1
|
Kubacka M, Mogilski S, Bednarski M, Pociecha K, Świerczek A, Nicosia N, Schabikowski J, Załuski M, Chłoń-Rzepa G, Hockemeyer J, Müller CE, Kieć-Kononowicz K, Kotańska M. Antiplatelet Effects of Selected Xanthine-Based Adenosine A 2A and A 2B Receptor Antagonists Determined in Rat Blood. Int J Mol Sci 2023; 24:13378. [PMID: 37686188 PMCID: PMC10487961 DOI: 10.3390/ijms241713378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The platelet aggregation inhibitory activity of selected xanthine-based adenosine A2A and A2B receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A2B receptor antagonist PSB-603 and the A2A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs). TB-42 showed the highest inhibitory activity against PDE3A along with moderate activity against PDE2A and PDE5A. The antiplatelet activity of PSB-603 and TB-42 may be due to inhibition of PDEs, which induces an increase in cAMP and/or cGMP concentrations in platelets. The xanthine-based adenosine receptor antagonists were found to be non-cytotoxic for platelets. Some of the compounds showed anti-oxidative properties reducing lipid peroxidation. These results may provide a basis for the future development of multi-target xanthine derivatives for the treatment of inflammation and atherosclerosis and the prevention of heart infarction and stroke.
Collapse
Affiliation(s)
- Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.K.); (S.M.)
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.K.); (S.M.)
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.B.); (N.N.)
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (K.P.); (A.Ś.)
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (K.P.); (A.Ś.)
| | - Noemi Nicosia
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.B.); (N.N.)
- Division of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (J.S.); (M.Z.); (K.K.-K.)
| | - Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (J.S.); (M.Z.); (K.K.-K.)
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Jörg Hockemeyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany; (J.H.); (C.E.M.)
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany; (J.H.); (C.E.M.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (J.S.); (M.Z.); (K.K.-K.)
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.B.); (N.N.)
| |
Collapse
|
2
|
Novel approaches to antiplatelet therapy. Biochem Pharmacol 2022; 206:115297. [DOI: 10.1016/j.bcp.2022.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022]
|
3
|
Cesarini V, Guida E, Campolo F, Crescioli C, Di Baldassarre A, Pisano C, Balistreri CR, Ruvolo G, Jannini EA, Dolci S. Type 5 phosphodiesterase (PDE5) and the vascular tree: From embryogenesis to aging and disease. Mech Ageing Dev 2020; 190:111311. [PMID: 32628940 PMCID: PMC7333613 DOI: 10.1016/j.mad.2020.111311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Vascular development depends on the timely differentiation of endothelial and smooth muscle cells. Vascular aging and vascular disease are influenced by endothelial and vascular smooth muscle cell compartments. A survey of the literature on the role of PDE5 in vascular development, aging and disease is reported. The role of PDE5 on vascular development, aging and disease needs to be further investigated by its genetic ablation.
Vascular tree development depends on the timely differentiation of endothelial and vascular smooth muscle cells. These latter are key players in the formation of the vascular scaffold that offers resistance to the blood flow. This review aims at providing an overview on the role of PDE5, the cGMP-specific phosphodiesterase that historically attracted much attention for its involvement in male impotence, in the regulation of vascular smooth muscle cell function. The overall goal is to underscore the importance of PDE5 expression and activity in this cell type in the context of the organs where its function has been extensively studied.
Collapse
Affiliation(s)
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, University of Rome La Sapienza, Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | - Calogera Pisano
- Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Rita Balistreri
- Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giovanni Ruvolo
- Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
4
|
Abstract
Acute coronary syndromes (ACS) are a global cause of mortality and morbidity that affect millions of lives worldwide. Following atherosclerotic plaque rupture, platelet activation and aggregation are the two major elements that initiate thrombus formation inside a coronary artery, which can obstruct blood flow and cause myocardial ischemia; ergo, antiplatelet therapy forms a major part of the treatment strategy for ACS. Patients with ACS routinely receive dual antiplatelet therapy (DAPT), which consists of aspirin and a platelet P2Y12 inhibitor to both treat and prevent atherothrombosis. Use of platelet glycoprotein (GP) IIb/IIIa inhibitors is now limited due to the risk of severe bleeding and thrombocytopenia. Thus, administration of GPIIb/IIIa inhibitors is generally restricted to bail out thrombotic events associated with PCI. Furthermore, current antiplatelet medications mainly rely on thromboxane A2 and P2Y12 inhibition, which have broad-acting effects on platelets and are known to cause bleeding, which especially limits the long-term use of these agents. In addition, not all ACS patients treated with current antiplatelet treatments are protected from recurrence of arterial thrombosis, since many platelet mechanisms and activation pathways remain uninhibited by current antiplatelet therapy. Pharmacological antagonism of novel targets involved in platelet function could shape future antiplatelet therapies that could ultimately lead to more effective or safer therapeutic approaches. In this article, we focus on inhibitors of promising targets that have not yet been introduced into clinical practice, including inhibitors of GPVI, protease-activated receptor (PAR)-4, GPIb, 5-hydroxytryptamine receptor subtype 2A (5-HT2A), protein disulfide isomerase, P-selectin and phosphoinositide 3-kinase β.
Collapse
Affiliation(s)
- Fawaz O Alenazy
- Institute of Cardiovascular Sciences, University of Birmingham , Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, University of Birmingham , Birmingham, UK.,UHB and SWBH NHS Trusts , Birmingham, UK
| |
Collapse
|
5
|
Regulation of PDE5 expression in human aorta and thoracic aortic aneurysms. Sci Rep 2019; 9:12206. [PMID: 31434939 PMCID: PMC6704119 DOI: 10.1038/s41598-019-48432-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023] Open
Abstract
Aneurysms and dissections affecting thoracic aorta are associated with smooth muscle cell (SMC) dysfunction. NO/cGMP signaling pathway in smooth muscle cells has been shown to be affected in sporadic thoracic aortic aneurysms. We analyzed the mRNA levels of PDE5, a cGMP-hydrolyzing enzyme highly expressed in aortic SMCs, that regulates arterious vascular tone by lowering cGMP levels. We found that aortic tissue obtained from Marfan, tricuspid and bicuspid thoracic aneurysms expressed lower levels of PDE5 mRNA compared to control aortas. In particular, we found that affected aortas showed lower levels of all the PDE5A isoforms, compared to control aortas. Transfection of vascular SMCs (VSMCs) with NOTCH3 activated domain (NICD3) induced the expression of PDE5A1 and A3 protein isoforms, but not that of the corresponding mRNAs. VSMC stimulation with GSNO, a nitric oxide analogue or with 8-br-cGMP, but not with 8-br-cAMP, up-regulated PDE5 and NOTCH-3 protein levels, indicating a negative feedback loop to protect the arterial wall from excessive relaxation. Finally, we found that PDE5 is expressed early during human aorta development, suggesting that if loss of function mutations of PDE5 occur, they might potentially affect aortic wall development.
Collapse
|
6
|
|
7
|
Sakamoto M, Suzuki J, Saito Y, Shimizu S, Kobayashi K, Nagashima M, Moriyasu T, Fukaya H, Saito K. Structural characterization of dimethyldithiodenafil and dimethylthiocarbodenafil, analogs of sildenafil. J Pharm Biomed Anal 2018; 148:136-141. [DOI: 10.1016/j.jpba.2017.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
8
|
Sumbria RK, Vasilevko V, Grigoryan MM, Paganini-Hill A, Kim R, Cribbs DH, Fisher MJ. Effects of phosphodiesterase 3A modulation on murine cerebral microhemorrhages. J Neuroinflammation 2017; 14:114. [PMID: 28583195 PMCID: PMC5460510 DOI: 10.1186/s12974-017-0885-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/19/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cerebral microbleeds (CMB) are MRI-demonstrable cerebral microhemorrhages (CMH) which commonly coexist with ischemic stroke. This creates a challenging therapeutic milieu, and a strategy that simultaneously protects the vessel wall and provides anti-thrombotic activity is an attractive potential approach. Phosphodiesterase 3A (PDE3A) inhibition is known to provide cerebral vessel wall protection combined with anti-thrombotic effects. As an initial step in the development of a therapy that simultaneously treats CMB and ischemic stroke, we hypothesized that inhibition of the PDE3A pathway is protective against CMH development. METHODS The effect of PDE3A pathway inhibition was studied in the inflammation-induced and cerebral amyloid angiopathy (CAA)-associated mouse models of CMH. The PDE3A pathway was modulated using two approaches: genetic deletion of PDE3A and pharmacological inhibition of PDE3A by cilostazol. The effects of PDE3A pathway modulation on H&E- and Prussian blue (PB)-positive CMH development, BBB function (IgG, claudin-5, and fibrinogen), and neuroinflammation (ICAM-1, Iba-1, and GFAP) were investigated. RESULTS Robust development of CMH in the inflammation-induced and CAA-associated spontaneous mouse models was observed. Inflammation-induced CMH were associated with markers of BBB dysfunction and inflammation, and CAA-associated spontaneous CMH were associated primarily with markers of neuroinflammation. Genetic deletion of the PDE3A gene did not alter BBB function, microglial activation, or CMH development, but significantly reduced endothelial and astrocyte activation in the inflammation-induced CMH mouse model. In the CAA-associated CMH mouse model, PDE3A modulation via pharmacological inhibition by cilostazol did not alter BBB function, neuroinflammation, or CMH development. CONCLUSIONS Modulation of the PDE3A pathway, either by genetic deletion or pharmacological inhibition, does not alter CMH development in an inflammation-induced or in a CAA-associated mouse model of CMH. The role of microglial activation and BBB injury in CMH development warrants further investigation.
Collapse
Affiliation(s)
- Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA.,Department of Neurology, University of California, Irvine, CA, USA
| | - Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | | | | | - Ronald Kim
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mark J Fisher
- Department of Neurology, University of California, Irvine, CA, USA. .,Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA. .,UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall, Room 121, Orange, CA, 92868, USA.
| |
Collapse
|
9
|
Sakamoto M, Kishimoto K, Saito Y, Suzuki I, Moriyasu T. Identification of N-octylnortadalafil and its Stereoisomers in Dietary Supplements with Chiral Liquid Chromatography-Circular Dichroism. Chirality 2016; 28:204-8. [PMID: 26769592 DOI: 10.1002/chir.22570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 11/06/2022]
Abstract
A direct chiral liquid chromatography-circular dichroism (LC-CD) method was developed for the simple and rapid identification of N-octylnortadalafil [(6R, 12aR)-6-(1,3-benzodioxol-5-yl)-2-octyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione; RR-OTDF] and its stereoisomers in dietary supplements. Samples were extracted with methanol. Compounds were then separated by chiral LC-CD using Chiralcel OD-RH (4.6 × 150 mm, 5 µm) with 5 mM ammonium formate (pH 3)/0.1% formic acid in acetonitrile (95:5, v/v) mixture solution (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B). The isocratic elution used was mobile phase A / mobile phase B (3:7, v/v) at a flow rate of 1 ml/min. The column temperature was held at 30°C. RR-OTDF and its stereoisomers were separated within 20 min with the resolution factors being over 2.0. Using this method, RR-OTDF and (6R, 12aS)-6-(1,3-benzodioxol-5-yl)-2-octyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione were detected in a dietary supplement.
Collapse
Affiliation(s)
- Miho Sakamoto
- Tokyo Metropolitan Institute of Public Health, Department of Pharmaceutical Sciences, Tokyo, Japan
| | - Kiyoko Kishimoto
- Tokyo Metropolitan Institute of Public Health, Department of Pharmaceutical Sciences, Tokyo, Japan
| | - Yuri Saito
- Tokyo Metropolitan Institute of Public Health, Department of Pharmaceutical Sciences, Tokyo, Japan
| | - Ikuo Suzuki
- Tokyo Metropolitan Institute of Public Health, Department of Pharmaceutical Sciences, Tokyo, Japan
| | - Takako Moriyasu
- Tokyo Metropolitan Institute of Public Health, Department of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
10
|
Blockade of the purinergic P2Y12 receptor greatly increases the platelet inhibitory actions of nitric oxide. Proc Natl Acad Sci U S A 2013; 110:15782-7. [PMID: 24003163 DOI: 10.1073/pnas.1218880110] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating platelets are constantly exposed to nitric oxide (NO) released from the vascular endothelium. This NO acts to reduce platelet reactivity, and in so doing blunts platelet aggregation and thrombus formation. For successful hemostasis, platelet activation and aggregation must occur at sites of vascular injury despite the constant presence of NO. As platelets aggregate, they release secondary mediators that drive further aggregation. Particularly significant among these secondary mediators is ADP, which, acting through platelet P2Y12 receptors, strongly amplifies aggregation. Platelet P2Y12 receptors are the targets of very widely used antithrombotic drugs such as clopidogrel, prasugrel, and ticagrelor. Here we show that blockade of platelet P2Y12 receptors dramatically enhances the antiplatelet potency of NO, causing a 1,000- to 100,000-fold increase in inhibitory activity against platelet aggregation and release reactions in response to activation of receptors for either thrombin or collagen. This powerful synergism is explained by blockade of a P2Y12 receptor-dependent, NO/cGMP-insensitive phosphatidylinositol 3-kinase pathway of platelet activation. These studies demonstrate that activation of the platelet ADP receptor, P2Y12, severely blunts the inhibitory effects of NO. The powerful antithrombotic effects of P2Y12 receptor blockers may, in part, be mediated by profound potentiation of the effects of endogenous NO.
Collapse
|
11
|
Ikeda Y, Sudo T, Kimura Y. Cilostazol. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Abstract
Platelets respond to a wide variety of exogenous agonists that bind to distinct receptors on the platelet surface resulting in the intracellular generation of second messengers or the opening of ion channels, setting off a cascade of events leading to both physical and functional changes in the platelet. The cyclic nucleotides, cyclic adenosine 3'5'-monophosphate (CAMP) and cyclic guanosine 3'5'-monophosphate (cGMP) initiate a sequence of intracellular events that modulate many of these reactions in the platelet.
Collapse
Affiliation(s)
- S B Sheth
- Sol Sherry Thrombosis Research Center, 3400 North Broad Street, Philadelphia, PA, 19140, USA, (215) 707-4684, (215) 707-2783
| | | |
Collapse
|
13
|
Synthesis and evaluation of novel 2-pyridone derivatives as inhibitors of phosphodiesterase3 (PDE3): A target for heart failure and platelet aggregation. Bioorg Med Chem Lett 2012; 22:6010-5. [PMID: 22897945 DOI: 10.1016/j.bmcl.2012.05.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/16/2012] [Accepted: 05/02/2012] [Indexed: 01/24/2023]
|
14
|
Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol 2012; 72:634-46. [PMID: 21649691 DOI: 10.1111/j.1365-2125.2011.04034.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inhibition of platelet aggregation can be achieved either by the blockade of membrane receptors or by interaction with intracellular signalling pathways. Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are two critical intracellular second messengers provided with strong inhibitory activity on fundamental platelet functions. Phosphodiesterases (PDEs), by catalysing the hydrolysis of cAMP and cGMP, limit the intracellular levels of cyclic nucleotides, thus regulating platelet function. The inhibition of PDEs may therefore exert a strong platelet inhibitory effect. Platelets possess three PDE isoforms (PDE2, PDE3 and PDE5), with different selectivity for cAMP and cGMP. Several nonselective or isoenzyme-selective PDE inhibitors have been developed, and some of them have entered clinical use as antiplatelet agents. This review focuses on the effect of PDE2, PDE3 and PDE5 inhibitors on platelet function and on the evidence for an antithrombotic action of some of them, and in particular of dipyridamole and cilostazol.
Collapse
Affiliation(s)
- Paolo Gresele
- Department of Internal Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy.
| | | | | |
Collapse
|
15
|
Abstract
There are two primary modes of platelet inhibition: blockade of membrane receptors or neutralization of intracellular pathways. Both means of inhibition have proven benefits in the prevention and resolution of atherothrombotic events. With regard to intracellular inhibition, phosphodiesterases (PDEs) are fundamental for platelet function. Platelets possess several PDEs (PDE2, PDE3 and PDE5) that catalyze the hydrolysis of cyclic adenosine 3'-5'-monophosphate (cAMP) and cyclic guanosine 3'-5'-monophosphate (cGMP), thereby limiting the levels of intracellular nucleotides. PDE inhibitors, such as cilostazol and dipyridamole, dampen platelet function by increasing cAMP and cGMP levels. This review focuses on the roles of PDE inhibitors in modulating platelet function, with particular attention paid to drugs that have anti-platelet clinical indications.
Collapse
|
16
|
Takeda H, Muto S, Nakagawa K, Ohnishi S, Sadakane C, Saegusa Y, Nahata M, Hattori T, Asaka M. Rikkunshito as a Ghrelin Enhancer. Methods Enzymol 2012; 514:333-51. [DOI: 10.1016/b978-0-12-381272-8.00021-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Al-Dajani MTM, Mohamed N, Wahab HA, Yeap CS, Fun HK. 2-Amino-6-(2,6-difluorobenzamido)pyridinium chloride. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o2150. [PMID: 21588436 PMCID: PMC3007299 DOI: 10.1107/s1600536810029624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 07/26/2010] [Indexed: 12/02/2022]
Abstract
In the cation of the title compound, C12H10F2N3O+·Cl−, the dihedral angle between the pyridine and benzene rings is 16.1 (1)°. In the crystal structure, molecules linked into two-dimensional sheets parallel to the bc plane by intermolecular N—H⋯Cl, C—H⋯Cl and C—H⋯F hydrogen bonds.
Collapse
|
18
|
Sadeghian H, Seyedi SM, Saberi MR, Nick RS, Hosseini A, Bakavoli M, Mansouri SMT, Parsaee H. Design, synthesis and pharmacological evaluation of 6-hydroxy-4-methylquinolin-2(1H)-one derivatives as inotropic agents. J Enzyme Inhib Med Chem 2010; 24:918-29. [PMID: 19555170 DOI: 10.1080/14756360802448063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selective PDE3 inhibitors improve cardiac contractility and may be used in congestive heart failure. However, their proarrhythmic potential is the most important side effect. In this research we designed, synthesized and evaluated the potential cardiotonic activity of thirteen PDE3 inhibitors (4-[(4-methyl-2-oxo-1,2-dihydro-6-quinolinyl)oxy]butanamide analogs) using the spontaneously beating atria model. The design strategy was based on the structure of cilostamide, a selective PDE3 inhibitor. In each experiment, atrium of reserpine-treated rat was isolated and the contractile and chronotropic effects of a synthetic compounds were assessed. All experiments were carried out in comparison with IBMX, amrinone and cilostamide as standard compounds. The results showed that, among the new compounds, the best pharmacological profile was obtained with the compound 6-[4-(4-methylpiperazine-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one, 4j, which displayed selectivity for increasing the force of contraction (165 +/- 4% change over the control) rather than the frequency rate (115 +/- 7% change over the control) at 100 microM and potent inhibitory activity of PDE3 with IC(50) = 0.20 microM.
Collapse
Affiliation(s)
- Hamid Sadeghian
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, IR Iran
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Takeda H, Muto S, Hattori T, Sadakane C, Tsuchiya K, Katsurada T, Ohkawara T, Oridate N, Asaka M. Rikkunshito ameliorates the aging-associated decrease in ghrelin receptor reactivity via phosphodiesterase III inhibition. Endocrinology 2010; 151:244-52. [PMID: 19906817 DOI: 10.1210/en.2009-0633] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging is associated with decreased food intake, a phenomenon termed the anorexia of aging. In this study, we sought to clarify changes in peripheral and central appetite-related factors in aged mice. Furthermore, we investigated the effects of rikkunshito, a traditional Japanese medicine, on age-related anorexia. C57BL/6J mice that were 6 or 75 wk old were studied. We investigated changes in food intake, ghrelin and leptin levels, and the expression of appetite-related genes with age. In addition, we verified the effects of ghrelin, rikkunshito, phosphodiesterase 3 (PDE3), and phosphoinositide 3-kinase inhibitors on appetite. Food intake was significantly decreased in 75-wk-old mice compared with the 6-wk-old mice. In 75-wk-old mice, plasma acylated ghrelin levels under fasting conditions were lower than in 6-wk-old mice, whereas leptin levels under feeding conditions were substantially higher. The expression levels of hypothalamic preproghrelin under feeding conditions and the expression levels of neuropeptide Y and agouti-related protein under fasting conditions were lower compared with those of the 6-wk-old mice. Ghrelin supplementation (33 microg/kg) failed to increase food intake in 75-wk-old mice. Conversely, oral administration of LY294002, a phosphoinositide 3-kinase inhibitor, and cilostamide, a PDE3 inhibitor, increased food intake in 75-wk-old mice. Moreover, rikkunshito increased food intake in aged mice. The components of rikkunshito (nobiletin, isoliquiritigenin, and heptamethoxyflavone) had inhibitory effects on PDE3. These results suggest that dysregulation of ghrelin secretion and ghrelin resistance in the appetite control system occurred in aged mice and that rikkunshito ameliorated aging-associated anorexia via inhibition of PDE3.
Collapse
Affiliation(s)
- Hiroshi Takeda
- Department of Pathophysiology and Therapeutics, Hokkaido University Faculty of Pharmaceutical Sciences, N12 W6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nikpour M, Sadeghian H, Saberi MR, Nick RS, Seyedi SM, Hosseini A, Parsaee H, Bozorg ATD. Design, synthesis and biological evaluation of 6-(benzyloxy)-4-methylquinolin-2(1H)-one derivatives as PDE3 inhibitors. Bioorg Med Chem 2010; 18:855-62. [DOI: 10.1016/j.bmc.2009.11.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 11/28/2022]
|
21
|
Booth RFG, Manley PW, Buckham SP, Hassall DG, Honey AC, Lad N, Lunt DO, Oswald S, Porter RA, Tuffin DP. 5-[6-1 -(Cyclohexyl-1 H-tetrazol-5-YL)hexyl]-1,8-naphthyridin-2-(1H)-one, SC-44368, a Potent Anti-aggregatory Agent which Selectively Inhibits Platelet Cyclic AMP Phosphodiesterase. Platelets 2009; 3:129-36. [DOI: 10.3109/09537109209013173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Irie K, Sato T, Tanaka I, Nakajima JI, Kawaguchi M, Himi T. Cardiotonic effect of Apocynum venetum L. extracts on isolated guinea pig atrium. J Nat Med 2008; 63:111-6. [PMID: 19002560 DOI: 10.1007/s11418-008-0296-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
The effects on guinea-pig heart muscle of extracts of Apocynum venetum L. leaf, root, stem, old stem and Venetron--a polyphenol-rich extract of leaves--were studied by recording the mechanical activity and heart rate of isolated right atria. Cymarin--a cardiac glycoside--was also determined in A. venetum extracts by LC-MS/MS analysis. All extracts examined here showed a weak cardiotonic effect, i.e., induced a contractile response of the isolated atria and increased the pulse at a concentration of 1 mg/mL, which was not inhibited by propranolol (1 microM)-a beta-adrenoceptor blocker. The cymarin content in extracts of A. venetum was ranked as follows: old stem >> stem > root > leaf >> Venetron. Since the cardiotonic effects of A. venetum extracts did not reflect the cymarin content, a possible mechanism other than that of cardiac glycosides was investigated. The inhibitory effects on phosphodiesterase 3 (PDE3) were studied in a cell-free enzyme assay; all extracts of various parts of A. venetum inhibited PDE purified from human platelets. These results suggest that PDE3 inhibition may contribute to the cardiotonic effects of A. venetum extracts.
Collapse
Affiliation(s)
- Kaoru Irie
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Isoliquiritigenin, a flavonoid from licorice, relaxes guinea-pig tracheal smooth muscle in vitro and in vivo: role of cGMP/PKG pathway. Eur J Pharmacol 2008; 587:257-66. [PMID: 18462716 DOI: 10.1016/j.ejphar.2008.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 02/26/2008] [Accepted: 03/10/2008] [Indexed: 11/21/2022]
Abstract
Licorice root is used to treat asthma as a component of Shaoyao-Gancao-tang, a traditional Chinese medicine formula. In this study, we investigated the tracheal relaxation effects of isoliquiritigenin, a flavonoid isolated from the roots of Glycyrrhiza glabra (a kind of Licorice), on guinea-pig tracheal smooth muscle in vitro and in vivo. The tension changes of isolated tracheal rings were isometrically recorded on a polygraph. The large-conductance Ca2+-activated K+ channels (BKCa) were measured by inside-out patch-clamp techniques and intracellular Ca2+concentrations ([Ca2+]i) were tested by microfluorometric method in guinea-pig tracheal smooth muscle cells (TSMCs). Isoliquiritigenin produced concentration-dependent relaxation in isolated guinea-pig tracheal rings precontracted with acetylcholine, KCl, and histamine. Pretreatments with charybdotoxin, ODQ and KT5823 attenuated the relaxation induced by isoliquiritigenin. Isoliquiritigenin significantly increased intracellular cGMP level in cultured TSMCs and inhibited the activity of phosphodiesterase (PDE) 5 in human platelets. Moreover, isoliquiritigenin increased by 9-fold the probability of BKCa channel openings of TSMCs in inside-out patches and markedly reduced [Ca2+]i rise induced by acetylcholine inTSMCs, pretreatment with KT5823 attenuated above two responses to isoliquiritigenin. In vivo experiment isoliquiritigenin significantly prolonged the latency time of histamine-acetylcholine aerosol-induced collapse and inhibited the increase of lung overflow induced by intravenously administered histamine dose-dependently. These data indicate that isoliquiritigenin relaxes guinea-pig trachea through a multiple of intracellular actions, including sGC activation, inhibition of PDEs, and associated activation of the cGMP/PKG signaling cascade, leading to the opening of BKCa channels and [Ca2+]i decrease through PKG-dependent mechanism and thus to tracheal relaxation.
Collapse
|
24
|
Stoclet JC, Keravis T, Komas N, Lugnier C. Section Review: Cardiovascular & Renal: Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiovascular diseases. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.11.1081] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
McCarty MF. High-dose folate may improve platelet function in acute coronary syndrome and other pathologies associated with increased platelet oxidative stress. Med Hypotheses 2007; 69:12-9. [PMID: 17293058 DOI: 10.1016/j.mehy.2004.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 08/13/2004] [Indexed: 11/27/2022]
Abstract
Although nitric oxide of endothelial origin plays a major role in warding off inappropriate thrombus formation, platelets also express the "constitutive" isoform of nitric oxide synthase (cNOS). Activation of this enzyme by calcium influx during platelet aggregation provides an important feedback signal that dampens platelet recruitment. Platelets also express a membrane-bound NAD(P)H oxidase complex, activated by collagen receptors, that produces superoxide. Superoxide can directly quench NO; moreover, by giving rise to peroxynitrite, it can oxidize the cNOS cofactor tetrahydrobiopterin (BH4), thereby suppressing cNOS activity and converting it to superoxide generator. In a canine model of acute coronary syndrome, infusion of BH4 has been shown to prevent thrombus formation. Platelets from patients with acute coronary syndrome produce markedly less NO than do control platelets. A reasonable explanation for these findings is that episodic contact with collagen boosts platelet superoxide production, oxidizing BH4. Since 5-methyltetrahydrofolate can reduce oxidized BH4, or otherwise compensate for its deficiency, supplementation with its precursor folic acid may improve platelet function in acute coronary syndrome and possibly reduce risk for coronary thrombosis in other at-risk patients. Other research demonstrates that superoxide production is increased, and nitric oxide production diminished, in platelets of diabetics; the ability of glutathione--a peroxynitrite scavenger--to largely ameliorate these abnormalities, is consistent with a prominent role for BH4 deficiency in diabetic platelet malfunction. Reports that platelet NO production is decreased, and/or superoxide production increased, in patients with disorders associated with insulin resistance syndrome, suggest that BH4 deficiency--potentially remediable with high-dose folate--may likewise contribute to the platelet hyperreactivity noted in these disorders. Supplemental vitamin C and arginine also have the potential to boost platelet production of NO Increased intakes of taurine, magnesium, gamma-tocopherol, fish oil, and garlic may help to stabilize platelets by additional mechanisms. As a complement to the proven benefits of low-dose aspirin, a supplemental regimen emphasizing these nutrients in appropriate doses may act directly on platelets to further diminish risk for thrombotic episodes.
Collapse
Affiliation(s)
- Mark F McCarty
- Natural Alternatives International, 1185 Linda Vista Road, San Marcos, CA 92078, USA.
| |
Collapse
|
26
|
|
27
|
Wu BN, Chen IC, Lin RJ, Chiu CC, An LM, Chen IJ. Aortic smooth muscle relaxants KMUP-3 and KMUP-4, two nitrophenylpiperazine derivatives of xanthine, display cGMP-enhancing activity: roles of endothelium, phosphodiesterase, and K+ channel. J Cardiovasc Pharmacol 2006; 46:600-8. [PMID: 16220066 DOI: 10.1097/01.fjc.0000180900.32489.f9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cellular mechanisms of vasorelaxant effects of newly synthesized KMUP-3 and KMUP-4 were investigated in rat aortic smooth muscle (RASM). KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) and KMUP-4 (7-[2-[4-(2-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) elicited concentration-dependent relaxation of endothelium-intact and denuded RASM precontracted with phenylephrine. Relaxant responses were also produced by the PDE inhibitors theophylline, milrinone, rolipram, and zaprinast (1 nM-100 microM). The relaxant responses of KMUP-3 and KMUP-4 were reduced by endothelium removal and by the presence of the NOS inhibitor L-NAME (100 microM), the sGC inhibitor ODQ (1 microM), the adenylyl cyclase (AC) inhibitor SQ 22536 (100 microM), and the prostaglandin inhibitor indomethacin (10 microM). Additionally, the vasorelaxations of both agents were also attenuated by pretreatment with the nonselective K+ channel blocker TEA (10 mM), the KATP channel blocker glibenclamide (1 microM), the voltage-dependent K+ (KV) channel blocker 4-AP (100 microM), and Ca(2+)-dependent K+ (KCa) channel blockers apamin (1 microM) and charybdotoxin (ChTX, 0.1 microM). In addition, elevated extracellular K+ (80 mM) interferes with KMUP-3- and KMUP-4-induced vasorelaxations. Preincubation with both agents (1 microM) significantly enhanced the dilator responses of isoproterenol and SNP. KMUP-3 and KMUP-4 inhibited PDE activities and increased cAMP and cGMP levels in primary culture of RASM that were inhibited by SQ 22536 and ODQ, respectively. In cultured HUVECs, KMUP-3 and KMUP-4 (0.1 microM), more potent than YC-1, significantly increased the expression of eNOS protein. In summary, KMUP-3 and KMUP-4 induce aortic relaxations through both endothelium-dependent and -independent mechanisms. Mechanisms of vasorelaxation induced by both compounds involve multiple processes, such as accumulation of cyclic nucleotides partly as a result of PDE inhibition, K-channel activation, and indomethacin-sensitive endothelium function.
Collapse
MESH Headings
- Animals
- Aorta
- Cell Line
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Phosphoric Diester Hydrolases/metabolism
- Piperazines/chemistry
- Piperazines/pharmacology
- Piperidines/chemistry
- Piperidines/pharmacology
- Potassium Channels/metabolism
- Rats
- Rats, Wistar
- Vasoconstrictor Agents/pharmacology
- Vasodilator Agents/chemistry
- Vasodilator Agents/pharmacology
- Xanthines/chemistry
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Bin-Nan Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Dunkern TR, Hatzelmann A. The effect of Sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5. Cell Signal 2005; 17:331-9. [PMID: 15567064 DOI: 10.1016/j.cellsig.2004.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Human platelets contain the cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs) 2, 3 and 5. The cGMP-PDE5 inhibitors Sildenafil and Zaprinast have been demonstrated to potentiate the anti-platelet aggregatory effect of NO donors like sodium nitroprusside (SNP) in vitro but the mechanisms of Sildenafil's action on the secretory function of human platelets have not been analysed in detail. In the present paper, we show (1) that both compounds potentiate the SNP-induced increase in cGMP in human platelets concentration-dependently. (2) However, whereas Sildenafil plus SNP treatment only partially inhibits thrombin-induced release of serotonin, the less selective Zaprinast plus SNP cause a complete inhibition. (3) The inhibition mediated by Sildenafil plus SNP is limited to low compound concentrations at which cAMP levels are increased, probably due to cGMP-mediated inhibition of PDE3. (4) High concentrations of Sildenafil (plus SNP) neither affect cAMP levels, likely due to the activation of PDE2, nor inhibits the release of serotonin. Thus, increases in both cyclic nucleotides seem to control platelet function. (5) Accordingly, treatment with increasing concentrations of Sildenafil plus SNP and a selective PDE2 inhibitor, which by its own has no effect, induced a concentration-dependent increase in cAMP and complete inhibition of platelet activation. In summary, our data indicate that Sildenafil inhibits secretory function of human platelets at least in part due to the cGMP-mediated effects on intracellular cAMP and that entire inhibition of serotonin release from thrombin-activated platelets is controlled by both cyclic nucleotides.
Collapse
Affiliation(s)
- Torsten R Dunkern
- Department of Biochemistry Inflammation, ALTANA Pharma AG, Byk-Gulden-Str.2, Konstanz 78467, Germany.
| | | |
Collapse
|
29
|
Jiang MXW, Warshakoon NC, Miller MJ. Chemoenzymatic Asymmetric Total Synthesis of Phosphodiesterase Inhibitors: Preparation of a Polycyclic Pyrazolo[3,4-d]pyrimidine from an Acylnitroso Diels−Alder Cycloadduct-Derived Aminocyclopentenol. J Org Chem 2005; 70:2824-7. [PMID: 15787579 DOI: 10.1021/jo0484070] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] Enzymatic resolution of Boc-protected 4-aminocyclopenten-1-ol 4c gave both enantiomers 5c and 6c in high ee. Boc removal and separate condensation with chloropyrazolopyrimidine 18 provided elaborated 1,4-aminocyclopentenol derivatives 20 and 26, respectively. Separate treatment of 20 and 26 with Pd(0) under basic conditions induced cyclization to unsaturated polycycles 22 and 27, which, upon catalytic hydrogenation, were transformed to new cyclopentane-containing pyrazolopyrimidines 24 and 28, analogues of recently described novel phosphodiesterase inhibitors.
Collapse
Affiliation(s)
- May Xiao-Wu Jiang
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | | | | |
Collapse
|
30
|
Lo YC, Tsou HH, Lin RJ, Wu DC, Wu BN, Lin YT, Chen IJ. Endothelium-dependent and -independent vasorelaxation by a theophylline derivative MCPT: roles of cyclic nucleotides, potassium channel opening and phosphodiesterase inhibition. Life Sci 2005; 76:931-44. [PMID: 15589969 DOI: 10.1016/j.lfs.2004.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 09/27/2004] [Indexed: 11/15/2022]
Abstract
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- In Vitro Techniques
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nucleotides, Cyclic/metabolism
- Organothiophosphorus Compounds/pharmacology
- Phosphodiesterase Inhibitors/metabolism
- Potassium Channels/metabolism
- Rats
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Yi-Ching Lo
- Department and post graduate institute of Pharmacology, College of Medicine, Kaohsiung Medical University, 100 Shin-Chuan 1st road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Ferrari F, Mennuni L, Caselli G, Zanelli T, Makovec F. Pharmacological profile of CR3465, a new leukotriene CysLT1 receptor antagonist with broad anti-inflammatory activity. Eur J Pharmacol 2004; 504:223-33. [PMID: 15541426 DOI: 10.1016/j.ejphar.2004.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 09/30/2004] [Accepted: 10/06/2004] [Indexed: 11/19/2022]
Abstract
CR3465 (L-Tyrosine, N-[(2-quinolinyl)carbonyl]-O-(7-fluoro-2-quinolinylmethyl) sodium salt) is a potent antagonist of [3H]leukotriene D4 ([3H]LTD4) binding to guinea pig lung preparations, its Ki (4.7+/-0.7 nM) being comparable with that of montelukast (5.6+/-0.6 nM). In tracheal strips from standard or ovalbumin-sensitized guinea pigs, CR3465 caused parallel rightward shifts in the concentration-response curves obtained with either LTD4 or antigen (pA(2), 8.74 and 8.15). Intravenous (i.v.) administration of the agent both antagonized (ED50, 9.9+/-1.9 microg/kg) and reverted LTD4 -induced bronchoconstriction of anesthetized guinea pigs. CR3465 reduced inflammatory infiltrates in the bronchoalveolar lavage fluid after antigen challenge of sensitized animals, and proved also active in inhibiting phosphodiesterase 3 (PDE3) and phosphodiesterase 4 (PDE4) activities exhibited by human platelets and neutrophils (IC50, 2.01+/-0.07 and 4.7+/-0.5 microM). In line with properties shown by phosphodiesterase inhibitors, CR3465 reduced the contractile response of guinea pig airways to histamine and decreased N-formyl-Met-Leu-Phe (fMLP)-induced degranulation of human neutrophils (IC50, 13.8 microM). Oral administration (20 mg/kg) of the compound in rats produced a significant (37%) ex vivo inhibition of tumor necrosis factor-alpha (TNF-alpha) release from lipopolysaccharide-stimulated whole blood. Pharmacokinetic data in the rat demonstrated approximately 100% bioavailability of the agent. We conclude that CR3465 represents a potent leukotriene CysLT1 receptor antagonist with enhanced effects, being also useful for counteracting spasmogenic and inflammatory stimuli other than those elicited by cysteinyl-leukotrienes (Cys-LTs).
Collapse
Affiliation(s)
- Flora Ferrari
- Rotta Research Laboratorium S.p.A., Pharmacology and Toxicology Department, Via Valosa di Sopra 7/9-20052 Monza (MI), Italy.
| | | | | | | | | |
Collapse
|
32
|
Wu BN, Lin RJ, Lo YC, Shen KP, Wang CC, Lin YT, Chen IJ. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium, cyclic nucleotides and K+ channels. Br J Pharmacol 2004; 142:1105-14. [PMID: 15237094 PMCID: PMC1575170 DOI: 10.1038/sj.bjp.0705791] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
7-[2-[4-(2-chlorophenyl)piperazinyl]ethyl]-1,3-dimethylxanthine (KMUP-1) produces tracheal relaxation, intracellular accumulation of cyclic nucleotides, inhibition of phosphodiesterases (PDEs) and activation of K+ channels. KMUP-1 (0.01-100 microm) induced concentration-dependent relaxation responses in guinea-pig epithelium-intact trachea precontracted with carbachol. Relaxation responses were also elicited by the PDE inhibitors theophylline, 3-isobutyl-1-methylxanthine (IBMX), milrinone, rolipram and zaprinast (100 microm), and a KATP channel opener, levcromakalim. Tracheal relaxation induced by KMUP-1 was attenuated by epithelium removal and by pretreatment with inhibitors of soluble guanylate cyclase (sGC) (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), 1 microm), nitric oxide synthase (Nomega-nitro-L-arginine methyl ester, 100 microm), K+ channels (tetraethylammonium, 10 mm), KATP channels (glibenclamide, 1 microm), voltage-dependent K+ channels (4-aminopyridine, 100 microm) and Ca2+-dependent K+ channels (charybdotoxin, 0.1 microm or apamin, 1 microm). Both KMUP-1 (10 microm) and theophylline nonselectively and slightly inhibited the enzyme activity of PDE3, 4 and 5, suggesting that they are able to inhibit the metabolism of adenosine 3',5'-cyclic monophosphate (cyclic AMP) and guanosine 3',5'-cyclic monophosphate (cyclic GMP). Likewise, the effects of IBMX were also measured and its IC50 values for PDE3, 4 and 5 were 6.5 +/- 1.2, 26.3 +/- 3.9 and 31.7 +/- 5.3 microm, respectively. KMUP-1 (0.01-10 microm) augmented intracellular cyclic AMP and cyclic GMP levels in guinea-pig cultured tracheal smooth muscle cells. These increases in cyclic AMP and cyclic GMP were abolished in the presence of an adenylate cyclase inhibitor SQ 22536 (100 microm) and an sGC inhibitor ODQ (10 microm), respectively. KMUP-1 (10 microm) increased the expression of protein kinase A (PKARI) and protein kinase G (PKG1alpha1beta) in a time-dependent manner, but this was only significant for PKG after 9 h. Intratracheal administration of tumour necrosis factor-alpha (TNF-alpha, 0.01 mg kg(-1)) induced bronchoconstriction and exhibited a time-dependent increase in lung resistance (RL) and decrease in dynamic lung compliance (Cdyn). KMUP-1 (1.0 mg kg(-1)), injected intravenously for 10 min before the intratracheal TNF-alpha, reversed these changes in RL and Cdyn. These data indicate that KMUP-1 activates sGC, produces relaxation that was partly dependent on an intact epithelium, inhibits PDEs and increases intracellular cyclic AMP and cyclic GMP, which then increases PKA and PKG, leading to the opening of K+ channels and resulting tracheal relaxation.
Collapse
Affiliation(s)
- Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rong-Jyh Lin
- Basic Medical Science Education Center, Fooyin University, Taliou, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuo-Pyng Shen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Chuan Wang
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Young-Tso Lin
- Department of Cardiovascular Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Author for correspondence:
| |
Collapse
|
33
|
Sudo T, Ito H, Kimura Y. Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets 2004; 14:381-90. [PMID: 14602552 DOI: 10.1080/09537100310001598819] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is a regulator of actin dynamics in platelets and a common substrate of both cAMP- and cGMP-dependent protein kinases (PKA and PKG). Elevations of the cAMP and cGMP concentration have been shown to inhibit platelet aggregation. Intracellular levels of cAMP and cGMP are regulated by the synthesizing system of adenylate cyclases, and hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). The present study examined the effect of the anti-platelet drug, cilostazol, which inhibits PDE3 activity, on VASP phosphorylation in platelets. VASP phosphorylation was examined by immunoblotting with an anti-VASP antibody, M4, and an anti-phospho-VASP antibody, 16C2. Cilostazol phosphorylated VASP at both Ser157 and Ser239 in a concentration-dependent manner, but EHNA (PDE2 inhibitor), dipyridamole and zaprinast (PDE5 inhibitors) did not. Forskolin (adenylate cyclase activator) and sodium nitroprusside (SNP, NO donor) resulted in the VASP phosphorylation, with increase in the cAMP and cGMP level, respectively. Cilostazol increased cAMP, but not cGMP levels, in platelets. EHNA, zaprinast and dipyridamole, had no effect on cAMP and cGMP levels. The PKA/PKG inhibitor, H-89, inhibited VASP phosphorylation by cilostazol. These results demonstrated that cilostazol phosphorylates VASP through the PDE3 inhibition, increase of cAMP level, and PKA activation in platelets.
Collapse
Affiliation(s)
- Toshiki Sudo
- First Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan.
| | | | | |
Collapse
|
34
|
Ochiai H, Ishida A, Ohtani T, Kusumi K, Kishikawa K, Yamamoto S, Takeda H, Obata T, Nakai H, Toda M. Discovery of New Orally Active Phosphodiesterase (PDE4) Inhibitors. Chem Pharm Bull (Tokyo) 2004; 52:1098-104. [PMID: 15340197 DOI: 10.1248/cpb.52.1098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of 4-anilinopyrazolopyridine derivatives were synthesized and biologically evaluated as inhibitors of phosphodiesterase (PDE4). Chemical modification of 3, a structurally new chemical lead that was found in our in-house library, was focused on 1- and 3-substituents. Full details of the discovery of a new orally active chemical lead 5 are presented. Structure-activity relationship data, pharmacological evaluation, and the subtype selectivity study are also presented.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., Mishima, Osaka 618-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hiramatsu N, Kageyama K. Anti-thrombotic effect of milrinone is caused by inhibition of calcium release from the dense tubular system in human platelets. Acta Anaesthesiol Scand 2003; 47:53-7. [PMID: 12492797 DOI: 10.1034/j.1399-6576.2003.470109.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM Milrinone, a phosphodiesterase III inhibitor, exerts positive inotropic effects which induce an increase in the intracellular calcium concentration by raising the cyclic adenosine monophosphate level in cardiac muscle. Milrinone was also reported to inhibit platelet aggregation, however, its mechanism remains unknown. Therefore, we investigated the effects of milrinone on intracellular calcium mobilization when platelets were activated. METHODS Washed platelets, obtained from six healthy volunteers, were preincubated with milrinone (0.9 micro M) for 1 min and then exposed to 0.015 i micro ml-1 thrombin for 5 min. The effect of milrinone on changes in the intracellular calcium level using a fluorescent dye, fura-2, was also observed. Calcium mobilizations via plasma membrane calcium channels and the dense tubular system were assessed differentially. RESULTS Milrinone (0.9 micro M) significantly suppressed the aggregation ratios at 5 min compared with those in controls (86+/-5%) to 75+/-8%. The increase in the intracellular calcium concentration was also significantly suppressed (controls, 915+/-293 nM vs. 405+/-240 nM) when stimulated by thrombin. Milrinone also significantly inhibited the release of calcium from the dense tubular system (controls, 284+/-111 nM vs. 158+/-51 nM). Calcium influx through the plasma membrane was suppressed by milrinone 2.4 micro M. CONCLUSION Milrinone (0.9 micro M) inhibited thrombin-induced platelet aggregation. This inhibitory effect was mainly mediated by suppressing calcium release from the dense tubular system.
Collapse
Affiliation(s)
- N Hiramatsu
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Japan.
| | | |
Collapse
|
36
|
Doh H, Shin CY, Son M, Ko JI, Yoo M, Kim SH, Kim WB. Mechanism of erectogenic effect of the selective phosphodiesterase type 5 inhibitor, DA-8159. Arch Pharm Res 2002; 25:873-8. [PMID: 12510841 DOI: 10.1007/bf02977007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DA-8159, a new Phosphodiesterase (PDE) 5 inhibitor, has exhibited potent erectogenic potential in a penile erection test in rats and anesthetized dogs. In this study, we investigated the mechanism of its erectogenic activity by measuring the activity of DA-8159 against a various PDE isozymes and assessing cGMP and cAMP formation in a rabbit corpus cavernosum in vitro. DA-8159 inhibited the PDE 5 activity in rabbit and human platelets, which the IC50 was 5.84 +/- 1.70 nM and 8.25 +/- 2.90 nM, respectively. The IC50 of DA-8159 on PDE 1, PDE 2, PDE 3 and PDE 6 were 870+/- 57.4 nM, 101 +/- 15 microM, 52.0 +/- 3.53 microM and 53.3 +/- 2.47 nM, respectively. This suggests that DA-8159 is a potent, highly selective, competitive inhibitor of PDE 5-catalyzed cGMP hydrolysis. The rates of cGMP hydrolysis catalyzed by human platelets-derived PDE 5 as a function of the cGMP concentration (5-100 nM) and two-fixed DA-8159 concentration (11.3 and 18.8 nM) were investigated in order to characterize the mode of PDE 5 inhibition by DA-8159. DA-8159 increased the apparent Km value for cGMP hydrolysis but had no effect on the apparent Vmax, indicating a competitive mode of inhibition. DA-8159 increased the cGMP concentrations in the rabbit corpus cavernosum dose dependently. In the presence of sodium nitroprusside (SNP), DA-8159 significantly stimulated the accumulation of cGMP when compared to the control level. This indicated that the enhancement of a penile erection by DA-8159 involved the relaxation of the cavernosal smooth muscle by NO-stimulated cGMP accumulation. In conclusion, DA-8159 is a selective inhibitor of PDE 5-catalyzed cGMP hydrolysis and the enhancement of a penile erection by DA-8159 is mediated by the relaxation of the cavernosal smooth muscle by the NO-stimulated cGMP accumulation.
Collapse
Affiliation(s)
- Hyounmie Doh
- Research Laboratories, Dong-A Pharm. Co. Ltd. 47-5, Sanggal, Kiheung, Yongin, Kyunggi 449-900, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Lin RJ, Wu BN, Shen KP, Huang CH, Liu ZI, Lin CY, Cheng CJ, Chen IJ. Xanthine-analog, KMUP-2, enhances cyclic GMP and K+ channel activities in rabbit aorta and corpus cavernosum with associated penile erection. Drug Dev Res 2002. [DOI: 10.1002/ddr.10048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Kim DK, Lee JY, Lee N, Ryu DH, Kim JS, Lee S, Choi JY, Ryu JH, Kim NH, Im GJ, Choi WS, Kim TK. Synthesis and phosphodiesterase inhibitory activity of new sildenafil analogues containing a carboxylic acid group in the 5'-sulfonamide moiety of a phenyl ring. Bioorg Med Chem 2001; 9:3013-21. [PMID: 11597484 DOI: 10.1016/s0968-0896(01)00200-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New sildenafil analogues possessing a carboxylic acid group in the 5'-sulfonamide of the phenyl ring, 9a-l, were prepared from the readily available starting compounds 6a-b and cyclic amines 3-5 in a three-step sequence. In the enzyme assays, it has been shown that all the target compounds 9a-l proved to be more potent in inhibiting phosphodiesterase type 5 (PDE5) than sildenafil by 4-38-fold. The effects on the IC(50) values were investigated by varying the alkoxy group (R) of the phenyl ring, the sulfonamide type (X), and the length of the methylene chain linking the carboxylic acid, and the results were discussed in detail. From this study, we have clearly demonstrated that introduction of a carboxylic acid group to the 5'-sulfonamide moiety of the phenyl ring greatly enhanced PDE5 inhibitory activity, probably by mimicking the phosphate group of cGMP. The piperidinyl propionic acid derivative 9i, which showed the highest PDE5 inhibitory activity and comparable to better selectivity over PDE isozymes in comparison with sildenafil, has been selected for more detailed biological investigations.
Collapse
Affiliation(s)
- D K Kim
- Life Science Research Center, SK Chemicals, 600 Jungja-Dong, Changan-Ku, Suwon-Si, 440-745, Kyungki-Do, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu BN, Lin RJ, Lin CY, Shen KP, Chiang LC, Chen IJ. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle. Br J Pharmacol 2001; 134:265-74. [PMID: 11564644 PMCID: PMC1572942 DOI: 10.1038/sj.bjp.0704231] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
1. KMUP-1 (1, 3, 5 mg kg(-1), i.v.), a xanthine derivative, produced dose-dependent sustained hypotensive and short-acting bradycardiac effects in anaesthetized rats. This hypotensive effect was inhibited by pretreatment with glibenclamide (5 mg kg(-1), i.v.). 2. In endothelium-intact or denuded aortic rings preconstricted with phenylephrine, KMUP-1 caused a concentration-dependent relaxation. This relaxation was reduced by endothelium removal, the presence of NOS inhibitor L-NAME (100 microM) and sGC inhibitors methylene blue (10 microM) and ODQ (1 microM). 3. The vasorelaxant effects of KMUP-1 was attenuated by pretreatment with various K(+) channel blockers TEA (10 mM), glibenclamide (1 microM), 4-AP (100 microM), apamin (1 microM) and charybdotoxin (ChTX, 0.1 microM). 4. Increased extracellular potassium levels (30 - 80 mM) caused a concentration-related reduction of KMUP-1-induced vasorelaxations. Preincubation with KMUP-1 (1, 10, 100 nM) increased the ACh-induced maximal vasorelaxations mediated by endogenous NO release, and enhanced the potency of exogenous NO-donor SNP. 5. The vasorelaxant responses of KMUP-1 (0.01, 0.05, 0.1 microM) together with a PDE inhibitor IBMX (0.5 microM) had an additive action. Additionally, KMUP-1 (100 microM) affected cyclic GMP metabolism since it inhibited the activity of PDE in human platelets. 6. KMUP-1 induced a dose-related increase in intracellular cyclic GMP levels in rat A10 vascular smooth muscle (VSM) cells, but not cyclic AMP. The increase in cyclic GMP content of KMUP-1 (0.1 - 100 microM) was almost completely abolished in the presence of methylene blue (10 microM), ODQ (10 microM), and L-NAME (100 microM). 7. In conclusion, these results indicate that KMUP-1 possesses the following merits: (1) stimulation of NO/sGC/cyclic GMP pathway and subsequent elevation of cyclic GMP, (2) K(+) channels opening, and (3) inhibition of PDE or cyclic GMP breakdown. Increased cyclic GMP display a prominent role in KMUP-1-induced VSM relaxations.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adenylyl Cyclases/drug effects
- Adenylyl Cyclases/metabolism
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/physiology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Blood Pressure/drug effects
- Cells, Cultured
- Cromakalim/pharmacology
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- Glyburide/pharmacology
- Heart Rate/drug effects
- In Vitro Techniques
- Methylene Blue/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/drug effects
- Nitric Oxide Synthase/metabolism
- Nitroprusside/pharmacology
- Oxadiazoles/pharmacology
- Phosphoric Diester Hydrolases/drug effects
- Phosphoric Diester Hydrolases/metabolism
- Piperidines/pharmacology
- Potassium Channels/drug effects
- Potassium Channels/physiology
- Quinoxalines/pharmacology
- Rats
- Rats, Wistar
- Solubility
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
- Xanthine/chemistry
- Xanthine/pharmacology
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
| | - Rong-Jyh Lin
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
| | - Chiu-Yin Lin
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
| | - Kuo-Pyng Shen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
| | - Lien-Chai Chiang
- Department of Microbiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
| | - Ing-Jun Chen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
- Author for correspondence:
| |
Collapse
|
40
|
Zhang W, Ke H, Tretiakova AP, Jameson B, Colman RW. Identification of overlapping but distinct cAMP and cGMP interaction sites with cyclic nucleotide phosphodiesterase 3A by site-directed mutagenesis and molecular modeling based on crystalline PDE4B. Protein Sci 2001; 10:1481-9. [PMID: 11468344 PMCID: PMC2374088 DOI: 10.1110/ps.6601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cyclic nucleotide phosphodiesterase 3A (PDE3A) hydrolyzes cAMP to AMP, but is competitively inhibited by cGMP due to a low k(cat) despite a tight K(m). Cyclic AMP elevation is known to inhibit all pathways of platelet activation, and thus regulation of PDE3 activity is significant. Although cGMP elevation will inhibit platelet function, the major action of cGMP in platelets is to elevate cAMP by inhibiting PDE3A. To investigate the molecular details of how cGMP, a similar but not identical molecule to cAMP, behaves as an inhibitor of PDE3A, we constructed a molecular model of the catalytic domain of PDE3A based on homology to the recently determined X-ray crystal structure of PDE4B. Based on the excellent fit of this model structure, we mutated nine amino acids in the putative catalytic cleft of PDE3A to alanine using site-directed mutagenesis. Six of the nine mutants (Y751A, H840A, D950A, F972A, Q975A, and F1004A) significantly decreased catalytic efficiency, and had k(cat)/K(m) less than 10% of the wild-type PDE3A using cAMP as substrate. Mutants N845A, F972A, and F1004A showed a 3- to 12-fold increase of K(m) for cAMP. Four mutants (Y751A, H840A, D950A, and F1004A) had a 9- to 200-fold increase of K(i) for cGMP in comparison to the wild-type PDE3A. Studies of these mutants and our previous study identified two groups of amino acids: E866 and F1004 contribute commonly to both cAMP and cGMP interactions while N845, E971, and F972 residues are unique for cAMP and the residues Y751, H836, H840, and D950 interact with cGMP. Therefore, our results provide biochemical evidence that cGMP interacts with the active site residues differently from cAMP.
Collapse
Affiliation(s)
- W Zhang
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
41
|
Kim DK, Ryu DH, Lee N, Lee JY, Kim JS, Lee S, Choi JY, Ryu JH, Kim NH, Im GJ, Choi WS, Kim TK. Synthesis and phosphodiesterase 5 inhibitory activity of new 5-phenyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one derivatives containing an N-acylamido group phenyl ring. Bioorg Med Chem 2001; 9:1895-9. [PMID: 11425592 DOI: 10.1016/s0968-0896(01)00095-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
New sildenafil analogues with an N-acylamido group at the 5'-position of the phenyl ring, 6a--e, were prepared from the readily available starting compound 2 in four straightforward steps. Enzyme assays demonstrated that all the target compounds 6a-e showed higher PDE5 inhibitory activities than sildenafil. It was observed that the PDE5 inhibitory activity was enhanced as the chain length of R group increased, but introduction of the branched alkyl groups such as isopropyl (6d) and cyclohexyl (6e) resulted in the drop of potency compared with 6c. In particular the N-butyrylamido derivative 6c exhibited the highest PDE5 inhibitory activity, and was about 6-fold more potent than sildenafil. However, all the compounds exhibited somewhat weak selectivity (1--3-fold) over PDE6, indicating that the compounds 6a--e have intrinsically lower selectivity than sildenafil.
Collapse
Affiliation(s)
- D K Kim
- Life Science Research Center, SK Chemicals, 600 Jungja-Dong, Changan-Ku, Suwon-Si, Kyungki-Do 440-745, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim DK, Lee N, Lee JY, Ryu DH, Kim JS, Lee SH, Choi JY, Chang K, Kim YW, Im GJ, Choi WS, Kim TK, Ryu JH, Kim NH, Lee K. Synthesis and phosphodiesterase 5 inhibitory activity of novel phenyl ring modified sildenafil analogues. Bioorg Med Chem 2001; 9:1609-16. [PMID: 11408180 DOI: 10.1016/s0968-0896(01)00055-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
New sildenafil analogues containing an ether ring fused into the phenyl moiety, 6a--d and 7a--d, were efficiently synthesized from the readily available starting materials, 1a--d and 2, in five steps. Ab initio calculations indicated that introduction of a cyclic ether to the phenyl group might enhance the co-planarity of the molecule. The torsional angles were calculated to be 2--3 degrees for the 5-membered cyclic ether derivatives, 6a, 6c, 7a, and 7c, and 12--16 degrees for the 6-membered ones, 6b, 6d, 7b, and 7d. On the other hand, sildenafil showed the least co-planarity with the torsional angle of 23 degrees compared with the target compounds, 6a--d and 7a--d. In the enzyme assay, however, the in vitro PDE 5 inhibitory activity was found out to be inversely related to the degree of co-planarity. In other words, the least planar sildenafil showed the highest activity, and the most planar 5-membered cyclic ether derivatives were least active by 100--200-fold compared with sildenafil. Our study clearly demonstrated that the open chain 2'-alkoxy group of the phenyl ring, although less effective for inducing the co-planarity, seemed to act as a much better lipophilic requirement than the cyclic alkoxy moiety.
Collapse
Affiliation(s)
- D K Kim
- Life Science Research Center, SK Chemicals, 600 Jungja-Dong, Changan-Ku, Suwon-Si, Kyungki-Do 440-745, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ohba Y, Soda K, Zaitsu K. A sensitive assay of human blood platelet cyclic nucleotide phosphodiesterase activity by HPLC using fluorescence derivatization and its application to assessment of cyclic nucleotide phosphodiesterase inhibitors. Biol Pharm Bull 2001; 24:567-9. [PMID: 11379782 DOI: 10.1248/bpb.24.567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A selective and sensitive HPLC measurement of 3',5'-cyclic nucleotide phosphodiesterase (PDE) activity in human platelets using (3,4-dimethoxyphenyl)glyoxal (DMPG) as a fluorogenic reagent for guanine and its nucleosides and nucleotides is described. cGMP, a substrate for PDE, and GMP, which was produced by the enzyme reaction, are selectively converted by the reaction with DMPG to the fluorescent derivatives. The derivatives were separated by reversed-phase HPLC. Human platelet PDE activity was measured and the inhibitory effects of several compounds were investigated.
Collapse
Affiliation(s)
- Y Ohba
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
44
|
Abstract
In the treatment and prevention of cardiovascular diseases, inhibition of platelet aggregation is of fundamental importance. Inhibition of platelet aggregation can be achieved by either inhibition of membrane receptors or by interception of signalling pathways. While receptor antagonism provides high specificity, the inhibition of platelet signal transduction is more effective. The effectiveness results from the inhibition of platelets, regardless of the cause of activation. These common pathway inhibitors are either intercepting platelet activating mechanisms or amplifying the action of endogenous platelet inhibitors. The physiological anti-aggregants are the endothelial factors NO and prostacyclin, which elevate intracellular cGMP or cAMP content, respectively. By administration of NO-releasing agents, prostacyclin analogues or other cyclic nucleotide elevating drugs the platelet anti-aggregatory action of endothelial factors can be effectively mimicked. Besides antiplatelet activity these drugs also act on vascular smooth muscle causing relaxation and therefore vasodilation, an additional beneficial effect. Inhibition of phosphodiesterases causes elevation of platelet cyclic nucleotide content and thus inhibits platelet aggregation and causes vasodilation. Another relevant target for anti-aggregatory treatment is the arachidonic acid metabolic pathway. This pathway can be intercepted by blockade of either cyclooxygenase-1 (COX-1) or thromboxane synthase. Inhibition of these enzymes may be further amplified by additional antagonism of the thromboxane receptor thus not only preventing formation of thromboxane but also activation of thromboxane receptor by thromboxane precursors, which were particularly effective in clinical trials. In vivo these precursors may be metabolised to prostacyclin in the endothelium and consequently provide additional platelet anti-aggregatory activity. A rather new target for platelet anti-aggregatory treatment is the ecto-nucleotidase CD-39 which limits the plasma level of nucleotides. While several of the novel anti-aggregatory drugs were disappointing in clinical studies combinations of drugs with different effector enzymes showed potent antithrombotic efficacy.
Collapse
Affiliation(s)
- J Geiger
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical University Clinic, University of Wuerzburg, Germany.
| |
Collapse
|
45
|
Tanaka H, Tajimi K, Miyajima Y, Kazama M, Kobayashi K. Effects of milrinone on platelet aggregation in swine with pulmonary hypertension. J Crit Care 2000; 15:113-8. [PMID: 11011824 DOI: 10.1053/jcrc.2000.16464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE The purpose of this study was to investigate whether the effect of milrinone on platelet aggregation was related to the selectivity of vasodilation vasculature in a swine model with PH. MATERIALS AND METHODS To induce pulmonary hypertension, we injected two sets of acid-washed glass beads in 15 swine, which were divided into two groups (those receiving milrinone or not) and compared with each other. RESULTS The induction of pulmonary hypertension decreased the platelet count and increased the plasma levels of thromboxane B2 and 6-keto-prostaglandin F1alpha. CONCLUSION A locally high concentration of prostaglandin I2, at least in part, may produce selectivity of vasodilation in the pulmonary vasculature.
Collapse
Affiliation(s)
- H Tanaka
- Trauma and Critical Care Center and Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
The activity of phosphodiesterase (PDE)3A requires divalent cations. Putative metal-binding sites are expected at 2 highly conserved metal-binding motifs, HXXXH(X)25E. A functional truncated recombinant PDE3A containing the catalytic domain (PDE3A▵1) and mutant proteins were expressed in a baculovirus/Sf9 cell system. All the mutant proteins had decreased catalytic efficiency (kcat/Km). Mutants H752A, H756A, and E825A had kcat of less than 0.0008 s−1 to 0.0475 s−1 compared to PDE3A▵1, with 1.86 second−1, with unchanged Km. Although E866A had a kcat of 0.235 s−1, the Kmfor cyclic adenosine monophosphate (cAMP) was increased 11-fold and the Ki for cyclic guanosine monophosphate (cGMP) was 27-fold higher than PDE3A▵1. The Ki of H836A for cGMP was 177-fold higher than that of PDE3A▵1. The Km for E971A was 5-fold higher than PDE3A▵1. These results suggest that the cAMP and cGMP binding sites are overlapping, but not identical, involving both common and different amino acids. Mutants E825A, H836A, and E866A showed low activity in a metal ion-free assay; however, their enzymatic activities were increased 4- to 10-fold in buffers containing Mn2+, Mg2+, or Co2+. This observation indicates that conserved amino acids in the second metal-binding motif might not be involved in binding divalent cations but may serve other functions such as substrate or inhibitor binding in PDE3A.
Collapse
|
47
|
Conserved amino acids in metal-binding motifs of PDE3A are involved in substrate and inhibitor binding. Blood 2000. [DOI: 10.1182/blood.v95.11.3380] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe activity of phosphodiesterase (PDE)3A requires divalent cations. Putative metal-binding sites are expected at 2 highly conserved metal-binding motifs, HXXXH(X)25E. A functional truncated recombinant PDE3A containing the catalytic domain (PDE3A▵1) and mutant proteins were expressed in a baculovirus/Sf9 cell system. All the mutant proteins had decreased catalytic efficiency (kcat/Km). Mutants H752A, H756A, and E825A had kcat of less than 0.0008 s−1 to 0.0475 s−1 compared to PDE3A▵1, with 1.86 second−1, with unchanged Km. Although E866A had a kcat of 0.235 s−1, the Kmfor cyclic adenosine monophosphate (cAMP) was increased 11-fold and the Ki for cyclic guanosine monophosphate (cGMP) was 27-fold higher than PDE3A▵1. The Ki of H836A for cGMP was 177-fold higher than that of PDE3A▵1. The Km for E971A was 5-fold higher than PDE3A▵1. These results suggest that the cAMP and cGMP binding sites are overlapping, but not identical, involving both common and different amino acids. Mutants E825A, H836A, and E866A showed low activity in a metal ion-free assay; however, their enzymatic activities were increased 4- to 10-fold in buffers containing Mn2+, Mg2+, or Co2+. This observation indicates that conserved amino acids in the second metal-binding motif might not be involved in binding divalent cations but may serve other functions such as substrate or inhibitor binding in PDE3A.
Collapse
|
48
|
Mseeh F, Colman RF, Colman RW. Inactivation of platelet PDE2 by an affinity label: 8-[(4-bromo-2, 3-dioxobutyl)thio]cAMP. Thromb Res 2000; 98:395-401. [PMID: 10828479 DOI: 10.1016/s0049-3848(00)00195-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cyclic GMP-stimulated cyclic nucleotide phosphodiesterase (PDE2) is the second most abundant of this class of enzymes in platelets. PDE2 probably plays an important role in the regulation of elevated intracellular concentrations of cAMP and cGMP in platelets inhibited by prostacyclin and/or nitric oxide. The cAMP and cGMP PDEs have catalytic domains with 28-40% identity, but vary in their substrate specificity and affinity. As a first step toward the goal of identifying important amino acids in the substrate binding site pocket, we have employed the affinity analog 8-[(4-bromo-2, 3-dioxobutyl)thio]adenosine-3'5' cyclic monophosphate (8-BDB-TcAMP) to inactivate PDE2 and observe the pattern of protection by substrates and their products. Incubation of purified platelet PDE2 with 8-BDB-TcAMP (2-10 mM) resulted in a time-dependent, irreversible inactivation of the enzyme with a second-order rate constant of 0.013 min(-1) mM(-1). Both substrates, cAMP and cGMP, as well as the products of hydrolysis by PDE2, AMP and GMP, exhibited concentration-dependent protection against inhibition by 8-BDB-TcAMP, but no protection was noted with ADP or ATP, which are not hydrolyzed by the enzyme. This compound, 8-BDB-TcAMP, and similar affinity reagents should prove useful in delineating amino acids in the active site of PDE2.
Collapse
Affiliation(s)
- F Mseeh
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
49
|
Sudo T, Tachibana K, Toga K, Tochizawa S, Inoue Y, Kimura Y, Hidaka H. Potent effects of novel anti-platelet aggregatory cilostamide analogues on recombinant cyclic nucleotide phosphodiesterase isozyme activity. Biochem Pharmacol 2000; 59:347-56. [PMID: 10644042 DOI: 10.1016/s0006-2952(99)00346-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The inhibitory potential of novel anti-platelet aggregatory cilostamide analogues on phosphodiesterase (PDE) isozyme activities was investigated with recombinant PDE isozymes expressed in a baculovirus/ Sf9 expression system. The recombinant enzymes (PDE1-PDE5 and PDE7) showed Km values and sensitivities to selective inhibitors similar to those reported previously for native enzymes purified from tissues. The cyclooctylurea derivative OPC-33540 (6-[3-[3-cyclooctyl-3-[(1R*,2R*)-2-hydroxycyclohexyl]ureido]-propoxy]-2(1H)-quinolinone) inhibited recombinant PDE3A (IC50 = 0.32 nM) more potently and selectively than the classical PDE3 inhibitors cilostamide, cilostazol, milrinone, and amrinone. The cyclopropylurea derivative OPC-33509 [(-)-6-[3-[3-cyclopropyl-3-[(1R,2R)-2-hydroxycyclohexyl]ureido]-propoxy]-2(1H)-quinolinone] was less potent (IC50 = 0.10 microM) than OPC-33540, demonstrating that the cyclooctyl moiety was important for a potent inhibitory effect. In platelets, OPC-33540 potentiated cyclic AMP accumulation concentration-dependently in both the absence and the presence of 3 nM prostaglandin E1 (PGE1) (doubling concentrations: 32.5 and 6.2 nM, respectively). OPC-33540 inhibited thrombin-induced platelet aggregation potently (Ic50 = 27.8 nM). The anti-platelet aggregation effect also was stimulated in the presence of 3 nM PGE1 (IC50 = 6.0 nM). There was a good correlation between the IC50 values of PDE3 inhibitors in this study for recombinant PDE3A activity and their IC50 values for thrombin-induced platelet aggregation (r = 0.998). These data demonstrated that OPC-33540 is a highly selective and potent PDE3 inhibitor and a useful probe for identification of the intracellular functions of PDE3.
Collapse
Affiliation(s)
- T Sudo
- Thrombosis and Vascular Research Laboratory, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hwang TL, Wu CC, Teng CM. YC-1 potentiates nitric oxide-induced relaxation in guinea-pig trachea. Br J Pharmacol 1999; 128:577-84. [PMID: 10516635 PMCID: PMC1571672 DOI: 10.1038/sj.bjp.0702830] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The effects of YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole) on tension, levels of cyclic GMP and cyclic AMP were investigated in guinea-pig trachea. We especially studied the combined effect of YC-1 with exogenous or endogenous nitric oxide on these parameters. 2. YC-1 at the concentration 3 or 10 microM, which caused only minor effect by itself, elicited concentration-dependent potentiation of sodium nitroprusside (SNP)-induced tracheal relaxation. This relaxation of YC-1 with SNP was reversed by ODQ. 3. Relaxant responses to electric field stimulation (EFS) in the presence of indomethacin, atropine, guanethidine, alpha-chymotrypsin and histamine were also markedly increased by YC-1 (10 microM). In the presence of L-NAME or ODQ, the relaxant effects to EFS were attenuated and the following addition of YC-1 did not further enhance relaxation. 4. YC-1 (10 microM) or SNP (0.3 microM) alone did not induce significant elevation of cyclic GMP levels in the presence of IBMX, whereas simultaneous application of both compounds markedly elevated the cyclic GMP accumulation. In contrast, the cyclic AMP levels were not altered even at the combination of YC-1 and SNP. Additionally, YC-1 also affected cyclic GMP metabolism, since it inhibited the activity of phosphodiesterase type V in human platelets. 5. YC-1 (30 microM) did not scavenge superoxide anion and had no effect on the removal of superoxide anion by superoxide dismutase in a xanthine/xanthine oxidase system. 6. In conclusion, these results indicate that although YC-1 elicits negligible relaxation of guinea-pig trachea by itself, it can potentiate the relaxant responses of exogenous or endogenous NO. This synergistic response of YC-1 is via the elevation of cyclic GMP contents.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sect. 1, Taipei, Taiwan
| | - Chin-Chung Wu
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sect. 1, Taipei, Taiwan
| | - Che-Ming Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sect. 1, Taipei, Taiwan
- Author for correspondence:
| |
Collapse
|