1
|
Murata M, Matsumori N, Kinoshita M, London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophys Rev 2022; 14:655-678. [PMID: 35791389 DOI: 10.1007/s12551-022-00967-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
As a model of lipid rafts, the liquid-ordered (Lo) phase formed by sphingomyelin (SM) and cholesterol (Cho) in bilayer membranes has long attracted the attention of biophysics researchers. New approaches and methodologies have led to a better understanding of the molecular basis of the Lo domain structure. This review summarizes studies on model membrane systems consisting of SM/unsaturated phospholipid/Cho implying that the Lo phase contains SM-based nanodomains (or nano-subdomains). Some of the Lo phase properties may be attributed to these nanodomains. Several studies suggest that the nanodomains contain clustered SM molecules packed densely to form gel-phase-like subdomains of single-digit nanometer size at physiological temperatures. Cho and unsaturated lipids located in the Lo phase are likely to be concentrated at the boundaries between the subdomains. These subdomains are not readily detected in the Lo phase formed by saturated phosphatidylcholine (PC) molecules, suggesting that they are strongly stabilized by homophilic interactions specific to SM, e.g., between SM amide groups. This model for the Lo phase is supported by experiments using dihydro-SM, which is thought to have stronger homophilic interactions than SM, as well as by studies using the enantiomer of SM having opposite stereochemistry to SM at the 2 and 3 positions and by some molecular dynamics (MD) simulations of lipid bilayers containing Lo-lipids. Nanosized gel subdomains seem to play an important role in controlling membrane organization and function in biological membranes.
Collapse
Affiliation(s)
- Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Masanao Kinoshita
- ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215 USA
| |
Collapse
|
2
|
Dingjan T, Futerman AH. The role of the 'sphingoid motif' in shaping the molecular interactions of sphingolipids in biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183701. [PMID: 34302797 DOI: 10.1016/j.bbamem.2021.183701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
Sphingolipids can be differentiated from other membrane lipids by the distinctive chemistry of the sphingoid long chain base (LCB), which is generated by the condensation of an amino acid (normally but not always serine) and a fatty acyl CoA (normally palmitoyl CoA) by the pyridoxal phosphate-dependent enzyme, serine palmitoyl transferase (SPT). The first five carbon atoms of the sphingoid LCB, herein defined as the 'sphingoid motif', are largely responsible for the unique chemical and biophysical properties of sphingolipids since they can undergo a relatively large number (compared to other lipid species) of molecular interactions with other membrane lipids, via hydrogen-bonding, charge-pairing, hydrophobic and van der Waals interactions. These interactions are responsible, for instance, for the association of sphingolipids with cholesterol in the membrane lipid bilayer. Here, we discuss some of the unique properties of this sphingoid motif, and in addition to outlining how this structural motif drives intra-bilayer interactions, discuss the atomic details of the interactions with two critical players in the biosynthetic pathway, namely SPT, and the ceramide transport protein, CERT. In the former, the selectivity of sphingolipid synthesis relies on a hydrogen bond interaction between Lys379 of SPTLC2 and the l-serine sidechain hydroxyl moiety. In the latter, the entire sphingoid motif is stereoselectively recognized by a hydrogen-bonding network involving all three sphingoid motif heteroatoms. The remarkable selectivity of these interactions, and the subtle means by which these interactions are modified and regulated in eukaryotic cells raises a number of challenging questions about the generation of these proteins, and of their interactions with the sphingoid motif in evolutionary history.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
3
|
Castellanos-Castro S, Bolaños J, Orozco E. Lipids in Entamoeba histolytica: Host-Dependence and Virulence Factors. Front Cell Infect Microbiol 2020; 10:75. [PMID: 32211340 PMCID: PMC7075943 DOI: 10.3389/fcimb.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Lipids are essential players in parasites pathogenesis. In particular, the highly phagocytic trophozoites of Entamoeba histolytica, the causative agent of amoebiasis, exhibit a dynamic membrane fusion and fission, in which lipids strongly participate; particularly during the overstated motility of the parasite to reach and attack the epithelia and ingest target cells. Synthesis and metabolism of lipids in this protozoan present remarkable difference with those performed by other eukaryotes. Here, we reviewed the current knowledge on lipids in E. histolytica. Trophozoites synthesize phosphatidylcholine and phosphatidylethanolamine by the Kennedy pathway; and sphingolipids, phosphatidylserine, and phosphatidylinositol, by processes similar to those used by other eukaryotes. However, trophozoites lack enzymes for cholesterol and fatty acids synthesis, which are scavenged from the host or culture medium by specific mechanisms. Cholesterol, a fundamental molecule for the expression of virulence, is transported from the medium into the trophozoites by EhNPC1 and EhNPC2 proteins. Inside cells, lipids are distributed by different pathways, including by the participation of the endosomal sorting complex required for transport (ESCRT), involved in vesicle fusion and fission. Cholesterol interacts with the phospholipid lysobisphosphatidic acid (LBPA) and EhADH, an ALIX family protein, also involved in phagocytosis. In this review, we summarize the known information on phospholipids synthesis and cholesterol transport as well as their metabolic pathways in E. histolytica; highlighting the mechanisms used by trophozoites to dispose lipids involved in the virulence processes.
Collapse
Affiliation(s)
- Silvia Castellanos-Castro
- College of Sciences and Humanities, Autonomous University of Mexico City, Mexico City, Mexico.,BioImage Analysis Unit, Pasteur Institute, Paris, France
| | - Jeni Bolaños
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.,Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nnicolás Hidalgo, Morelia, Mexico
| | - Esther Orozco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
4
|
Hanashima S, Murakami K, Yura M, Yano Y, Umegawa Y, Tsuchikawa H, Matsumori N, Seo S, Shinoda W, Murata M. Cholesterol-Induced Conformational Change in the Sphingomyelin Headgroup. Biophys J 2019; 117:307-318. [PMID: 31303249 DOI: 10.1016/j.bpj.2019.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Sphingomyelin (SM) and cholesterol (Cho) are the important lipids for the formation of biologically functional membrane domains, lipid rafts. However, the interaction between Cho and the headgroup of SM remains unclear. In this study, we performed solid-state NMR experiments to reveal the Cho effects on the headgroup conformation using 2H-labeled stearoyl-SM (SSM). Deuterated SSMs at the Cα, Cβ, and Cγ positions of a choline moiety were separately prepared and subjected to NMR measurements to determine the quadrupolar splitting of 2H signals in hydrated SSM unitary and SSM/Cho (1:1) bilayers. Using 2H NMR and 13C-31P REDOR data, the conformation and orientation of the choline moiety were deduced and compared with those derived from molecular dynamics simulations. In SSM unitary bilayers, three torsional angles in the phosphocholine moiety, P-O-Cα-Cβ, were found to be consecutive +gauche(g)/+g/+g or -g/-g/-g. The orientation and conformation of the SSM headgroup were consistent with the results of our molecular dynamics simulations and the previous results on phosphatidylcholines. The quadrupolar coupling at the α methylene group slightly increased in the presence of Cho, and those at the Cβ and Cγ decreased more significantly, thus suggesting that Cho reduced the gauche conformation at the Cα-Cβ torsion. The conformational ensemble in the presence of Cho may enhance the so-called umbrella effect of the SSM headgroup, resulting in the stabilization of Cho near the SM molecules by concealing the hydrophobic Cho core from interfacial water. We also examined the effect of the chiral centers at the sphingosine chain to the headgroup conformation by determining the enantiomeric excess between the diastereomeric +g/+g/+g and -g/-g/-g conformers using (S)-Cα-deuterated and (R)-Cα-deuterated SSMs. Their 2H NMR measurements showed that the chiral centers induced the slight diastereomeric excess in the SM headgroup conformation.
Collapse
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Kazuhiro Murakami
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Michihiro Yura
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yo Yano
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Mina JGM, Denny PW. Everybody needs sphingolipids, right! Mining for new drug targets in protozoan sphingolipid biosynthesis. Parasitology 2018; 145:134-147. [PMID: 28637533 PMCID: PMC5964470 DOI: 10.1017/s0031182017001081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Sphingolipids (SLs) are an integral part of all eukaryotic cellular membranes. In addition, they have indispensable functions as signalling molecules controlling a myriad of cellular events. Disruption of either the de novo synthesis or the degradation pathways has been shown to have detrimental effects. The earlier identification of selective inhibitors of fungal SL biosynthesis promised potent broad-spectrum anti-fungal agents, which later encouraged testing some of those agents against protozoan parasites. In this review we focus on the key enzymes of the SL de novo biosynthetic pathway in protozoan parasites of the Apicomplexa and Kinetoplastidae, outlining the divergence and interconnection between host and pathogen metabolism. The druggability of the SL biosynthesis is considered, alongside recent technology advances that will enable the dissection and analyses of this pathway in the parasitic protozoa. The future impact of these advances for the development of new therapeutics for both globally threatening and neglected infectious diseases is potentially profound.
Collapse
Affiliation(s)
- John G M Mina
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| | - P W Denny
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| |
Collapse
|
6
|
Feng RJ, Lin L, Li YY, Liu MH, Guo Y, Zhang Z. Effect of Ca 2+ to Sphingomyelin Investigated by Sum Frequency Generation Vibrational Spectroscopy. Biophys J 2017; 112:2173-2183. [PMID: 28538154 DOI: 10.1016/j.bpj.2017.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022] Open
Abstract
The interactions between Ca2+ ions and sphingomyelin play crucial roles in a wide range of cellular activities. However, little is known about the molecular details of the interactions at interfaces. In this work, we investigated the interactions between Ca2+ ions and egg sphingomyelin (ESM) Langmuir monolayers at the air/water interface by subwavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). We show that Ca2+ ions can induce ordering of the acyl chains in the ESM monolayer. An analysis of the one alkyl-chain-deuterated ESM revealed that the Ca2+ ions do not affect the N-linked saturated fatty acid chain, although they make the sphingosine backbone become ordered. Further analysis of the SFG-VS spectra shows that the interactions between ESM and Ca2+ ions make the orientation of the methyl group at the end of sphingosine backbone change from pointing downward to pointing upward. Moreover, a large blue shift of the phosphate group at the CaCl2 solution interface indicates, to our knowledge, new cation binding modes. Such binding causes the phosphate moiety to dehydrate, resulting in the conformation change of the phosphate moiety. Based on these results, we propose the molecular mechanism that Ca2+ ions can bind to the phosphate group and subsequently destroy the intramolecular hydrogen bond between the 3-hydroxyl group and the phosphate oxygen, which results in an ordering change of the sphingosine backbone. These findings illustrate the potential application of HR-BB-SFG-VS to investigate lipid-cation interactions and the calcium channel modulated by lipid domain formation through slight structural changes in the membrane lipid. It will also shed light on the interactions of complex molecules at surfaces and interfaces.
Collapse
Affiliation(s)
- Rong-Juan Feng
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Lin
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; National Center for Nanoscience and Technology, Beijing, China
| | - Yi-Yi Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Hua Liu
- National Center for Nanoscience and Technology, Beijing, China; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Yasuda T, Al Sazzad MA, Jäntti NZ, Pentikäinen OT, Slotte JP. The Influence of Hydrogen Bonding on Sphingomyelin/Colipid Interactions in Bilayer Membranes. Biophys J 2016; 110:431-440. [PMID: 26789766 DOI: 10.1016/j.bpj.2015.11.3515] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022] Open
Abstract
The phospholipid acyl chain composition and order, the hydrogen bonding, and properties of the phospholipid headgroup all influence cholesterol/phospholipid interactions in hydrated bilayers. In this study, we examined the influence of hydrogen bonding on sphingomyelin (SM) colipid interactions in fluid uni- and multilamellar vesicles. We have compared the properties of oleoyl or palmitoyl SM with comparable dihydro-SMs, because the hydrogen bonding properties of SM and dihydro-SM differ. The association of cholestatrienol, a fluorescent cholesterol analog, with oleoyl sphingomyelin (OSM) was significantly stronger than its association with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, in bilayers with equal acyl chain order. The association of cholestatrienol with dihydro-OSM, which lacks a trans double bond in the sphingoid base, was even stronger than the association with OSM, suggesting an important role for hydrogen bonding in stabilizing sterol/SM interactions. Furthermore, with saturated SM in the presence of 15 mol % cholesterol, cholesterol association with fluid dihydro-palmitoyl SM bilayers was stronger than seen with palmitoyl SM under similar conditions. The different hydrogen bonding properties in OSM and dihydro-OSM bilayers also influenced the segregation of palmitoyl ceramide and dipalmitoylglycerol into an ordered phase. The ordered, palmitoyl ceramide-rich phase started to form above 2 mol % in the dihydro-OSM bilayers but only above 6 mol % in the OSM bilayers. The lateral segregation of dipalmitoylglycerol was also much more pronounced in dihydro-OSM bilayers than in OSM bilayers. The results show that hydrogen bonding is important for sterol/SM and ceramide/SM interactions, as well as for the lateral segregation of a diglyceride. A possible molecular explanation for the different hydrogen bonding in SM and dihydro-SM bilayers is presented and discussed.
Collapse
Affiliation(s)
- Tomokazu Yasuda
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Md Abdullah Al Sazzad
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Niklas Z Jäntti
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Olli T Pentikäinen
- Computational Bioscience Laboratory, Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
8
|
The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:304-10. [DOI: 10.1016/j.bbamem.2015.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/10/2023]
|
9
|
Murata M, Sugiyama S, Matsuoka S, Matsumori N. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach. CHEM REC 2015; 15:675-90. [DOI: 10.1002/tcr.201402097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Michio Murata
- JST ERATO; Lipid Active Structure Project; Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama, Toyonaka Osaka 563-0043 Japan
| | - Shigeru Sugiyama
- JST ERATO; Lipid Active Structure Project; Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama, Toyonaka Osaka 563-0043 Japan
| | - Shigeru Matsuoka
- JST ERATO; Lipid Active Structure Project; Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama, Toyonaka Osaka 563-0043 Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama, Toyonaka Osaka 563-0043 Japan
- Department of Chemistry, Faculty and Graduate School of Sciences; Kyushu University; 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
10
|
Migliardo F, Tallima H, El Ridi R. Is there a sphingomyelin-based hydrogen bond barrier at the mammalian host-schistosome parasite interface? Cell Biochem Biophys 2014; 68:359-67. [PMID: 23943053 DOI: 10.1007/s12013-013-9716-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Schistosomes develop, mature, copulate, lay eggs, and live for years in the mammalian host bloodstream, importing nutrients across the tegument, but entirely impervious to the surrounding elements of the immune system. We have hypothesized that sphingomyelin (SM) in the parasite apical lipid bilayer is responsible for these sieving properties via formation of a tight hydrogen bond network with the surrounding water. Here we have used quasi-elastic neutron scattering for characterizing the diffusion of larval and adult Schistosoma mansoni and adult Schistosoma haematobium in the surrounding medium, under various environmental conditions. The results documented the presence of a hydrogen bond barrier around larvae and adult schistosomes. The hydrogen bond network readily collapses if worms are subjected to hypoxic conditions, likely via activation of the parasite tegument-associated neutral sphingomyelinase, and consequent excessive SM hydrolysis. The slower dynamics of lung-stage larvae as compared to adult worms has been related to the existence of hydrogen-bonded networks of different strength and then to their differential resistance to immune attacks.
Collapse
Affiliation(s)
- Federica Migliardo
- Department of Physics and Earth Sciences, University of Messina, Messina, 98166, Italy,
| | | | | |
Collapse
|
11
|
Pullmannová P, Staňková K, Pospíšilová M, Skolová B, Zbytovská J, Vávrová K. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2115-26. [PMID: 24824073 DOI: 10.1016/j.bbamem.2014.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/10/2014] [Accepted: 05/03/2014] [Indexed: 11/27/2022]
Abstract
The conversion of sphingomyelin (SM) to a ceramide (Cer) by acid sphingomyelinase (aSMase) is an important event in skin barrier development. A deficiency in aSMase in diseases such as Niemann-Pick disease and atopic dermatitis coincides with impaired skin barrier recovery after disruption. We studied how an increased SM/Cer ratio influences the barrier function and microstructure of model stratum corneum (SC) lipid membranes. In the membranes composed of isolated human SC Cer (hCer)/cholesterol/free fatty acids/cholesteryl sulfate, partial or full replacement of hCer by SM increased water loss. Partial replacement of 25% and 50% of hCer by SM also increased the membrane permeability to theophylline and alternating electric current, while a higher SM content either did not alter or even decreased the membrane permeability. In contrast, in a simple membrane model with only one type of Cer (nonhydroxyacyl sphingosine, CerNS), an increased SM/Cer ratio provided a similar or better barrier against the permeation of various markers. X-ray powder diffraction revealed that the replacement of hCer by SM interferes with the formation of the long periodicity lamellar phase with a repeat distance of d=12.7nm. Our results suggest that SM-to-Cer processing in the human epidermis is essential for preventing excessive water loss, while the permeability barrier to exogenous compounds is less sensitive to the presence of sphingomyelin.
Collapse
Affiliation(s)
- Petra Pullmannová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Klára Staňková
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Markéta Pospíšilová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Barbora Skolová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jarmila Zbytovská
- Institute of Chemical Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
12
|
Kinoshita M, Goretta S, Tsuchikawa H, Matsumori N, Murata M. Characterization of the ordered phase formed by sphingomyelin analogues and cholesterol binary mixtures. Biophysics (Nagoya-shi) 2013; 9:37-49. [PMID: 27493539 PMCID: PMC4629689 DOI: 10.2142/biophysics.9.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/02/2013] [Indexed: 01/24/2023] Open
Abstract
The influences of structural alterations of sphingomyelin (SM) on its interactions with cholesterol (chol) and on ordered phase formation were examined by density measurements and surface pressure vs. molecular area isotherm measurements. In addition, we quantitatively characterized the ordered phase formed in each SM and chol binary mixture on the basis of the molecular compressional modulus of SM (
Cmol−1). Density measurements demonstrated that the ordered phase formation in threo-SM (tSM)/chol and dihydrosphingomyelin (DHSM)/chol binary bilayers shows similar chol concentration-dependency to that of natural erythro-SM (eSM)/chol bilayers; the ordered phase formation was completed in the presence of 25 mol% chol. In contrast, SM bearing a triple bond in the place of a double bond (tripleSM) required a greater concentration of chol to completely transform the bilayer into the ordered phase (at 40 mol% chol). Surface pressure vs. molecular area isotherms showed that the DHSM molecule (
Cmol−1 = 290 mN/m) is more rigid than eSM (
Cmol−1 = 240 mN/m) above 30 mol% chol (in the ordered phase), although these values are similar (140–150 mN/m) in the absence of chol (liquid condensed phase). Most likely, the DHSM/chol mixture forms a more ordered membrane than the eSM/chol mixture does. Moreover, in the absence of chol, the rigidity of the tripleSM molecule (
Cmol−1 = 250 mN/m) is significantly higher as compared with that of the eSM molecule (
Cmol−1 = 150 mN/m), which is probably due to the presence of a triple bond.
Collapse
Affiliation(s)
- Masanao Kinoshita
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Sarah Goretta
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
13
|
Peter Slotte J. Molecular properties of various structurally defined sphingomyelins -- correlation of structure with function. Prog Lipid Res 2013; 52:206-19. [PMID: 23295259 DOI: 10.1016/j.plipres.2012.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/10/2023]
Abstract
Sphingomyelins are important phospholipids in plasma membranes of most cells. Because of their dominantly saturated nature, they affect the lateral structure of membranes, and contribute to the regulation of cholesterol distribution within membranes, and in cells. However, the abundance of molecular species present in cells also implies that sphingomyelins have other, more specific functions. Many of these functions are currently unknown, but are under extensive study. Mostly model membrane studies have shown that sphingomyelins (and other sphingolipids), in contrast to glycerophospholipids, have important hydrogen bonding properties which in several important ways confer specific functional properties to this abundant class of membrane phospholipids. The often very asymmetric nature of sphingomyelins, arising from mismatch in length between the long chain base and N-acyl chains, also impose specific properties (e.g., interdigitation) to sphingomyelins not seen with glycerophospholipids. In this review, the latest sphingomyelin literature will be scrutinized, and an effort will be made to correlate the molecular structure of sphingomyelin with functional properties. In particular, the effects of head group properties, interfacial hydrogen bonding, long chain base hydroxylation, N-acyl chain hydroxylation, and N-acyl chain methyl-branching will be discussed.
Collapse
Affiliation(s)
- J Peter Slotte
- Biochemistry, Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.
| |
Collapse
|
14
|
NMR-based conformational analysis of sphingomyelin in bicelles. Bioorg Med Chem 2011; 20:270-8. [PMID: 22133901 DOI: 10.1016/j.bmc.2011.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 11/21/2022]
Abstract
Sphingomyelin (SM) is a common sphingolipid in mammalian membranes and is known to be substantially involved in cellular events such as the formation of lipid rafts. Despite its biological significance, conformation of SM in a membrane environment remains unclear because the noncrystalline property and anisotropic environment of lipid bilayers hampers the application of X-ray crystallography and NMR measurements. In this study, to elucidate the conformation of SM in membranes, we utilized bicelles as a substitute for a lipid bilayer membrane. First, we demonstrated through (31)P NMR, (2)H NMR, and dynamic light scattering experiments that SM forms both oriented and isotropic bicelles by changing the ratio of SM/dihexanoyl phosphatidylcholine. Then, we determined the conformation of SM in isotropic bicelles on the basis of coupling constants and NOE correlations in (1)H NMR and found that the C2-C6 and amide groups of SM take a relatively rigid conformation in bicelles.
Collapse
|
15
|
Structural role of mismatched C-C bonds in a series of d-erythro-sphingomyelins as studied by DSC and electron microscopy. Chem Phys Lipids 2010; 163:514-23. [PMID: 20307518 DOI: 10.1016/j.chemphyslip.2010.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/22/2022]
Abstract
A series of d-erythro (2S, 3R) sphingomyelins (SMs) whose acyl chain was 16, 18, 20, 22, and 24 carbons long, respectively, was synthesized by the acylation of d-erythro-sphingosylphosphorylcholine. For all the SM dispersions, reversible and reproducible thermal behavior was observed to show the gel-to-gel and the main gel-to-liquid crystal phase transition in heating scan. The main transition enthalpy (DeltaH(M)) decreased linearly with increasing acyl chain length. The vesicular structures were observed for all the gel phases at temperatures just below the main transition, but the mean diameter of these vesicles changed markedly from approximately 1.5 to 100nm with increasing acyl chain length. On this basis, the decrease in DeltaH(M) with increasing acyl chain length was discussed from the viewpoint of the effect of the mismatched C-C bonds in the acyl chain on the van der Waals attractive force between the matched acyl chain segment and the sphingoshine chain of the gel phase at temperatures just below the main transition.
Collapse
|
16
|
Bruzik KS, Salamończyk GM, Soboń B. From Molecular Conformation to Phospholipid Bilayer Organization. PHOSPHORUS SULFUR 2009. [DOI: 10.1080/10426509008040677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- K. S. Bruzik
- a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , 90-362 , Łódź , Poland
| | - G. M. Salamończyk
- a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , 90-362 , Łódź , Poland
| | - B. Soboń
- a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , 90-362 , Łódź , Poland
| |
Collapse
|
17
|
Björkbom A, Yamamoto T, Kaji S, Harada S, Katsumura S, Slotte JP. Importance of the phosphocholine linkage on sphingomyelin molecular properties and interactions with cholesterol; a study with phosphate oxygen modified sphingomyelin-analogues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1501-7. [DOI: 10.1016/j.bbamem.2008.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 12/16/2022]
|
18
|
Estrada R, Stolowich N, Yappert MC. Influence of temperature on 31P NMR chemical shifts of phospholipids and their metabolites I. In chloroform-methanol-water. Anal Biochem 2008; 380:41-50. [PMID: 18534182 DOI: 10.1016/j.ab.2008.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/07/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
Spectral overlap of (31)P NMR resonances and the lack of reproducibility in chemical shifts corresponding to phospholipids in organic solvents challenge the accuracy of band assignments and quantification. To alleviate these problems, the use of temperature coefficients is proposed. Changes in temperature enable the resolution of overlapped resonances and provide a facile approach for the computation of temperature coefficients. The coefficients were evaluated for various glycero- and sphingo-phospholipids. Their values suggest that differences in H-bonding between the phosphate and the head groups are responsible for the changes of chemical shift with temperature. Among parent phospholipids, and in addition to sphingomyelin, the smallest temperature coefficient values (closest to zero) were observed for phosphatidylcholine, phosphatidylglycerol, dihydrosphingomyelin, and cardiolipin. The highest values were exhibited by phospholipids with protonated head groups, such as phosphatidylserine and phosphatidylethanolamine. The lowest and, in fact, negative values were measured for phospholipids with an exposed phosphate group: phosphatidic acid, ceramide-1-phosphate, and dihydroceramide-1-phosphate. Diacyl, alkyl-acyl, and alkenyl-acyl phospholipids with the same head group exhibited comparable coefficients but differed slightly in chemical shifts. Compared to their parent glycerophospholipids, all lyso analogs had greater temperature coefficients, possibly due to the presence of an extra OH capable of forming a H-bond with the phosphate group.
Collapse
Affiliation(s)
- Rosendo Estrada
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
19
|
Unique backbone-water interaction detected in sphingomyelin bilayers with 1H/31P and 1H/13C HETCOR MAS NMR spectroscopy. Biophys J 2008; 95:1189-98. [PMID: 18390621 DOI: 10.1529/biophysj.108.130724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two-dimensional (1)H/(31)P dipolar heteronuclear correlation (HETCOR) magic-angle spinning nuclear magnetic resonance (NMR) is used to investigate the correlation of the lipid headgroup with various intra- and intermolecular proton environments. Cross-polarization NMR techniques involving (31)P have not been previously pursued to a great extent in lipid bilayers due to the long (1)H-(31)P distances and high degree of headgroup mobility that averages the dipolar coupling in the liquid crystalline phase. The results presented herein show that this approach is very promising and yields information not readily available with other experimental methods. Of particular interest is the detection of a unique lipid backbone-water intermolecular interaction in egg sphingomyelin (SM) that is not observed in lipids with glycerol backbones like phosphatidylcholines. This backbone-water interaction in SM is probed when a mixing period allowing magnetization exchange between different (1)H environments via the nuclear Overhauser effect (NOE) is included in the NMR pulse sequence. The molecular information provided by these (1)H/(31)P dipolar HETCOR experiments with NOE mixing differ from those previously obtained by conventional NOE spectroscopy and heteronuclear NOE spectroscopy NMR experiments. In addition, two-dimensional (1)H/(13)C INEPT HETCOR experiments with NOE mixing support the (1)H/(31)P dipolar HETCOR results and confirm the presence of a H(2)O environment that has nonvanishing dipolar interactions with the SM backbone.
Collapse
|
20
|
Costello AL, Alam TM. Using 31P MAS NMR to monitor a gel phase thermal disorder transition in sphingomyelin/cholesterol bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:97-104. [PMID: 17942070 DOI: 10.1016/j.bbamem.2007.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/02/2007] [Accepted: 08/31/2007] [Indexed: 02/03/2023]
Abstract
The impact of low cholesterol concentrations on an egg sphingomyelin bilayer is investigated using 31P magic angle spinning (MAS) NMR spectroscopy. The magnitude of the isotropic 31P MAS NMR line width is used to monitor the main gel to liquid crystalline phase transition, along with a unique gel phase pretransition. In addition, the 31P chemical shift anisotropy (CSA) and spin-spin relaxation times (T2), along with the effects of spinning speed, proton decoupling and magnetic field strength, are reported. The variation of this unique gel phase thermal pretransition with the inclusion of 5 through 21 mol% cholesterol is presented and discussed.
Collapse
Affiliation(s)
- Alison L Costello
- Department of Nanostructured and Electronic Materials, Sandia National Laboratories, Albuquerque, NM 87185-0886, USA
| | | |
Collapse
|
21
|
Ramstedt B, Slotte JP. Sphingolipids and the formation of sterol-enriched ordered membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1945-56. [PMID: 16901461 DOI: 10.1016/j.bbamem.2006.05.020] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 05/18/2006] [Accepted: 05/24/2006] [Indexed: 12/18/2022]
Abstract
This review is focused on the formation of lateral domains in model bilayer membranes, with an emphasis on sphingolipids and their interaction with cholesterol. Sphingolipids in general show a preference for partitioning into ordered domains. One of the roles of cholesterol is apparently to modulate the fluidity of the sphingolipid domains and also to help segregate the domains for functional purposes. Cholesterol shows a preference for sphingomyelin over phosphatidylcholine with corresponding acyl chains. The interaction of cholesterol with different sphingolipids is largely dependent on the molecular properties of the particular sphingolipid in question. Small head group size clearly has a destabilizing effect on sphingolipid/cholesterol interaction, as exemplified by studies with ceramide and ceramide phosphoethanolamine. Ceramides actually displace sterol from ordered domains formed with saturated phosphatidylcholine or sphingomyelin. The N-linked acyl chain is known to be an important stabilizer of the sphingolipid/cholesterol interaction. However, N-acyl phosphatidylethanolamines failed to interact favorably with cholesterol and to form cholesterol-enriched lateral domains in bilayer membranes. Glycosphingolipids also form ordered domains in membranes but do not show a strong preference for interacting with cholesterol. It is clear from the studies reviewed here that small changes in the structure of sphingolipids alter their partitioning between lateral domains substantially.
Collapse
Affiliation(s)
- Bodil Ramstedt
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistokatu 6A, 20520 Turku, Finland
| | | |
Collapse
|
22
|
Malcolm IC, Ross JC, Higinbotham J. A study of the headgroup motion of sphingomyelin using 31P NMR and an analytically soluble model. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2005; 27:247-256. [PMID: 15799883 DOI: 10.1016/j.ssnmr.2005.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 02/07/2005] [Accepted: 02/11/2005] [Indexed: 05/24/2023]
Abstract
A 31P NMR investigation has been carried out of the headgroup dynamics of sphingomyelin molecules in bilayers for the L alpha and L beta' phases. The resulting line shapes have been analysed in terms of a reduced-parameter model, using van Faassen's method for obtaining an analytic solution to first-order stochastic differential equations to simulate the line shapes of oriented and non-oriented samples. Our treatment results in good fits to measured data but using fewer parameters than traditional methods. Angles and correlation times (tau parallel and tau perpendicular) describing the geometry and dynamics of the headgroup are obtained by optimising the agreement between simulated and experimental data. The results are contrasted with those obtained for the lecithins DMPC and DPPC using a similar analysis. Not only are tau parallel and tau perpendicular now equal in value for the L alpha phase, but this value is also found to be nearly four times larger than the longest correlation time for the lecithins. We interpret this as evidence of inter- and intramolecular hydrogen bonding in the L(alpha) phase of sphingomyelin. In the L beta' phase of sphingomyelin, however, although tau(parallel) and tau(perpendicular) remain equal their value is now 32% smaller than that of the lecithins in the same phase. This indicates less difference between the fluidities in the headgroup region of the two phases of sphingomyelin as compared to that of the lecithins. Another significant difference between the L beta' phases is that the tilt angle for sphingomyelin is found to be nearly twice as large as for the lecithins. We argue that these combined observations point to the existence of hydrogen bonding in this phase also. Again in contrast to our previous work on lecithins, our results provide evidence of a negative diamagnetic anisotropy in sphingomyelin molecules, even in the L beta' phase. This is provided for in our model by the assumption that our unoriented samples consist of prolate ellipsoidal liposomes whose major axes are oriented parallel to the static magnetic field. The apparently different diamagnetic behaviour of sphingomyelin in the present work is due to the higher static field used rather than any intrinsic difference in this respect between sphingomyelin and the lecithins DMPC and DPPC.
Collapse
Affiliation(s)
- I C Malcolm
- School of Mathematical and Physical Sciences, Napier University, 10 Colinton Road, Edinburgh, Scotland EH10 5DT, UK.
| | | | | |
Collapse
|
23
|
Yappert MC, Borchman D. Sphingolipids in human lens membranes: an update on their composition and possible biological implications. Chem Phys Lipids 2004; 129:1-20. [PMID: 14998723 DOI: 10.1016/j.chemphyslip.2003.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 12/13/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
The unique nature of the most abundant phospholipids in human lens membranes remained overlooked until the 1990s when it was possible to discern dihydrosphingomyelins (DHSMs) from the more common sphingomyelins (SMs). Unlike in other mammalian membranes, DHSMs comprise nearly half of the phospholipids in adult human lenses. Compared to SMs with a trans double bond between carbons 4 and 5 of the sphingoid backbone, the absence of this unsaturation site in DHSMs allows the participation of the OH group on C3 in intermolecular H-bonds and leads to stronger interlipid interactions with both neighboring DHSMs and cholesterol. Phospholipid compositional changes with age and lens region observed in mammals with various life spans and lens growth rates, suggest that the highest levels of DHSMs along with the lowest amounts of phosphatidylcholines and SMs are found in lenses with the lowest growth rate, namely human lenses. The participation of phospholipid metabolites in the control of mitosis and elongation of lens cells is plausible and deserves investigation.
Collapse
Affiliation(s)
- M Cecilia Yappert
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA.
| | | |
Collapse
|
24
|
Abeytunga DTU, Glick JJ, Gibson NJ, Oland LA, Somogyi A, Wysocki VH, Polt R. Presence of unsaturated sphingomyelins and changes in their composition during the life cycle of the moth Manduca sexta. J Lipid Res 2004; 45:1221-31. [PMID: 15102888 DOI: 10.1194/jlr.m300392-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NMR and electrospray ionization tandem mass spectrometry were used to show for the first time the presence of sphingomyelins in extracts of the tobacco hornworm Manduca sexta (Lepidoptera). The sphingosine in the ceramide was identified as tetradecasphing-4-enine, and the fatty acids were C18:0, C20:0, C22:0, and C24:0 (compound 1). Heterogeneity in the ceramide was observed in sphingomyelins from M. sexta. All of the sphingomyelins were associated with their doubly unsaturated sphingosine, tetradecasphing-4,6-dienine (compound 2), which contained the same set of fatty acids as compound 1 and represents a novel set of sphingomyelins not previously reported in Lepidoptera. Lipid rafts were isolated from brains of M. sexta, and the association of these novel sphingomyelins with rafts was confirmed. The existence of the additional double bond was also observed in ceramide and ceramide phosphoethanolamine isolated from M. sexta. The levels of the doubly unsaturated ceramide showed modest changes during metamorphosis of M. sexta. These results suggest that Manduca sphingomyelins may participate in the formation of lipid rafts, in keeping with their function in vertebrates.
Collapse
Affiliation(s)
- D T U Abeytunga
- Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Steinbauer B, Mehnert T, Beyer K. Hydration and lateral organization in phospholipid bilayers containing sphingomyelin: a 2H-NMR study. Biophys J 2003; 85:1013-24. [PMID: 12885648 PMCID: PMC1303222 DOI: 10.1016/s0006-3495(03)74540-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Interfacial properties of lipid bilayers were studied by (2)H nuclear magnetic resonance spectroscopy, with emphasis on a comparison between phosphatidylcholine and sphingomyelin. Spectral resolution and sensitivity was improved by macroscopic membrane alignment. The motionally averaged quadrupolar interaction of interlamellar deuterium oxide was employed to probe the interfacial polarity of the membranes. The D(2)O quadrupolar splittings indicated that the sphingomyelin lipid-water interface is less polar above the phase transition temperature T(m) than below T(m). The opposite behavior was found in phosphatidylcholine bilayers. Macroscopically aligned sphingomyelin bilayers also furnished (2)H-signals from the amide residue and from the hydroxyl group of the sphingosine moiety. The rate of water-hydroxyl deuteron exchange could be measured, whereas the exchange of the amide deuteron was too slow for the inversion-transfer technique employed, suggesting that the amide residue is involved in intermolecular hydrogen bonding. Order parameter profiles in mixtures of sphingomyelin and chain-perdeuterated phosphatidylcholine revealed an ordering effect as a result of the highly saturated chains of the sphingolipids. The temperature dependence of the (2)H quadrupolar splittings was indicative of lateral phase separation in the mixed systems. The results are discussed with regard to interfacial structure and lateral organization in sphingomyelin-containing biomembranes.
Collapse
Affiliation(s)
- Bernhard Steinbauer
- Lehrstuhl für Stoffwechselbiochemie der Universität München, Munich, Germany
| | | | | |
Collapse
|
26
|
Samsonov AV, Chatterjee PK, Razinkov VI, Eng CH, Kielian M, Cohen FS. Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus. J Virol 2002; 76:12691-702. [PMID: 12438595 PMCID: PMC136663 DOI: 10.1128/jvi.76.24.12691-12702.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells expressing the E1 and E2 envelope proteins of Semliki Forest virus (SFV) were fused to voltage-clamped planar lipid bilayer membranes at low pH. Formation and evolution of fusion pores were electrically monitored by capacitance measurements, and membrane continuity was tracked by video fluorescence microscopy by including rhodamine-phosphatidylethanolamine in the bilayer. Fusion occurred without leakage for a negative potential applied to the trans side of the planar membrane. When a positive potential was applied, leakage was severe, obscuring the observation of any fusion. E1-mediated cell-cell fusion occurred without leakage for negative intracellular potentials but with substantial leakage for zero membrane potential. Thus, negative membrane potentials are generally required for nonleaky fusion. With planar bilayers as the target, the first fusion pore that formed almost always enlarged; pore flickering was a rare event. Similar to other target membranes, fusion required cholesterol and sphingolipids in the planar membrane. Sphingosine did not support fusion, but both ceramide, with even a minimal acyl chain (C(2)-ceramide), and lysosphingomyelin (lyso-SM) promoted fusion with the same kinetics. Thus, unrelated modifications to different parts of sphingosine yielded sphingolipids that supported fusion to the same degree. Fusion studies of pyrene-labeled SFV with cholesterol-containing liposomes showed that C(2)-ceramide supported fusion while lyso-SM did not, apparently due to its positive curvature effects. A model is proposed in which the hydroxyls of C-1 and C-3 as well as N of C-2 of the sphingosine backbone must orient so as to form multiple hydrogen bonds to amino acids of SFV E1 for fusion to proceed.
Collapse
Affiliation(s)
- Andrey V Samsonov
- Department of Molecular Biophysics and Physiology, Rush Medical College, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Sphingomyelin and phosphatidylcholine are important components in the external leaflet of cellular plasma membranes. In this review we compare the structure of these lipid molecules, with emphasis on the differences in hydrogen bonding capacity and membrane properties that arise from the small but significant differences in molecular structure. The membrane properties of sphingomyelins and the implications that these have, or might have, in biological membranes and for raft function are further discussed.
Collapse
Affiliation(s)
- Bodil Ramstedt
- Department of Biochemistry and Pharmacy, Abo Akademi University, P.O. Box 66, 20521, Turku, Finland.
| | | |
Collapse
|
28
|
Mattjus P, Malewicz B, Valiyaveettil JT, Baumann WJ, Bittman R, Brown RE. Sphingomyelin modulates the transbilayer distribution of galactosylceramide in phospholipid membranes. J Biol Chem 2002; 277:19476-81. [PMID: 11909867 PMCID: PMC2612996 DOI: 10.1074/jbc.m201305200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interrelationships among sphingolipid structure, membrane curvature, and glycosphingolipid transmembrane distribution remain poorly defined despite the emerging importance of sphingolipids in curved regions and vesicle buds of biomembranes. Here, we describe a novel approach to investigate the transmembrane distribution of galactosylceramide in phospholipid small unilamellar vesicles by (13)C NMR spectroscopy. Quantitation of the transbilayer distribution of [6-(13)C]galactosylceramide (99.8% isotopic enrichment) was achieved by exposure of vesicles to the paramagnetic ion, Mn(2+). The data show that [6-(13)C]galactosylceramide prefers (70%) the inner leaflet of phosphatidylcholine vesicles. Increasing the sphingomyelin content of the 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles shifted galactosylceramide from the inner to the outer leaflet. The amount of galactosylceramide localized in the inner leaflet decreased from 70% in pure 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles to only 40% in 1-palmitoyl-2-oleoyl-phosphatidylcholine/sphingomyelin (1:2) vesicles. The present study demonstrates that sphingomyelin can dramatically alter the transbilayer distribution of a monohexosylceramide, such as galactosylceramide, in 1-palmitoyl-2-oleoyl-phosphatidylcholine/sphingomyelin vesicles. The results suggest that sphingolipid-sphingolipid interactions that occur even in the absence of cholesterol play a role in controlling the transmembrane distributions of cerebrosides.
Collapse
Affiliation(s)
- Peter Mattjus
- University of Minnesota, Hormel Institute, Austin, Minnesota 55912
| | - Barbara Malewicz
- University of Minnesota, Hormel Institute, Austin, Minnesota 55912
| | - Jacob T. Valiyaveettil
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, New York 11367–1597
| | | | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, New York 11367–1597
| | - Rhoderick E. Brown
- University of Minnesota, Hormel Institute, Austin, Minnesota 55912
- To whom correspondence should be addressed: The Hormel Inst., University of Minnesota, 801, 16th Ave. NE, Austin, MN 55912. Tel.: 507-433-8804; Fax: 507-437-9606; E-mail: or
| |
Collapse
|
29
|
Li L, Tang X, Taylor KG, DuPré DB, Yappert MC. Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy. Biophys J 2002; 82:2067-80. [PMID: 11916863 PMCID: PMC1302001 DOI: 10.1016/s0006-3495(02)75554-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ceramide (Cer) has been identified as an active lipid second messenger in the regulation of cell growth, differentiation, and apoptosis. Its analog, dihydroceramide, without the 4 to 5 trans double bond in the sphingoid backbone lacks these biological effects. To establish the conformational features that distinguish ceramide from its analogs, nuclear magnetic resonance spectral data were acquired for diluted samples of ceramides (C2- and C18-Cer), dihydroceramide (C16-DHCer), and deoxydihydroceramide (C18-DODHCer). Our results suggest that in both C2- and C18-Cer, an H-bond network is formed in which the amide proton NH is donated to the OH groups on carbons C1 and C3 of the sphingosine backbone. Two tightly bound water molecules appear to stabilize this network by participating in flip-flop interactions with the hydroxyl groups. In DHCer, the lack of the trans double bond leads to a conformational distortion of this H-bonding motif. Without the critical double bond, the degree with which water molecules stabilize the H bonds between the two OH groups of the sphingolipid is reduced. This structural alteration might preclude the participation of DHCer in signaling-related interactions with cellular targets.
Collapse
Affiliation(s)
- Li Li
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
30
|
Li H, Tremblay JM, Yarbrough LR, Helmkamp GM. Both isoforms of mammalian phosphatidylinositol transfer protein are capable of binding and transporting sphingomyelin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1580:67-76. [PMID: 11923101 DOI: 10.1016/s1388-1981(01)00191-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The structurally related mammalian alpha and beta isoforms of phosphatidylinositol (PtdIns) transfer protein (PITP) bind reversibly a single phospholipid molecule, preferably PtdIns or phosphatidylcholine (PtdCho), and transport that lipid between membrane surfaces. PITPbeta, but not PITPalpha, is reported extensively in the scientific literature to exhibit the additional capacity to bind and transport sphingomyelin (CerPCho). We undertook a detailed investigation of the lipid binding and transfer specificity of the soluble mammalian PITP isoforms. We employed a variety of donor and acceptor membrane lipid compositions to determine the sensitivity of recombinant rat PITPalpha and PITPbeta isoforms toward PtdIns, PtdCho, CerPCho, and phosphatidate (PtdOH). Results indicated often striking differences in protein-phospholipid and protein-membrane interactions. We demonstrated unequivocally that both isoforms were capable of binding and transferring CerPCho; we confirmed that the beta isoform was the more active. The order of transfer specific activity was similar for both isoforms: PtdIns>PtdCho>CerPCho>>PtdOH. Independently, we verified the binding of CerPCho to both isoforms by showing an increase in holoprotein isoelectric point following the exchange of protein-bound phosphatidylglycerol for membrane-associated CerPCho. We conclude that PITPalpha and PITPbeta are able to bind and transport glycero- and sphingophospholipids.
Collapse
Affiliation(s)
- Hong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City 66160-7421, USA
| | | | | | | |
Collapse
|
31
|
Mattjus P, Kline A, Pike HM, Molotkovsky JG, Brown RE. Probing for preferential interactions among sphingolipids in bilayer vesicles using the glycolipid transfer protein. Biochemistry 2002; 41:266-73. [PMID: 11772025 PMCID: PMC2651571 DOI: 10.1021/bi015718l] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the intervesicular transfer of galactosylceramide between unilamellar bilayer vesicles composed of differing sphingomyelin and phosphatidylcholine molar ratios. To monitor glycolipid transfer from donor to acceptor vesicles, we used a fluorescence resonance energy transfer assay involving anthrylvinyl-labeled galactosylceramide (AV-GalCer) and perylenoyl-labeled triglyceride. The transfer was mediated by glycolipid transfer protein (GLTP), purified from bovine brain and specific for glycolipids. The initial transfer rate and the total accessible pool of glycolipid in the donor vesicles were both measured. An increase in the sphingomyelin content of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) vesicles decreased the transfer rate in a nonlinear fashion. Decreased transfer rates were clearly evident at sphingomyelin mole fractions of 0.22 or higher. The pool of AV-GalCer available for GLTP-mediated transfer also was smaller in vesicles containing high sphingomyelin content. In contrast, AV-GalCer was more readily transferred from vesicles composed of POPC and different disaturated phosphatidylcholines. Our results show that GLTP acts as a sensitive probe for detecting interactions of glycosphingolipids with neighboring lipids and that the lateral mixing of glycolipids is probably affected by the matrix lipid composition. The compositionally driven changes in lipid interactions, sensed by GLTP, occur in membranes that are either macroscopically fluid-phase or gel/fluid-phase mixtures. Gaining insights into how changes in membrane sphingolipid composition alter accessibility to soluble proteins with affinity for membrane glycolipids is likely to help increase our understanding of how sphingolipid-enriched microdomains (i.e., "rafts" and caveolae) are formed and maintained in cells.
Collapse
Affiliation(s)
- Peter Mattjus
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Adam Kline
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Helen M. Pike
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Julian G. Molotkovsky
- The Shemyakin-Ovchinnikov Institute for Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
32
|
|
33
|
Talbott CM, Vorobyov I, Borchman D, Taylor KG, DuPré DB, Yappert MC. Conformational studies of sphingolipids by NMR spectroscopy. II. Sphingomyelin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:326-37. [PMID: 11030591 DOI: 10.1016/s0005-2736(00)00229-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sphingomyelin (SM) is the most prevalent sphingolipid in the majority of mammalian membranes. Proton and 31P nuclear magnetic resonance spectral data were acquired to establish the nature of intra- and intermolecular H-bonds in the monomeric and aggregated forms of SM and to assess possible differences between this lipid and dihydrosphingomyelin (DHSM), which lacks the double bond between carbons 4 and 5 of the sphingoid base. The spectral trends suggest the formation of an intramolecular H-bond between the OH group of the sphingosine moiety and the phosphate ester oxygen of the head group. The narrower linewidth and the downfield shift of the resonance corresponding to OH proton in SM suggest that this H-bond is stronger in SM than in DHSM. The NH group appears to be involved predominantly in intramolecular H-bonding in the monomer. As the concentration of SM increases and the molecules come in closer proximity, these intramolecular bonds are partially disrupted and the NH group becomes involved in lipid-water interactions. The difference between the SM and DHSM appears to be not in the nature of these interactions but rather in the degree to which these intermolecular interactions prevail. As SM molecules cannot come as close together as DHSM molecules can, both the NH and OH moieties remain, on average, more intramolecularly bonded as compared to DHSM.
Collapse
Affiliation(s)
- C M Talbott
- Department of Chemistry, University of Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ferguson-Yankey SR, Borchman D, Taylor KG, DuPré DB, Yappert MC. Conformational studies of sphingolipids by NMR spectroscopy. I. Dihydrosphingomyelin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:307-25. [PMID: 11030590 DOI: 10.1016/s0005-2736(00)00228-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The conformational features of dihydrosphingomyelin (DHSM), the major phospholipid of human lens membranes, were investigated by 1H and 31P nuclear magnetic resonance spectroscopy. Several postulates emerge from the observed trends: (a) in partially hydrated samples of DHSM in CDCl3 above 13 mM, at which lipid-lipid interactions prevail, the amide proton is mostly involved in intermolecular H-bonds that link neighboring phospholipids through bridging water molecules. In the absence of water, the NH group is involved in an intramolecular H-bond that restricts the mobility of the phosphate group. (b) In the monomeric form of the lipid molecule, the amide proton of the major conformer is bound intramolecularly with one of the anionic and/or ester oxygens of the phosphate group. A minor conformer may also be present in which the NH proton participates in an intramolecular H-bond linking to the OH group of the sphingoid base. (c) Complete hydration leads to an extension of the head group as water molecules bind to the phosphate and NH groups via H-bonds, thus disrupting the intramolecular H-bonds prevalent at low concentrations.
Collapse
|
35
|
Ramstedt B, Leppimäki P, Axberg M, Slotte JP. Analysis of natural and synthetic sphingomyelins using high-performance thin-layer chromatography. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:997-1002. [PMID: 10583394 DOI: 10.1046/j.1432-1327.1999.00938.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chromatographic behaviour of molecular species of sphingomyelin on HPTLC was investigated. Sphingomyelin gave a double band pattern on HPTLC plates developed using chloroform/methanol/acetic acid/water (25 : 15 : 4 : 2, v/v) or chloroform/methanol/water (25 : 10 : 1.1, v/v). HPTLC analysis of acyl chain-defined sphingomyelins showed that the Rf values increased linearly with the length of the N-linked acyl chain. A double-banded pattern was therefore seen for natural sphingomyelins with a bimodal fatty acid composition. Racemic sphingomyelins also gave a double band pattern on HPTLC, where the lower band represented the Derythro and the upper band the Lthreo isomer. We also showed that Derythro-N-16:0-dihydrosphingomyelin migrated faster on HPTLC than Derythro-N-16:0-sphingomyelin. The upper and lower band sphingomyelins from two different cell lines (human skin fibroblasts and baby hamster kidney cells) were separately scraped off the HPTLC plates and the fatty acid and long-chain base profiles were studied using GC-MS. The lower bands contained short-chain fatty acids and most of the fatty acids in the upper bands were long. The predominant long-chain base was sphingosine, which was found in both upper and lower bands, but sphinganine was found only in the upper bands. To conclude, there are at least three possible reasons for the sphingomyelin double bands on HPTLC; acyl chain length, long-chain base composition and stereochemistry. These reasons might sometimes overlap and, therefore, HPTLC alone is insufficient for complete analysis of the molecular species of sphingomyelin.
Collapse
Affiliation(s)
- B Ramstedt
- Department of Biochemistry, Abo Akademi University, Turku, Finland.
| | | | | | | |
Collapse
|
36
|
Ramstedt B, Slotte JP. Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins. Biophys J 1999; 77:1498-506. [PMID: 10465760 PMCID: PMC1300437 DOI: 10.1016/s0006-3495(99)76997-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study stereochemically pure d-erythro-sphingomyelins (SMs) with either 16:0 or 18:1(cisDelta9) as the N-linked acyl-chain were synthesized. Our purpose was to examine the properties of these sphingomyelins and acyl-chain matched racemic (d-erythro/l-threo) sphingomyelins in model membranes. Liquid-expanded d-erythro-N-16:0-SM in monolayers was observed to pack more densely than the corresponding racemic sphingomyelin. Cholesterol desorption to beta-cyclodextrin was significantly slower from d-erythro-N-16:0-SM monolayers than from racemic N-16:0-SM monolayers. Significantly more condensed domains were seen in cholesterol/d-erythro-N-16:0-SM monolayers than in the corresponding racemic mixed monolayers, when [7-nitrobenz-2-oxa-1, 3-diazol-4-yl]phosphatidylcholine was used as a probe in monolayer fluorescence microscopy. With monolayers of N-18:1-SMs, both the lateral packing densities (sphingomyelin monolayers) and the rates of cholesterol desorption (mixed cholesterol/sphingomyelin monolayers) was found to be similar for d-erythro and racemic sphingomyelins. The phase transition temperature and enthalpy of d-erythro-N-16:0-SM in bilayer membranes were slightly higher compared with the corresponding racemic sphingomyelin (41.1 degrees C and 8.4 +/- 0.4 kJ/mol, and 39.9 degrees C and 7.2 +/- 0.2 kJ/mol, respectively). Finally, d-erythro-sphingomyelins in monolayers (both N-16:0 and N-18:1 species) were not as easily degraded at 37 degrees C by sphingomyelinase (Staphylococcus aureus) as the corresponding racemic sphingomyelins. We conclude that racemic sphingomyelins differ significantly in their biophysical properties from the physiologically relevant d-erythro sphingomyelins.
Collapse
Affiliation(s)
- B Ramstedt
- Department of Biochemistry and Pharmacy, Abo Akademi University, FIN 20521 Turku, Finland.
| | | |
Collapse
|
37
|
DuPré DB, Yappert M. Conformational simulation of phosphosphingolipids by molecular mechanics. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0166-1280(98)00490-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Li S, Wilson WK, Schroepfer GJ. Chemical synthesis of d-ribo-phytosphingosine-1-phosphate, a potential modulator of cellular processes. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33346-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Smaby JM, Momsen M, Kulkarni VS, Brown RE. Cholesterol-induced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains. Biochemistry 1996; 35:5696-704. [PMID: 8639529 PMCID: PMC4003871 DOI: 10.1021/bi953057k] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The interfacial interactions occurring between cholesterol and either galactosylceramides (GalCers) or sphingomyelins (SMs) with identical acyl chains have been investigated using Langmuir film balance techniques. Included among the synthesized GalCers and SMs were species containing palmitoyl (16:0), stearoyl (18:0), oleoyl [18:1 delta 9(c)], nervonoyl [24:1 delta 15(c)], or linoleoyl [18:2 delta 9,12(c)] acyl residues. The cholesterol-induced condensations in the average molecular areas of the monolayers were determined by classic mean molecular area vs composition plots as well as by expressing the changes in terms of sphingolipid cross-sectional area reduction over the surface pressure range from 1 to 40 mN/m (at 1 mN/m intervals). The results show that, at surface pressures approximating bilayer conditions (30 mN/m), acyl heterogeneity in naturally occurring SMs (bovine of egg SM) enhanced the area condensation induced by cholesterol compared with their predominant molecular species (e.g. 18:0 SM in bovine SM; 16:0 SM in egg SM). Nonetheless, cholesterol always had a greater condensing effect on SM compared to GalCer when these sphingolipids were acyl chain matched and in similar phase states (prior to mixing with cholesterol). Also, the cholesterol-induced area changes for a given sphingolipid type (e.g. SM or GalCer) were similar whether the acyl chains were saturated, cis-delta 9-monounsaturated, or cis-delta 9,12-diunsaturated if the sphingolipids were in similar phase states (prior to mixing with cholesterol) and compared at equivalent surface pressures. These results indicate that, under conditions were hydrocarbon structure is matched, the sphingolipid head group plays a dominant role in determining the extent to which cholesterol reduces sphingolipid cross-sectional area. Despite the larger cholesterol-induced area condensations observed in SMs compared to those in GalCers, the molecular-packing densities showed that equimolar GalCer-cholesterol films were generally packed as tight as or slightly tighter than those of the SM-cholesterol films. The results are discussed in terms of a molecular model for sphingolipid-cholesterol interactions. Our findings also do only raise questions as to whether cholesterol-induced condensation data provide a reliable measure of the affinity, i.e. interaction strength, between cholesterol and different lipids but also provide insight regarding the stability of sterol/sphingolipid 1-1 rich microdomains thought to exist in caveolae and other cell membrane regions.
Collapse
Affiliation(s)
| | | | | | - Rhoderick E. Brown
- Correspondence to Dr. Rhoderick E. Brown, The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912. Fax: (507) 437-9606.
| |
Collapse
|
40
|
Maulik PR, Shipley GG. Interactions of N-stearoyl sphingomyelin with cholesterol and dipalmitoylphosphatidylcholine in bilayer membranes. Biophys J 1996; 70:2256-65. [PMID: 9172749 PMCID: PMC1225200 DOI: 10.1016/s0006-3495(96)79791-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Differential scanning calorimetry and x-ray diffraction have been utilized to investigate the interaction of N-stearoylsphingomyelin (C18:0-SM) with cholesterol and dipalmitoylphosphatidylcholine (DPPC). Fully hydrated C18:0-SM forms bilayers that undergo a chain-melting (gel -->liquid-crystalline) transition at 45 degrees C, delta H = 6.7 kcal/mol. Addition of cholesterol results in a progressive decrease in the enthalpy of the transition at 45 degrees C and the appearance of a broad transition centered at 46.3 degrees C; this latter transition progressively broadens and is not detectable at cholesterol contents of >40 mol%. X-ray diffraction and electron density profiles indicate that bilayers of C18:0-SM/cholesterol (50 mol%) are essentially identical at 22 degrees C and 58 degrees C in terms of bilayer periodicity (d = 63-64 A), bilayer thickness (d rho-p = 46-47 A), and lateral molecular packing (wide-angle reflection, 1/4.8 A-(1)). These data show that cholesterol inserts into C18:0-SM bilayers, progressively removing the chain-melting transition and altering the bilayer structural characteristics. In contrast, DPPC has relatively minor effects on the structure and thermotropic properties of C18:0-SM. DPPC and C18:0-SM exhibit complete miscibility in both the gel and liquid-crystalline bilayer phases, but the pre-transition exhibited by DPPC is eliminated at >30 mol% C18:0-SM. The bilayer periodicity in both the gel and liquid-crystalline phases decreases significantly at high DPPC contents, probably reflecting differences in hydration and/or chain tilt (gel phase) of C18:0-SM and DPPC.
Collapse
Affiliation(s)
- P R Maulik
- Department of Biophysics, Boston School of Medicine, Center for Advanced Biomedical Research, Massachusetts 02118, USA
| | | |
Collapse
|
41
|
Smaby JM, Kulkarni VS, Momsen M, Brown RE. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Biophys J 1996; 70:868-77. [PMID: 8789104 PMCID: PMC1224987 DOI: 10.1016/s0006-3495(96)79629-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The interfacial elastic packing interactions of different galactosylceramides (GalCers), sphingomyelins (SMs), and phosphatidylcholines (PC) were compared by determining their elastic area compressibility moduli (Cs-1) as a function of lateral packing pressure (pi) in a Langmuir-type film balance. To assess the relative contributions of the lipid headgroups as well as those of the ceramide and diacylglycerol hydrocarbon regions, we synthesized various GalCer and SM species with identical, homogeneous acyl residues and compared their behavior to that of PCs possessing similar hydrocarbon structures. For PCs, this meant that the sn-1 acyl chain was long and saturated (e.g., palmitate) and the sn-2 chain composition was varied to match that of GalCer or SM. When at equivalent pi and in either the chain-disordered (liquid-expanded) or chain-ordered (liquid-condensed) state, GalCer films were less elastic than either SM or PC films. When lipid headgroups were identical (SM and PC), Cs-1 values (at equivalent pi) for chain-disordered SMs, but not chain-ordered SMs, were 25-30% higher than those of PCs. Typical values for fluid phase (liquid-expanded) GalCer at 30 mN/m and 24 degrees C were 158 (+/- 7) mN/m, whereas those of SM were 135 (+/- 7) mN/m and those of PC were 123 (+/- 2) mN/m. Pressure-induced transitions to chain-ordered states (liquid-condensed) resulted in significant increases (two- to fourfold) in the "in-plane" compressibility for all three lipid types. Typical Cs-1 values for chain-ordered GalCers at 30 mN/m and 24 degrees C were between 610 and 650 mN/m, whereas those of SM and of PC were very similar and were between 265 and 300 mN/m. Under fluid phase conditions, the pi-Cs-1 behavior for each lipid type was insensitive to whether the acyl chain was saturated or monounsaturated. Measurement of the Cs-1 values also provided an effective way to evaluate the two-dimensional phase transition region of SMs, GalCers, and PCs. Modest heterogeneity in the acyl composition led to transitional broadening. Our findings provide useful information regarding the in-plane elasticity of lipids that are difficult to investigate by alternative methods, i.e., micropipette aspiration technique. The results also provide insight into the stability of sphingolipid-enriched, membrane microdomains that are thought to play a role in the sorting and trafficking of proteins containing glycosylphosphatidylinositol anchors with cells.
Collapse
Affiliation(s)
- J M Smaby
- Hormel Institute, University of Minnesota, Austin 55912-3698, USA
| | | | | | | |
Collapse
|
42
|
Nyholm PG, Pascher I. Orientation of the saccharide chains of glycolipids at the membrane surface: conformational analysis of the glucose-ceramide and the glucose-glyceride linkages using molecular mechanics (MM3). Biochemistry 1993; 32:1225-34. [PMID: 8448133 DOI: 10.1021/bi00056a005] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Preferred conformations of the saccharide-ceramide linkage of glucosylceramides with different ceramide structures (normal and hydroxy fatty acids) were investigated by molecular mechanics (MM3) calculations and compared with conformational features obtained for glucosylglycerolipids (diacyl and dialkyl analogues). Relaxed energy map calculations with MM3 were performed for the three bonds (C1'-O1-C1-C2, torsion angles phi, psi, and theta 1) of the glucose-ceramide/diglyceride linkage at different values of the dielectric constant. For the phi torsion of the glycosidic C1'-O1 bond the calculations show a strict preference for the +sc range whereas the psi/theta 1 energy surface is dependent on the structure of the lipid moiety as well as on the dielectric constant (epsilon). Calculations performed on glucosylceramide with normal and hydroxy fatty acids at epsilon = 4 (bilayer subsurface conditions) show three dominating conformers (psi/theta 1 = ap/-sc, -sc/ap, and ap/ap). The ap/-sc conformer, which represents the global energy minimum, is stabilized by polar interactions involving the amide group. The +sc rotamer of theta 1 is unfavored in sphingolipids due to a Hassel-Ottar effect involving the sphingosine O3 and O1 oxygen atoms. Comparative calculations on glycosylglycerolipid analogues (ester and ether derivatives) show a distinct preference for the ap rotamer of theta 1. An evaluation of the steric hindrance imposed by the surrounding membrane surface shows that in a bilayer arrangement the range of possible conformations for the saccharide-lipid linkage is considerably reduced. The significance of preferred conformations of the saccharide-ceramide linkage for the presentation and recognition of the saccharide chains of glycosphingolipids at the membrane surface is discussed.
Collapse
Affiliation(s)
- P G Nyholm
- Department of Medical Biochemistry, University of Göteborg, Sweden
| | | |
Collapse
|
43
|
Mannock DA, Lewis RN, McElhaney RN, Akiyama M, Yamada H, Turner DC, Gruner SM. Effect of the chirality of the glycerol backbone on the bilayer and nonbilayer phase transitions in the diastereomers of di-dodecyl-beta-D-glucopyranosyl glycerol. Biophys J 1992; 63:1355-68. [PMID: 1477284 PMCID: PMC1261440 DOI: 10.1016/s0006-3495(92)81713-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have studied the physical properties of aqueous dispersions of 1,2-sn- and 2,3-sn-didodecyl-beta-D-glucopyranosyl glycerols, as well as their diastereomeric mixture, using differential scanning calorimetry and low angle x-ray diffraction. Upon heating, both the chiral lipids and the diastereomeric mixture exhibit characteristically energetic L beta/L alpha phase transitions at 31.7-32.8 degrees C and two or three weakly energetic thermal events between 49 degrees C and 89 degrees C. In the diastereomeric mixture and the 1,2-sn glycerol derivative, these higher temperature endotherms correspond to the formation of, and interconversions between, several nonlamellar structures and have been assigned to L alpha/QIIa, QIIa/QIIb, and QIIb/HII phase transitions, respectively. The cubic phases QIIa and QIIb, whose cell lattice parameters are strongly temperature dependent, can be identified as belonging to space groups Ia3d and Pn3m/Pn3, respectively. In the equivalent 2,3-sn glucolipid, the QIIa phase is not observed and only two transitions are seen at 49 degrees C and 77 degrees C, which are identified as L alpha/QIIb and QIIb/HII phase transitions, respectively. These phase transitions temperatures are some 10 degrees C lower than those of the corresponding phase transitions observed in the diastereomeric mixture and the 1,2-sn glycerol derivative. On cooling, all three lipids exhibit a minor higher temperature exothermic event, which can be assigned to a HII/QIIb phase transition. An exothermic L alpha/L beta phase transition is observed at 30-31 degrees C. A shoulder is sometimes discernible on the high temperature side of the L alpha/L beta event, which may originate from a QIIb/L alpha phase transition prior to the freezing of the hydrocarbon chains. None of the lipids show evidence of a QIIa phase on cooling. No additional exothermic transitions are observed on further cooling to -3 degrees C. However, after nucleation at 0 degrees C followed by a short period of annealing at 22 degrees C, the 1,2-sn glucolipid forms an Lc phase that converts to an L alpha phase at 39.5 degrees C on heating. Neither the diastereomeric mixture nor the 2,3-sn glycerol derivative shows such behavior even after extended periods of annealing. Our results suggest that the differences in the phase behavior of these glycolipid isomers may not be attributable to headgroup size per se, but rather to differences in the stereochemistry of the lipid polar/apolar interfacial region, which consequently effects hydrogen-bonding, hydration, and the hydrophilic/hydrophobic balance.
Collapse
Affiliation(s)
- D A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Maulik PR, Sripada PK, Shipley GG. Structure and thermotropic properties of hydrated N-stearoyl sphingomyelin bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1062:211-9. [PMID: 2004108 DOI: 10.1016/0005-2736(91)90395-o] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrated multibilayers of N-stearoyl sphingomyelin were investigated as a function of hydration using differential scanning calorimetry (DSC) and X-ray diffraction. Anhydrous N-stearoyl sphingomyelin exhibits an endothermic transition at 75 degrees C (delta H = 3.8 kcal/mol); increasing hydration progressively lowers the transition temperature and increases the transition enthalpy, until limiting values (Tm = 45 degrees C, delta H = 6.7 kcal/mol) are observed for hydration values greater than 21.4% H2O. At low hydration levels, less than 20% H2O, an additional transition is observed at approx. 20 degrees C. X-ray diffraction studies at temperatures below (22 degrees C) and above (55 degrees C) the main endothermic transition confirm that the bilayer gel (sharp 4.2 A reflection)----bilayer liquid crystal (diffuse 4.5 A reflection) transition occurs at all hydration levels with limiting bilayer hydration occurring at approx. 31.5% H2O in the gel phase and at approx. 35% H2O in the liquid crystal phase. The thermotropic properties and metastability of this partial synthetic N-stearoyl sphingomyelin differ in some respects from that of the previously studied synthetic DL-erythro-N-stearoyl sphingomyelin (Estep, T.N., Calhoun, W.I., Barenholz, Y., Biltonen, R.L., Shipley, G.G. and Thompson, T.E. (1980) Biochemistry 19, 20-24), suggesting an influential role of the interfacial molecular conformation.
Collapse
Affiliation(s)
- P R Maulik
- Department of Biophysics, Housman Medical Research Center, Boston University School of Medicine, MA 02118-2394
| | | | | |
Collapse
|
45
|
Nyholm PG, Pascher I, Sundell S. The effect of hydrogen bonds on the conformation of glycosphingolipids. Methylated and unmethylated cerebroside studied by X-ray single crystal analysis and model calculations. Chem Phys Lipids 1990; 52:1-10. [PMID: 2306786 DOI: 10.1016/0009-3084(90)90002-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The conformation and molecular packing of permethylated beta-D-galactosyl-N-octadecanoyl-D-spingosine (cerebroside) was determined by X-ray single crystal analysis at 185 K (R = 0.16). The lipid crystallizes in the orthorhombic space group P2(1)2(1)2(1) with the unit cell dimensions a = 8.03, b = 7.04 and c = 88.10 A. The four molecules in the unit cell pack in a bilayer arrangement with tilting (48 degrees) hydrocarbon chains. The direction of the chain tilt alternates in the two bilayer halves and in adjacent bilayers. In order to define the effect of hydrogen bonds on the molecular conformation the structural features of the permethylated cerebroside are compared with that of unsubstituted cerebroside (I. Pascher and S. Sundell (1977) Chem. Phys. Lipids 20, 179). It is shown that methylation of the hydrogen donor groups does not affect the conformation of the ceramide part. However, by abolishing the intramolecular hydrogen bond between the amide N--H group and the glycosidic oxygen the galactose ring changes its orientation from layer-parallel to layer-perpendicular. Calculations using molecular mechanics, MM2(87), show that in natural cerebroside the intramolecular hydrogen bond stabilizes the theta 1 = -syn-clinal conformation about the C(1)--C(2) sphingosine bond by 2-2.5 kcal/mol compared to other staggered conformations. The significance of the L shape of the native cerebroside, making both the carbohydrate and polar ceramide groups accessible as a binding epitope in recognition processes, is discussed.
Collapse
Affiliation(s)
- P G Nyholm
- Dept. of Structural Chemistry, Faculty of Medicine, University of Göteborg, Sweden
| | | | | |
Collapse
|