1
|
Abstract
In this chapter, we briefly describe the structural features of gangliosides, and focus on the peculiar chemicophysical features of gangliosides, an important class of membrane amphipathic lipids that represent an important driving force determining the organization and properties of cellular membranes.
Collapse
|
2
|
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A. Gangliosides in Membrane Organization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:83-120. [PMID: 29747825 DOI: 10.1016/bs.pmbts.2017.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the structure of GM1 was elucidated 55years ago, researchers have been attracted by the sialylated glycans of gangliosides. Gangliosides head groups, protruding toward the extracellular space, significantly contribute to the cell glycocalyx; and in certain cells, such as neurons, are major determinants of the features of the cell surface. Expression of glycosyltransferases involved in the de novo biosynthesis of gangliosides is tightly regulated along cell differentiation and activation, and is regarded as the main metabolic mechanism responsible for the acquisition of cell-specific ganglioside patterns. The resulting sialooligosaccharides are characterized by a high degree of geometrical complexity and by highly dynamic properties, which seem to be functional for complex interactions with other molecules sitting on the same cellular membrane (cis-interactions) or soluble molecules present in the extracellular environment, or molecules associated with the surface of other cells (trans-interactions). There is no doubt that the multifaceted biological functions of gangliosides are largely dependent on oligosaccharide-mediated molecular interactions. However, gangliosides are amphipathic membrane lipids, and their chemicophysical, aggregational, and, consequently, biological properties are dictated by the properties of the monomers as a whole, which are not merely dependent on the structures of their polar head groups. In this chapter, we would like to focus on the peculiar chemicophysical features of gangliosides (in particular, those of the nervous system), that represent an important driving force determining the organization and properties of cellular membranes, and to emphasize the causal connections between altered ganglioside-dependent membrane organization and relevant pathological conditions.
Collapse
|
3
|
Go S, Go S, Veillon L, Ciampa MG, Mauri L, Sato C, Kitajima K, Prinetti A, Sonnino S, Inokuchi JI. Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. J Biol Chem 2017; 292:7040-7051. [PMID: 28275055 DOI: 10.1074/jbc.m116.771253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Gangliosides (sialic acid-containing glycosphingolipids) help regulate many important biological processes, including cell proliferation, signal transduction, and differentiation, via formation of functional microdomains in plasma membranes. The structural diversity of gangliosides arises from both the ceramide moiety and glycan portion. Recently, differing molecular species of a given ganglioside are suggested to have distinct biological properties and regulate specific and distinct biological events. Elucidation of the function of each molecular species is important and will provide new insights into ganglioside biology. Gangliosides are also suggested to be involved in skeletal muscle differentiation; however, the differential roles of ganglioside molecular species remain unclear. Here we describe striking changes in quantity and quality of gangliosides (particularly GM3) during differentiation of mouse C2C12 myoblast cells and key roles played by distinct GM3 molecular species at each step of the process.
Collapse
Affiliation(s)
- Shinji Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Shiori Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.,Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Lucas Veillon
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Jin-Ichi Inokuchi
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan,
| |
Collapse
|
4
|
Sibille E, Berdeaux O, Martine L, Bron AM, Creuzot-Garcher CP, He Z, Thuret G, Bretillon L, Masson EAY. Ganglioside Profiling of the Human Retina: Comparison with Other Ocular Structures, Brain and Plasma Reveals Tissue Specificities. PLoS One 2016; 11:e0168794. [PMID: 27997589 PMCID: PMC5173345 DOI: 10.1371/journal.pone.0168794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
Gangliosides make a wide family of glycosphingolipids, highly heterogeneous in both the ceramide moiety and the oligosaccharide chain. While ubiquitously expressed in mammalian tissues, they are particularly abundant in the brain and the peripheral nervous system. Gangliosides are known to play a crucial role in the development, maintenance and functional integrity of the nervous system. However, the expression and roles of gangliosides in the retina, although often considered as a window on the brain, has been far less studied. We performed an in-depth analysis of gangliosides of the human retina, especially using powerful LC/MS methods. We compared the pattern of ganglioside classes and ceramide molecular species of this tissue with other ocular structures and with brain and plasma in elderly human individuals. About a hundred of ganglioside molecular species among 15 distinct classes were detected illustrating the huge structural diversity of these compounds. The retina exhibited a very diverse ganglioside profile and shared several common features with the brain (prominence of tetraosylgangliosides, abundance of d20:1 long chain base and 18:0 fatty acid…). However, the retina stood out with the specific expression of GD3, GT3 and AcGT3, which further presented a peculiar molecular species distribution. The unique ganglioside pattern we observed in the human retina suggests that these ganglioside species play a specific role in the structure and function of this tissue. This lipidomic study, by highlighting retina specific ganglioside species, opens up novel research directions for a better understanding of the biological role of gangliosides in the retina.
Collapse
Affiliation(s)
- Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Alain M. Bron
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Catherine P. Creuzot-Garcher
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Zhiguo He
- Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
| | - Gilles Thuret
- Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
- Institut Universitaire de France, Paris, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Elodie A. Y. Masson
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- * E-mail:
| |
Collapse
|
5
|
GM1 Ganglioside: Past Studies and Future Potential. Mol Neurobiol 2015; 53:1824-1842. [DOI: 10.1007/s12035-015-9136-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
|
6
|
Smith EA, Smith C, Tanksley B, Dea PK. Effects of cis- and trans-unsaturated lipids on an interdigitated membrane. Biophys Chem 2014; 190-191:1-7. [DOI: 10.1016/j.bpc.2014.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/25/2022]
|
7
|
Gangliosides and the multiscale modulation of membrane structure. Chem Phys Lipids 2011; 164:796-810. [DOI: 10.1016/j.chemphyslip.2011.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
|
8
|
Sonnino S, Prinetti A. Lipids and membrane lateral organization. Front Physiol 2010; 1:153. [PMID: 21423393 PMCID: PMC3059948 DOI: 10.3389/fphys.2010.00153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/28/2010] [Indexed: 01/08/2023] Open
Abstract
Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word "lipid rafts" returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, "ceramide" returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as "lipid raft-dependent." However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.
Collapse
Affiliation(s)
- Sandro Sonnino
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of MilanoMilano, Italy
| | - Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of MilanoMilano, Italy
| |
Collapse
|
9
|
Valsecchi M, Aureli M, Mauri L, Illuzzi G, Chigorno V, Prinetti A, Sonnino S. Sphingolipidomics of A2780 human ovarian carcinoma cells treated with synthetic retinoids. J Lipid Res 2010; 51:1832-40. [PMID: 20194109 DOI: 10.1194/jlr.m004010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dihydroceramide, ceramide, sphingomyelin, lactosylceramide, and ganglioside species of A2780 human ovarian carcinoma cells treated with the synthetic retinoids N-(4-hydroxyphenyl)retinamide (fenretinide, 4-HPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) in culture were characterized by ESI-MS. We characterized 32 species of ceramide and dihydroceramide, 15 of sphingomyelin, 12 of lactosylceramide, 9 of ganglioside GM2, and 6 of ganglioside GM3 differing for the long-chain base and fatty acid structures. Our results indicated that treatment with both 4-HPR and 4-oxo-4-HPR led to a marked increase in dihydroceramide species, while only 4-oxo-4-HPR led to a minor increase of ceramide species. Dihydroceramides generated in A2780 cells in response to 4-HPR or 4-oxo-4-HPR differed for their fatty acid content, suggesting that the two drugs differentially affect the early steps of sphingolipid synthesis. Dihydroceramides produced upon treatments with the drugs were further used for the synthesis of complex dihydrosphingolipids, whose levels dramatically increased in drug-treated cells.
Collapse
Affiliation(s)
- Manuela Valsecchi
- Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence on Neurodegenerative Diseases, University of Milano, 20090 Segrate, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 2010; 41:314-40. [PMID: 20127207 DOI: 10.1007/s12035-009-8096-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022]
Abstract
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron-glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid-protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid beta peptide in Alzheimer's disease, huntingtin in Huntington's disease, alpha-synuclein in Parkinson's disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.
Collapse
Affiliation(s)
- Marco Piccinini
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sonnino S, Prinetti A. Gangliosides as regulators of cell membrane organization and functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:165-84. [PMID: 20919654 DOI: 10.1007/978-1-4419-6741-1_12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gangliosides, characteristic complex lipids present in the external layer of plasma membranes, deeply influence the organization of the membrane as a whole and the function of specific membrane associated proteins due to lipid-lipid and lipid-protein lateral interaction. Here we discuss the basis for the membrane-organizing potential of gangliosides, examples of ganglioside-regulated membrane protein complexes and the mechanisms for the regulation of ganglioside membrane composition.
Collapse
Affiliation(s)
- Sandro Sonnino
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, University of Milan, Segrate, Italy
| | | |
Collapse
|
12
|
Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 2009; 10:691-712. [PMID: 19416475 DOI: 10.1111/j.1600-0854.2009.00902.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.
Collapse
Affiliation(s)
- Fabien Pinaud
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Preparation of Alexa Fluor 350-conjugated nonradioactive or 3H-labeled GM1 ganglioside derivatives with different ceramides. Anal Biochem 2009; 385:168-70. [DOI: 10.1016/j.ab.2008.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/04/2008] [Accepted: 10/07/2008] [Indexed: 11/22/2022]
|
14
|
Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:184-93. [DOI: 10.1016/j.bbamem.2008.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/12/2022]
|
15
|
Westerlund B, Slotte JP. How the molecular features of glycosphingolipids affect domain formation in fluid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:194-201. [DOI: 10.1016/j.bbamem.2008.11.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/28/2008] [Accepted: 11/12/2008] [Indexed: 12/11/2022]
|
16
|
The ceramide structure of GM1 ganglioside differently affects its recovery in low-density membrane fractions prepared from HL-60 cells with or without triton-X100. Cell Mol Biol Lett 2008; 14:175-89. [PMID: 18979068 PMCID: PMC6275918 DOI: 10.2478/s11658-008-0043-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 07/11/2008] [Indexed: 12/24/2022] Open
Abstract
Gangliosides are characteristically enriched in various membrane domains that can be isolated as low density membrane fraction insoluble in detergents (detergent-resistant membranes, DRMs) or obtained after homogenization and sonication in 0.5 M sodium carbonate (low-density membranes, LDMs). We assessed the effect of the ceramide structure of four [3H]-labeled GM1 ganglioside molecular species (GM1s) taken up by HL-60 cells on their occurrence in LDMs, and compared it with our previous observations for DRMs. All GM1s contained C18 sphingosine, which was acetylated in GM1(18:1/2) or acylated with C14, C18 or C18:1 fatty acids (Fas)
Collapse
|
17
|
Park JW, Ahn DJ. Temperature effect on nanometer-scale physical properties of mixed phospholipid monolayers. Colloids Surf B Biointerfaces 2008; 62:157-61. [DOI: 10.1016/j.colsurfb.2007.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/10/2007] [Accepted: 09/17/2007] [Indexed: 11/16/2022]
|
18
|
Iwabuchi K, Prinetti A, Sonnino S, Mauri L, Kobayashi T, Ishii K, Kaga N, Murayama K, Kurihara H, Nakayama H, Yoshizaki F, Takamori K, Ogawa H, Nagaoka I. Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 2007; 25:357-74. [PMID: 18041581 DOI: 10.1007/s10719-007-9084-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/16/2007] [Accepted: 11/01/2007] [Indexed: 01/12/2023]
Abstract
The neutral glycosphingolipid lactosylceramide (LacCer) forms lipid rafts (membrane microdomains) coupled with the Src family kinase Lyn on the plasma membranes of human neutrophils; ligand binding to LacCer activates Lyn, resulting in neutrophil functions, such as superoxide generation and migration (Iwabuchi and Nagaoka, Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils, Blood 100, 1454-1464, 2002 and Sato et al. Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta glycan, J. Leukoc. Biol. 84, 204-211, 2006). Neutrophilic differentiated HL-60 cells (D-HL-60 cells) express almost the same amount of LacCer as neutrophils. However, D-HL-60 cells do not have Lyn-associated LacCer-enriched lipid rafts and lack LacCer-mediated superoxide-generating and migrating abilities. Here, we examined the roles of LacCer molecular species of different fatty acid compositions in these processes. Liquid chromatography-mass spectrometry analyses revealed that the very long fatty acid C24:0 and C24:1 chains were the main components of LacCer (31.6% on the total fatty acid content) in the detergent-resistant membrane fraction (DRM) from neutrophil plasma membranes. In contrast, plasma membrane DRM of D-HL-60 cells included over 70% C16:0-LacCer, but only 13.6% C24-LacCer species. D-HL-60 cells loaded with C24:0 or C24:1-LacCer acquired LacCer-mediated migrating and superoxide-generating abilities, and allowed Lyn coimmunoprecipitation by anti-LacCer antibody. Lyn knockdown by siRNA completely abolished the effect of C24:1-LacCer loading on LacCer-mediated migration of D-HL-60 cells. Immunoelectron microscopy revealed that LacCer clusters were closely associated with Lyn molecules in neutrophils and C24:1-LacCer-loaded D-HL-60 cells, but not in D-HL-60 cells or C16:0-LacCer-loaded cells. Taken together, these observations suggest that LacCer species with very long fatty acids are specifically necessary for Lyn-coupled LacCer-enriched lipid raft-mediated neutrophil superoxide generation and migration.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sonnino S, Mauri L, Chigorno V, Prinetti A. Gangliosides as components of lipid membrane domains. Glycobiology 2006; 17:1R-13R. [PMID: 16982663 DOI: 10.1093/glycob/cwl052] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell membrane components are organized as specialized domains involved in membrane-associated events such as cell signaling, cell adhesion, and protein sorting. These membrane domains are enriched in sphingolipids and cholesterol but display a low protein content. Theoretical considerations and experimental data suggest that some properties of gangliosides play an important role in the formation and stabilization of specific cell lipid membrane domains. Gangliosides are glycolipids with strong amphiphilic character and are particularly abundant in the plasma membranes, where they are inserted into the external leaflet with the hydrophobic ceramide moiety and with the oligosaccharide chain protruding into the extracellular medium. The geometry of the monomer inserted into the membrane, largely determined by the very large surface area occupied by the oligosaccharide chain, the ability of the ceramide amide linkage to form a network of hydrogen bonds at the water-lipid interface of cell membranes, the Delta(4) double bond of sphingosine proximal to the water-lipid interface, the capability of the oligosaccharide chain to interact with water, and the absence of double bonds into the double-tailed hydrophobic moiety are the ganglioside features that will be discussed in this review, to show how gangliosides are responsible for the formation of cell lipid membrane domains characterized by a strong positive curvature.
Collapse
Affiliation(s)
- Sandro Sonnino
- Department of Medical Chemistry, Biochemistry, and Biotechnology, Center of Excellence on Neurodegenerative Disease, University of Milan, 20090 Segrate (MI), Italy.
| | | | | | | |
Collapse
|
20
|
Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G. Dynamic and Structural Properties of Sphingolipids as Driving Forces for the Formation of Membrane Domains. Chem Rev 2006; 106:2111-25. [PMID: 16771445 DOI: 10.1021/cr0100446] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandro Sonnino
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate (MI), Italy.
| | | | | | | | | |
Collapse
|
21
|
Sardone L, Pignataro B, Castelli F, Sarpietro MG, Nicolosi G, Marletta G. Temperature and pressure dependence of quercetin-3-O-palmitate interaction with a model phospholipid membrane: film balance and scanning probe microscopy study. J Colloid Interface Sci 2004; 271:329-35. [PMID: 14972609 DOI: 10.1016/j.jcis.2003.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
The molecular interaction of quercetin-3-O-palmitate (QP) with dimyristoylphosphatidylcholine (DMPC) has been studied. Film balance measurements of the average molecular area vs QP molar fraction in DMPC/QP mixed monolayers showed that relevant positive deviations from ideality, i.e., a less dense monolayer packing, occurred for a temperature of 10 degrees C, below the critical melting transition temperature of DMPC monolayers T c m approximately equal 20 degrees C), while ideal behavior was observed at 37 degrees C, above this phase transition temperature. The positive deviation observed at low temperatures in the average molecular area increased with the surface pressure. Scanning probe microscopy measurements performed on mixed monolayers transferred on mica showed that the deviations from ideality were connected to the formation of nanometric-scale QP-rich domains. However, the formation of aggregates was observed only for relatively high-QP molar fractions X QP > or = 0.25 at 10 degrees C, while it was not observed at 37 degrees C, i.e., when the ideal mixing was found at the air/water interface. The observed effects are explained in terms of a temperature- and surface pressure-dependent phase-separation process based on the predominance at low temperature and low molecular mobility of QP-QP and DMPC-DMPC aggregation forces, prompting the formation of QP-rich domains embedded in a DMPC-rich matrix. High temperature prompts the QP/DMPC ideal mixing.
Collapse
Affiliation(s)
- Laura Sardone
- Laboratory for Molecular Surfaces and Interfaces (LAMSUN), Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Wang TY, Silvius JR. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys J 2003; 84:367-78. [PMID: 12524290 PMCID: PMC1302618 DOI: 10.1016/s0006-3495(03)74857-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have used fluorescence-quenching measurements to characterize the partitioning of a variety of indolyl-labeled phospho- and sphingolipids between gel or liquid-ordered and liquid-disordered lipid domains in several types of lipid bilayers where such domains coexist. In both cholesterol-free and cholesterol-containing lipid mixtures, sphingolipids with diverse polar headgroups (ranging from sphingomyelin and monoglycosylceramides to ganglioside GM1) show a net preference for partitioning into ordered domains, which varies modestly in magnitude with varying headgroup structure. The affinities of different sphingolipids for ordered lipid domains do not vary in a consistent manner with the size or other simple structural properties of the polar headgroup, such that for example ganglioside GM1 partitions between ordered and disordered lipid domains in a manner very similar to sphingomyelin. Ceramide exhibits a dramatically higher affinity for ordered lipid domains in both cholesterol-free and cholesterol-containing bilayers than do other sphingolipids. Our findings suggest that sphingolipids with a variety of headgroup structures will be enriched by substantial factors in liquid-ordered versus liquid-disordered regions of membranes, in a manner that is only modestly dependent on the nature of the polar headgroup. Ceramide is predicted to show a very strong enrichment in such domains, supporting previous suggestions that ceramide-mediated signaling may be compartmentalized to liquid-ordered (raft and raft-related) domains in the plasma membrane.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | |
Collapse
|
23
|
Tagawa Y, Laroy W, Nimrichter L, Fromholt SE, Moser AB, Moser HW, Schnaar RL. Anti-ganglioside antibodies bind with enhanced affinity to gangliosides containing very long chain fatty acids. Neurochem Res 2002; 27:847-55. [PMID: 12374222 DOI: 10.1023/a:1020221410895] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gangliosides function in both physiological and pathological molecular recognition. Although much research has focused on the role of ganglioside glycans in recognition, fewer studies have addressed the role of the ceramide moiety. Ceramides of major brain gangliosides are composed predominantly of monounsaturated 18-carbon and 20-carbon long chain bases with a saturated 18-carbon fatty acid amide. In contrast, gangliosides of X-linked adrenoleukodystrophy patients are characterized by abnormal very long chain fatty acids that are proposed to be associated with autoimmune inflammation. In the current study we synthesized and characterized derivatives of the major brain ganglioside GD1a bearing defined very long chain fatty acid amides (C24:0, C24:1, and C26:0). When tested in a solid phase binding assay in the presence of auxiliary membrane lipids, GD1a species with long chain fatty acids were up to 8-fold more potent than normal brain GD1a in binding four different anti-GD1a monoclonal antibodies. These data support the hypothesis that gangliosides bearing very long chain fatty acids are differentially displayed on membranes, which may lead to altered antigenicity.
Collapse
Affiliation(s)
- Yumi Tagawa
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Imura T, Sakai H, Yamauchi H, Kozawa K, Yokoyama S, Matsumoto M, Abe M. Atomic force microscopic study on the surface properties of phospholipid monolayers containing Ceramide 3. Colloids Surf B Biointerfaces 2000. [DOI: 10.1016/s0927-7765(99)00168-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Sonnino S, Chigorno V. Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:63-77. [PMID: 10998569 DOI: 10.1016/s0005-2736(00)00210-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gangliosides exist as a very complex mixture of species differing in both the hydrophilic and hydrophobic moieties. They are particularly abundant in the central nervous system (CNS), where they have been associated with development and maturation of the brain, neuritogenesis, synaptic transmission, memory formation and synaptic aging. Today, many data suggest that some of the effects exerted by gangliosides are due to interactions with proteins that participate in the transduction of signals through the membrane in membrane microdomains. A specific characteristic of CNS gangliosides is the structure of their long-chain base (LCB). In fact, considering all the mammalian cell sphingolipids, gangliosides, sulphatides, neutral glycosphingolipids, sphingomyelin and ceramides, it would seem that while the LCB with 18 carbons is the main component of all sphingolipids, only CNS gangliosides contain significant amounts of LCB with 20 carbons. C18-Sphingosine is always present in cell gangliosides; the individual ganglioside species containing C18-sphingosine increase during cell differentiation then remain constant during cell aging. Gangliosides containing C20-sphingosine are absent, or present only in traces, in undifferentiated cells but with the onset of cell differentiation they appear, their content slowly but continuously increasing throughout the life span. In this review we discuss the chemistry, physico-chemistry and metabolism of ganglioside species differing in LCB length and introduce the hypothesis that the varying ratio between C18- and C20-gangliosides during CNS development and aging can be instrumental in modulating membrane domain organisation and cell properties.
Collapse
Affiliation(s)
- S Sonnino
- Study Center for the Functional Biochemistry of Brain Lipids, Department of Medical Chemistry and Biochemistry, LITA-Segrate, The Medical School, University of Milan, Via Fratelli Cervi 93, (Milan), 20090 Segrate, Italy.
| | | |
Collapse
|
26
|
Rietveld A, Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:467-79. [PMID: 9805010 DOI: 10.1016/s0304-4157(98)00019-7] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The formation of sphingolipid-cholesterol microdomains in cellular membranes has been proposed to function in sorting and transport of lipids and proteins as well as in signal transduction. An increasing number of cell biological and biochemical studies now supports this concept. Here we discuss the structural properties of lipids in a cell biological context. The sphingolipid-cholesterol microdomains or rafts are described as dispersed liquid ordered phase domains. These domains are dynamic assemblies to which specific proteins are selectively sequestered while others are excluded. The proteins associated to rafts can act as organizers and can modulate raft size and function.
Collapse
Affiliation(s)
- A Rietveld
- European Molecular Biology Laboratory, Cell Biology Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
27
|
Abstract
Alcohol and water compete with each other on target membrane molecules, specifically, lipids and proteins near the membrane surface. The basis for this competition is the hydrogen bonding capability of both compounds. But alcohol's amphiphilic properties give it the capability to be attracted simultaneously to both hydrophobic and hydrophilic targets. Thus, alcohol could bind certain targets preferentially and displace water, leading to conformational consequences. This article reviews the clustering and organized character of biological water, which modulates the conformation of membrane surface molecules, particularly receptor protein. Any alcohol-induced displacement of biological water on or inside of membrane proteins creates the opportunity for allosteric change in membrane receptors. This interaction may also prevail in organelles, such as the Golgi apparatus, which have relatively low concentrations of bulk water. Target molecules of particular interest in neuronal membrane are zwitteronic phospholipids, gangliosides, and membrane proteins, including glycoproteins. FTIR and NMR spectroscopic evidence from model membrane systems shows that alcohol has a nonstereospecific binding capability for membrane surface molecules and that such binding occurs at sites that are otherwise occupied by hydrogen-bonded water. The significance of these effects seems to lie in the need to learn more about biological water as an active participant in biochemical actions. Proposed herein is a new working hypothesis that the molecular targets of ethanol action most deserving of study are those where water is trapped and there is little bulk water. Proteins (enzymes and receptors) certainly differ in this regard, as do organelles.
Collapse
Affiliation(s)
- W R Klemm
- Department Veterinary Anatomy & Public Health, Texas A&M University, College Station 77843, USA
| |
Collapse
|
28
|
Sato T, Serizawa T, Ohtake F, Nakamura M, Terabayashi T, Kawanishi Y, Okahata Y. Quantitative measurements of the interaction between monosialoganglioside monolayers and wheat germ agglutinin (WGA) by a quartz-crystal microbalance. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1380:82-92. [PMID: 9545544 DOI: 10.1016/s0304-4165(97)00133-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monosialogangliosides (GM1, GM2, GM3 and GM4) were reconstituted in lipid monolayers at the air-water interface. The binding amounts and the initial binding rates of wheat germ agglutinin (WGA) to the monosialoganglioside monolayers were quantitatively studied by use of a quartz-crystal microbalance (QCM). A QCM was horizontally attached to the monolayer from the air phase, and the binding behavior (mass increase) was followed by the frequency decrease of the QCM. WGA binding affinities for the ganglioside monolayers were influenced by hydrophilic head groups of lipid matrices, densities of gangliosides, and sequences of oligosaccharide in gangliosides. Binding of WGA to the gangliosides reconstituted in a phosphatidylcholine (sphingomyelin and distearoylphosphatidylcholine) matrix was strongly suppressed, but not in a neutral glycolipids (GlcCer, GalCer, and LacCer), dipalmitoylphosphatidylethanolamine, and dipalmitoylphosphatidylethanolamine matrix. WGA showed high affinity for monolayers containing 20 mol% gangliosides, but only low affinity for 100% ganglioside monolayers. WGA preferably binds to gangliosides in the following sequence: GM3 > GM4 >> GM2 = GM1. No affinities of WGA for GM2 and GM1 were observed. The combined techniques of monolayer and QCM have the advantages of investigating recognition properties of gangliosides.
Collapse
Affiliation(s)
- T Sato
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Brown RE. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 1998; 111 ( Pt 1):1-9. [PMID: 9394007 PMCID: PMC4043137 DOI: 10.1242/jcs.111.1.1] [Citation(s) in RCA: 376] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent cell biological studies suggest that sphingolipids and cholesterol may cluster in biomembranes to form raft-like microdomains. Such lipid domains are postulated to function as platforms involved in the lateral sorting of certain proteins during their trafficking within cells as well as during signal transduction events. Here, the physical interactions that occur between cholesterol and sphingolipids in model membrane systems are discussed within the context of microdomain formation. A model is presented in which the role of cholesterol is refined compared to earlier models.
Collapse
Affiliation(s)
- R E Brown
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
30
|
Nosjean O, Briolay A, Roux B. Mammalian GPI proteins: sorting, membrane residence and functions. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1331:153-86. [PMID: 9325440 DOI: 10.1016/s0304-4157(97)00005-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- O Nosjean
- Université Claude Bernard--Lyon 1, Laboratoire de Physico-chimie Biologique--UPRESA CNRS 5013, Villeurbanne, France.
| | | | | |
Collapse
|
31
|
Riboni L, Viani P, Bassi R, Prinetti A, Tettamanti G. The role of sphingolipids in the process of signal transduction. Prog Lipid Res 1997; 36:153-95. [PMID: 9624426 DOI: 10.1016/s0163-7827(97)00008-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- L Riboni
- Department of Medical Chemistry and Biochemistry, Medical Faculty, University of Milan, Italy
| | | | | | | | | |
Collapse
|
32
|
Smaby JM, Momsen M, Kulkarni VS, Brown RE. Cholesterol-induced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains. Biochemistry 1996; 35:5696-704. [PMID: 8639529 PMCID: PMC4003871 DOI: 10.1021/bi953057k] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The interfacial interactions occurring between cholesterol and either galactosylceramides (GalCers) or sphingomyelins (SMs) with identical acyl chains have been investigated using Langmuir film balance techniques. Included among the synthesized GalCers and SMs were species containing palmitoyl (16:0), stearoyl (18:0), oleoyl [18:1 delta 9(c)], nervonoyl [24:1 delta 15(c)], or linoleoyl [18:2 delta 9,12(c)] acyl residues. The cholesterol-induced condensations in the average molecular areas of the monolayers were determined by classic mean molecular area vs composition plots as well as by expressing the changes in terms of sphingolipid cross-sectional area reduction over the surface pressure range from 1 to 40 mN/m (at 1 mN/m intervals). The results show that, at surface pressures approximating bilayer conditions (30 mN/m), acyl heterogeneity in naturally occurring SMs (bovine of egg SM) enhanced the area condensation induced by cholesterol compared with their predominant molecular species (e.g. 18:0 SM in bovine SM; 16:0 SM in egg SM). Nonetheless, cholesterol always had a greater condensing effect on SM compared to GalCer when these sphingolipids were acyl chain matched and in similar phase states (prior to mixing with cholesterol). Also, the cholesterol-induced area changes for a given sphingolipid type (e.g. SM or GalCer) were similar whether the acyl chains were saturated, cis-delta 9-monounsaturated, or cis-delta 9,12-diunsaturated if the sphingolipids were in similar phase states (prior to mixing with cholesterol) and compared at equivalent surface pressures. These results indicate that, under conditions were hydrocarbon structure is matched, the sphingolipid head group plays a dominant role in determining the extent to which cholesterol reduces sphingolipid cross-sectional area. Despite the larger cholesterol-induced area condensations observed in SMs compared to those in GalCers, the molecular-packing densities showed that equimolar GalCer-cholesterol films were generally packed as tight as or slightly tighter than those of the SM-cholesterol films. The results are discussed in terms of a molecular model for sphingolipid-cholesterol interactions. Our findings also do only raise questions as to whether cholesterol-induced condensation data provide a reliable measure of the affinity, i.e. interaction strength, between cholesterol and different lipids but also provide insight regarding the stability of sterol/sphingolipid 1-1 rich microdomains thought to exist in caveolae and other cell membrane regions.
Collapse
Affiliation(s)
| | | | | | - Rhoderick E. Brown
- Correspondence to Dr. Rhoderick E. Brown, The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912. Fax: (507) 437-9606.
| |
Collapse
|
33
|
Omodeo-Salé F, Gornati R, Palestini P. Ganglioside long-chain base composition of rat brain subcellular fractions after chronic ethanol administration. Alcohol 1996; 13:291-5. [PMID: 8734845 DOI: 10.1016/0741-8329(95)02059-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rats of two different ages (2 and 7 months) were treated with an ethanol-containing liquid diet for 24 days and change of the ceramide composition of gangliosides were studied in the brain synaptosomal, microsomal and myelin fractions. Greater differences were observed in the younger age, where ethanol treatment caused a significant increase of C20:1 LCB in GM1 ganglioside of synaptosomes and microsomes and in GD1a of myelin.
Collapse
Affiliation(s)
- F Omodeo-Salé
- Institute of General Physiology and Biochemistry, Faculty of Pharmacy, University of Milan, Italy
| | | | | |
Collapse
|
34
|
Pitto M, Palestini P, Masserini M. Dependence of rat liver CMP-N-acetylneuraminate:GM1 sialyltransferase (SAT IV) activity on the ceramide composition of GM1 ganglioside. FEBS Lett 1996; 383:223-6. [PMID: 8925900 DOI: 10.1016/0014-5793(96)00262-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The dependence of CMP-N-acetylneuraminate:GM1 sialyltransferase (SAT IV) activity of rat liver Golgi apparatus on GM1 ganglioside ceramide composition was evaluated. SAT IV activity was assayed on GM1 molecular species carrying homogeneous ceramide moieties containing long chain bases of different length (18 or 20 C atoms) unsaturated or not, linked to 14:0, 16:0, 18:0 or 22:0 fatty acids. The results obtained in the presence of the detergent Triton CF-54, when enzyme and substrate are presumably part of the same supramolecular structure, show that either the long chain base or the fatty acid composition can affect enzyme activity. This feature was not displayed when GM1 was embedded in dipalmitoylphosphatidylcholine vesicles in the absence of detergent. Under the latter conditions, the enzyme was not sensitive to the lipid composition of GM1 but to the ganglioside/phospholipid ratio in the vesicles. These results indicate for the first time that SAT IV is affected by the lipid composition of the substrate and strengthen the hypothesis that glycosyltranferases may contribute to control the cellular glycosphingolipid ceramide pattern.
Collapse
Affiliation(s)
- M Pitto
- Department of Medical Chemistry and Biochemistry, University of Milan, Italy
| | | | | |
Collapse
|
35
|
Valsecchi M, Palestini P, Chigorno V, Sonnino S. Age-related changes of the ganglioside long-chain base composition in rat cerebellum. Neurochem Int 1996; 28:183-7. [PMID: 8719707 DOI: 10.1016/0197-0186(95)00069-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ganglioside mixture from the cerebellum of young, 6 month old and two years old rats, was fractionated by reversed phase high performance liquid chromatography, each ganglioside homogeneous in the oligosaccharide chain as well as in the long-chain base being subsequently quantified. Two long-chain bases, LCB, were components of the five major gangliosides GM1, GD1a, GD1b, GT1b and GQ1b, these being the C18:1 LCB and C20:1 LCB. The content of C20:1 ganglioside molecular species was lower than that of the C18:1 one. In very young animals, day 8, the C20:1 ganglioside species represented about 8% of the total ganglioside content, then they progressively increased and reached, at 2 years, about 42% of the total. C18:1 GD1a and C18:1 GT1b, were the major species in young animals and reached their highest content at day 29, being 1.45 and 1.28 nmol/mg protein, respectively. The content of these two species decreased in adult and old animals and at two years it was 0.71 and 0.82 nmol/mg protein, respectively.
Collapse
Affiliation(s)
- M Valsecchi
- Department of Medical Chemistry and Biochemistry, University of Milan, Italy
| | | | | | | |
Collapse
|
36
|
Brocca P, Acquotti D, Sonnino S. Nuclear Overhauser effect investigation on GM1 ganglioside containing N-glycolyl-neuraminic acid (II3Neu5GcGgOse4Cer). Glycoconj J 1996; 13:57-62. [PMID: 8785489 DOI: 10.1007/bf01049680] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The conformational properties of the oligosaccharide chain of GM1 ganglioside containing N-glycolyl-neuraminic acid, beta-Gal-(1-3)-beta-GalNAc-(1-4)-[alpha-Neu5Gc-(2-3)]-beta-Gal- (1-4)1-4)-beta-Glc-(1-1)-Cer, were studied through NMR nuclear Overhauser effect investigations on the monomeric ganglioside in dimethylsulfoxide, and on mixed micelles of ganglioside and dodecylphosphocholine in water. Several interresidual contacts for the trisaccharide core -beta- GalNAc-(1-4)-[alpha-Neu5Gc-(2-3)]-beta-Gal- were found to fix the relative orientation of the three saccharides, while the glycosidic linkage of the terminal beta-Gal- was found to be quite mobile as the beta-Gal-(1-3)-beta-GalNAc- disaccharide exists in different conformations. These results are similar to those found for two GM1 gangliosides containing N-acetyl-neuraminic acid and neuraminic acid [1].
Collapse
Affiliation(s)
- P Brocca
- Department of Medical Chemistry and Biochemistry, Medical School, University of Milan, Italy
| | | | | |
Collapse
|