<40 fold total rate enhancement). Overall, the results demonstrate that the rates of hydrolysis of anionic phospholipids by sPLA2 vary considerably with the different enzymes from this close structurally related family. The tight binding of the human enzyme to poorly hydrolysable anionic phospholipid vesicles provides a novel mechanism of enzyme inhibition by interfacial sequestration.
Collapse
Affiliation(s)
- A R Kinkaid
- Department of Biochemistry, University of Southampton, UK
| | | |
Collapse
|
19
|
Basáñez G, Ruiz-Argüello MB, Alonso A, Goñi FM, Karlsson G, Edwards K. Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. Biophys J 1997; 72:2630-7. [PMID: 9168038 PMCID: PMC1184460 DOI: 10.1016/s0006-3495(97)78906-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cryo-transmission electron microscopy has been applied to the study of the changes induced by phospholipase C on large unilamellar vesicles containing phosphatidylcholine, as well as to the action of sphingomyelinase on vesicles containing sphingomyelin. In both cases vesicle aggregation occurs as the earliest detectable phenomenon; later, each system behaves differently. Phospholipase C induces vesicle fusion through an intermediate consisting of aggregated and closely packed vesicles (the "honeycomb structure") that finally transforms into large spherical vesicles. The same honeycomb structure is also observed in the absence of enzyme when diacylglycerols are mixed with the other lipids in organic solution, before hydration. In this case the sample then evolves toward a cubic phase. The fact that the same honeycomb intermediate can lead to vesicle fusion (with enzyme-generated diacylglycerol) or to a cubic phase (when diacylglycerol is premixed with the lipids) is taken in support of the hypothesis according to which a highly curved lipid structure ("stalk") would act as a structural intermediate in membrane fusion. Sphingomyelinase produces complete leakage of vesicle aqueous contents and an increase in size of about one-third of the vesicles. A mechanism of vesicle opening and reassembling is proposed in this case.
Collapse
Affiliation(s)
- G Basáñez
- Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The desolvation of lipid molecules in a complex of the enzyme human synovial phospholipase A2 with a lipid membrane is investigated as a mechanism that enhances the overall activity of the enzyme. For this purpose the interaction of the enzyme phospholipase A2 with a dilauryl-phosphatityl-ethanolamin (DLPE) membrane monolayer surface has been studied by means of molecular dynamics simulations. Two enzyme-membrane complexes, a loose and a tight complex, are considered. For comparison, simulations are also carried out for the enzyme in aqueous solution. The conformation, dynamics, and energetics of the three systems are compared, and the interactions between the protein and lipid molecules are analyzed. Free energies of solvation are calculated for the lipid molecules in the enzyme-membrane interface. Along with the calculated dielectric susceptibility at this interface, the results show the desolvation of lipids in a tightly bound, but not in a loosely bound protein-membrane complex. The desolvated lipids are found to interact mainly with hydrophobic protein residues, including Leu-2, Val-3, Ala-18, Leu-19, Phe-24, Val-31, and Phe-70. The results also explain why the turnover rate of phospholipase A2 complexed to a membrane is enhanced after a critical amount of negatively charged reaction product is accumulated.
Collapse
Affiliation(s)
- F Zhou
- Department of Biophysics, University of Illinois at Urbana-Champaign 61801, USA
| | | |
Collapse
|
21
|
Jain MK, Gelb MH, Rogers J, Berg OG. Kinetic basis for interfacial catalysis by phospholipase A2. Methods Enzymol 1995; 249:567-614. [PMID: 7791627 DOI: 10.1016/0076-6879(95)49049-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M K Jain
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, USA
| | | | | | | |
Collapse
|
22
|
Jain MK, Krause CD, Buckley JT, Bayburt T, Gelb MH. Characterization of interfacial catalysis by Aeromonas hydrophila lipase/acyltransferase in the highly processive scooting mode. Biochemistry 1994; 33:5011-20. [PMID: 8172876 DOI: 10.1021/bi00183a003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A glycerophospholipid:cholesterol acyltransferase (GCAT) that also has lipase activity is secreted by the bacterium Aeromonas hydrophila. Hydrolysis of the sn-2-ester bond of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol (DMPM) vesicles by this enzyme is shown to occur in a highly processive scooting mode in which the enzyme, substrate, and the products of hydrolysis remain bound to the vesicle interface. This conclusion is based on the following observations. (a) When there is an excess of vesicles over enzyme, the hydrolysis of the sn-2-acyl group ceases after only a fraction of the total available substrate is hydrolyzed. Addition of more enzyme, but not of more substrate, leads to a new round of hydrolysis. (b) The extent of hydrolysis of vesicles per enzyme increases with the size of the vesicles, and it corresponds to the total hydrolysis of the outer monolayer of one vesicle by one enzyme. (c) The enzyme bound to vesicles composed of reaction products or of the non-hydrolyzable phospholipid 1,2-ditetradecyl-sn-glycero-3-phosphomethanol (DTPM) is not able to undergo intervesicle exchange. Instead, intervesicle transfer of the substrate or the bound enzyme due to vesicle fusion promotes hydrolysis of all of the vesicles present in the reaction mixture. (d) Addition of DTPM vesicles to a reaction mixture containing DMPM substrate vesicles and the enzyme has no noticeable effect on the course of hydrolysis. Substrate specificity studies in the scooting mode on DMPM vesicles reveal that GCAT displays essentially no selectivity in the hydrolysis of phospholipids with different polar head groups. Treatment of GCAT with trypsin, which removes a small peptide, results in an enzyme that displays comparable catalytic activity but increased affinity for the interface. Alkyltrifluoromethyl ketones are shown to be tight-binding competitive inhibitors of GCAT. The scooting mode analysis, which has previously been shown to provide a simplified approach for analyzing the steady-state kinetics of interfacial catalysis by secreted phospholipase A2, is also useful for analyzing the interfacial kinetic behavior of lipases.
Collapse
Affiliation(s)
- M K Jain
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716
| | | | | | | | | |
Collapse
|
23
|
Maliwal BP, Yu BZ, Szmacinski H, Squier T, van Binsbergen J, Slotboom AJ, Jain MK. Functional significance of the conformational dynamics of the N-terminal segment of secreted phospholipase A2 at the interface. Biochemistry 1994; 33:4509-16. [PMID: 8161505 DOI: 10.1021/bi00181a010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The kinetic and fluorescence properties of several pig pancreatic phospholipase A2 (PLA2) with substitutions and deletions in the N-terminal region and of tyrosines 52 and 73 are characterized. The substitutions Ala-1-D-Ala or -Gly, Trp-3-Phe, Gln-4-Nle, Arg-6-Glu, Tyr-52-Phe, and Tyr-73-Phe had at the most only a modest effect on the interfacial catalytic activity on the anionic interface to which they bind with high affinity. The observed rate of hydrolysis in the scooting mode by deletion mutants lacking one or more successive residues from the N-terminal region was lower by 50-95%. Detailed kinetic analysis of the deletion mutant lacking Ala-1 (des-1-AMPA) showed that the 50% decrease in the rate is due to a 5-fold increase in the interfacial Michaelis-Menten parameter, KM*, without a significant change in kcat. These results and direct measurements show that the primary effect of Ala-1 deletion is to lower the affinity for the active site directed ligands. Although the affinity of these mutants for anionic interface remains the same as for the wild type, the affinity for zwitterionic neutral diluents is considerably lower. Significant differences in the fluorescence quantum yields and the heterogeneity in the frequency-domain fluorescence intensity decays of these enzymes suggest that both in solution and at the interface the N-terminal region is an ensemble of conformations rather than a discrete state. Additional results suggest that the interfacial microenvironment of Trp-3 in des-1-AMPA is more polar and Trp-3 is more accessible to quenching by acrylamide.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B P Maliwal
- Department of Biological Chemistry, University of Maryland Medical School, Baltimore 21201
| | | | | | | | | | | | | |
Collapse
|
24
|
Scott DL, Sigler PB. Structure and catalytic mechanism of secretory phospholipases A2. ADVANCES IN PROTEIN CHEMISTRY 1994; 45:53-88. [PMID: 8154374 DOI: 10.1016/s0065-3233(08)60638-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D L Scott
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | | |
Collapse
|
25
|
Maggio B. The surface behavior of glycosphingolipids in biomembranes: a new frontier of molecular ecology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1994; 62:55-117. [PMID: 8085016 DOI: 10.1016/0079-6107(94)90006-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- B Maggio
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0614
| |
Collapse
|
26
|
Jain MK, Rogers J, Hendrickson HS, Berg OG. The chemical step is not rate-limiting during the hydrolysis by phospholipase A2 of mixed micelles of phospholipid and detergent. Biochemistry 1993; 32:8360-7. [PMID: 8347632 DOI: 10.1021/bi00083a040] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effect of detergents on the overall catalytic turnover by secreted phospholipase A2 (PLA2) on codispersions of the substrate phospholipid is characterized. The overall rate of interfacial catalytic turnover depends on the effective substrate "concentration" (mole fraction) that the bound enzyme "sees" at the interface. Therefore, besides the intrinsic catalytic turnover rate determined by the Michaelis-Menten cycle in the interface [Berg et al. (1991) Biochemistry 30, 7283], two other interfacial processes significantly alter the overall effective rate of hydrolysis: first, the fraction of the total enzyme at the interface; second, the rate of replenishment of the substrate. At low mole fractions (< 0.3), bile salts promote the binding of pig pancreatic PLA2 to zwitterionic vesicles, and the rate of hydrolysis increases with the fraction of the enzyme in the interface. At higher (> 0.3) mole fractions of the detergent, the bilayer is disrupted, and the rate of hydrolysis decreases by more than a factor of 10. The detergent-dependent decrease in the rate of hydrolysis of the sn-2-oxyphospholipids is much larger than that of sn-2-thiophospholipid, and therefore the element effect (O/S ratio) decreases from about 10 in bilayers to less than 2 in mixed micelles. This loss of the element effect in mixed micelles shows that the chemical step is no longer rate-limiting during the hydrolysis of mixed micelles formed by the disruption of vesicles by the detergent. Such effects were observed with phospholipase A2 from several sources acting on substrates dispersed in a variety of detergents including bile salts, 2-deoxylysophosphatidylcholine, and Triton X-100.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M K Jain
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716
| | | | | | | |
Collapse
|
27
|
Bayburt T, Yu BZ, Lin HK, Browning J, Jain MK, Gelb MH. Human nonpancreatic secreted phospholipase A2: interfacial parameters, substrate specificities, and competitive inhibitors. Biochemistry 1993; 32:573-82. [PMID: 8422368 DOI: 10.1021/bi00053a024] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The rate and equilibrium parameters for the interfacial catalysis by recombinant human nonpancreatic secreted phospholipase A2 were determined. Results show that the enzyme binds to anionic interfaces with considerably higher affinity than to zwitterionic interfaces. The extent of hydrolysis per enzyme on anionic vesicles in the processive scooting mode shows that the enzyme is fully catalytically active as a monomer. Among several secreted phospholipases A2 tested, the human nonpancreatic secreted enzyme is unique in its ability to undergo slow intervesicle exchange either by dissociation from the interface followed by binding to a different vesicle or by promoting the fusion of vesicles. The equilibrium dissociation constants for calcium, substrate analogs, reaction products, and several competitive inhibitors bound to the enzyme at the interface were determined by monitoring the ligand-conferred protection of the active site histidine residue from alkylation by phenacyl bromide. The interfacial Michaelis-Menten parameters were determined from the analysis of the entire reaction progress curve and also by monitoring the effect of competitive inhibitors on the initial rate of hydrolysis in the scooting mode. The interfacial Michaelis constant (KM*) for the substrate 1,2-dimyristoylglycero-sn-3-phosphomethanol was determined to be considerably above the maximal attainable mole fraction of unity for the substrate in the bilayer. Substrate specificity studies show that the enzyme does not significantly discriminate between phospholipids that differ in the type of polar head group or in the degree of unsaturation of the fatty acyl chains. Competitive inhibitors are described that display a high degree of selectivity for binding to the nonpancreatic versus pancreatic phospholipase A2. The kinetic properties of the human nonpancreatic secreted phospholipase A2 suggest that the enzyme has evolved to hydrolyze substrates at anionic interfaces and at high calcium concentrations.
Collapse
Affiliation(s)
- T Bayburt
- Department of Chemistry, University of Washington, Seattle 98195
| | | | | | | | | | | |
Collapse
|
28
|
Chapter 6 Protein-lipid interactions with peripheral membrane proteins. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
29
|
Crystallographic and biochemical studies of the (inactive) Lys-49 phospholipase A2 from the venom of Agkistridon piscivorus piscivorus. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41721-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Wang YM, Lu PJ, Ho CL, Tsai IH. Characterization and molecular cloning of neurotoxic phospholipases A2 from Taiwan viper (Vipera russelli formosensis). EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:635-41. [PMID: 1425670 DOI: 10.1111/j.1432-1033.1992.tb17330.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two phospholipases A2 (PLA2s), designated as RV-4 and RV-7 were purified from venom of the Taiwan Russell's viper (Vipera russelli formosensis) by gel-filtration and reverse-phase HPLC. Their primary structures were solved by both protein sequencing and cDNA cloning and sequencing. The cDNA synthesized was amplified by the polymerase-chain reaction using a pair of synthetic oligonucleotide primers corresponding to the N- and the C-terminal flanking regions of the enzymes. The deduced amino acid sequences of RV-4 and RV-7 were 92% identical to those of the vipoxin and vipoxin inhibitor, respectively, from the Bulgarian Vipera a. ammodytes. RV-4 itself was neurotoxic, whereas RV-7 had much lower enzymatic activity and was not toxic. The low enzymatic activity of RV-7 may be attributed to five acidic residues at positions 7, 17, 59, 114 and 119, which presumably impair its binding to aggregated lipid substrates. Based on the sequence comparison among all the known group II PLA2s, residues 6, 12, 76-81, and 119-125 were identified as important for the neurotoxicity. RV-4 and RV-7 exist in the crude venom as heterodimers, which were again formed by mixing together the HPLC-purified RV-4 and RV-7. Moreover, RV-7 inhibited the enzymatic activity of RV-4 in vitro but potentiated its lethal potency and neurotoxicity. It is suggested that RV-7 may facilitate the specific binding of RV-4 to its presynaptic binding sites, probably by preventing its non-specific adsorption.
Collapse
Affiliation(s)
- Y M Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
31
|
Ghomashchi F, Yu BZ, Mihelich ED, Jain MK, Gelb MH. Kinetic characterization of phospholipase A2 modified by manoalogue. Biochemistry 1991; 30:9559-69. [PMID: 1911741 DOI: 10.1021/bi00104a001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Manoalogue, a synthetic analogue of the sea sponge-derived manoalide, has been previously shown to partially inactivate the phospholipase A2 from cobra venom (Reynolds, L. J., Morgan, B. P., Hite, E. D., Mihelich, E. D., & Dennis, E. A. (1988) J. Am. Chem. Soc. 110, 5172) by reacting with enzyme lysine residues. In the present study, the inactivation of the phospholipases A2 from pig pancreas, bee venom, and cobra (Naja naja naja) venom by manoalogue was studied in detail. Manoalogue-treated enzymes were examined in the scooting mode on vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol. Here the native enzymes bound irreversibly to the vesicles and hydrolyzed all of the phospholipids in the outer monolayer without leaving the surface of the interface. All three manoalogue-treated enzymes showed reduced catalytic turnover for substrate hydrolysis in the scooting mode, and the modified enzymes did not hop from one vesicle to another. Thus, inactivation by manoalogue is not due to the decrease in the fraction of enzyme bound to the substrate interface. This result was also confirmed by fluorescence studies that directly monitored the binding of phospholipase A2 to vesicles. A chemically modified form of the pig pancreatic phospholipase A2 in which all of the lysine epsilon-amino groups have been amidinated was not inactivated by manoalogue, indicating that the modification of lysine residues and not the amino-terminus is required for the inactivation. Several studies indicated that the manoalogue-modified enzymes contain a functional active site. For example, studies that monitored the protection by ligands of the active site from attack by a alkylating agent showed that manoalogue-modified pig phospholipase A2 was capable of binding calcium, a substrate analogue, lipolysis products, and a competitive inhibitor. Furthermore, relative to native enzymes, manoalogue-modified enzymes retained significantly higher catalytic activities when acting on water-soluble substrates than when acting on vesicles in the scooting mode. Intact manoalogue had no affinity for the catalytic site on the enzyme as it did not inhibit the enzyme in the scooting mode and it did not protect the active site from alkylation. Pig pancreatic phospholipase A2 bound to micelles of 2-hexadecyl-sn-glycero-3-phosphocholine was resistant to inactivation by manoalogue, suggesting that the modification of lysine residues on the interfacial recognition surface of the enzyme was required for inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- F Ghomashchi
- Department of Chemistry, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
32
|
Gelb MH, Berg O, Jain MK. Quantitative and structural analysis of inhibitors of phospholipase A2. Curr Opin Struct Biol 1991. [DOI: 10.1016/0959-440x(91)90187-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Abstract
The competitive effect of Ca2+ on the cryoprotective action of carbohydrates has been investigated during freeze-thaw processes of unilamellar egg phosphatidylcholine vesicles. Ca2+ inhibits the cryoprotection achieved by trehalose to a greater extent than other sugars such as galactose, sucrose, and fructose. The cryoprotection by trehalose is also dependent on the Ca2+ concentration in the inside solution of the vesicle, even in the absence of external Ca2+. The competitive effect of Ca2+/trehalose is interpreted as a consequence of the different amount of interfacial water displaced by each compound in their adsorption on the water/lipid interface.
Collapse
Affiliation(s)
- L S Bakás
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | | |
Collapse
|
34
|
Abstract
Interfacial catalysis is a necessary consequence for all enzymes that act on amphipathic substrates with a strong tendency to form aggregates in aqueous dispersions. In such cases the catalytic event occurs at the interface of the aggregated substrate, the overall turnover at the interface is processive, and it is influenced the molecular organization and dynamics of the interface. Such enzymes can access the substrate only at the interface because the concentration of solitary monomers of the substrate in the aqueous phase is very low. Moreover, the microinterface between the bound enzyme and the organized substrate not only facilitates formation of the enzyme-substrate complex, but a longer residence time of the enzyme at the substrate interface also promotes high catalytic processivity. Binding of the enzyme to the substrate interface as an additional step in the overall catalytic turnover permits adaptation of the Michaelis-Menten formalism as a basis to account for the kinetics of interfacial catalysis. As shown for the action of phospholipase A2 on bilayer vesicles, binding equilibrium has two extreme kinetic consequences. During catalysis in the scooting mode the enzyme does not leave the surface of the vesicle to which it is bound. On the other hand, in the hopping mode the absorption and desorption steps are a part of the catalytic turnover. In this minireview we elaborate on the factors that control binding of pig pancreatic phospholipase A2 to the bilayer interface. Binding of PLA2 to the interface occurs through ionic interactions and is further promoted by hydrophobic interactions which probably occur along a face of the enzyme, with a hydrophobic collar and a ring of cationic residues, through which the catalytic site is accessible to substrate molecules in the bilayer. An enzyme molecule binds to the surface occupied by about 35 lipid molecules with an apparent dissociation constant of less than 0.1 pM for the enzyme on anionic vesicles compared to 10 mM on zwitterionic vesicles. Results at hand also show that aggregation or acylation of the protein is not required for the high affinity binding or catalytic interaction at the interface.
Collapse
Affiliation(s)
- F Ramirez
- Department of Chemistry, SUNY, Stony Brook 11794
| | | |
Collapse
|
35
|
Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB. Interfacial catalysis: the mechanism of phospholipase A2. Science 1990; 250:1541-6. [PMID: 2274785 PMCID: PMC3443688 DOI: 10.1126/science.2274785] [Citation(s) in RCA: 557] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A chemical description of the action of phospholipase A2 (PLA2) can now be inferred with confidence from three high-resolution x-ray crystal structures. The first is the structure of the PLA2 from the venom of the Chinese cobra (Naja naja atra) in a complex with a phosphonate transition-state analogue. This enzyme is typical of a large, well-studied homologous family of PLA2S. The second is a similar complex with the evolutionarily distant bee-venom PLA2. The third structure is the uninhibited PLA2 from Chinese cobra venom. Despite the different molecular architectures of the cobra and bee-venom PLA2s, the transition-state analogue interacts in a nearly identical way with the catalytic machinery of both enzymes. The disposition of the fatty-acid side chains suggests a common access route of the substrate from its position in the lipid aggregate to its productive interaction with the active site. Comparison of the cobra-venom complex with the uninhibited enzyme indicates that optimal binding and catalysis at the lipid-water interface is due to facilitated substrate diffusion from the interfacial binding surface to the catalytic site rather than an allosteric change in the enzyme's structure. However, a second bound calcium ion changes its position upon the binding of the transition-state analogue, suggesting a mechanism for augmenting the critical electrophile.
Collapse
Affiliation(s)
- D L Scott
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | | | | | | | |
Collapse
|
36
|
White SP, Scott DL, Otwinowski Z, Gelb MH, Sigler PB. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science 1990; 250:1560-3. [PMID: 2274787 DOI: 10.1126/science.2274787] [Citation(s) in RCA: 240] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The crystal structure of a complex between a phosphonate transition-state analogue and the phospholipase A2 (PLA2) from Naja naja atra venom has been solved and refined to a resolution of 2.0 angstroms. The identical stereochemistry of the two complexes that comprise the crystal's asymmetric unit indicates both the manner in which the transition state is stabilized and how the hydrophobic fatty acyl chains of the substrate are accommodated by the enzyme during interfacial catalysis. The critical features that suggest the chemistry of binding and catalysis are the same as those seen in the crystal structure of a similar complex formed with the evolutionarily distant bee-venom PLA2.
Collapse
Affiliation(s)
- S P White
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | | | | | |
Collapse
|
37
|
Bianco ID, Fidelio GD, Maggio B. Effect of sulfatide and gangliosides on phospholipase C and phospholipase A2 activity. A monolayer study. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1026:179-85. [PMID: 2378885 DOI: 10.1016/0005-2736(90)90062-s] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of sulfatide and gangliosides GM1, GD1a and GT1b on the activity of phospholipase C from Clostridium perfringens on dilauroylphosphatidylcholine and of porcine pancreatic phospholipase A2 on dilauroylphosphatidic acid was studied in lipid monolayers containing different proportions of glycolipids under zero-order kinetics at various constant surface pressures. The presence of sulfatide in the monolayer increases the activity of phospholipase C at high surface pressures. Gangliosides shift the cut-off pressure to lower values and inhibit the action of phospholipase C. In mixed monolayers with dilauroylphosphatidic acid, sulfatide at a molar fraction of 0.5 increases the activity of phospholipase A2 at surface pressures below 18 mN/m and shows an inhibitory effect at higher pressures. Ganglioside GM1 at a molar fraction of 0.25 completely inhibits the enzyme above 20 mN/m and markedly reduces its activity at lower pressures. Gangliosides GD1a and GT1b abolish the enzyme activity at all pressures at molar fractions of 0.25 and 0.15, respectively. The modified velocity of the enzymatic reaction in the presence of glycosphingolipids is not due to an irreversible alteration of the catalytic activity.
Collapse
Affiliation(s)
- I D Bianco
- Departamento de Quimica Biológica, CIQUIBIC, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Cordoba, Argentina
| | | | | |
Collapse
|
38
|
|
39
|
Sankaram M, Brophy PJ, Jordi W, Marsh D. Fatty acid pH titration and the selectivity of interaction with extrinsic proteins in dimyristoylphosphatidylglycerol dispersions. Spin label ESR studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1990. [DOI: 10.1016/0005-2736(90)90385-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Plattner H. Regulation of membrane fusion during exocytosis. INTERNATIONAL REVIEW OF CYTOLOGY 1990; 119:197-286. [PMID: 2695484 DOI: 10.1016/s0074-7696(08)60652-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- H Plattner
- Faculty of Biology, University of Konstanz, Federal Republic of Germany
| |
Collapse
|
41
|
Affiliation(s)
- A Watts
- Department of Biochemistry, Oxford University, UK
| |
Collapse
|
42
|
Jain MK, Berg OG. The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1002:127-56. [PMID: 2649150 DOI: 10.1016/0005-2760(89)90281-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M K Jain
- Department of Chemistry, University of Delaware, Newark 19716
| | | |
Collapse
|
43
|
Jain MK, Rogers J, DeHaas GH. Kinetics of binding of phospholipase A2 to lipid/water interfaces and its relationship to interfacial activation. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 940:51-62. [PMID: 3365431 DOI: 10.1016/0005-2736(88)90007-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The time-course of binding of phospholipase A2 and prophospholipase A2 to vesicles and micelles of a variety of substrate and nonhydrolyzable phospholipid analogs is obtained by monitoring the change in the fluorescence intensity of Trp-3 on the protein or of the 5-dimethylaminonaphthalene-1-sulfonyl (dansyl) chromophore on the surface of the vesicles. The time-dependent increase in the fluorescence intensity of phospholipase A2 is observed only under conditions where catalysis and equilibrium binding are also observed. The overall kinetics of binding is described by two rate constants. A rapid second-order rate constant (ka) for binding of both the proteins is 2.10(7) per s per mol expressed in terms of phospholipids as monomers, and 10(10) per s per mol expressed in terms of vesicles. This is probably a diffusion-limited encounter of the protein with vesicles as the first step in binding. An additional first-order rate constant (kb = 4 per s) was also discerned for the binding of phospholipase A2 but not for prophospholipase A2. The rate of desorption of the bound iphospholipase A2 in the presence of EGTA is very slow (less than 0.0002 per s), whereas the rate of desorption of the bound prophospholipase A2 is much more rapid (2.9 per s). The mechanistic significance of these rate constants is elaborated in terms of the differences in the rates of interfacial catalytic turnover of phospholipase A2 and prophospholipase A2. As shown elsewhere (Jain et al. Biochim. Biophys. Acta 860, 435-447) the hydrolysis of anionic vesicles by phospholipase A2 occurs in the scooting mode such that the bound enzyme remains on the target vesicles for several thousand catalytic turnover cycles. On the other hand, as shown in this paper, the kinetics of hydrolysis by prophospholipase A2 is dominated by its intervesicle exchange. Therefore, interfacial catalysis by prophospholipase A2 in the hopping mode would involve an on- and an off-step in each cycle, resulting in a catalytic turnover number of about 1.2 per s. A change from the hopping to the scooting mode of catalysis thus provides the kinetic basis for activation of interfacial catalysis by phospholipase A2 compared to that for prophospholipase A2.
Collapse
Affiliation(s)
- M K Jain
- Department of Chemistry, University of Delaware, Newark 19716
| | | | | |
Collapse
|