1
|
Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK. Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis 2014; 237:597-608. [PMID: 25463094 DOI: 10.1016/j.atherosclerosis.2014.10.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023]
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism and responsible for catalyzing lipolysis of triglycerides in lipoproteins. LPL is produced mainly in adipose tissue, skeletal and heart muscle, as well as in macrophage and other tissues. After synthesized, it is secreted and translocated to the vascular lumen. LPL expression and activity are regulated by a variety of factors, such as transcription factors, interactive proteins and nutritional state through complicated mechanisms. LPL with different distributions may exert distinct functions and have diverse roles in human health and disease with close association with atherosclerosis. It may pose a pro-atherogenic or an anti-atherogenic effect depending on its locations. In this review, we will discuss its gene, protein, synthesis, transportation and biological functions, and then focus on its regulation and relationship with atherosclerosis and potential underlying mechanisms. The goal of this review is to provide basic information and novel insight for further studies and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China; School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Fracisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Makoveichuk E, Castel S, Vilaró S, Olivecrona G. Lipoprotein lipase-dependent binding and uptake of low density lipoproteins by THP-1 monocytes and macrophages: possible involvement of lipid rafts. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:37-49. [PMID: 15522821 DOI: 10.1016/j.bbalip.2004.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 07/13/2004] [Accepted: 08/03/2004] [Indexed: 11/18/2022]
Abstract
Lipoprotein lipase (LPL) is produced by cells in the artery wall and can mediate binding of lipoproteins to cell surface heparan sulfate proteoglycans (HSPG), resulting in endocytosis (the bridging function). Active, dimeric LPL may dissociate to inactive monomers, the main form found in plasma. We have studied binding/internalization of human low density lipoprotein (LDL), mediated by bovine LPL, using THP-1 monocytes and macrophages. Uptake of (125)I-LDL was similar in monocytes and macrophages and was not affected by the LDL-receptor family antagonist receptor-associated protein (RAP) or by the phagocytosis inhibitor cytochalasin D. In contrast, uptake depended on HSPG and on membrane cholesterol. Incubation in the presence of dexamethasone increased the endogenous production of LPL by the cells and also increased LPL-mediated binding of LDL to the cell surfaces. Monomeric LPL was bound to the cells mostly in a heparin-resistant fashion. We conclude that the uptake of LDL mediated by LPL dimers is receptor-independent and involves cholesterol-enriched membrane areas (lipid rafts). Dimeric and monomeric LPL differ in their ability to mediate binding/uptake of LDL, probably due to different mechanisms for binding/internalization.
Collapse
Affiliation(s)
- Elena Makoveichuk
- Department of Medical Biosciences, Physiological Chemistry, Bldg 6M, 3rd floor, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
3
|
Burgess JW, Gould DR, Marcel YL. The HepG2 extracellular matrix contains separate heparinase- and lipid-releasable pools of ApoE. Implications for hepatic lipoprotein metabolism. J Biol Chem 1998; 273:5645-54. [PMID: 9488694 DOI: 10.1074/jbc.273.10.5645] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have examined the association of apoE with the extracellular matrix (ECM) of HepG2 cells. Comparison of ECM prepared by previously published methods demonstrated that cytochalasin B-prepared material yielded the highest endogenous apoE, representing 23.6% of that in cell monolayers. ECM prepared with EDTA or Triton X-100 exhibited decreased levels of apoE, 3 and 6%, respectively. ECM bound very low density lipoprotein poorly (5-6% of the monolayer capacity); however, these incubations dramatically increased the apoE content of the ECM. Heparinase or suramin decreased apoE of the ECM by 19.6 and 37.3%, respectively, suggesting association with heparin sulfate proteoglycans. EDTA or EGTA also displaced 35% of the apoE, suggesting a Ca2+-dependent association. Incubation with phosphatidylcholine vesicles (PCV) displaced 30% of the apoE, suggesting that lipid content affects association of apoE with the ECM. Data derived from sequential incubations with combinations of suramin, EGTA, and PCV were consistent with the presence of two distinct pools of apoE on the HepG2 ECM, one releasable with suramin and EGTA and the other releasable with lipids. Exogenously applied lipid-free apoE readily bound to the ECM; however, increasing the lipid content decreased its association. Lipid-free apoE could be equally displaced from the ECM with PCV or suramin. When lipid-free apoE adsorbed to microtiter wells was incubated with a triglyceride emulsion or palmitoyloleyl phosphatidylcholine micelles, the immunoreactivity of 3H1 (but not other antibodies), a monoclonal antibody against an epitope in the C-terminal domain of apoE, increased about 4-fold. In a similar manner, incubation of ECM with lipid dramatically increased the immunoreactivity of 3H1, indicating that apoE of the ECM exists in a lipid-poor form. Scatchard analysis demonstrated that the increased immunoreactivity was due to an increase in the number of antibody binding sites. In conclusion, the ECM contains two pools of lipid-poor apoE. One pool associates with the ECM through heparin sulfate proteoglycans- and Ca2+-dependent interactions. A second pool of apoE dissociates from the ECM upon lipidation. The lipid-sensitive pool of apoE may participate in secretion or efflux of lipids or in the capture of lipoproteins by providing the apoE needed for receptor-mediated uptake.
Collapse
Affiliation(s)
- J W Burgess
- Lipoprotein and Atherosclerosis Group, University of Ottawa Heart Institute, Department of Biochemistry, University of Ottawa, Ottawa, Ontario K1Y 4E9, Canada
| | | | | |
Collapse
|
4
|
Identification of the epitope of a monoclonal antibody that inhibits heparin binding of lipoprotein lipase: new evidence for a carboxyl-terminal heparin-binding domain. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)33301-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Kaplan M, Aviram M. Oxidized LDL binding to a macrophage-secreted extracellular matrix. Biochem Biophys Res Commun 1997; 237:271-6. [PMID: 9268699 DOI: 10.1006/bbrc.1997.7130] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extracellular matrix (ECM), which was shown to be secreted by arterial wall cells, is a major part of the atherosclerotic lesion. ECM can contribute to low density lipoprotein (LDL) retention which can then lead to macrophage foam cell formation, the hallmark of early atherogenesis. The present study demonstrated that in addition to the known ability of endothelial cells and smooth muscle cells to produce ECM, macrophages can also secrete an ECM layer. The macrophage derived ECM was shown to contain the proteoglycans chondroitin sulfate, heparan sulfate and dermatan sulfate. Macrophage derived ECM can bind native LDL, as well as oxidized LDL (3 fold more than native LDL), and this binding is significantly increased in the presence of lipoprotein lipase. Glycosaminoglycans from the ECM (mainly chondroitin sulfate and heparan sulfate) participate in the binding of Ox-LDL to the macrophage derived ECM. These observations suggest that ECM is produced also by macrophages, and it can contribute to a specific and local delivery of atherogenic LDL to macrophages, leading to cellular cholesterol accumulation and foam cell formation.
Collapse
Affiliation(s)
- M Kaplan
- The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | |
Collapse
|
6
|
Obunike JC, Paka S, Pillarisetti S, Goldberg IJ. Lipoprotein lipase can function as a monocyte adhesion protein. Arterioscler Thromb Vasc Biol 1997; 17:1414-20. [PMID: 9261275 DOI: 10.1161/01.atv.17.7.1414] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lipoprotein lipase (LPL) is made by several cell types, including macrophages within the atherosclerotic lesion. LPL, a dimer of identical subunits, has high affinity for heparin and cell surface heparan sulfate proteoglycans (HSPGs). Several studies have shown that cell surface HSPGs can mediate cell binding to adhesion proteins. Here, we tested whether LPL, by virtue of its HSPG binding could mediate monocyte adhesion to surfaces. Monocyte binding to LPL-coated (1-25 micrograms/mL) tissue culture plates was 1.4- to 7-fold higher than that of albumin-treated plastic. Up to 3-fold more monocytes bound to the subendothelial matrix that had been pretreated with LPL. LPL also doubled the number of monocytes that bound to endothelial cells (ECs). Heparinase and heparitinase treatment of monocytes or incubation of monocytes with heparin decreased monocyte binding to LPL. Heparinase/heparitinase treatment of the matrix also abolished the LPL-mediated increase in monocyte binding. These results suggest that LPL dimers mediate monocyte binding by forming a "bridge" between matrix and monocyte surface HSPGs. Inhibition of LPL activity with tetrahydrolipstatin, a lipase active-site inhibitor, did not affect the LPL-mediated monocyte binding. To assess whether specific oligosaccharide sequences in HSPGs mediated monocyte binding to LPL, competition experiments were performed by using known HSPG binding proteins. Neither antithrombin nor thrombin inhibited monocyte binding to LPL. Next, we tested whether integrins were involved in monocyte binding to LPL. Surprisingly, monocyte binding to LPL-coated plastic and matrix was inhibited by approximately 35% via integrin-binding arginine-glycine-aspartic acid peptides. This result suggests that monocyte binding to LPL was mediated, in part, by monocyte cell surface integrins. In summary, our data show that LPL, which is present on ECs and in the subendothelial matrix, can augment monocyte adherence. This increase in monocyte-matrix interaction could promote macrophage accumulation within arteries.
Collapse
Affiliation(s)
- J C Obunike
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
7
|
Fernández-Borja M, Bellido D, Vilella E, Olivecrona G, Vilaró S. Lipoprotein lipase-mediated uptake of lipoprotein in human fibroblasts: evidence for an LDL receptor-independent internalization pathway. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37591-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Skottova N, Savonen R, Lookene A, Hultin M, Olivecrona G. Lipoprotein lipase enhances removal of chylomicrons and chylomicron remnants by the perfused rat liver. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41141-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Miao HQ, Fritz TA, Esko JD, Zimmermann J, Yayon A, Vlodavsky I. Heparan sulfate primed on beta-D-xylosides restores binding of basic fibroblast growth factor. J Cell Biochem 1995; 57:173-84. [PMID: 7759555 DOI: 10.1002/jcb.240570202] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) are obligatory for receptor binding and mitogenic activity of basic fibroblast growth factor (bFGF). Mutant Chinese hamster ovary cells (pgsA-745) deficient in xylosyltransferase are unable to initiate glycosaminoglycan synthesis and hence can not bind bFGF to low- and high-affinity cell surface receptors. Exposure of pgsA-745 cells to beta-D-xylopyranosides containing hydrophobic aglycones resulted in restoration of bFGF binding in a manner similar to that induced by soluble heparin or by heparan sulfate (HS) normally associated with cell surfaces. Restoration of bF-GF binding correlated with the ability of the beta-D-xylosides to prime the synthesis of heparan sulfate. Thus, both heparan sulfate synthesis and bFGF receptor binding were induced by low concentrations (10-30 microM) of estradiol-beta-D-xyloside and naphthyl-beta-D-xyloside, but not by cis/trans-decahydro-2-naphthyl-beta-D-xyloside, which at low concentration primes mainly chondroitin sulfate. The obligatory involvement of xyloside-primed heparan sulfate in restoration of bFGF-receptor binding was also demonstrated by its sensitivity to heparinase treatment and by the lack of restoration activity in CHO cell mutants that lack enzymatic activities required to form the repeating disaccharide unit characteristic of heparan sulfate. Xyloside-primed heparan sulfate binds to the cell surface. Restoration of bFGF receptor binding was induced by both soluble and cell bound xyloside-primed heparan sulfate and was abolished in cells that were exposed to 0.5-1.0 M NaCl prior to the bFGF binding reaction. These results indicate that heparan sulfate chains produced on xyloside primers behave like heparan sulfate chains attached to cellular core proteins in terms of affinity for bFGF and ability to function as low-affinity sites in a dual receptor mechanism characteristic of bFGF and other heparin-binding growth promoting factors.
Collapse
Affiliation(s)
- H Q Miao
- Department of Oncology, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Rutledge JC, Goldberg IJ. Lipoprotein lipase (LpL) affects low density lipoprotein (LDL) flux through vascular tissue: evidence that LpL increases LDL accumulation in vascular tissue. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)39957-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Apolipoprotein E modulates low density lipoprotein retention by lipoprotein lipase anchored to the subendothelial matrix. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82406-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Korner G, Bjornsson TD, Vlodavsky I. Extracellular matrix produced by cultured corneal and aortic endothelial cells contains active tissue-type and urokinase-type plasminogen activators. J Cell Physiol 1993; 154:456-65. [PMID: 8436596 DOI: 10.1002/jcp.1041540303] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Incubation of plasminogen with the subendothelial extracellular matrix (ECM) synthesized by cultured bovine corneal and aortic endothelial cells resulted in generation of fibrinolytic activity, indicated by proteolysis of 125I-fibrin in a time- and dose-dependent manner. Both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) were identified in the ECM by fibrin zymography, immunoblotting, and inhibition of plasminogen activation by anti-u-PA and anti-t-PA antibodies. Most of the ECM-resident plasminogen activator (PA) activity did not originate from intracellular PA release occurring when the endothelial cells were lyzed and the ECM exposed, since a comparable amount of PA was associated with the ECM when the cells were lyzed with Triton X-100 or removed intact by treatment with 2 M urea. Active u-PA and t-PA were released from ECM by treatment with heparanase (endo-beta-D-glucuronidase), indicating that some of the ECM-resident PA activity is sequestered by heparan sulfate side chains. These results indicate that both u-PA and t-PA produced by endothelial cells are firmly sequestered in an active form by the subendothelial ECM. It is suggested that ECM-resident plasminogen activators participate in sequential matrix degradation during cell invasion and tumor metastasis. PA activity may also function in release of ECM-bound growth factors (i.e., basic fibroblast growth factor) and activation of proenzymes (i.e., prothrombin), resulting in modulation of the ECM growth-promoting and thrombogenic properties.
Collapse
Affiliation(s)
- G Korner
- Department of Radiation and Clinical Oncology, Hadassah University Hospital, Jerusalem, Israel
| | | | | |
Collapse
|
13
|
Stein O, Ben-Naim M, Dabach Y, Hollander G, Halperin G, Stein Y. Can lipoprotein lipase be the culprit in cholesteryl ester accretion in smooth muscle cells in atheroma? Atherosclerosis 1993; 99:15-22. [PMID: 8461056 DOI: 10.1016/0021-9150(93)90046-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bovine aortic smooth muscle cells and human skin fibroblasts were incubated with beta-very low density lipoprotein (beta VLDL) isolated from cholesterol-fed rabbits and labeled with [3H]cholesteryl oleate. Addition of lipoprotein lipase resulted in a 3.2-4.8-fold increase in cell associated radioactivity of which 45-61% was in free cholesterol, i.e., derived after intracellular hydrolysis. After exposure of smooth muscle cells to beta VLDL for up to 9 days and 60 min sodium heparin wash at 4 degrees C to remove extracellular surface bound lipoprotein, cellular cholesterol increase was 2 micrograms in controls and in the presence of lipoprotein lipase (LPL) it was tenfold higher. Addition of [3H]cholesteryl ester labeled beta VLDL during the last 48 h of incubation showed that 30-40% of total cellular label was in free cholesterol. This value represents the minimal cellular uptake of the added lipoprotein cholesteryl ester. Addition of recombinant apolipoprotein (apo) E to smooth muscle cells incubated with beta VLDL and [3H]oleate induced no further increase in [3H]cholesteryl oleate. We propose that following LPL-mediated binding of beta VLDL to heparan sulphate, this complex either undergoes endocytosis, or translocation of cholesteryl ester into the smooth muscle cells (SMC) occurs without endocytosis of the entire particle. The present results indicate that in the aortic wall macrophage-derived lipoprotein lipase could play a role in cholesteryl ester accretion in smooth muscle cells during atherogenesis.
Collapse
Affiliation(s)
- O Stein
- Department of Experimental Medicine and Cancer Research, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Eisenberg S, Sehayek E, Olivecrona T, Vlodavsky I. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix. J Clin Invest 1992; 90:2013-21. [PMID: 1430223 PMCID: PMC443265 DOI: 10.1172/jci116081] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lipoprotein lipase enhances binding at 4 degrees C of human plasma lipoproteins (chylomicrons, VLDL, intermediate density lipoprotein, LDL, and HDL3) to cultured fibroblasts and hepG-2 cells and to extracellular matrix. Heparinase treatment of cells and matrix reduces the lipoprotein lipase enhanced binding by 90-95%. Lipoprotein lipase causes only a minimal effect on the binding of lipoproteins to heparan sulfate deficient mutant Chinese hamster ovary cells while it promotes binding to wild type cells that is abolished after heparinase treatment. With 125I-LDL, lipoprotein lipase also enhances uptake and proteolytic degradation at 37 degrees C by normal human skin fibroblasts but has no effect in heparinase-treated normal cells or in LDL receptor-negative fibroblasts. These observations prove that lipoprotein lipase causes, predominantly, binding of lipoproteins to heparan sulfate at cell surfaces and in extracellular matrix rather than to receptors. This interaction brings the lipoproteins into close proximity with cell surfaces and may promote metabolic events that occur at the cell surface, including facilitated transfer to cellular receptors.
Collapse
Affiliation(s)
- S Eisenberg
- Department of Medicine, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
15
|
Saxena U, Klein MG, Vanni TM, Goldberg IJ. Lipoprotein lipase increases low density lipoprotein retention by subendothelial cell matrix. J Clin Invest 1992; 89:373-80. [PMID: 1737833 PMCID: PMC442862 DOI: 10.1172/jci115595] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipoprotein lipase (LPL), the rate-limiting enzyme for hydrolysis of plasma lipoprotein triglycerides, is a normal constituent of the arterial wall. We explored whether LPL affects (a) lipoprotein transport across bovine aortic endothelial cells or (b) lipoprotein binding to subendothelial cell matrix (retention). When bovine milk LPL was added to endothelial cell monolayers before addition of 125I-labeled LDL, LDL transport across the monolayers was unchanged; but, at all concentrations of LDL tested (1-100 micrograms), LDL retention by the monolayers increased more than fourfold. 125I-labeled LDL binding to extracellular matrix increased when LPL was added directly to the matrix or was added to the basolateral side of the endothelial cell monolayers. Increased LDL binding required the presence of LPL and was not associated with LDL aggregation. LPL also increased VLDL, but not HDL, retention. Monoclonal anti-LPL IgG decreased both VLDL and LDL retention in the presence of LPL. Lipoprotein transport across the monolayers increased during hydrolysis of VLDL triglyceride (TG). In the presence of LPL and VLDL, VLDL transport across the monolayers increased 18% and LDL transport increased 37%. High molar concentrations of oleic acid to bovine serum albumin (3:1) in the medium increased VLDL transport approximately 30%. LDL transport increased 42% when oleic acid was added to the media. Therefore, LPL primarily increased retention of LDL and VLDL. A less remarkable increase in lipoprotein transport was found during hydrolysis of TG-containing lipoproteins. We hypothesize that LPL-mediated VLDL and LDL retention within the arterial wall potentiates conversion of these lipoproteins to more atherogenic forms.
Collapse
Affiliation(s)
- U Saxena
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York 10032
| | | | | | | |
Collapse
|
16
|
Vlodavsky I, Ishai-Michaeli R, Mohsen M, Bar-Shavit R, Catane R, Ekre HP, Svahn CM. Modulation of neovascularization and metastasis by species of heparin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 313:317-27. [PMID: 1279951 DOI: 10.1007/978-1-4899-2444-5_31] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- I Vlodavsky
- Department of Oncology, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Vlodavsky I, Fuks Z, Ishai-Michaeli R, Bashkin P, Levi E, Korner G, Bar-Shavit R, Klagsbrun M. Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. J Cell Biochem 1991; 45:167-76. [PMID: 1711529 DOI: 10.1002/jcb.240450208] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite the ubiquitous presence of basic fibroblast growth factor (bFGF) in normal tissues, endothelial cell proliferation in these tissues is usually very low, suggesting that bFGF is somehow sequestered from its site of action. Immunohistochemical staining revealed the localization of bFGF in basement membranes of diverse tissues, suggesting that the extracellular matrix (ECM) may serve as a reservoir for bFGF. Moreover, functional studies indicated that bFGF is an ECM component required for supporting endothelial cell proliferation and neuronal differentiation. We have found that bFGF is bound to heparan sulfate (HS) in the ECM and is released in an active form when the ECM-HS is degraded by heparanase expressed by normal and malignant cells (i.e. platelets, neutrophils, lymphoma cells). It is proposed that restriction of bFGF bioavailability by binding to ECM and local regulation of its release provide a novel mechanism for neovascularization in normal and pathological situations. The subendothelial ECM contains also tissue type- and urokinase type-plasminogen activators which participate in cell invasion and tissue remodeling. These results and studies on the properties of other ECM-immobilized enzymes (i.e. thrombin, plasmin, lipoprotein lipase) and growth factors (GM-CSF, IL-3, osteogenin), suggest that the ECM provides a storage depot for biologically active molecules which are thereby stabilized and protected. This may allow a more localized and persistent mode of action, as compared to the same molecules in a fluid phase.
Collapse
Affiliation(s)
- I Vlodavsky
- Department of Oncology, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z. Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 1990; 9:203-26. [PMID: 1705486 DOI: 10.1007/bf00046361] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neoplastic cells require an appropriate pericellular environment and new formation of stroma and blood vessels in order to constitute a solid tumor. Tumor progression also involves degradation of various extracellular matrix (ECM) constituents. In this review we have focused on the possible involvement of ECM-resident growth factors and enzymes in neovascularization and cell invasion. We demonstrate that the pluripotent angiogenic factor, basic fibroblast growth factor (bFGF) is an ECM component required for supporting cell proliferation and differentiation. Basic FGF has been identified in the subendothelial ECM produced in vitro and in basement membranes of the cornea and blood vessels in vivo. Despite the ubiquitous presence of bFGF in normal tissues, endothelial cell (EC) proliferation in these tissues is usually very low, suggesting that bFGF is somehow sequestered from its site of action. Our results indicate that bFGF is bound to heparan sulfate (HS) in the ECM and is released in an active form when the ECM-HS is degraded by cellular heparanase. We propose that restriction of bFGF bioavailability by binding to ECM and local regulation of its release, provides a novel mechanism for regulation of capillary blood vessel growth in normal and pathological situations. Heparanase activity correlates with the metastatic potential of various tumor cells and heparanase inhibiting molecules markedly reduce the incidence of lung metastasis in experimental animals. Heparanase may therefore participate in both tumor cell invasion and angiogenesis through degradation of the ECM-HS and mobilization of ECM-resident EC growth factors. The subendothelial ECM contains also tissue type- and urokinase type- plasminogen activators (PA), as well as PA inhibitor which may regulate cell invasion and tissue remodeling. Heparanase and the ECM-resident PA participate synergistically in sequential degradation of HS-proteoglycans in the ECM. These results together with similar observations on the properties of other ECM-immobilized enzymes and growth factors, suggest that the ECM provides a storage depot for biologically active molecules which are thereby stabilized and protected. This may allow a more localized, regulated and persistent mode of action, as compared to the same molecules in a fluid phase.
Collapse
Affiliation(s)
- I Vlodavsky
- Department of Oncology, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|