1
|
Abstract
Inositol is a cyclic sugar alcohol which occurs naturally in a variety of stereoisomers, the most common of which is myo-inositol. Inositol phosphoglycan molecules have been isolated from mammalian tissues and are a major component of the intracellular mediators of insulin action. The fetus with intrauterine growth retardation (IUGR) activates a series of adaptive mechanisms to increase the chances for survival, such as a saving of glucose to ensure nutrition of the vital organs, with a consequent reduction in insulin secretion. It can be hypothesized that the reduced production of fetal insulin leads to an excretion of inositol from the intracellular to the extracellular compartment, with a consequent increase of the metabolite in plasma and urine and a decrease inside the cells. Recently, reports suggesting that the increase in extracellular myo-inositol may be a valid marker of an altered glucose metabolism during fetal development in IUGR have been published.
Collapse
Affiliation(s)
- A Dessì
- Department of Surgery Science, Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, University of Cagliari , Italy
| | | |
Collapse
|
2
|
Lowe R, Mussa HY, Nigsch F, Glen RC, Mitchell JB. Predicting the mechanism of phospholipidosis. J Cheminform 2012; 4:2. [PMID: 22281160 PMCID: PMC3398306 DOI: 10.1186/1758-2946-4-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
The mechanism of phospholipidosis is still not well understood. Numerous different mechanisms have been proposed, varying from direct inhibition of the breakdown of phospholipids to the binding of a drug compound to the phospholipid, preventing breakdown. We have used a probabilistic method, the Parzen-Rosenblatt Window approach, to build a model from the ChEMBL dataset which can predict from a compound's structure both its primary pharmaceutical target and other targets with which it forms off-target, usually weaker, interactions. Using a small dataset of 182 phospholipidosis-inducing and non-inducing compounds, we predict their off-target activity against targets which could relate to phospholipidosis as a side-effect of a drug. We link these targets to specific mechanisms of inducing this lysosomal build-up of phospholipids in cells. Thus, we show that the induction of phospholipidosis is likely to occur by separate mechanisms when triggered by different cationic amphiphilic drugs. We find that both inhibition of phospholipase activity and enhanced cholesterol biosynthesis are likely to be important mechanisms. Furthermore, we provide evidence suggesting four specific protein targets. Sphingomyelin phosphodiesterase, phospholipase A2 and lysosomal phospholipase A1 are shown to be likely targets for the induction of phospholipidosis by inhibition of phospholipase activity, while lanosterol synthase is predicted to be associated with phospholipidosis being induced by enhanced cholesterol biosynthesis. This analysis provides the impetus for further experimental tests of these hypotheses.
Collapse
Affiliation(s)
- Robert Lowe
- Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, Purdie Building, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST, UK.
| | | | | | | | | |
Collapse
|
3
|
Abstract
![]()
Phospholipidosis is an adverse effect caused by numerous cationic amphiphilic drugs and can affect many cell types. It is characterized by the excess accumulation of phospholipids and is most reliably identified by electron microscopy of cells revealing the presence of lamellar inclusion bodies. The development of phospholipidosis can cause a delay in the drug development process, and the importance of computational approaches to the problem has been well documented. Previous work on predictive methods for phospholipidosis showed that state of the art machine learning methods produced the best results. Here we extend this work by looking at a larger data set mined from the literature. We find that circular fingerprints lead to better models than either E-Dragon descriptors or a combination of the two. We also observe very similar performance in general between Random Forest and Support Vector Machine models.
Collapse
Affiliation(s)
- Robert Lowe
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
4
|
Radeff JM, Singh ATK, Stern PH. Role of protein kinase A, phospholipase C and phospholipase D in parathyroid hormone receptor regulation of protein kinase Cα and interleukin-6 in UMR-106 osteoblastic cells. Cell Signal 2004; 16:105-14. [PMID: 14607281 DOI: 10.1016/s0898-6568(03)00131-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Parathyroid hormone (PTH) stimulates both bone formation and resorption by activating diverse osteoblast signalling pathways. Upstream signalling for PTH stimulation of protein kinase C-alpha (PKCalpha) membrane translocation and subsequent expression of the pro-resorptive cytokine interleukin-6 (IL-6) was investigated in UMR-106 osteoblastic cells. PTH 1-34, PTH 3-34, PTHrP and PTH 1-31 stimulated PKCalpha translocation and IL-6 promoter activity. Pharmacologic intervention at the adenylyl cyclase (AC) pathway (forskolin, IBMX, PKI) failed to alter PTH 1-34- or PTH 3-34-stimulated PKCalpha translocation. The phosphoinositol-phospholipase C (PI-PLC) antagonist U73122 slightly decreased PTH 1-34-stimulated PKCalpha translocation; however, the control analogue U73343 acted similarly. Propranolol, an inhibitor of phosphatidic acid (PA) phosphohydrolase, decreased diacylglycerol (DAG) formation and attenuated PTH 1-34- and PTH 3-34-stimulated PKCalpha translocation and IL-6 promoter activity, suggesting a phospholipase D (PLD)-dependent mechanism. This is the first demonstration that PLD-mediated signalling leads to both PKC-alpha translocation and IL-6 promoter activation in osteoblastic cells.
Collapse
Affiliation(s)
- Julie M Radeff
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|
5
|
Quirk JG, Baumgarten B, Bleasdale JE. Effect of myo-inositol on the glycerophospholipid composition of adult and fetal rat lung tissue. J Perinat Med 2001; 12:201-10. [PMID: 6512663 DOI: 10.1515/jpme.1984.12.4.201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In many species including man, the second most abundant lipid in lung surfactant is phosphatidylglycerol (PG) which may comprise 10% of the total lipid in surfactant from mature lungs. Infants delivered before their surfactant contained a large amount of PG are at greater risk of succumbing to hyaline membrane disease. Regulation of the PG content of lung surfactant is not understood completely, but the reciprocal changes in the amount of phosphatidylinositol (PI) and PG in surfactant as the lung mature are suggestive of regulation at the level of a common precursor. The immediate common precursor of PI and PG is CDP-diacylglycerol which is found in only small amounts in most mammalian cells and likely restricts the biosynthesis of both PI and PG. It has been observed in several species that the enzymes that synthesize PI and PG compete for the limited amount of CPD-diacylglycerol and this competition is influenced by the availability of myo-inositol. We and others have presented evidence that myo-inositol availability in the developing lung may be an important factor in the regulation of lung surfactant composition. In the present investigation, myo-inositol was administered chronically to nonpregnant and to pregnant rats and the effect of this treatment on the glycerophospholipid composition of lung tissue and lung lavage was measured. In addition, the influence of myo-inositol administration to pregnant rats on the glycerophospholipid composition of lung tissue of their fetuses was investigated. The concentration of myo-inositol in adult and fetal blood was measured by gas-liquid chromatography of its trimethylsilyl derivative. For determination of glycerophospholipid composition, the total lipid extracts of lung tissues and lung lavage were separated by 2-dimensional thin-layer chromatography and quantified by lipid phosphorus assay of individual spots. The concentration of myo-inositol in the serum of pregnant rats was significantly higher than in nonpregnant rats (Tab. I, Fig. 1). Treatment of the rats with myo-inositol resulted in a significant elevation of serum concentrations of myo-inositol throughout the experimental period. Between day 18 and day 21 of the gestation there was a significant decrease in serum myo-inositol concentrations in fetuses of saline treated rats. Treatment of the pregnant dams with myo-inositol resulted in a significant elevation in fetal serum concentrations of myo-inositol on both day 18 and day 21 of gestation (Tab. I).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
6
|
Sternfeld L, Thévenod F, Schulz I. fMLP-induced arachidonic acid release in db-cAMP-differentiated HL-60 cells is independent of phosphatidylinositol-4, 5-bisphosphate-specific phospholipase C activation and cytosolic phospholipase A(2) activation. Arch Biochem Biophys 2000; 378:246-58. [PMID: 10860542 DOI: 10.1006/abbi.2000.1844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis¿2-aminophenoxyĕthane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.
Collapse
Affiliation(s)
- L Sternfeld
- Physiologisches Institut, Universität des Saarlandes, Homburg/Saar, D-66421, Germany
| | | | | |
Collapse
|
7
|
Palmer FB, Cook HW, Byers DM. Thapsigargin selectively stimulates synthesis of phosphatidylglycerol in N1E-115 neuroblastoma cells and phosphatidylinositol in C6 glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1215:190-7. [PMID: 7948003 DOI: 10.1016/0005-2760(94)90110-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phospholipid metabolism was studied in N1E-115 neuroblastoma and C6 glioma cells exposed to thapsigargin, a selective inhibitor of endoplasmic reticulum Ca(2+)-ATPase that raises the cytosolic free Ca2+ concentration [Ca2+]i. Thapsigargin caused only a transient increase of [Ca2+]i (< 1 min) in N1E-115 cells similar in magnitude and duration to agonist-induced calcium release mediated by inositol trisphosphate. Sustained elevation of [Ca2+]i due to influx of extracellular calcium, as occurs in most other cell lines including C6 cells, did not occur in N1E-115 cells. Increased uptake of inorganic phosphate (Pi) associated calcium influx was observed in C6 but not in N1E-115 cells. Thapsigargin affected phospholipid synthesis in both cell lines, most likely by inhibiting phosphatidic acid phosphohydrolase as indicated by diversion of [3H]oleic acid incorporation from triacylglycerol to phospholipid synthesis and stimulation of [32P]Pi incorporation into anionic phospholipids at the expense of phosphatidylcholine synthesis. The response to increased phosphatidate/phosphatidyl-CMP availability was cell specific. Thapsigargin (> 100 nM) selectively stimulated phosphatidylglycerol synthesis 20-30-fold in N1E-115 neuroblastoma cells while phosphatidylinositol synthesis was increased < 2-fold. In contrast, phosphatidylglycerol was not affected in C6 glioma cells and phosphatidylinositol synthesis was stimulated 8-fold by thapsigargin (> 1 microM). Agonist-stimulated calcium release did not increase phosphatidylglycerol synthesis in N1E-115 cells. Thapsigargin-stimulated phosphatidylglycerol synthesis and agonist-stimulated phosphatidylinositol synthesis could occur at the same time. Similar results were obtained with TMB-8, an inhibitor of intracellular Ca2+ release that decreases diacylglycerol utilization by blocking choline uptake and phosphatidylcholine synthesis without affecting resting [Ca2+]i. Thus [Ca2+]i does not directly mediate the effects of thapsigargin, TMB-8 or agonist stimulation on anionic phospholipid metabolism. These additional effects may limit the use of thapsigargin to assess Ca(2+)-dependence of phospholipid metabolism associated with Ca(2+)-mediated signal transduction.
Collapse
Affiliation(s)
- F B Palmer
- Atlantic Research Centre, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
8
|
Sillence DJ, Low MG. Hydrolysis of cell surface inositol phospholipid leads to the delayed stimulation of phosphatidylinositol synthesis in bovine aortic endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1224:247-54. [PMID: 7981239 DOI: 10.1016/0167-4889(94)90197-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to address the issue of how inositol phospholipid synthesis is controlled in a resting cell we looked for enhanced [3H]phosphatidylinositol (PtdIns) labelling in response to the hydrolysis of cell surface PtdIns. Bacillus thuringiensis PtdIns-PLC when added to intact bovine aortic endothelial (BAE) cells rapidly hydrolysed 9.1 +/- 1% of the total cellular PtdIns. This result suggests that BAE cells have a cell surface pool of PTdIns. Hydrolysis of cell surface PtdIns, in contrast to the agonist-stimulated hydrolysis of inner leaflet PtdIns, did not lead to a rapid (minutes) stimulation of PtdIns resynthesis. Prolonged incubation of BAE cells with PtdIns-PLC led to further hydrolysis of PtdIns (up to 20% of total cellular PtdIns). This second phase of PtdIns-PLC induced hydrolysis was inhibited by the addition of brefeldin A suggesting that it was dependent on vesicular traffic to the plasma membrane from the endoplasmic reticulum. Furthermore, the above result suggests that prolonged incubation of intact cells with PtdIns-PLC leads to the slow depeletion of intracellular PtdIns stores. This second phase of PtdIns-PLC induced hydrolysis was associated with PtdIns resynthesis since prolonged incubation with PtdIns-PLC, but not B. cereus PtdCho-PLC (which does not hydrolyse PtdIns), led to enhanced PtdIns labelling. The results indicate that extracellular PtdIns-PLC induced PtdIns resynthesis may occur due to PtdIns-PLC induced intracellular PtdIns depletion.
Collapse
Affiliation(s)
- D J Sillence
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | | |
Collapse
|
9
|
Sillence DJ, Downes CP. Subcellular distribution of agonist-stimulated phosphatidylinositol synthesis in 1321 N1 astrocytoma cells. Biochem J 1993; 290 ( Pt 2):381-7. [PMID: 8452524 PMCID: PMC1132284 DOI: 10.1042/bj2900381] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In an inositol-depleted 1321 N1 astrocytoma cell line, propranolol at 0.5 mM concentration and carbachol in the presence of Li+ induce a large increase (30-60-fold) in the amount of CMP-phosphatidate, the lipid substrate of PtdIns synthase. The actions of both agents on CMP-phosphatidate accumulation were reversed by co-incubation with 1 mM inositol. In cells grown in the presence of 40 microM inositol the propranolol- and carbachol-mediated CMP-phosphatidate accumulation was much smaller (2-4-fold). Propranolol- and carbachol-mediated increases in CMP-phosphatidate accumulation were at least additive in both inositol-replete and -depleted cells. The subcellular distribution of accumulated CMP-phosphatidate was investigated by sucrose-density-gradient centrifugation of a lysate of inositol-depleted cells. There were two coincident peaks of carbachol-stimulated [3H]CMP-phosphatidate and PtdIns synthase activity, respectively. The first peak of accumulated [3H]CMP-phosphatidate and PtdIns synthase activity is characteristic of a 'light vesicle' fraction, since it sediments at sucrose densities similar to that of endocytosed 125I-transferrin. The later peak, containing both carbachol-stimulated [3H]CMP-phosphatidate and PtdIns synthase activity, has a distribution in the gradient that is similar to NADPH-cytochrome c reductase activity, an endoplasmic-reticulum marker. By contrast, propranolol-stimulated [3H]CMP-phosphatidate accumulates in membranes which sediment as a single peak corresponding to the endoplasmic-reticulum marker. These observations suggest that agonist-stimulated PtdIns synthesis occurs in the endoplasmic reticulum and in at least one additional membrane compartment which is insensitive to propranolol, an inhibitor of endoplasmic-reticulum phosphatidate phosphohydrolase.
Collapse
Affiliation(s)
- D J Sillence
- Department of Biochemistry, University of Dundee, U.K
| | | |
Collapse
|
10
|
Heacock AM, Seguin EB, Agranoff BW. Measurement of receptor-activated phosphoinositide turnover in rat brain: nonequivalence of inositol phosphate and CDP-diacylglycerol formation. J Neurochem 1993; 60:1087-92. [PMID: 8382261 DOI: 10.1111/j.1471-4159.1993.tb03258.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Two methods for the measurement of receptor-activated phosphoinositide turnover were evaluated for their degree of correspondence in slices of rat brain; they involved the Li(+)-dependent accumulations of either [3H]-inositol-labeled inositol phosphates or [3H]cytidine-labeled CDP-diacylglycerol. In contrast to the expectation that the ratio of these two responses would remain approximately constant, varying degrees of correspondence were obtained. The two extremes are exemplified by carbachol, which elicited large increases in both inositol phosphate and CDP-diacylglycerol labeling, and endothelin, which gave a robust inositol phosphate response with little or no accumulation of 3H-CDP-diacylglycerol. No instance of the presence of the latter response in the absence of 3H-inositol phosphate accumulation was observed. Measurement of 3H-CDP-diacylglycerol accumulation thus may add additional insight into the regulation of phosphoinositide turnover and the complex action of Li+.
Collapse
Affiliation(s)
- A M Heacock
- Neuroscience Laboratory, University of Michigan, Ann Arbor 48104-1687
| | | | | |
Collapse
|
11
|
Palmer FB, Byers DM, Spence MW, Cook HW. Calcium-independent effects of TMB-8. Modification of phospholipid metabolism in neuroblastoma cells by inhibition of choline uptake. Biochem J 1992; 286 ( Pt 2):505-12. [PMID: 1530583 PMCID: PMC1132926 DOI: 10.1042/bj2860505] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
TMB-8 [8-(NN-diethylamino)-octyl-3,4,5-trimethoxybenzoate] blocks agonist-stimulated release of Ca2+ from intracellular sites in many cell lines and is often used to distinguish between dependence on extracellular and intracellular Ca2+. In N1E-115 neuroblastoma cells, TMB-8 did not alter the resting cytosolic Ca2+ concentration in unstimulated cells, yet phospholipid metabolism was greatly affected. At concentrations of TMB-8 (25-150 microM) that inhibit Ca2+ release, phosphatidylcholine formation was inhibited, whereas synthesis of phosphatidylinositol, phosphatidylglycerol and phosphatidylserine was stimulated. Unlike other cationic amphipathic compounds, TMB-8 did not inhibit phosphatidate phosphatase or enzymes in the pathway from choline to phosphatidylcholine. Choline transport was the major site of action. TMB-8 was a competitive inhibitor (Ki = 10 microM) of low-affinity (Kt = 20 microM) choline transport. When added at the same time as labelled precursor, TMB-8 also decreased cellular uptake of phosphate and inositol, but not that of ethanolamine or serine. In prelabelled cells, continued uptake and incorporation of phosphate and inositol were not affected. Under these conditions phosphatidylinositol synthesis was increased 2-fold and, like the effect on phosphatidylcholine, reached a plateau at 100 microM-TMB-8. Phosphatidylglycerol synthesis increased linearly with TMB-8 concentration to 40-fold stimulation at 150 microM, suggesting a selective effect on synthesis of phosphatidylglycerol from CDP-diacylglycerol. Phosphatidylserine synthesis was also increased up to 3-fold. These Ca(2+)-independent effects limit the use of TMB-8 in studies of cell signalling that involve stimulated phosphatidylinositol and phosphatidylcholine metabolism.
Collapse
Affiliation(s)
- F B Palmer
- Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
12
|
Samovilova NN, Vinogradov VA. Subcellular distribution of (+)-[3H]SKF 10,047 binding sites in rat liver. Eur J Pharmacol 1992; 225:69-74. [PMID: 1311691 DOI: 10.1016/0922-4106(92)90041-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of (+)-[3H]SKF 10,047 binding sites and the distribution of the established plasma membrane, nuclear, mitochondrial and endoplasmic reticulum markers in subcellular fractions of rat liver have been studied. The distribution profile of (+)-[3H]SKF 10,047 binding sites coincided with that of NADPH-cytochrome c reductase, the endoplasmic reticulum marker. (+)-[3H]SKF 10,047 binding sites in rat liver are therefore suggested to be located on the endoplasmic reticulum membrane and to represent a membrane-bound enzyme.
Collapse
Affiliation(s)
- N N Samovilova
- Preclinical Research Department, Joint Venture 'Constanta', Moscow, USSR
| | | |
Collapse
|
13
|
Zhu X, Eichberg J. A myo-inositol pool utilized for phosphatidylinositol synthesis is depleted in sciatic nerve from rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 1990; 87:9818-22. [PMID: 2263632 PMCID: PMC55265 DOI: 10.1073/pnas.87.24.9818] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peripheral nerve from experimentally diabetic rats exhibits lowered levels of myo-inositol (MI) and decreased incorporation of [3H]MI into phosphatidylinositol (PI). There are indications that diminished PI turnover may be causally related to reduced Na+,K(+)-ATPase activity in diabetic nerve. We have investigated whether a metabolic compartment of MI that is essential for PI synthesis is decreased in this tissue. Sciatic nerve segments from streptozotocin-induced diabetic and age-matched normal rats were incubated in vitro with either 32Pi or [3H]cytidine in the presence of propranolol. This cationic amphiphilic agent redirected nerve phospholipid metabolism to produce enhanced 32P incorporation into PI and decreased labeling of phosphatidylcholine and phosphatidyl-ethanolamine. The accumulation of phosphatidyl CMP (CMP-PA) was also demonstrated by chromatographic and enzymatic means. The incorporation of [3H]cytidine into CMP-PA in normal nerve increased up to 15-fold when 0.6 mM propranolol was present. In diabetic nerve, the liponucleotide incorporated 2- to 3-fold more isotope and was more readily labeled at lower drug concentrations as compared to normal nerve. The buildup of [3H]CMP-PA was reduced in a dose-dependent manner in the presence of MI in the incubation medium at concentrations up to 3 mM. However, if MI was added after liponucleotide accumulation, preformed CMP-PA could not be utilized for PI synthesis. The difference in liponucleotide labeling between normal and diabetic nerve was nearly abolished at 0.3 mM medium MI, a concentration much less than the level of cyclitol in the tissue. These results strongly suggest the presence in nerve of a pool of MI that is not in equilibrium with the bulk of nerve MI and that is preferentially used for PI synthesis. This metabolic compartment is depleted in diabetic nerve but can be readily replenished by exogenous MI and may correspond to the MI pool that has been proposed to be required for the turnover of a portion of tissue PI involved in maintenance of normal Na+,K(+)-ATPase activity.
Collapse
Affiliation(s)
- X Zhu
- Department of Biochemical and Biophysical Sciences, University of Houston, TX 77204-5500
| | | |
Collapse
|
14
|
Bishop WR, August J, Petrin JM, Pai JK. Regulation of sn-1,2-diacylglycerol second-messenger formation in thrombin-stimulated human platelets. Potentiation by protein kinase C inhibitors. Biochem J 1990; 269:465-73. [PMID: 2386487 PMCID: PMC1131600 DOI: 10.1042/bj2690465] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stimulation of platelets with thrombin leads to rapid degradation of inositol phospholipids, generation of diacylglycerol (DAG) and subsequent activation of protein kinase C (PKC). Previous studies indicated that prior activation of PKC with phorbol myristate acetate (PMA) desensitizes platelets to thrombin stimulation, as indicated by a decreased production of inositol phosphates and decreased Ca2+ mobilization. This suggests that PKC activation generates negative-feedback signals, which limit the phosphoinositide response. To test this hypothesis further, we examined the effects of PKC activators and inhibitors on thrombin-stimulated DAG mass formation in platelets. Pretreatment with PMA abolishes thrombin-stimulated DAG formation (50% inhibition at 60 nM). Pretreatment of platelets with the PKC inhibitors K252a or staurosporine potentiates DAG production in response to thrombin (3-4-fold) when using concentrations required to inhibit platelet PKC (1-10 microM). K252a does not inhibit phosphorylation of endogenous DAG or phosphorylation of a cell-permeant DAG in unstimulated platelets, indicating that DAG over-production is not due to inhibition of DAG kinase. Sphingosine, a PKC inhibitor with a different mechanism of action, also potentiates DAG formation in response to thrombin. Several lines of evidence indicate that DAG formation under the conditions employed occurs predominantly by phosphoinositide (and not phosphatidylcholine) hydrolysis: (1) PMA alone does not elicit DAG formation, but inhibits agonist-stimulated DAG formation; (2) thrombin-stimulated DAG formation is inhibited by neomycin (1-10 mM) but not by the phosphatidate phosphohydrolase inhibitor propranolol; and (3) no metabolism of radiolabelled phosphatidylcholine was observed upon stimulation by thrombin or PMA. These data provide strong support for a role of PKC in limiting the extent of platelet phosphoinositide hydrolysis.
Collapse
Affiliation(s)
- W R Bishop
- Department of Microbiology, Schering-Plough Research, Bloomfield, NJ 07003
| | | | | | | |
Collapse
|
15
|
Bonnel SI, Lin YP, Kelley MJ, Carman GM, Eichberg J. Interactions of thiophosphatidic acid with enzymes which metabolize phosphatidic acid. Inhibition of phosphatidic acid phosphatase and utilization by CDP-diacylglycerol synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1005:289-95. [PMID: 2553100 DOI: 10.1016/0005-2760(89)90051-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thiophosphatidic acid (1,2-diacyl-sn-glycero-3-phosphorothioate; thioPA) was chemically synthesized from egg phosphatidylcholine-derived 1,2-diacylglycerol and PSCl3 and tested for its effects on enzymes which utilize phosphatidic acid (PA) in phospholipid biosynthesis. The compound was not a substrate for rat liver cytosolic PA phosphatase and strongly inhibited this enzyme activity. ThioPA was also a potent inhibitor of purified membrane-associated PA phosphatase from Saccharomyces cerevisiae in a competitive manner and exhibited an apparent Ki = 60 microM. In contrast, purified CDPdiacylglycerol synthase (PA:CTP cytidylyltransferase) from this organism was able to convert thioPA to CDP-diacylglycerol. The apparent Vmax for thioPA was 7-fold lower than that for PA, whereas the apparent Km for thioPA (70 microM) was 4-fold lower than that for PA. Calculation of the specificity constant (Vmax/Km) demonstrated that PA was the preferred substrate. These properties of thioPA indicate that this substance may prove useful in studies of phospholipid metabolism and function.
Collapse
Affiliation(s)
- S I Bonnel
- Department of Biochemical and Biophysical Sciences, University of Houston 77204-5500
| | | | | | | | | |
Collapse
|
16
|
Bleasdale JE. Methods for altering the synthesis of phosphatidylinositol and phosphatidylglycerol by type II pneumonocytes. Methods Enzymol 1987; 141:222-34. [PMID: 3600358 DOI: 10.1016/0076-6879(87)41070-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
|
18
|
Reddy TS, Bazan NG. Cationic amphiphilic drugs inhibit the synthesis of long-chain fatty acyl coenzyme A in rat brain microsomes. FEBS Lett 1985; 182:111-4. [PMID: 3972118 DOI: 10.1016/0014-5793(85)81165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of cationic amphiphilic drugs (CAD) on the synthesis of thiol esters of coenzyme A with long-chain fatty acids was studied in microsomes of rat brain in vitro. The results indicate that propranolol, tetracaine and to a lesser extent, chloroquine, inhibit enzyme activity. Procaine and lidocaine did not inhibit enzyme activity in concentrations up to 0.8 mM. This inhibition seems to be directed primarily to the synthesis of polyunsaturated fatty acyl coenzyme A. The results also suggest that this inhibition may be due to the action of CAD on the microsomal membrane and not to an interaction of these drugs with the fatty acid substrates.
Collapse
|
19
|
Yorio T. Cellular mechanisms in the actions of antiglaucoma drugs. JOURNAL OF OCULAR PHARMACOLOGY 1985; 1:397-422. [PMID: 2464658 DOI: 10.1089/jop.1985.1.397] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There are several classes of drugs currently in use for the therapeutic management of the glaucomas. Although the ocular hypotensive effects of these agents have been well characterized and described, little is known of their site of action and cellular mechanism. This review attempts to describe those cellular mechanisms that may be linked to the actions of several classes of antiglaucoma drugs. Special emphasis was placed on drug actions and 1) the adenylate cyclase system; 2) receptor-coupled phosphoinositide turnover; 3) prostaglandins and 4) ion transport processes. Models are presented depicting proposed cellular sites of the interaction of the antiglaucoma drugs with these cellular processes.
Collapse
Affiliation(s)
- T Yorio
- Department of Pharmacology, Texas College of Osteopathic Medicine, Fort Worth
| |
Collapse
|
20
|
Abstract
Phosphatidylcholine of rat brain microsomes was labeled in vivo by intracerebral injection of either [3H]oleic acid or [methyl-3H]choline chloride. These labeled microsomes served both as the enzyme source as well as a source of endogenously labeled substrate. Phospholipase D (PLD) activity was detected with these particles only in the presence of exogenous oleate, its activator. Ca2+ and the ionophore A 23187 inhibit PLD activity of oleate-labeled microsomes. In oleate-labeled particles, besides phosphatidic acid the product of PLD action radioactivity was also detected in diglyceride as a result of resident phosphatidate phosphohydrolase, which hydrolyzed the phosphatidic acid. The phosphatidate phosphohydrolase could not be completely inhibited by KF and propranolol. The release of endogenous fatty acids from labeled phospholipid by a mellitin-stimulated phospholipase A2 also present in these particulates produced minimal stimulation of endogenous PLD. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are hydrolyzed by 50% in the presence of mellitin and 90% of the radioactivity was found in the lyso-compounds. Mellitin and oleate together reduced the radioactivity found in lyso-PC and increased that in lyso-PE.
Collapse
|
21
|
Ghalayini A, Eichberg J. Purification of phosphatidylinositol synthetase from rat brain by CDP-diacylglycerol affinity chromatography and properties of the purified enzyme. J Neurochem 1985; 44:175-82. [PMID: 2981098 DOI: 10.1111/j.1471-4159.1985.tb07128.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A purification procedure for rat brain phosphatidylinositol synthetase (PI synthetase; CDP-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase; EC 2.7.8.11) is described. The enzyme was purified 200-250-fold from the homogenate by solubilization with Triton X-100 from microsomal membranes and affinity chromatography on CDP-diacylglycerol-Sepharose. Elution of enzyme activity required the presence of Triton X-100, CDP-diacylglycerol, and either phosphatidylcholine or asolectin. The product that was obtained in 5-10% yield from whole brain and in 70% yield from the microsomal fraction contained three protein bands as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The final preparation contained levels of CDP-diacylglycerol hydrolase and CDP-diacylglycerol: sn-glycero-3-phosphate 3-phosphatidyltransferase activities that were less than 1% of PI synthetase activity. The purified enzyme displayed a pH optimum of 8.5-9.0, required either Mg2+ or Mn2+ and exhibited a Km of 4.6 mM for myo-inositol.
Collapse
|
22
|
Garcia Gil M, Van Lookeren Campagne M, Esbrit P, Navarro F, Mato JM. Effect of monodansylcadaverine on the synthesis of phosphatidylinositol by rabbit neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 794:234-9. [PMID: 6733135 DOI: 10.1016/0005-2760(84)90150-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present results show that the addition of monodansylcadaverine to rabbit neutrophils stimulates the incorporation of both [3H]inositol and [3H]glycerol into phosphatidylinositol. Monodansylcadaverine also induces the accumulation of phosphatidylinositol 4-phosphate, phosphatidic acid and diacylglycerol. These effects are all dose-dependent and occur at concentrations of monodansylcadaverine which are known to inhibit receptor-mediated endocytosis. Monodansylcadaverine has not effect on phosphatidylinositol hydrolysis or arachidonic acid release, indicating that it acts by increasing de novo synthesis of phosphatidylinositol but not its turnover. It is proposed that the effects of monodansylcadaverine on receptor-mediated endocytosis are mediated, at least in part, by its perturbing effect on lipid metabolism.
Collapse
|
23
|
Pappu A, Hostetler KY. Effect of cationic amphiphilic drugs on the hydrolysis of acidic and neutral phospholipids by liver lysosomal phospholipase A. Biochem Pharmacol 1984; 33:1639-44. [PMID: 6732837 DOI: 10.1016/0006-2952(84)90286-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rat liver lysosomal phospholipase A hydrolyzes both acidic and neutral phospholipids. Numerous cationic amphiphilic drugs including imipramine, propranolol, 4,4'-bis(diethylaminoethoxy)-alpha, beta- diethyldiphenylethane and chloropromazine inhibit phospholipase A. Cationic amphiphilic drugs bind readily to acidic phospholipids but much less readily to neutral phospholipids. Formation of drug-lipid complexes is thought to be an important mechanism involved in the inhibition of lysosomal phospholipases. Therefore, we studied the effects of four cationic amphiphilic inhibitors on lysosomal phospholipase A using one acidic and two neutral phospholipid substrates. The concentration of the drugs required to produce 50% inhibition was much higher when phosphatidylinositol was used as substrate. The degradation of phosphatidylethanolamine and phosphatidylcholine was more readily inhibited by these agents than that of phosphatidylinositol. In drug-induced lipidosis, the predominance of acidic phospholipids may be due to redirection of phospholipid metabolism towards the formation of acidic phospholipids with a resultant increased delivery of these lipids to lysosomes. Based on our results, it does not appear to be due to decreased enzymatic hydrolysis of drug-acidic phospholipid complexes, at least when pure phospholipid substrates are used. Lysosomal storage of both acidic and neutral phospholipids appears to be caused by inhibition of lysosomal phospholipase action in view of the probable high intralysosomal levels of these agents.
Collapse
|
24
|
Mullikin LJ, Helmkamp GM. Bovine brain phosphatidylinositol transfer protein. Selective inhibition by chlorpromazine and other amphiphilic amines. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43211-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Cenedella RJ, Sarkar CP. Mechanism of depression of brain phospholipid levels by an epileptogenic drug. Biochem Pharmacol 1984; 33:591-8. [PMID: 6704175 DOI: 10.1016/0006-2952(84)90313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Treatment of the rat with U18666A [3 beta-(2-diethylaminoethoxy) androst-5-en-17-one HCl] resulted in development of a chronic seizure state and 20-40% reductions in the concentration of all major phospholipid in whole brain. The mechanism of the phospholipid changes was explored in the present study. Incorporation of intracerebrally injected [1,3-3H]glycerol and [32P]orthophosphate into glycerolipids was decreased by 30-40% in treated rats. U18666A added in vitro to brain slices totally blocked glycerolipid synthesis at a high drug level (10(-3) M) but stimulated incorporation into diacylglycerol, phosphatidic acid and phosphatidylinositol at a lower level (10(-4) M). When added in vitro to cell fractions from liver or brain, U18666A readily inhibited phosphatidate phosphohydrolase and the acyltransferase enzymes which convert glycerolphosphate to phosphatidic acid and which convert diacylglycerol to triacylglycerol. Fifty percent inhibition of all three enzymes occurred at drug concentrations of between 0.4 and 1.0 mM. Phosphatidate cytidylyltransferase, an enzyme important to formation of phosphatidylinositol, was comparatively resistant to inhibition. Taken together, the results indicate that the marked reduction in the concentration of brain phospholipids caused by treatment of the young rat with U18666A is likely due to decreased phospholipid synthesis secondary to inhibition of several key enzymes in glycerolipid synthesis and, particularly, to inhibition of glycerolphosphate acyltransferase and phosphatidate phosphohydrolase.
Collapse
|
26
|
Abdel-Latif AA, Smith JP, Akhtar RA. Studies on the mechanism of alteration by propranolol and mepacrine of the metabolism of phosphoinositides and other glycerolipids in the rabbit iris muscle. Biochem Pharmacol 1983; 32:3815-21. [PMID: 6318773 DOI: 10.1016/0006-2952(83)90154-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have investigated the effects and mechanism of action of propranolol and mepacrine, two drugs with local anesthetic-like properties, on phospholipid metabolism in rabbit iris and iris microsomal and soluble fractions. In the iris, propranolol, like mepacrine [A. A. Abdel-Latif and J. P. Smith, Biochim, biophys. Acta 711, 478 (1982)], stimulated the incorporation of [14C]arachidonic acid ( [14C]AA) into phosphatidic acid (PA), CDP-diacylglycerol (CDP-DG), phosphatidylinositol (PI), the polyphosphoinositides (poly PI) and DG, and it inhibited that of phosphatidylcholine (PC), phosphatidylethanolamine (PE), triacylglycerol (TG) and the prostaglandins. Similarly, mepacrine, like propranolol [A. A. Abdel-Latif and J. P. Smith, Biochem. Pharmac. 25, 1697 (1976)], altered the incorporation of [14C]oleic acid, [3H]glycerol, 32Pi and [14C]choline into glycerolipids of the iris. Time-course studies in iris muscle prelabeled with [14C]AA showed an initial decrease in the production of DG and a corresponding increase in that of PA by the drugs, followed by an increase in accumulation of DG at longer time intervals (60-90 min). The above findings are in accord with the hypothesis that these drugs redirect glycerolipid synthesis by inhibiting PA phosphohydrolase. Propranolol and mepacrine stimulated the activities of DG kinase and phosphoinositide kinases and inhibited that of DG cholinephosphotransferase. The drugs had little effect on the activity of DG acyltransferase. It is concluded that propranolol and mepacrine redirect glycerolipid metabolism in the iris by exerting multiple effects on the enzymes involved in phospholipid biosynthesis. We suggest that these drugs could exert their local anesthetic-like effects by effecting an increase in the synthesis of the acidic phospholipids (PA, PI and the poly PI) and subsequently the binding of Ca2+- to the cell plasma membrane.
Collapse
|
27
|
Pappu AS, Hauser G. Propranolol-induced inhibition of rat brain cytoplasmic phosphatidate phosphohydrolase. Neurochem Res 1983; 8:1565-75. [PMID: 6324013 DOI: 10.1007/bf00964158] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Propranolol, a cationic amphiphilic drug, caused enhanced incorporation of labeled precursor into phosphatidic acid and its metabolites in rat cerebral cortex mince, suggesting increased biosynthesis or reduced degradation. Inhibition of phosphatidate phosphohydrolase could explain the observed drug-induced accumulation of phosphatidic acid and other acidic lipids. Propranolol exhibited differential effects on the free and membrane-bound forms of phosphatidate phosphohydrolase. The drug inhibited cytoplasmic enzyme in a dose-dependent manner only when membrane-bound substrate was used but had practically no effect on the membrane-bound enzyme irrespective of the nature of the substrate used or on the cytoplasmic enzyme when free substrate was used. Brain cytoplasmic enzyme obtained from rats sacrificed 30 min after intraperitoneal injections of propranolol did not show any inhibition. propranolol bound to membranes may prevent cytoplasmic enzyme action, probably by decreasing the availability of substrate through the formation of stable lipid-drug-protein complexes.
Collapse
|
28
|
Bleasdale JE, Tyler NE, Busch FN, Quirk JG. The influence of myo-inositol on phosphatidylglycerol synthesis by rat type II pneumonocytes. Biochem J 1983; 212:811-8. [PMID: 6882396 PMCID: PMC1153158 DOI: 10.1042/bj2120811] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type II pneumonocytes isolated from adult rat lung were incubated in a serum-free medium containing [14C]glycerol and the incorporation of 14C into glycerophospholipids was measured. After 24 h, more than 80% of the 14C incorporated into total lipids or into phosphatidylcholine and approx. 90% of the 14C incorporated into phosphatidylglycerol after 24 h was recovered in the glycerophosphoester moieties of these molecules. Supplementation of the incubation medium with foetal-bovine serum (10%, v/v) did not alter the incorporation of [14C]glycerol by type II pneumonocytes after 24 h into either a total lipid extract or phosphatidylcholine. In the presence of foetal-bovine serum, however, the incorporation of 14C into phosphatidylglycerol was decreased and the incorporation of 14C into phosphatidylinositol was increased. In the absence of foetal-bovine serum, the incorporation of 14C into phosphatidylglycerol was decreased progressively as the concentration of myo-inositol in the incubation medium was increased. The range of concentration (0.04-0.50 mM) over which myo-inositol had the greatest influence on [14C]glycerol incorporation into phosphatidylglycerol by type II pneumonocytes in vitro encompassed the concentration range measured in foetal-rat serum late in gestation. At 4 days before birth, the concentration of myo-inositol in foetal-rat serum was 0.36 mM and decreased to 0.23 mM 1 day before birth. The concentration of myo-inositol in adult rat serum increased from 0.03 mM to 0.06 mM during pregnancy. Isolated rat type II pneumonocytes were found to take up myo-inositol by a saturable process. A half-maximal rate of myo-inositol uptake occurred at a concentration of myo-inositol of 0.29 mM. The results of this investigation are consistent with the hypothesis that late in gestation there is a decreasing availability of myo-inositol to the foetal lungs and that this favours the biosynthesis of phosphatidylglycerol for surfactant at the expense of phosphatidylinositol biosynthesis.
Collapse
|
29
|
Aveldaño MI, Pasquare de Garcia SJ, Bazán NG. Biosynthesis of molecular species of inositol, choline, serine, and ethanolamine glycerophospholipids in the bovine retina. J Lipid Res 1983. [DOI: 10.1016/s0022-2275(20)37968-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Zborowski J, Brindley DN. The metabolism of CDP-diacylglycerol and phosphatidylinositol in the microsomal fraction of rat liver. Effects of chlorpromazine, magnesium and manganese. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 751:81-9. [PMID: 6830834 DOI: 10.1016/0005-2760(83)90259-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. The metabolism of CDPdiacylglycerol and phosphatidylinositol was measured using substrates bound to the microsomal membranes of rat liver. 2. Chlorpromazine inhibited the degradation of [14C]CDPdiacylglycerol and the concomitant inositol-independent release of 14C in water-soluble products in the presence of various concentrations of Mg2+ and Mn2+. 3. The activity of CDPdiacylglycerol inositol phosphatidyltransferase was measured by determining the rate of incorporation of [3H]inositol into phosphatidylinositol, and by the inositol-dependent release of water-soluble 14C from [14C]CDPdiacylglycerol. Both of these parameters were inhibited by chlorpromazine in incubations that contained rate-limiting concentrations of Mg2+. However, chlorpromazine stimulated the reaction when 20 mM Mg2+, 0.5 mM Mn2+, 2 mM Mn2+ or 20 mM Mn2+ was added to the incubations. 4. Low concentrations of chlorpromazine increased an inositol-exchange reaction in the presence of 0.5 mM Mn2+ whereas higher concentrations of chlorpromazine inhibited. Chlorpromazine had relatively less effect on the inositol-exchange reaction at higher concentrations of Mn2+. 5. The action of chlorpromazine in decreasing the breakdown of CDPdiacylglycerol and in stimulating its conversion to phosphatidylinositol could explain part of the mechanism by which this compound and other amphiphilic cations increase the synthesis of acidic phospholipids.
Collapse
|
31
|
Harding PG, Chan F, Casola PG, Fellows GF, Wong T, Possmayer F. Subcellular distribution of the enzymes related to phospholipid synthesis in developing rat lung. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 750:373-82. [PMID: 6305424 DOI: 10.1016/0005-2760(83)90042-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Ilincheta de Boschero MG, Bazan NG. Reversibility of propranolol-induced changes in the biosynthesis of monoacylglycerol, diacylglycerol, triacylglycerol, and phospholipids in the retina. J Neurochem 1983; 40:260-6. [PMID: 6848663 DOI: 10.1111/j.1471-4159.1983.tb12680.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The biosynthesis and metabolism of phospholipids and neutral glycerides were studied in the bovine retina. Radioactive glycerol was used as a precursor. Phentolamine and d- and dl-propranolol were found to produce similar effects on lipid metabolism in the retina. Marked stimulation of phosphatidylinositol (PhI) synthesis and maximal inhibition of phosphatidylcholine (PhC), diacylglycerol (DG), and triacylglycerol (TG) formation were observed within 5 min after exposure to 0.5 mM dl-propranolol. Pulse-chase experiments showed a high turnover rate in DG and a reversibility of the propranolol-induced changes produced during the synthesis of PhC, TG, DG, monoacylglycerol (MG), and phosphatidylserine. All reversals of the drug-induced biosynthetic profiles approached control values 60 min after incubation in drug-free medium. However, complete reversal was not achieved in any of the cases under these conditions. Propranolol appeared to inhibit both the formation of DG from phosphatidic acid and the further metabolism of DG, probably to MG. Phosphatidylethanolamine biosynthesis showed some recovery from this inhibition. Synthesis of PhI was greatly stimulated by preincubation with propranolol and was further enhanced by reincubation in the presence of propranolol. However, this effect was not reversed by reincubation without the drug. The active de novo biosynthesis of retinal phospholipids and glycerides is a very dynamic pathway that may be redirected by amphiphilic drugs. In addition, the partial reversal of modifications induced in the flux of [2-3H]glycerol through the lipids can occur during short-term reincubations of retinas in drug-free medium.
Collapse
|
33
|
Cadman E, Eichberg J. The presence of phospholipase A and lysophospholipase activities in culture supernatant fluid from Alteromonas espejiana. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1983; 15:1155-9. [PMID: 6617959 DOI: 10.1016/0020-711x(83)90231-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Culture supernatants from late Log phase cultures of Alteromonas espejiana hydrolyzed phosphatidylinositol to glycerylphosphorylinositol and free fatty acid. No lysophosphatidylimositol was detected. The phospholipase activity degraded up to 50% of the substrate and displayed a broad pH optimum from 6.5-8.5. The activity was slightly stimulated in the presence of either Mg2+ or Ca2+, but was not inhibited by EDTA. The apparent Km for phosphatidylinositol was 1.5 mM. Culture supernatants also contained deacylating activity which released fatty acid from phosphatidylcholine and erythrocyte ghosts.
Collapse
|
34
|
Badger CR, Helmkamp GM. Modulation of phospholipid transfer protein activity. Inhibition by local anesthetics. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 692:33-40. [PMID: 7171587 DOI: 10.1016/0005-2736(82)90499-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The transfer of phospholipid molecules between biological and synthetic membranes is facilitated by the presence of soluble catalytic proteins, such as those isolated from bovine brain which interacts with phosphatidylinositol and phosphatidylcholine and from bovine liver which is specific for phosphatidylcholine. A series of tertiary amine local anesthetics decreases the rates of protein-catalyzed phospholipid transfer. The potency of inhibition is dibucaine greater than tetracaine greater than lidocaine greater than procaine, an order which is compared with and identical to those for a wide variety of anesthetic-dependent membrane phenomena. Half-maximal inhibition of phosphatidylinositol transfer by dibucaine occurs at a concentration of 0.18 mM, significantly lower than the concentration of 1.9 mM required for half-maximal inhibition of phosphatidylcholine transfer activity of the brain protein. Comparable inhibition of liver protein phosphatidylcholine transfer activity is observed at 1.6 mM dibucaine. For activity measurements performed at different pH, dibucaine is more potent at the lower pH values which favor the equilibrium toward the charged molecular species. With membranes containing increasing molar proportions of phosphatidate, dibucaine is increasingly more potent. No effect of Ca2+ on the control transfer activity or the inhibitory action of dibucaine is noted. These results are discussed in terms of the formation of specific phosphatidylinositol or phosphatidylcholine complexes with the amphiphilic anesthetics in the membrane bilayer.
Collapse
|
35
|
Longmuir KJ, Bleasdale JE, Quirk JG, Johnston JM. Regulation of lamellar body acidic glycerophospholipid biosynthesis in fetal rabbit lung in organ culture. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 712:356-64. [PMID: 7126609 DOI: 10.1016/0005-2760(82)90353-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To study the regulation of lamellar body acidic glycerophospholipid biosynthesis, fetal rabbit lung tissue obtained on day 23 of gestation was maintained in vitro. Tissues were cultured in serum-free medium with and without the addition of cortisol, thyroxine or a combination of both hormones. The addition of cortisol plus thyroxine to the medium resulted in the formation of lamellar bodies containing increased amounts of phosphatidylglycerol and decreased amounts of phosphatidylinositol. The addition of myo-inositol to culture medium containing cortisol plus thyroxine suppressed the incorporation of [14C]glycerol into both phosphatidylglycerol and bis(monoacylglycero)phosphate and enhanced the incorporation of [14C]glycerol into phosphatidylinositol. The effect of myo-inositol on the radioactive labeling of these lamellar body acidic glycerophospholipids was rapid, and was half-maximal at myo-inositol concentrations of approximately 0.10 mM.
Collapse
|
36
|
Abstract
In several species, lung maturation is accompanied by a decline in the phosphatidylinositol content of lung surfactant and a concomitant increase in its phosphatidylglycerol content. To examine the possibility that this developmental change is influenced by the availability of myo-inositol, potential sources of myo-inositol for the developing rabbit lung were investigated. On day 28 of gestation the myo-inositol content of foetal rabbit lung tissue (2.3+/-0.5mumol/g of tissue) was not significantly different from that of adult lung tissue but the activity of d-glucose 6-phosphate:1l-myo-inositol 1-phosphate cyclase (cyclase) in foetal lung tissue (81.0+/-9.0nmol.h(-1).g of tissue(-1)) was higher than that found in adult lung tissue (23.2+/-1.0nmol.h(-1).g of tissue(-1)). Day 28 foetal rabbit lung tissue was found also to take up myo-inositol by a specific, energy-dependent, Na(+)-requiring mechanism. Half-maximal uptake of myo-inositol by foetal rabbit lung slices was observed when the concentration of myo-inositol in the incubation medium was 85mum. When the myo-inositol concentration was 1mm (but not 100mum) the addition of glucose (5.5mm) stimulated myo-inositol uptake. myo-Inositol uptake was observed also in adult rabbit lung and was found to be sub-maximal at the concentration of myo-inositol found in adult rabbit serum. The concentration of myo-inositol in the serum of pregnant adult rabbits (47.5+/-5.5mum) was significantly lower than that of non-pregnant adult female rabbits (77.9+/-9.2mum). On day 28 of gestation the concentration of myo-inositol in foetal serum (175.1+/-12.0mum) was much less than on day 25, but more than that found on day 30. A transient post-partum increase in the concentration of myo-inositol in serum was followed by a rapid decline. Much of the myo-inositol in foetal rabbit serum probably originates from the placenta, where on day 28 of gestation a high cyclase activity (527+/-64nmol.h(-1).g of tissue(-1)) was measured. The gestational decline in serum myo-inositol concentration, together with the decreasing cyclase activity of the lungs, is consistent with the view that maturation of the lungs is accompanied by decreased availability of myo-inositol to this tissue.
Collapse
|
37
|
Abdel-Latif AA, Smith JP. Studies on the incorporation of [1-14C]arachidonic acid into glycerolipids and its conversion into prostaglandins by rabbit iris. Effects of anti-inflammatory drugs and phospholipase A2 inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 711:478-89. [PMID: 6809058 DOI: 10.1016/0005-2760(82)90062-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The effects of the anti-inflammatory drugs, indomethacin and aspirin, and the phospholipase A2 inhibitors, p-bromophenacyl bromide and mepacrine, on the in vitro metabolism of [1-14C]arachidonic acid by rabbit iris smooth muscle and iris microsomes were investigated. The incorporation of arachidonate into glycerolipids and its conversion into prostaglandins were rapid and time-dependent. About 65% of the total radioactivity was recovered in triacylglycerol, followed by that in phosphatidylcholine (20%), diacylglycerol (6%), phosphatidylethanolamine (5%) and phosphatidylinositol (3%), respectively. Time-course studies on arachidonate release from glycerolipids of prelabelled tissue showed that triacylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol are the major source for arachidonate in prostaglandin synthesis in this tissue. Arachidonate release from glycerolipids was not blocked by indomethacin and the effects of the phospholipase A2 inhibitors were nonspecific. p-Bromophenacyl bromide inhibited the labelling of glycerolipids in a dose-dependent manner. Mepacrine stimulated the labelling of phosphatidic acid, phosphatidylinositol and diacylglycerol, and inhibited that of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol. At concentrations under 0.25 mM it stimulated prostaglandin synthesis in microsomes and at concentrations over 0.25 mM it inhibited their synthesis in both muscle and microsomes. Indomethacin and aspirin moderately increased the labelling of glycerolipids; however, both drugs inhibited prostaglandin synthesis by iris and iris microsomes in a dose-dependent manner. Possible explanations for mechanisms underlying these effects were presented. It is concluded that the phospholipase A2 inhibitors and the anti-inflammatory drugs exert profound effects on the incorporation of [1-14C]arachidonate into glycerolipids of the rabbit iris and on its conversion into prostaglandins by both iris and iris microsomes.
Collapse
|
38
|
de Boschero MG, Bazan NG. Selective modifications in the de novo biosynthesis of retinal phospholipids and glycerides by propranolol or phentolamine. Biochem Pharmacol 1982; 31:1049-55. [PMID: 7082360 DOI: 10.1016/0006-2952(82)90341-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The effects of propranolol or phentolamine on the metabolism of phospholipids, diacylglycerol, and triacylglycerol were studied in the bovine retina in vitro. Lipid labeling was followed during short-term incubation of intact bovine retinas with [U-14C]glycerol and [1-14C]palmitic acid. Each of these precursors was recovered in the appropriate lipid moiety. Most of the [14C]glycerol appeared progressively in triacylglycerol (TG) through the sequence from phosphatidic acid (PA) to diacylglycerol (DG). Labeled palmitate appeared in much lower quantities than labeled glycerol in all glycerolipids except phosphatidylcholine (PC). Propranolol and phentolamine greatly enhanced the [14C]glycerol specific activities of PA, phosphatidylinositol (PI), and phosphatidylserine (PS), whereas labeling in other glycerolipids was much lower than in controls. The labeling in TG with both precursors was found to be less than 50% of the control values; however, a late increase in DG labeling was observed. The effects of these drugs on broken cell preparations were also described, although lipid synthesis from labeled glycerol in these preparations was only 9% that of intact retinas. It appeared that an amphiphilic cationic structure was necessary to produce these drug effects; propranolol glycol, the hydrophobic moiety of propranolol, did not elicit the same effects. It is suggested that, among other changes, the drugs inhibited phosphatidate phosphohydrolase and redirected the flux predominantly toward PI. Support for the proposed multiple lipid effects elicited by these drugs was provided by the dual changes found in the labeling of DG.
Collapse
|
39
|
Bleasdale JE, Johnston JM. CMP-dependent incorporation of [14C]Glycerol 3-phosphate into phosphatidylglycerol and phosphatidylglycerol phosphate by rabbit lung microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 710:377-90. [PMID: 7074121 DOI: 10.1016/0005-2760(82)90121-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rabbit lung microsomes were found to catalyze CMP-dependent incorporation of [14C]glycerol 3-phosphate into a total lipid extract. The radioactively labeled products in the lipid extract were identified as phosphatidylglycerol and phosphatidylglycerol phosphate. CMP-dependent incorporation of [14C]glycerol 3-phosphate by lung microsomes proceeded optimally at pH 7.4 and required Mn2+. The apparent Km value for CMP in this reaction was calculated to be 0.19 mM. No other cytidine nucleotide could substitute completely for CMP in supporting [14C]glycerol 3-phosphate incorporation into lipid. Cytosine-beta-D-arabinofuranoside-5'-monophosphate-dependent incorporation of [14C]glycerol 3-phosphate was observed at pH 8.5 but not at pH 6.8 CMP-dependent incorporation of [14C]glycerol 3-phosphate by microsomes was inhibited by inositol. The optimal in vitro rates of CMP-dependent and CDP diacylglycerol-dependent incorporation of [14C]glycerol 3-phosphate into lipid were similar (approximately 1 nmol . mg-1 protein . h-1) and were not additive. Both CMP -dependent and CDP diacylglycerol-dependent incorporation of [14C]glycerol 3-phosphate by lung microsomes appeared to involve CDPdiacylglycerol:glycerol-3-phosphate phosphatidyltransferase. However, the specific activity of this enzyme in a particular subcellular fraction did not relate directly in the extent of CMP-dependent [14C]glycerol 3-phosphate incorporation in that fraction. Preincubation of lung microsomes with 5 mM CMP plus 3 mM phosphatidylinositol increased CMP-dependent incorporation of [14C]glycerol 3-phosphate. When lung microsomes were depleted specifically of phosphatidylinositol by incubating with a phosphatidylinositol-specific phospholipase C, CMP-dependent incorporation was diminished. The Mn2+ requirement for CMP-dependent incorporation of [14C] glycerol 3-phosphate, its phosphatidylinositol requirement and its inhibition by Triton X-100 (0.2%) were not features shared by CDPdiacylglycerol-dependent incorporation of [14C]glycerol 3-phosphate but were characteristics of the reverse reaction catalyzed by CDPdiacylglycerol: inositol phosphatidyltransferase. Together with the previous finding of a developmental increase in the CMP content of fetal rabbit lung, these observations are consistent with a role for CMP in the regulation of the phosphatidylinositol and phosphatidylglycerol content of lung surfactant during lung maturation.
Collapse
|
40
|
Pappu AS, Hauser G. Changes in brain polyphosphoinositide metabolism induced by cationic amphiphilic drugs in vitro. Biochem Pharmacol 1981; 30:3243-6. [PMID: 6274357 DOI: 10.1016/0006-2952(81)90525-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Pascual de Bazán HE, Careaga MM, Bazán NG. Propranolol increases the biosynthesis of phosphatidic acid, phosphatidylinositol and phosphatidylserine in the toad retina. Studies in the entire and subcellular fractions. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 666:63-71. [PMID: 6794635 DOI: 10.1016/0005-2760(81)90091-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. Intact toad retinas incubated for short periods of time with [2-3H]glycerol were subject to subcellular fractionation. 2. The composition and labeling of glycerolipids were studied in the following subcellular fractions: rod outer segments (ROS), nuclear-photoreceptor inner segment synaptic body (P1), synaptosomal-mitochondrial (P2), microsomal and cytosolic. 3. It was concluded that the biosynthetic de novo route was followed by [2-3H]glycerol in the toad retina since radioactive was located solely in the glycerol backbone of lipids and phosphatidic acid specific activity was the highest. 4. Propranolol produces an increase in the biosynthesis of acidic phospholipids and inhibition in the biosynthesis of zwitterionic lipids in the entire toad retina. The effect was mainly located in microsomes and in the soluble fraction during the first minutes of incubation, being spread afterwards to other fractions. 5. These data are consistent with the view that enzymes of the biosynthesis of glycerolipids are modified in the retinal endoplasmic reticulum by propranolol, providing a useful tool to evaluate the regulation of the pathway.
Collapse
|
42
|
Pappu AS, Hauser G. Alterations of phospholipid metabolism in rat cerebral cortex mince induced by cationic amphiphilic drugs. J Neurochem 1981; 37:1006-14. [PMID: 7320715 DOI: 10.1111/j.1471-4159.1981.tb04488.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cationic amphiphilic drugs (CADs) of varied clinical use were screened to determine their capacity to alter the pattern of labeling with 32Pi of cerebral cortex mince phospholipids. The altered phospholipid labeling patterns were qualitatively similar, the prominent features being reduced incorporation into phosphatidylcholine and increased incorporation into phosphatidic acid. Relative potencies were: (/-+)-propranolol greater than chlorpromazine = 4,4'-bis(diethylaminoethoxy) alpha,beta-diethyldiphenylethane greater than desipramine greater than dibucaine greater than pimozide greater than oxymetazoline = fenfluramine = haloperidol = chloroquine greater than amphetamine = no drug added. Propranolol was used to study the action of CADs further. Its effect was time- and dose-dependent but in contrast with pineal gland, no label appeared in phosphatidyl-CMP (CDP-diacylglycerol), nor did dialysis of the mince to reduce diffusible substrates or exogenous addition of substrates cause appearance of liponucleotide. Thus lack of diffusible precursors is not responsible for CAD effects in vitro. Pulse-chase experiments with 32Pi and [2-3H]glycol suggested that inhibition of phosphatidate phosphohydrolase may be partly responsible for the observed alterations in phospholipid labeling in the presence of CADs.
Collapse
|
43
|
Smith TL, Hauser G. Effects of changes in calcium concentration on basal and stimulated 32P incorporation into phospholipids in rat pineal cells. J Neurochem 1981; 37:427-35. [PMID: 6790673 DOI: 10.1111/j.1471-4159.1981.tb00473.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Ca2+ requirement for alpha-agonist stimulation of 32P incorporation into acidic phospholipids (the phosphatidylinositol effect) of dispersed pineal cells was evaluated by means of several different compounds that interfere with Ca2+ disposition. Simple omission of Ca2+ led to slight increases in basal and norepinephrine-stimulated phosphatidyl-CMP (CDP-diacylglycerol) and phosphatidylglycerol labeling without affecting phosphatidylinositol labeling. In the absence of Ca2+, EGTA (200 microM) or the ionophore for divalent cations A23187 (10 microM) elicited large increases in phosphatidic acid, phosphatidyl-CMP, and phosphatidylglycerol labeling while strongly inhibiting the phosphatidylinositol effect. The Ca2+ translocation inhibitor LaCl3 also reduced the magnitude of this effect. The phosphatidylinositol effect is, however, not induced by increased Ca2+ entry into the cytosol, since A23187 did not mimic the effect of norepinephrine. Under conditions where membrane Ca2+ was lowered, the addition of 1 mM-inositol greatly reduced phosphatidic acid, phosphatidylglycerol, and phosphatidyl-CMP labeling with concomitant increases in basal and norepinephrine-stimulated phosphatidylinositol labeling approaching that observed in the presence of norepinephrine and 2.5 mM-Ca2+. In the presence of 2.5 mM-Ca2+, inositol had negligible effects on phosphatidylinositol labeling. It was concluded that changes in membrane Ca2+ availability and/or disposition alter phospholipid metabolism and concurrently reduce the magnitude of the phosphatidylinositol effect, perhaps by making the pool of readily available inositol in pinealocytes rate-limiting.
Collapse
|
44
|
Eichberg J, Zetusky WJ, Bell ME, Cavanagh E. Effects of polyamines on calcium-dependent rat brain phosphatidylinositol-phosphodiesterase. J Neurochem 1981; 36:1868-71. [PMID: 6264038 DOI: 10.1111/j.1471-4159.1981.tb00444.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effect of polyamines on the ability of calcium-dependent soluble rat brain phosphatidylinositol-phosphodiesterase to hydrolyze dispersed phosphatidylinositol was examined. Putrescine and cadaverine stimulated activity at all concentrations tested. In contrast, spermine and spermidine stimulated the reaction slightly at low concentrations but caused progressively greater inhibition as their levels were further increased. Phosphatidylinositol hydrolysis was inhibited by several multivalent cations, especially lanthanum and manganese. Spermidine partially replaced the calcium requirement of the enzyme. The possibility that polyamines may play a role in the regulation in vivo of phosphatidylinositol-phosphodiesterase is discussed.
Collapse
|
45
|
Plantavid M, Chap H, Lloveras J, Douste-Blazy L. Cationic amphiphilic drugs as a potential tool for modifying phospholipids of tumor cells. An in vitro study of chlorpromazine effects on Krebs II ascites cells. Biochem Pharmacol 1981; 30:293-7. [PMID: 7213418 DOI: 10.1016/0006-2952(81)90057-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Burns TW, Langley PE, Terry BE, Bylund DB, Hoffman BB, Tharp MD, Lefkowitz RJ, García-Saínz JA, Fain JN. Pharmacological characterizations of adrenergic receptors in human adipocytes. J Clin Invest 1981; 67:467-75. [PMID: 6257762 PMCID: PMC370588 DOI: 10.1172/jci110055] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Three types of adrenergic receptors, beta, alpha-1, and alpha-2, were identified in human adipocytes, isolated from properitoneal adipose tissue, using both the binding of radioactive ligands and the effects of adrenergic agents on receptor-specific biochemical responses. Adrenergic binding studies showed the following results: [(3)H]dihydroalprenolol binding (beta adrenergic) B(max) 280 fmol/mg protein, K(D) 0.38 nM; [(3)H]para-aminoclonidine binding (alpha-2 adrenergic) B(max) 166 fmol/mg protein, K(D) 0.49 nM; [(3)H]WB 4101 binding (alpha-1 adrenergic) B(max) 303 fmol/mg protein, K(D) 0.86 nM. In adipocytes from subcutaneous adipose tissue, [(3)H]dihydroergocryptine binding indicated the presence of alpha-2 but not alpha-1 receptors. Beta and alpha-2 adrenergic receptors appeared to be positively and negatively coupled to adenylate cyclase, respectively. Cells or cell membranes were incubated with epinephrine (10 muM) alone and in combination with the antagonists yohimbine (alpha-2) and prazosin (alpha-1). Epinephrine alone prompted a modest increase in adenylate cyclase activity, cyclic AMP, and glycerol release, an index of lipolysis. Yohimbine (0.1 muM) greatly enhanced these actions whereas prazosin was without effect. The beta agonist, isoproterenol, stimulated glycerol release, whereas the alpha-2 agonist, clonidine, inhibited lipolysis and cyclic AMP accumulation. To assess further alpha-1 receptors, cells were incubated with [(32)P]phosphate and epinephrine (10 muM) alone and in combination with prazosin and yohimbine. Epinephrine alone caused a three- to fourfold increase in (32)P incorporation into phosphatidylinositol. Prazosin (0.1 muM) blocked this action whereas yohimbine (0.1 muM) was without effect. Thus, in a homogeneous cell preparation, the human adipocyte appears to have three different adrenergic receptors, each of which is coupled to a distinct biochemical response.
Collapse
|
47
|
Abstract
The transfer of phosphatidylinositol from rat liver microsomes to liposomes stimulated by cytoplasmic protein was found to be inhibited by the addition of chlorpromazine, while the phosphatidylcholine transfer was not affected. The administration of chlorpromazine has been shown to enhance the synthetic rate of phosphatidylinositol and is assumed from the present experiment to decrease the intracellular transfer rate, leading to the accumulation of phosphatidylinositol in the endoplasmic reticulum. On the other hand, chlorpromazine caused the depression of the secretion of phosphatidylcholine to the blood plasma. Thus, the phospholipid composition of rat liver endoplasmic reticulum seems to remain unchanged by the balance of the intracellular alterations of phospholipid metabolism.
Collapse
|
48
|
Bazán NG, Aveldaño de Caldironi MI, Giusto NM, Rodríguez de Turco EB. Phosphatidic acid in the central nervous system. Prog Lipid Res 1981; 20:307-13. [PMID: 7342094 DOI: 10.1016/0163-7827(81)90062-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Garcia-Sáinz JA, Hasler AK, Fain JN. Alpha1-adrenergic activation of phosphatidylinositol labeling in isolated brown fat cells. Biochem Pharmacol 1980; 29:3330-3. [PMID: 6111319 DOI: 10.1016/0006-2952(80)90313-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Hokin-Neaverson M. Actions of chlorpromazine, haloperidol and pimozide on lipid metabolism in guinea pig brain slices. Biochem Pharmacol 1980; 29:2697-700. [PMID: 7426073 DOI: 10.1016/0006-2952(80)90092-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|