1
|
Hao H, Xue Z, Li Y, Ma H, Wen Q, Lin L, Zhu H. Genome-wide identification and characterization of lipoxygenases gene family in Luffa aegyptiaca revealed downregulation of LOX genes under heat stress. Sci Rep 2025; 15:17696. [PMID: 40399351 PMCID: PMC12095596 DOI: 10.1038/s41598-025-00818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 04/30/2025] [Indexed: 05/23/2025] Open
Abstract
Lipoxygenases (LOXs) are key enzymes in plant lipid metabolism and stress responses, yet their genomic organization and functional dynamics in Luffa aegyptiaca-a species of culinary, medicinal, and ornamental importance-remain unexplored. Here, we present the first genome-wide identification and characterization of the LOX gene family in L. aegyptiaca, revealing 29 LOX genes, including 14 members of 13S-lipoxygenases (13-LOX) and 15 members of 9S-lipoxygenases (9-LOX), respectively. Notably, tandem duplication events shaped the expansion of LOX genes, with 24 genes clustered in two loci, suggesting functional diversification to enhance environmental adaptability. Phylogenetic analysis demonstrated evolutionary conservation of LOX genes across Cucurbitaceae species, while collinearity analysis highlighted conserved genomic organization. Promoter cis-element profiling identified stress- and hormone-responsive motifs, implicating LOX genes in developmental and stress regulatory networks. Tissue-specific expression patterns revealed 18 LOX genes predominantly expressed in tendril, fruit, root, and male flower, linking them to organ-specific physiological roles. Crucially, under heat stress, 9 out of 11 expressed LOX genes were significantly downregulated, indicating their potential role in thermal stress adaptation through metabolic reconfiguration. This study provides foundational insights into the LOX family's contribution to L. aegyptiaca's resilience and offers genetic targets for breeding strategies to improve stress tolerance in cucurbit crops.
Collapse
Affiliation(s)
- Huang Hao
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.
| | - Zhuzheng Xue
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Yongping Li
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Huifei Ma
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Qingfang Wen
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Haisheng Zhu
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.
| |
Collapse
|
2
|
Zhang R, Miao Z, Xie S, Li J, Tao S, Jiang Y, Pang L, Duan L, Li X. 1-Methylcyclopropene Delays Browning and Maintains Aroma in Fresh-Cut Nectarines. Foods 2025; 14:185. [PMID: 39856852 PMCID: PMC11765127 DOI: 10.3390/foods14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The color and aroma of nectarines experience adverse effects from cutting, resulting in the fast senescence of fruit tissue. Therefore, 1-methylcyclopropene (1-MCP) was used to treat postharvest nectarines before cutting, and its effect on the surface browning and aroma alteration were investigated. The results indicated that 1-MCP restrained the soluble quinone (SQC) accumulation in fresh-cut nectarines by regulating the peroxidase (POD) and polyphenol oxidase (PPO) activities and the metabolism of phenolic compounds. Compared with the control, 1-MCP pre-cutting treatment maintained the ultrastructural integrity of the cell wall in fresh-cut nectarines, which also showed reduced malondialdehyde (MDA) content and reactive oxygen species (ROS) and enhanced the 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) radical scavenging activities. Electronic nose and GC-MS analysis revealed that the aroma profiles presented significant differences in the control and 1-MCP treatment during the storage at 0 °C for 10 days. The browning value of the 1-MCP pre-cutting treatment was 29.95% lower than the control, which prevented the loss of aroma on day 10. The fresh-cut nectarines could still maintain the characteristic flavor, while the flesh maintains its firmness. The 1-MCP pre-cutting treatment improves the sensory and aroma characteristics of fresh-cut fruits, which is beneficial to the preservation of fresh-cut fruits, improves transportation efficiency, and then improves the overall quality and market attractiveness of the fruit.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.Z.); (Z.M.); (S.X.); (J.L.); (S.T.); (Y.J.); (L.D.)
| | - Ze Miao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.Z.); (Z.M.); (S.X.); (J.L.); (S.T.); (Y.J.); (L.D.)
| | - Shuang Xie
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.Z.); (Z.M.); (S.X.); (J.L.); (S.T.); (Y.J.); (L.D.)
| | - Jiao Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.Z.); (Z.M.); (S.X.); (J.L.); (S.T.); (Y.J.); (L.D.)
| | - Sheng Tao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.Z.); (Z.M.); (S.X.); (J.L.); (S.T.); (Y.J.); (L.D.)
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.Z.); (Z.M.); (S.X.); (J.L.); (S.T.); (Y.J.); (L.D.)
| | - Lingling Pang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Lihua Duan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.Z.); (Z.M.); (S.X.); (J.L.); (S.T.); (Y.J.); (L.D.)
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.Z.); (Z.M.); (S.X.); (J.L.); (S.T.); (Y.J.); (L.D.)
| |
Collapse
|
3
|
Chen Y, Wu X, Wang X, Li Q, Yin H, Zhang S. bZIP transcription factor PubZIP914 enhances production of fatty acid-derived volatiles in pear. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111905. [PMID: 37884080 DOI: 10.1016/j.plantsci.2023.111905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
'Nanguo' pear emitted a rich aroma when entirely ripe. The six-carbon (C6) volatiles, including the aldehydes, 2-hexenal, and hexanal, as well as their corresponding alcohols and esters which are derived from lipoxygenase pathway are the important volatile components in 'Nanguo' pears. However, the transcriptional regulation mechanism of aroma synthesis of 'Nanguo' pears remains largely unknown. bZIP transcription factors (TFs) mediate different developmental processes in plants. In this study, we identified and characterized a bZIP TF that is highly expressed and induced in 'Nanguo' pear fruits at the mature stage. The content of fatty acid-derived volatiles increased significantly in transgenic pears and tomatoes of PubZIP914 overexpression. Meanwhile, PubZIP914 could regulate PuLOX3.1 by binding directly to PuLOX3.1 promoter. The results of this study provide evidence demonstrating how bZIP transcription factors regulate fatty acid-derived volatiles biosynthesis during pear fruit ripening.
Collapse
Affiliation(s)
- Yangyang Chen
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wu
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Wang
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Patel E, Kumar P, Priyadarshini P, Singla D, Sandhu JS. Molecular docking and dynamic simulation studies of isoflavones inhibiting Lox-2 activity for reducing beany flavor in soybean seeds. J Biomol Struct Dyn 2023; 42:13334-13343. [PMID: 37902567 DOI: 10.1080/07391102.2023.2275179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
Low-lipoxygenase soybean cultivars are highly desirable because lower lipoxygenase content in soybean seeds leads to better quality soybean-based products and oils that are free from off-flavor or beany flavor. The expression of the Lox-2 gene is mainly responsible for this flavor. Over the years, natural antioxidants have been tested biochemically to inhibit Lox-2 activity, but in-silico studies are still lacking. To investigate the structural basis of inhibition, site-specific docking, as well as molecular dynamics (MD) simulations, were performed. Molecular docking analysis revealed that daidzein and genistein could be effective Lox2 receptor inhibitors. Furthermore, docked complexes were subjected to 100 ns MD simulation studies to analyze the structural conformations and stability of the complex. The analysis demonstrated that daidzein formed a more stable complex with the Lox-2 receptor and showed a higher H-bond propensity with the Asp775 residue. We discovered that the initial conformation of Lox2-daidzein complex changed to a more stable conformation at the beginning of the MD simulation and remained stable until the end with minor fluctuations. Furthermore, our analysis suggested that daidzein acts as a potential Lox-2 inhibitor and is a better candidate compared to genistein, which could be used to solve the beany flavor problem in soybean.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ekta Patel
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Pawan Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Pragya Priyadarshini
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Jagdeep Singh Sandhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
5
|
Zhang D, Huang S, Wang Q, Shang B, Liu J, Xing X, Hong Y, Liu H, Duan X, Sun H. Lipidomics and volatilomics reveal the changes in lipids and their volatile oxidative degradation products of brown rice during accelerated aging. Food Chem 2023; 421:136157. [PMID: 37099952 DOI: 10.1016/j.foodchem.2023.136157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Brown rice exhibits higher nutritional value and attracts more and more attentions; however, lipid alteration in brown rice during aging is poorly understood. In this study, lipidomics and volatilomics were employed to investigate free fatty acids, triglycerides, and volatile oxidative degradation products of lipids in brown rice during accelerated aging for 70 days. The results showed that the total free fatty acids in brown rice increased significantly (2.90-4.14 times) while triglycerides decreased remarkably at the initial stage of aging. Monounsaturated and polyunsaturated aldehydes, ketones, and acids increased obviously in brown rice during accelerated aging for 70 days. The screening of significantly different compounds indicated that the enzymatic hydrolysis of triglycerides (EHT) and enzymatic oxidation of lipids (EOL) were the main biochemical behaviors at the initial stage of aging (0-28 day) while automatic oxidation of lipids (AOL) was the primary chemical reaction for 28-70 days aging.
Collapse
Affiliation(s)
- Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shanshan Huang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jianlei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoting Xing
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hui Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
6
|
Functional Characterization of Novel Bony Fish Lipoxygenase Isoforms and Their Possible Involvement in Inflammation. Int J Mol Sci 2022; 23:ijms232416026. [PMID: 36555666 PMCID: PMC9787790 DOI: 10.3390/ijms232416026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Eicosanoids and related compounds are pleiotropic lipid mediators, which are biosynthesized in mammals via three distinct metabolic pathways (cyclooxygenase pathway, lipoxygenase pathway, epoxygenase pathway). These mediators have been implicated in the pathogenesis of inflammatory diseases and drugs interfering with eicosanoid signaling are currently available as antiphlogistics. Eicosanoid biosynthesis has well been explored in mammals including men, but much less detailed information is currently available on eicosanoid biosynthesis in other vertebrates including bony fish. There are a few reports in the literature describing the expression of arachidonic acid lipoxygenases (ALOX isoforms) in several bony fish species but except for two zebrafish ALOX-isoforms (zfALOX1 and zfALOX2) bony fish eicosanoid biosynthesizing enzymes have not been characterized. To fill this gap and to explore the possible roles of ALOX15 orthologs in bony fish inflammation we cloned and expressed putative ALOX15 orthologs from three different bony fish species (N. furzeri, P. nyererei, S. formosus) as recombinant N-terminal his-tag fusion proteins and characterized the corresponding enzymes with respect to their catalytic properties (temperature-dependence, activation energy, pH-dependence, substrate affinity and substrate specificity with different polyenoic fatty acids). Furthermore, we identified the chemical structure of the dominant oxygenation products formed by the recombinant enzymes from different free fatty acids and from more complex lipid substrates. Taken together, our data indicate that functional ALOX isoforms occur in bony fish but that their catalytic properties are different from those of mammalian enzymes. The possible roles of these ALOX-isoforms in bony fish inflammation are discussed.
Collapse
|
7
|
Tao A, Zhang H, Duan J, Xiao Y, Liu Y, Li J, Huang J, Zhong T, Yu X. Mechanism and application of fermentation to remove beany flavor from plant-based meat analogs: A mini review. Front Microbiol 2022; 13:1070773. [PMID: 36532431 PMCID: PMC9751450 DOI: 10.3389/fmicb.2022.1070773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Over the past few decades, there has been a noticeable surge in the market of plant-based meat analogs (PBMA). Such popularity stems from their environmentally friendly production procedures as well as their positive health effects. In order to meet the market demand, it is necessary to look for plant protein processing techniques that can help them match the quality of conventional meat protein from the aspects of sensory, quality and functionality. Bean proteins are ideal options for PBMA with their easy accessibility, high nutrient-density and reasonable price. However, the high polyunsaturated lipids content of beans inevitably leads to the unpleasant beany flavor of soy protein products, which severely affects the promotion of soy protein-based PBMA. In order to solve this issue, various methods including bleaching, enzyme and fermentation etc. are developed. Among these, fermentation is widely investigated due to its high efficiency, less harm to the protein matrix, targeted performance and low budget. In addition, proper utilization of microbiome during the fermentation process not only reduces the unpleasant beany flavors, but also enhances the aroma profile of the final product. In this review, we provide a thorough and succinct overview of the mechanism underlying the formation and elimination of beany flavor with associated fermentation process. The pros and cons of typical fermentation technologies for removing beany flavors are discussed in alongside with their application scenarios. Additionally, the variations among different methods are compared in terms of the strains, fermentation condition, target functionality, matrix for application, sensory perception etc.
Collapse
Affiliation(s)
- Anqi Tao
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Hongyu Zhang
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Junnan Duan
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Yao Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Jianwei Li
- Macau Uni-Win Biotechnology Co., Ltd, Macau, Macau SAR, China
| | - Jieyu Huang
- Macau Uni-Win Biotechnology Co., Ltd, Macau, Macau SAR, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China,*Correspondence: Tian Zhong,
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China,Xi Yu,
| |
Collapse
|
8
|
Oliete B, Lubbers S, Fournier C, Jeandroz S, Saurel R. Effect of biotic stress on the presence of secondary metabolites in field pea grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4942-4948. [PMID: 35275406 DOI: 10.1002/jsfa.11861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The presence of secondary metabolites responsible for off-flavours in peas may influence consumers' acceptance. These undesirable compounds may increase due to biotic stress or cultivar. Therefore, grains from two pea (Pisum sativum L.) cultivars (Crécerelle and Firenza) exposed to biotic stress were studied in terms of protein content, electrophoretic polypeptide profile, lipoxygenase activity, saponin content and volatile compounds. RESULTS No differences were observed in the electrophoretic polypeptide profile of pea samples across cultivar or biotic stress. The cultivar noticeably affected the volatile compounds and lipoxygenase activity. The biotic stress significantly increased the saponin content. CONCLUSION The cultivar showed more noticeable impact on the presence of off-flavour compounds than the biotic stress. The development of pea protein ingredients needs the thorough choice of raw materials in terms of cultivar and control of biotic stress in order to ensure acceptance by consumers. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bonastre Oliete
- Université Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, Dijon, France
| | - Samuel Lubbers
- Université Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, Dijon, France
| | - Carine Fournier
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Rémi Saurel
- Université Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
9
|
Ghanbari Moheb Seraj R, Tohidfar M, Azimzadeh Irani M, Esmaeilzadeh-Salestani K, Moradian T, Ahmadikhah A, Behnamian M. Metabolomics analysis of milk thistle lipids to identify drought-tolerant genes. Sci Rep 2022; 12:12827. [PMID: 35896570 PMCID: PMC9329356 DOI: 10.1038/s41598-022-16887-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Milk thistle is an oil and medicinal crop known as an alternative oil crop with a high level of unsaturated fatty acids, which makes it a favorable edible oil for use in food production. To evaluate the importance of Milk thistle lipids in drought tolerance, an experiment was performed in field conditions under three different water deficit levels (Field capacity (FC), 70% FC and 40% FC). After harvesting seeds of the plant, their oily and methanolic extracts were isolated, and subsequently, types and amounts of lipids were measured using GC-MS. Genes and enzymes engaged in biosynthesizing of these lipids were identified and their expression in Arabidopsis was investigated under similar conditions. The results showed that content of almost all measured lipids of milk thistle decreased under severe drought stress, but genes (belonged to Arabidopsis), which were involved in their biosynthetic pathway showed different expression patterns. Genes biosynthesizing lipids, which had significant amounts were selected and their gene and metabolic network were established. Two networks were correlated, and for each pathway, their lipids and respective biosynthesizing genes were grouped together. Four up-regulated genes including PXG3, LOX2, CYP710A1, PAL and 4 down-regulated genes including FATA2, CYP86A1, LACS3, PLA2-ALPHA were selected. The expression of these eight genes in milk thistle was similar to Arabidopsis under drought stress. Thus, PXG3, PAL, LOX2 and CYP86A1 genes that increased expression were selected for protein analysis. Due to the lack of protein structure of these genes in the milk thistle, modeling homology was performed for them. The results of molecular docking showed that the four proteins CYP86A1, LOX2, PAL and PXG3 bind to ligands HEM, 11O, ACT and LIG, respectively. HEM ligand was involved in production of secondary metabolites and dehydration tolerance, and HEM binding site remained conserved in various plants. CA ligands were involved in synthesis of cuticles and waxes. Overall, this study confirmed the importance of lipids in drought stress tolerance in milk thistle.
Collapse
Affiliation(s)
- Rahele Ghanbari Moheb Seraj
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Masoud Tohidfar
- Department of Plant Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | | | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Toktam Moradian
- Department of Horticultural Sciences, Islamic Azad University, Shirvan Branch, Shirvan, Iran
| | - Asadollah Ahmadikhah
- Department of Plant Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahdi Behnamian
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
10
|
Nikolaiczyk V, Kirschning A, Díaz E. Lipoxygenase‐catalysed co‐oxidation for sustained production of oxyfunctionalized terpenoids. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vanessa Nikolaiczyk
- Institute of Organic Chemistry Leibniz University Hannover Hannover Germany
- Symrise AG Holzminden Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry Leibniz University Hannover Hannover Germany
| | | |
Collapse
|
11
|
Wang Y, Tuccillo F, Lampi AM, Knaapila A, Pulkkinen M, Kariluoto S, Coda R, Edelmann M, Jouppila K, Sandell M, Piironen V, Katina K. Flavor challenges in extruded plant-based meat alternatives: A review. Compr Rev Food Sci Food Saf 2022; 21:2898-2929. [PMID: 35470959 DOI: 10.1111/1541-4337.12964] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 12/19/2022]
Abstract
Demand for plant-based meat alternatives has increased in recent years due to concerns about health, ethics, the environment, and animal welfare. Nevertheless, the market share of plant-based meat alternatives must increase significantly if they are to support sustainable food production and consumption. Flavor is an important limiting factor of the acceptability and marketability of plant-based meat alternatives. Undesirable chemosensory perceptions, such as a beany flavor, bitter taste, and astringency, are often associated with plant proteins and products that use them. This study reviewed 276 articles to answer the following five research questions: (1) What are the volatile and nonvolatile compounds responsible for off-flavors? (2) What are the mechanisms by which these flavor compounds are generated? (3) What is the influence of thermal extrusion cooking (the primary structuring technique to transform plant proteins into fibrous products that resemble meat in texture) on the flavor characteristics of plant proteins? (4) What techniques are used in measuring the flavor properties of plant-based proteins and products? (5) What strategies can be used to reduce off-flavors and improve the sensory appeal of plant-based meat alternatives? This article comprehensively discusses, for the first time, the flavor issues of plant-based meat alternatives and the technologies available to improve flavor and, ultimately, acceptability.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Fabio Tuccillo
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anna-Maija Lampi
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Antti Knaapila
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Marjo Pulkkinen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Sustainability Science (HELSUS), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Kirsi Jouppila
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Mari Sandell
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Functional Foods Forum, University of Turku, Turku, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Zhang Z, Qiao D, He L, Pan Q, Wang S. Effects of vine top shading on the accumulation of C6/C9 compounds in 'Cabernet Sauvignon' (Vitis vinifera L.) grape berries in northwestern China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1862-1871. [PMID: 34468988 DOI: 10.1002/jsfa.11522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/08/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Xinjiang Uygur Autonomous Region is an arid and semi-arid region with low rainfall and strong sunlight; thus, grape berries in this region accumulate sugar content rapidly, and the ripening process is shorter than that in other regions. Although previous studies illustrated that altered sunlight conditions could influence the aroma profiles of grape berries, less attention has been paid to the effect of vine top shading on volatile compounds under a dry-hot climate. RESULT We focused on the effects of vine top shading on the concentrations of linolenic and linoleic acids, as well as their metabolites, the C6/C9 compounds, in grape berries. Four vine top shading treatments at veraison (ripening onset) and post-veraison (skin full coloration) were performed by reducing solar exposure to the grapevines by 20% and 50% respectively. Apart from (E)-2-hexenal in the 20% shading treatment of 2016, (E)-2-hexenal were not promoted by the 50% shading and 20% shading treatments during veraison to harvest in both of the vintages. By contrast, the influence of vine top shading from post-veraison till harvest was different between the two vintages; these C6 compounds were decreased in both of the shading treatments in 2016, whereas most of them were promoted in 2017, possibly related to daily sunshine hours in this period. In addition, the C9 compound nonanal with very low concentration exhibits a significant difference among various treatments by two-factor analysis of variance. As for linolenic acid and linoleic acid, two types of C6 compound biosynthetic precursors, four shading treatments all reduced their concentration, except for linolenic acid in the 50% shading treatment of 2016. Moreover, it appeared to have no apparent correlation between the variations of two precursors and their volatile metabolites, indicating that there is a complex impact of vine shading on C6 compound biosynthesis. CONCLUSION Vine top shading at veraison can reduce the accumulation of some C6 compounds in grape berries, but no consistent consequence was attained for the vine shading at pre-veraison. The findings indicate the significance of grapevine solar exposure management at veraison in controlling the level of C6 compounds in a dry-hot region like Xinjiang. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - Dan Qiao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - Lei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiuhong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shuwei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
13
|
Feng X, Li X, Zhang C, Kong X, Chen Y, Hua Y. Formation Mechanism of Hexanal and ( E)-2-Hexenal during Soybean [ Glycine max (L.) Merr] Processing Based on the Subcellular and Molecular Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:289-300. [PMID: 34965722 DOI: 10.1021/acs.jafc.1c06732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hexanal and (E)-2-hexenal in soymilk mainly form during the soaking and grinding of soybeans. In this study, freshly dehulled soybeans were soaked or ground in the presence or absence of different enzyme inhibitors. The results showed that (1) 1-palmitoyl-2-linoleoyl-sn-3-phosphatidylcholine, 1-stearoyl-2-linoleoyl-sn-3-phosphatidylcholine, 1-palmitoyl-2-linolenoyl-sn-3-phosphatidylcholine, and 1-stearoyl-2-linolenoyl-sn-3-phosphatidylcholine were preferentially acted upon by lipoxygenases (LOXs) and made predominant contributions to hexanal/(E)-2-hexenal formation. Phospholipase A2 (PLA2) is one of the key enzymes for hexanal/(E)-2-hexenal formation. (2) The ratio of net increase in hexanal/(E)-2-hexenal and net decrease in linoleic acid/linolenic acid was close to 100% during soaking, but it was only 60% during grinding. Only 13-hydroperoxy octadecad(tr)ienoic acid (13-HPOD/T) was formed for the membrane LOX, but both 13- and 9-hydroperoxy octadecad(tr)ienoic acid (9-HPOD/T) were produced for the cytoplasm LOX. Thus, only the membrane LOX was involved during soaking, while both membrane- and cytoplasm-bound LOXs worked during grinding. (3) Hydroperoxides and hexanal/(E)-2-hexenal during soybean grinding were studied. PC hydroperoxides formed almost instantly and reached a maximum in 10 s, while fatty acid hydroperoxides and hexanal/(E)-2-hexenal formed relatively slowly and reached a maximum in 50 s. The experimental data were fitted to the integrated form of the Michaelis-Menten equation, and Km, Vmax, and kcat for the LOX, PLA2, and hydroperoxide lyase were obtained, respectively.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| |
Collapse
|
14
|
Zhou D, Li T, Cong K, Suo A, Wu C. Influence of cold plasma on quality attributes and aroma compounds in fresh-cut cantaloupe during low temperature storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Shahid W, Ashraf M, Saleem M, Bashir B, Muzaffar S, Ali M, Kaleem A, Aziz-Ur-Rehman, Amjad H, Bhattarai K, Riaz N. Exploring phenylcarbamoylazinane-1,2,4-triazole thioethers as lipoxygenase inhibitors supported with in vitro, in silico and cytotoxic studies. Bioorg Chem 2021; 115:105261. [PMID: 34416506 DOI: 10.1016/j.bioorg.2021.105261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023]
Abstract
Searching small molecules as an auspicious approach to develop new anti-inflammatory drugs is a challenge for the researchers especially by modifying active pharmacophoric groups in the targeted molecules. In the current work, a series of new S-alkyl/aralky derivatives (8a-h; 9a-h) of 2-(4-ethyl/phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazol-3-ylthio)ether were synthesized and assessed for their inhibitory action against the 15-lipoxygenase from soybean (15-sLOX). The basic precursor ethyl piperidine-4-carboxylate (a) was consecutively changed into phenylcarbamoyl derivative (1), hydrazide (2), semicarbazides (3/4) and N-ethyl/phenyl-5-(1-phenylcarbamoylpiperidine)-1,2,4-triazoles (5/6), which further in association with electrophiles (7a-h) promoted to the final products (8a-h; 9a-h). The synthesized derivatives were characterized by FT-IR, 1H-, 13C NMR spectroscopy, EI-MS, and HR-EI-MS spectrometry. Amongst these, 8a, 8c, and 9c, expressed potent inhibitory profiles against the 15-sLOX enzyme with IC50 values of 12.52 ± 0.35 to 35.64 ± 0.29 µM, followed by the compounds 9b, 9g, 9d, 9a, 8b, 8e, 8d, 8g, 8h, 8f and 9h with IC50 values in the range of 43.78 ± 0.43 to 108.65 ± 0.38 µM. All compounds exhibited variable cellular viability levels by MTT assay. Flow cytometric data demonstrated that 8f, 8g, 8h have maximal lymphocyte cellular viability and all compounds affected cells in the late apoptosis phase. In silico ADMET studies supported the drug-likeness of most of the molecules. These studies were supported by molecular docking against 15-sLOX, human 5-LOX (5-hLOX) and human 15-LOX (5-hLOX); that inhibitors of 15-sLOX docked-in the active pocket of either 5-hLOX or 15-hLOX and docking score remained constant for all three enzymes within a narrow range (-6.8 to -9.7) as did it for standard quercetin (-8.4 to -9.0). The most dominant bonding interactions were π-π, π-anion, and π-alkyl type along with the hydrogen bonding. The data collected altogether demonstrates the better possibility of some of these compounds as good LOX inhibitors in search for 'lead' as anti-inflammatory agents in the process of drug discovery and development.
Collapse
Affiliation(s)
- Wardah Shahid
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ashraf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Bushra Bashir
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Saima Muzaffar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mudassar Ali
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ayesha Kaleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aziz-Ur-Rehman
- Department of Chemistry, Government College University Lahore, Lahore 54000, Pakistan
| | - Hira Amjad
- Department of Chemistry, Government College University Lahore, Lahore 54000, Pakistan
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Auf der Morgenstelle 8, University of Tuebingen, 72076 Tuebingen, Germany
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| |
Collapse
|
16
|
Bashir B, Shahid W, Ashraf M, Saleem M, Aziz-Ur-Rehman, Muzaffar S, Imran M, Amjad H, Bhattarai K, Riaz N. Identification of phenylcarbamoylazinane-1,3,4-oxadiazole amides as lipoxygenase inhibitors with expression analysis and in silico studies. Bioorg Chem 2021; 115:105243. [PMID: 34403937 DOI: 10.1016/j.bioorg.2021.105243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022]
Abstract
In search for new anti-inflammatory agents that inhibit the enzymes of arachidonic acid pathway as the drug targets, the present article describes the screening of 1,3,4-oxadiazole analogues against lipoxygenase (LOX) enzyme. The work is based on the synthesis of new N-alkyl/aralky/aryl derivatives (6a-o) of 2-(4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,3,4-oxadiazol-3-ylthio)acetamide which were obtained by the reaction of 1,3,4-oxadiazole (3) with various electrophiles (5a-o), in KOH. The synthesized analogues showed potent to moderate inhibitory activity against the soybean 15-LOX enzyme; especially 6g, 6b, 6a and 6l displayed the potent inhibitory potential with IC50 values 7.15 ± 0.26, 9.32 ± 0.42, 15.83 ± 0.45 & 18.37 ± 0.53 µM, respectively, while excellent to moderate inhibitory profiles with IC50 values in the range of 26.13-98.21 µM were observed from the compounds 6k, 6m, 6j, 6o, 6h, 6f, 6n and 6c. Most of the active compounds exhibited considerable cell viability against blood mononuclear cells (MNCs) at 0.25 mM by MTT assay except 6f, 6h, 6k and 6m which showed around 50% cell viability. Flow cytometry studies of the selected compounds 6a, 6j and 6n revealed that these caused 79.5-88.51% early apoptotic changes in MNCs compared with 4.26% for control quercetin at their respective IC50 values. The relative expression of 5-LOX gene was monitored in MNCs after treatment with these three molecules and all down-regulated the enzyme activity. In silico ADME and molecular docking studies further supported these studies of oxadiazole derivatives and considered it as potential 'lead' compounds in drug discovery and development.
Collapse
Affiliation(s)
- Bushra Bashir
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Wardah Shahid
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ashraf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aziz-Ur-Rehman
- Department of Chemistry, Government College University Lahore, Lahore 54000, Pakistan
| | - Saima Muzaffar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hira Amjad
- Department of Chemistry, Government College University Lahore, Lahore 54000, Pakistan
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076, University of Tuebingen, Tuebingen, Germany
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| |
Collapse
|
17
|
Silva-Júnior NR, Cabrera YM, Barbosa SL, Barros RDA, Barros E, Vital CE, Ramos HJO, Oliveira MGA. Intestinal proteases profiling from Anticarsia gemmatalis and their binding to inhibitors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21792. [PMID: 33948994 DOI: 10.1002/arch.21792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Although the importance of intestinal hydrolases is recognized, there is little information on the intestinal proteome of lepidopterans such as Anticarsia gemmatalis. Thus, we carried out the proteomic analysis of the A. gemmatalis intestine to characterize the proteases by LC/MS. We examined the interactions of proteins identified with protease inhibitors (PI) using molecular docking. We found 54 expressed antigens for intestinal protease, suggesting multiple important isoforms. The hydrolytic arsenal featured allows for a more comprehensive understanding of insect feeding. The docking analysis showed that the soybean PI (SKTI) could bind efficiently with the trypsin sequences and, therefore, insect resistance does not seem to involve changing the sequences of the PI binding site. In addition, a SERPIN was identified and the interaction analysis showed the inhibitor binding site is in contact with the catalytic site of trypsin, possibly acting as a regulator. In addition, this SERPIN and the identified PI sequences can be targets for the control of proteolytic activity in the caterpillar intestine and serve as a support for the rational design of a molecule with greater stability, less prone to cleavage by proteases and viable for the control of insect pests such as A. gemmatalis.
Collapse
Affiliation(s)
- Neilier R Silva-Júnior
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Yaremis M Cabrera
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Samuel L Barbosa
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Rafael de A Barros
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, NuBioMol, Centro de Ciências Biológicas e da Saúde - CCB, Universidade Federal de Viçosa - UFV, Viçosa, Minas Gerais, Brazil
| | - Camilo E Vital
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Humberto J O Ramos
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
- Núcleo de Análise de Biomoléculas, NuBioMol, Centro de Ciências Biológicas e da Saúde - CCB, Universidade Federal de Viçosa - UFV, Viçosa, Minas Gerais, Brazil
| | - Maria Goreti A Oliveira
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
18
|
Truong D, Ta NTA, Pham TV, Huynh TD, Do QTG, Dinh NCG, Dang CD, Nguyen TKC, Bui AV. Effects of solvent-solvent fractionation on the total terpenoid content and in vitro anti-inflammatory activity of Serevenia buxifolia bark extract. Food Sci Nutr 2021; 9:1720-1735. [PMID: 33747483 PMCID: PMC7958534 DOI: 10.1002/fsn3.2149] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Severinia buxifolia (Rutaceae) is often used as a traditional medical plant. The present study was carried out to estimate the effects of solvents (petroleum ether and hexane: ethyl acetate) used in liquid-liquid extraction to total terpenoid content (TTC) and in vitro anti-inflammatory activity of the extracts obtained from S. buxifolia bark. The results showed that solvent fractionation increased the TTC compared with crude extracts. The hexane: ethyl acetate bark extract fraction (HEF) had the highest TTC (731.48 µg/ml) in comparison with the petroleum ether bark extract fraction (PEF) (564.81 µg/ml) and the crude extract (CE) (184.26 µg/ml). In addition, one of composition of terpenoid of S. buxifolia, namely ursolic acid, was determined by HPLC method from the crude CE and the fractions PEF and HEF: 2.44 μg/g DW, 3.56 μg/g DW and 5.04 μg/g DW, respectively. The samples had an in vitro anti-inflammatory activity comparable with that of two reference standards (aspirin and indomethacin). Particularly, the HEF fraction had the highest in vitro anti-inflammatory activity (i.e., albumin denaturation: IC50 = 147.91 μg/mL, heat-induced hemolysis: IC50 = 159.91 μg/mL, proteinase inhibition: IC50 = 117.72 μg/mL, and lipoxygenase activity: IC50 = 90.45 μg/mL). Besides, the preliminary experiments of this study were conducted to determine the influences of maceration factors (solvent type, temperature, and time) for S. buxifolia bark extract. The TTC ranged from 453.70 to 842.59 mg linalool/g DW, and the extraction yield from 2.40% to 5.120% in all extracts. Based on TTC and EY, the hexane: acetone mixture is recommended as the optimal solvent to obtain the crude bark extract (CE) at 46°C for 24 hr of maceration. Extracts of S. buxifolia bark are a promising source for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Dieu‐Hien Truong
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Nhat Thuy Anh Ta
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Thanh Vy Pham
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Tan Dat Huynh
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | | | | | - Cong Danh Dang
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Thi Kim Chi Nguyen
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Anh Vo Bui
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| |
Collapse
|
19
|
CENGİZ S, CAVAS L. Can soybean lipoxygenases be real models for mammalian lipoxygenases? A bioinformatics approach. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.785109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Braun NA, Sim S. Jasminum grandiflorum: Influence of Flower Processing and Geographic Origin on Flower Absolute Composition. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20960998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five Jasminum grandiflorum flower absolutes harvested as flower buds and processed in the “ J. sambac-way” in different locations in the southern Indian state of Tamil Nadu were analyzed using gas chromatography (GC) and GC-mass spectrometry. These absolutes were compared with 5 commercial Indian J. grandiflorum flower absolutes manufactured in the traditional “ J. grandiflorum-way” from open flowers. Focus was placed on 42 key ingredients to investigate the influence of such a flower processing on the absolute composition. Our study established olfactive and composition differences of such absolutes produced via the “ J. sambac-way.” In addition, geographic variations in this species were analyzed by comparing 5 commercial Indian J. grandiflorum flower absolutes with absolutes from Egypt and Morocco, respectively. A composition range of the absolutes was established for the 3 main J. grandiflorum flower grower countries using a total of 14 commercial samples. The 12 main ingredients in the absolutes showed variations between 4.3% and 89.7%.
Collapse
Affiliation(s)
- Norbert A. Braun
- Symrise Asia Pacific Pte. Ltd., Scent & Care - Innovation, Singapore, Singapore
| | - Sherina Sim
- Symrise Asia Pacific Pte. Ltd., Scent & Care - Innovation, Singapore, Singapore
| |
Collapse
|
21
|
Dadoriya P, Dey YN, Sharma D, Yadav M, Wanjari MM, Gaidhani SN, Subhose V. In-vitro anti-inflammatory and antioxidant activities of an Ayurvedic formulation –Trayodashang guggulu. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Bartual A, Hernanz-Torrijos M, Sala I, Ortega MJ, González-García C, Bolado-Penagos M, López-Urrutia A, Romero-Martínez L, Lubián LM, Bruno M, Echevarría F, García CM. Types and Distribution of Bioactive Polyunsaturated Aldehydes in a Gradient from Mesotrophic to Oligotrophic Waters in the Alborán Sea (Western Mediterranean). Mar Drugs 2020; 18:E159. [PMID: 32178402 PMCID: PMC7143741 DOI: 10.3390/md18030159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 01/19/2023] Open
Abstract
Polyunsaturated aldehydes (PUAs) are bioactive molecules suggested as chemical defenses and infochemicals. In marine coastal habitats, diatoms reach high PUA production levels during bloom episodes. Two fractions of PUA can usually be analyzed: pPUA obtained via artificial breakage of collected phytoplankton cells and dissolved PUA already released to the environment (dPUA). In nature, resource supply arises as a main environmental controlling factor of PUA production. In this work, we monitored the vertical distribution and daily variation of pPUA associated with large-size phytoplankton and dPUA, at three sites located in the Alborán Sea from mesotrophic to oligotrophic waters. The results corroborate the presence of large-size PUA producers in oligotrophic and mesotrophic waters with a significant (58%-85%) diatom biomass. In addition to diatoms, significant correlations between pPUA production and dinoflagellate and silicoflagellate abundance were observed. 2E,4E/Z-Heptadienal was the most abundant aldehyde at the three sites with higher values (17.1 fg·cell-1) at the most oligotrophic site. 2E,4E/Z-Decadienal was the least abundant aldehyde, decreasing toward the oligotrophic site. For the first time, we describe the daily fluctuation of pPUA attributable to cellular physiological state and not exclusively to taxonomical composition. Our results demonstrate the persistence of threshold levels of dPUA deep in the water column, as well as the different chromatographic profiles of dPUA compared with pPUA. We propose different isomerization processes that alter the chemical structure of the released PUAs with unknown effects on their stability, biological function, and potential bioactivity.
Collapse
Affiliation(s)
- Ana Bartual
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - María Hernanz-Torrijos
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Iria Sala
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - María J. Ortega
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
| | - Cristina González-García
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510 Cádiz, Spain;
| | - Marina Bolado-Penagos
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Angel López-Urrutia
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Gijón, 33212 Gijón, Asturias, Spain;
| | - Leonardo Romero-Martínez
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Luís M. Lubián
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510 Cádiz, Spain;
| | - Miguel Bruno
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Fidel Echevarría
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Carlos M. García
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| |
Collapse
|
23
|
Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts 2019. [DOI: 10.3390/catal9100873] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In higher plants, the lipoxygenase enzymatic pathway combined actions of several enzymes to convert lipid substrates into signaling and defense molecules called phytooxylipins including short chain volatile aldehydes, alcohols, and esters, known as green leaf volatiles (GLVs). GLVs are synthesized from C18:2 and C18:3 fatty acids that are oxygenated by lipoxygenase (LOX) to form corresponding hydroperoxides, then the action of hydroperoxide lyase (HPL) produces C6 or C9 aldehydes that can undergo isomerization, dehydrogenation, and esterification. GLVs are commonly used as flavors to confer a fresh green odor of vegetable to perfumes, cosmetics, and food products. Given the increasing demand in these natural flavors, biocatalytic processes using the LOX pathway reactions constitute an interesting application. Vegetable oils, chosen for their lipid profile are converted in natural GLVs with high added value. This review describes the enzymatic reactions of GLVs biosynthesis in the plant, as well as the structural and functional properties of the enzymes involved. The various stages of the biocatalytic production processes are approached from the lipid substrate to the corresponding aldehyde or alcoholic aromas, as well as the biotechnological improvements to enhance the production potential of the enzymatic catalysts.
Collapse
|
24
|
Zhou D, Sun Y, Li M, Zhu T, Tu K. Postharvest hot air and UV-C treatments enhance aroma-related volatiles by simulating the lipoxygenase pathway in peaches during cold storage. Food Chem 2019; 292:294-303. [DOI: 10.1016/j.foodchem.2019.04.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/25/2022]
|
25
|
New antibacterial and 5-lipoxygenase activities of synthetic benzyl phenyl ketones: Biological and docking studies. Bioorg Chem 2018; 82:385-392. [PMID: 30428417 DOI: 10.1016/j.bioorg.2018.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
We investigated twelve benzyl phenyl ketone derivatives which are synthetic precursors of isoflavonoids that are shown be good 5-hLOX inhibitors, especially those that have the catechol group, but these precursors never have been assayed as 5-hLOX inhibitors being a novelty as inhibitors of the enzyme, due to sharing important structural characteristics. Screening assays, half maximal inhibitory concentration (IC50) and kinetic assays of all the studied molecules (5 µg/ml in media assay) showed that 1-(2,4-dihydroxy-3-methylphenyl)-2-(3-chlorophenyl)-ethanone (K205; IC50 = 3.5 µM; Ki = 4.8 µM) and 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-nitrophenyl)-ethanone (K206; IC50 = 2.3 µM; Ki = 0.7 µM) were potent, selective, competitive and nonredox inhibitors of 5-hLOX. Antioxidant behavior was also assayed by DPPH, FRAP, and assessing ROS production, and those with antibacterial and antiproliferative properties relating to 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-chlorophenyl)-ethanone (K208) established it as the most interesting and relevant compound studied, as it showed nearly 100% inhibition of bacterial growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Finally, docking studies were done that helped to characterize how the inhibitor structures correlated to decreased 5-hLOX activity.
Collapse
|
26
|
Sugio A, Østergaard LH, Matsui K, Takagi S. Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae. J Biosci Bioeng 2018; 126:436-444. [PMID: 29805113 DOI: 10.1016/j.jbiosc.2018.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Akiko Sugio
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan
| | | | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shinobu Takagi
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan.
| |
Collapse
|
27
|
Ng CH, Rullah K, Abas F, Lam KW, Ismail IS, Jamaludin F, Shaari K. Hits-to-Lead Optimization of the Natural Compound 2,4,6-Trihydroxy-3-geranyl-acetophenone (tHGA) as a Potent LOX Inhibitor: Synthesis, Structure-Activity Relationship (SAR) Study, and Computational Assignment. Molecules 2018; 23:E2509. [PMID: 30274341 PMCID: PMC6222424 DOI: 10.3390/molecules23102509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
A new series of 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) analogues were synthesized and evaluated for their lipoxygenase (LOX) inhibitory activity. Prenylated analogues 4a⁻g (half maximal inhibitory concentration (IC50) values ranging from 35 μ M to 95 μ M) did not exhibit better inhibitory activity than tHGA (3a) (IC50 value: 23.6 μ M) due to the reduction in hydrophobic interaction when the alkyl chain length was reduced. One geranylated analogue, 3d, with an IC50 value of 15.3 μ M, exhibited better LOX inhibitory activity when compared to tHGA (3a), which was in agreement with our previous findings. Kinetics study showed that the most active analogue (3e) and tHGA (3a) acted as competitive inhibitors. The combination of in silico approaches of molecular docking and molecular dynamic simulation revealed that the lipophilic nature of these analogues further enhanced the LOX inhibitory activity. Based on absorption, distribution, metabolism, excretion, and toxicity (ADMET) and toxicity prediction by komputer assisted technology (TOPKAT) analyses, all geranylated analogues (3a⁻g) showed no hepatotoxicity effect and were biodegradable, which indicated that they could be potentially safe drugs for treating inflammation.
Collapse
Affiliation(s)
- Chean Hui Ng
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
- School of Pharmacy, Management and Science University (MSU), University Drive, Off Persiaran Olahraga, Seksyen 13, Shah Alam 40100, Selangor, Malaysia.
| | - Kamal Rullah
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute of Postgraduates Studies, University of Malaya (UM), Kuala Lumpur 50603, Malaysia.
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, Serdang 43400, Selangor, Malaysia.
| | - Kok Wai Lam
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | | | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
28
|
Vlasenko EN, Ukrainian State University of Chemical Technology, Dnipro. BIOSYNTHESIS OF VOLATILES BY Pleurotus ostreatus (Jacq.:Fr.) Kumm. MUSHROOMS ON SUBSTRATES ENRICHED WITH VEGETABLE OILS. BIOTECHNOLOGIA ACTA 2018. [DOI: 10.15407/biotech11.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Padhi S, Dias I, Korn VL, Bennett JW. Pseudogymnoascus destructans: Causative Agent of White-Nose Syndrome in Bats Is Inhibited by Safe Volatile Organic Compounds. J Fungi (Basel) 2018; 4:jof4020048. [PMID: 29642609 PMCID: PMC6023378 DOI: 10.3390/jof4020048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/12/2023] Open
Abstract
White-nose syndrome (WNS) is caused by Pseudogymnoascus destructans, a psychrophilic fungus that infects hibernating bats and has caused a serious decline in some species. Natural aroma compounds have been used to control growth of fungal food storage pathogens, so we hypothesized that a similar strategy could work for control of P. destructans. The effectiveness of exposure to low concentrations of the vapor phase of four of these compounds was tested on mycelial plugs and conidiospores at temperatures of 5, 10 and 15 °C. Here we report the efficacy of vapor phase mushroom alcohol (1-octen-3-ol) for inhibiting mycelial and conidiospore growth of P. destructans at 0.4 and 0.8 µmol/mL and demonstrate that the R enantiomer of this compound is more effective than the S enantiomer, supporting the finding that biological systems can be sensitive to stereochemistry. Further, we report that vapor phase leaf aldehyde (trans-2-hexenal), a common aroma compound associated with cut grass odors and also the major volatile compound in extra virgin olive oil, is more effective than mushroom alcohol. At 0.05 µmol/mL, trans-2-hexenal is fungicidal to both conidiospores and mycelia of P. destructans.
Collapse
Affiliation(s)
- Sally Padhi
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Itamar Dias
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Victoria L Korn
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
30
|
Nandi M, Macdonald J, Liu P, Weselowski B, Yuan Z. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. MOLECULAR PLANT PATHOLOGY 2018; 19:2036-2050. [PMID: 29528201 PMCID: PMC6638088 DOI: 10.1111/mpp.12678] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 05/11/2023]
Abstract
Bacterial canker disease is considered to be one of the most destructive diseases of tomato (Solanum lycopersicum), and is caused by the seed-borne Gram-positive bacterium Clavibacter michiganensis ssp. michiganensis (Cmm). This vascular pathogen generally invades and proliferates in the xylem through natural openings or wounds, causing wilt and canker symptoms. The incidence of symptomless latent infections and the invasion of tomato seeds by Cmm are widespread. Pathogenicity is mediated by virulence factors and transcriptional regulators encoded by the chromosome and two natural plasmids. The virulence factors include serine proteases, cell wall-degrading enzymes (cellulases, xylanases, pectinases) and others. Mutational analyses of these genes and gene expression profiling (via quantitative reverse transcription-polymerase chain reaction, transcriptomics and proteomics) have begun to shed light on their roles in colonization and virulence, whereas the expression of tomato genes in response to Cmm infection suggests plant factors involved in the defence response. These findings may aid in the generation of target-specific bactericides or new resistant varieties of tomato. Meanwhile, various chemical and biological controls have been researched to control Cmm. This review presents a detailed investigation regarding the pathogen Cmm, bacterial canker infection, molecular interactions between Cmm and tomato, and current perspectives on improved disease management.
Collapse
Affiliation(s)
- Munmun Nandi
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Jacqueline Macdonald
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Peng Liu
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Brian Weselowski
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| | - Ze‐Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| |
Collapse
|
31
|
Tayeb AH, Hubbe MA, Zhang Y, Rojas OJ. Effect of Lipoxygenase Oxidation on Surface Deposition of Unsaturated Fatty Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4559-4566. [PMID: 28410438 DOI: 10.1021/acs.langmuir.7b00908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We studied the interactions of lipid molecules (linoleic acid, glycerol trilinoleate and a complex mixture of wood extractives) with hydrophilic and hydrophobic surfaces (cellulose nanofibrils (CNFs) and polyethylene terephthalate (PET), respectively). The effect of lipoxygenase treatment to minimize the affinity of the lipids with the given surface was considered. Application of an electroacoustic sensing technique (QCM) allowed the monitoring of the kinetics of oxidation as well as dynamics of lipid deposition on CNF and PET. The effect of the lipoxygenase enzymes (LOX) was elucidated with regards to their ability to reduce the formation of soiling lipid layers. The results pointed to the fact that the rate of colloidal oxidation depended on the type of lipid substrate. The pretreatment of the lipids with LOX reduced substantially their affinity to the surfaces, especially PET. Surface plasmon resonance (SPR) sensograms confirmed the effect of oxidation in decreasing the extent of deposition on the hydrophilic CNF. QCM energy dissipation analyses revealed the possible presence of a loosely adsorbed lipid layer on the PET surface. The morphology of the deposits accumulated on the solids was determined by atomic force microscopy and indicated important changes upon lipid treatment with LOX. The results highlighted the benefit of enzyme as a biobased treatment to reduce hydrophobic interactions, thus providing a viable solution to the control of lipid deposition from aqueous media.
Collapse
Affiliation(s)
- Ali H Tayeb
- Department of Forest Biomaterials, North Carolina State University , Raleigh, North Carolina 27513, United States
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University , Raleigh, North Carolina 27513, United States
| | - Yanxia Zhang
- Institute for Cardiovascular Science of Soochow University , #708 Ren Ming Road, Suzhou, 215000, People's Republic of China
| | - Orlando J Rojas
- Department of Forest Biomaterials, North Carolina State University , Raleigh, North Carolina 27513, United States
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , Espoo 00076, Finland
| |
Collapse
|
32
|
Tawfik MM, Yamato KT, Kohchi T, Koeduka T, Matsui K. n-Hexanal and (Z)-3-hexenal are generated from arachidonic acid and linolenic acid by a lipoxygenase in Marchantia polymorpha L. Biosci Biotechnol Biochem 2017; 81:1148-1155. [PMID: 28162041 DOI: 10.1080/09168451.2017.1285688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most terrestrial plants form green leaf volatiles (GLVs), which are mainly composed of six-carbon (C6) compounds. In our effort to study the distribution of the ability of lipoxygenase (LOX) to form GLVs, we found that a liverwort, Marchantia polymorpha, formed n-hexanal and (Z)-3-hexenal. Some LOXs execute a secondary reaction to form short chain volatiles. One of the LOXs from M. polymorpha (MpLOX7) oxygenized arachidonic and α-linolenic acids at almost equivalent efficiency and formed C6-aldehydes during its catalysis; these are likely formed from hydroperoxides of arachidonic and α-linolenic acids, with a cleavage of the bond between carbon at the base of the hydroperoxy group and carbon of double bond, which is energetically unfavorable. These lines of evidence suggest that one of the LOXs in liverwort employs an unprecedented reaction to form C6 aldehydes as by-products of its reaction with fatty acid substrates.
Collapse
Affiliation(s)
- Moataz M Tawfik
- a Graduate School of Medicine (Agriculture) , Yamaguchi University , Yamaguchi , Japan.,d Faculty of Science, Botany Department , Port Said University , Port Said , Egypt
| | - Katsuyuki T Yamato
- b Department of Biology-Oriented Science and Technology , Kinki University , Osaka , Japan
| | - Takayuki Kohchi
- c Graduate School of Biostudies , Kyoto University , Kyoto , Japan
| | - Takao Koeduka
- e Department of Biological Chemistry, Graduate School of Sciences and Technology for Innovation , Yamaguchi University , Yamaguchi , Japan
| | - Kenji Matsui
- a Graduate School of Medicine (Agriculture) , Yamaguchi University , Yamaguchi , Japan.,e Department of Biological Chemistry, Graduate School of Sciences and Technology for Innovation , Yamaguchi University , Yamaguchi , Japan
| |
Collapse
|
33
|
Kondo M, Hirai H, Furukawa T, Yoshida Y, Suzuki A, Kawaguchi T, Che FS. Frameshift Mutation Confers Function as Virulence Factor to Leucine-Rich Repeat Protein from Acidovorax avenae. FRONTIERS IN PLANT SCIENCE 2017; 7:1988. [PMID: 28101092 PMCID: PMC5209373 DOI: 10.3389/fpls.2016.01988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Many plant pathogens inject type III (T3SS) effectors into host cells to suppress host immunity and promote successful infection. The bacterial pathogen Acidovorax avenae causes brown stripe symptom in many species of monocotyledonous plants; however, individual strains of each pathogen infect only one host species. T3SS-deleted mutants of A. avenae K1 (virulent to rice) or N1141 (virulent to finger millet) caused no symptom in each host plant, suggesting that T3SS effectors are involved in the symptom formation. To identify T3SS effectors as virulence factors, we performed whole-genome and predictive analyses. Although the nucleotide sequence of the novel leucine-rich repeat protein (Lrp) gene of N1141 had high sequence identity with K1 Lrp, the amino acid sequences of the encoded proteins were quite different due to a 1-bp insertion within the K1 Lrp gene. An Lrp-deleted K1 strain (KΔLrp) did not cause brown stripe symptom in rice (host plant for K1); by contrast, the analogous mutation in N1141 (NΔLrp) did not interfere with infection of finger millet. In addition, NΔLrp retained the ability to induce effector-triggered immunity (ETI), including hypersensitive response cell death and expression of ETI-related genes. These data indicated that K1 Lrp functions as a virulence factor in rice, whereas N1141 Lrp does not play a similar role in finger millet. Yeast two-hybrid screening revealed that K1 Lrp interacts with oryzain α, a pathogenesis-related protein of the cysteine protease family, whereas N1141 Lrp, which contains LRR domains, does not. This specific interaction between K1 Lrp and oryzain α was confirmed by Bimolecular fluorescence complementation assay in rice cells. Thus, K1 Lrp protein may have acquired its function as virulence factor in rice due to a frameshift mutation.
Collapse
|
34
|
A combined biochemical and computational studies of the rho-class glutathione s-transferase sll1545 of Synechocystis PCC 6803. Int J Biol Macromol 2017; 94:378-385. [DOI: 10.1016/j.ijbiomac.2016.10.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/23/2022]
|
35
|
Feng SJ, Liu XS, Tao H, Tan SK, Chu SS, Oono Y, Zhang XD, Chen J, Yang ZM. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. PLANT, CELL & ENVIRONMENT 2016; 39:2629-2649. [PMID: 27412910 DOI: 10.1111/pce.12793] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 05/17/2023]
Abstract
We report genome-wide single-base resolution maps of methylated cytosines and transcriptome change in Cd-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between Cd-exposed and Cd-free rice genomes. There are 2320 non-redundant differentially methylated regions detected in the genome. RNA sequencing revealed 2092 DNA methylation-modified genes differentially expressed under Cd exposure. More genes were found hypermethylated than those hypomethylated in CG, CHH and CHG (where H is A, C or T) contexts in upstream, gene body and downstream regions. Many of the genes were involved in stress response, metal transport and transcription factors. Most of the DNA methylation-modified genes were transcriptionally altered under Cd stress. A subset of loss of function mutants defective in DNA methylation and histone modification activities was used to identify transcript abundance of selected genes. Compared with wide type, mutation of MET1 and DRM2 resulted in general lower transcript levels of the genes under Cd stress. Transcripts of OsIRO2, OsPR1b and Os09g02214 in drm2 were significantly reduced. A commonly used DNA methylation inhibitor 5-azacytidine was employed to investigate whether DNA demethylation affected physiological consequences. 5-azacytidine provision decreased general DNA methylation levels of selected genes, but promoted growth of rice seedlings and Cd accumulation in rice plant.
Collapse
Affiliation(s)
- Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Tao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shang Kun Tan
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Shan Chu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youko Oono
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Xian Duo Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Chen
- Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
36
|
Affiliation(s)
- Elisabetta Brenna
- Politecnico di Milano; Dipartimento di Chimica, Materiali, Ingegneria Chimica “Giulio Natta”; Via Mancinelli 7 20131 Milano Italy
| | - Fabio Parmeggiani
- Politecnico di Milano; Dipartimento di Chimica, Materiali, Ingegneria Chimica “Giulio Natta”; Via Mancinelli 7 20131 Milano Italy
| |
Collapse
|
37
|
Hayward S, Cilliers T, Swart P. Lipoxygenases: From Isolation to Application. Compr Rev Food Sci Food Saf 2016; 16:199-211. [DOI: 10.1111/1541-4337.12239] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Stefan Hayward
- Dept. of Biochemistry; Stellenbosch Univ; Private Bag X1 Stellenbosch 7602 South Africa
| | - Tertius Cilliers
- Dept. of Biochemistry; Stellenbosch Univ; Private Bag X1 Stellenbosch 7602 South Africa
| | - Pieter Swart
- Dept. of Biochemistry; Stellenbosch Univ; Private Bag X1 Stellenbosch 7602 South Africa
| |
Collapse
|
38
|
Yu T, Soudackov AV, Hammes-Schiffer S. Computational Insights into Five- versus Six-Coordinate Iron Center in Ferrous Soybean Lipoxygenase. J Phys Chem Lett 2016; 7:3429-33. [PMID: 27532889 PMCID: PMC5117133 DOI: 10.1021/acs.jpclett.6b01626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Soybean lipoxygenase (SLO) serves as a prototype for fundamental understanding of hydrogen tunneling in enzymes. Its reactivity depends on the active site structure around a mononuclear, nonheme iron center. The available crystal structures indicate five-coordinate iron, while magnetic circular dichroism experiments suggest significant populations of both five-coordinate (5C) and six-coordinate (6C) iron in ferrous SLO. Quantum mechanical calculations of gas phase models produce only 6C geometries. Herein mixed quantum mechanical/molecular mechanical (QM/MM) calculations are employed to identify and characterize the 5C and 6C geometries. These calculations highlight the importance of the protein environment, particularly two Gln residues in a hydrogen-bonding network with Asn694, the ligand that can dissociate. This hydrogen-bonding network is similar in both geometries, but twisting of a dihedral angle in Asn694 moves its oxygen away from the iron in the 5C geometry. These insights are important for future simulations of SLO.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alexander V. Soudackov
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Mitome H, Ishizuka T, Kotani H, Shiota Y, Yoshizawa K, Kojima T. Mechanistic Insights into C–H Oxidations by Ruthenium(III)-Pterin Complexes: Impact of Basicity of the Pterin Ligand and Electron Acceptability of the Metal Center on the Transition States. J Am Chem Soc 2016; 138:9508-20. [DOI: 10.1021/jacs.6b03785] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroumi Mitome
- Department
of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tomoya Ishizuka
- Department
of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kotani
- Department
of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshihito Shiota
- Institute
for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute
for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Takahiko Kojima
- Department
of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
40
|
Zhang J, Zhao C, Zeng Z, Luo P, Zhao Y, Zhao J, Li L, Lu X, Xu G. Sample-directed pseudotargeted method for the metabolic profiling analysis of rice seeds based on liquid chromatography with mass spectrometry. J Sep Sci 2015; 39:247-55. [PMID: 26517975 DOI: 10.1002/jssc.201500858] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022]
Abstract
Rice is one of the most important food crops in the world. Metabolite composition in rice seeds varies significantly depending on genetic variety, climatic alternation and agricultural practice. Metabolomics is a powerful tool to reveal the metabolic response of rice to various conditions. In this work, a rice seed sample-directed pseudotargeted metabolomics method was first established and validated based on ultra high performance liquid chromatography with triple quadrupole mass spectrometry in the multiple reaction monitoring mode. A total of 749 and 617 ion pairs in positive and negative modes were achieved, respectively. Among them, about 200 metabolites were identified or tentatively identified. The developed method showed better linearity and repeatability than those of non-targeted metabolomics method. Good intra-day and inter-day precisions, recoveries and wide linear range were also obtained. Furthermore, the method was applied for the investigation of metabolic variation of rice seeds with two wild cultivars and their transgenic lines that were grown in two locations. Principal component analysis indicated that the effects of cultivar and location on metabolic variations were far more than those of gene modification. The nonparametric Mann-Whitney U test revealed that most metabolites were influenced by cultivar, location and gene modifications together.
Collapse
Affiliation(s)
- Junjie Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunxia Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongda Zeng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ping Luo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanni Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jieyu Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lili Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
41
|
Kretchmer JS, Miller TF. Tipping the Balance between Concerted versus Sequential Proton-Coupled Electron Transfer. Inorg Chem 2015; 55:1022-31. [PMID: 26440812 DOI: 10.1021/acs.inorgchem.5b01821] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua S. Kretchmer
- Department of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F. Miller
- Department of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
42
|
Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I. Lipids and proteins--major targets of oxidative modifications in abiotic stressed plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4099-121. [PMID: 25471723 DOI: 10.1007/s11356-014-3917-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/24/2014] [Indexed: 05/18/2023]
Abstract
Stress factors provoke enhanced production of reactive oxygen species (ROS) in plants. ROS that escape antioxidant-mediated scavenging/detoxification react with biomolecules such as cellular lipids and proteins and cause irreversible damage to the structure of these molecules, initiate their oxidation, and subsequently inactivate key cellular functions. The lipid- and protein-oxidation products are considered as the significant oxidative stress biomarkers in stressed plants. Also, there exists an abundance of information on the abiotic stress-mediated elevations in the generation of ROS, and the modulation of lipid and protein oxidation in abiotic stressed plants. However, the available literature reflects a wide information gap on the mechanisms underlying lipid- and protein-oxidation processes, major techniques for the determination of lipid- and protein-oxidation products, and on critical cross-talks among these aspects. Based on recent reports, this article (a) introduces ROS and highlights their relationship with abiotic stress-caused consequences in crop plants, (b) examines critically the various physiological/biochemical aspects of oxidative damage to lipids (membrane lipids) and proteins in stressed crop plants, (c) summarizes the principles of current technologies used to evaluate the extent of lipid and protein oxidation, (d) synthesizes major outcomes of studies on lipid and protein oxidation in plants under abiotic stress, and finally, (e) considers a brief cross-talk on the ROS-accrued lipid and protein oxidation, pointing to the aspects unexplored so far.
Collapse
Affiliation(s)
- Naser A Anjum
- CESAM-Centre for Environmental & Marine Studies and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Heshof R, de Graaff LH, Villaverde JJ, Silvestre AJ, Haarmann T, Dalsgaard TK, Buchert J. Industrial potential of lipoxygenases. Crit Rev Biotechnol 2015; 36:665-74. [DOI: 10.3109/07388551.2015.1004520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ruud Heshof
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Leo H. de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Juan J. Villaverde
- Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal,
- On leave to INIA, DTEVPF, Plant Protection Products Unit, Ctra. de La Coruña, Madrid, Spain,
| | | | | | - Trine K. Dalsgaard
- Department of Food Sciences, Faculty of Science and Technology, Aarhus University, Tjele, Denmark, and
| | | |
Collapse
|
44
|
Papanikolaou PA, Papadopoulos AG, Andreadou EG, Hatzidimitriou A, Cox PJ, Pantazaki AA, Aslanidis P. The structural and electronic impact on the photophysical and biological properties of a series of CuI and AgI complexes with triphenylphosphine and pyrimidine-type thiones. NEW J CHEM 2015. [DOI: 10.1039/c4nj02203c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A controllable S,P-coordination environment resulting in selective structural, emissive and antibacterial properties.
Collapse
Affiliation(s)
- Panagiotis A. Papanikolaou
- Aristotle University of Thessaloniki
- Department of Chemistry
- Laboratory of Inorganic Chemistry
- GR-541 24 Thessaloniki
- Greece
| | - Anastasios G. Papadopoulos
- Aristotle University of Thessaloniki
- Department of Chemistry
- Laboratory of Applied Quantum Chemistry
- GR-541 24 Thessaloniki
- Greece
| | - Eleni G. Andreadou
- Aristotle University of Thessaloniki
- Department of Chemistry
- Laboratory of Biochemistry
- GR-541 24 Thessaloniki
- Greece
| | - Antonios Hatzidimitriou
- Aristotle University of Thessaloniki
- Department of Chemistry
- Laboratory of Inorganic Chemistry
- GR-541 24 Thessaloniki
- Greece
| | - Philip J. Cox
- School of Pharmacy
- The Robert Gordon University
- Scotland
- UK
| | - Anastasia A. Pantazaki
- Aristotle University of Thessaloniki
- Department of Chemistry
- Laboratory of Biochemistry
- GR-541 24 Thessaloniki
- Greece
| | - Paraskevas Aslanidis
- Aristotle University of Thessaloniki
- Department of Chemistry
- Laboratory of Inorganic Chemistry
- GR-541 24 Thessaloniki
- Greece
| |
Collapse
|
45
|
Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species. Fungal Genet Biol 2014; 81:229-37. [PMID: 25498164 DOI: 10.1016/j.fgb.2014.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 01/11/2023]
Abstract
Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past.
Collapse
|
46
|
Ng CH, Rullah K, Aluwi MFFM, Abas F, Lam KW, Ismail IS, Narayanaswamy R, Jamaludin F, Shaari K. Synthesis and docking studies of 2,4,6-trihydroxy-3-geranylacetophenone analogs as potential lipoxygenase inhibitor. Molecules 2014; 19:11645-59. [PMID: 25100256 PMCID: PMC6271415 DOI: 10.3390/molecules190811645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022] Open
Abstract
The natural product molecule 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) isolated from the medicinal plant Melicope ptelefolia was shown to exhibit potent lipoxygenase (LOX) inhibitory activity. It is known that LOX plays an important role in inflammatory response as it catalyzes the oxidation of unsaturated fatty acids, such as linoleic acid to form hydroperoxides. The search for selective LOX inhibitors may provide new therapeutic approach for inflammatory diseases. Herein, we report the synthesis of tHGA analogs using simple Friedel-Craft acylation and alkylation reactions with the aim of obtaining a better insight into the structure-activity relationships of the compounds. All the synthesized analogs showed potent soybean 15-LOX inhibitory activity in a dose-dependent manner (IC50 = 10.31–27.61 μM) where compound 3e was two-fold more active than tHGA. Molecular docking was then applied to reveal the important binding interactions of compound 3e in soybean 15-LOX binding site. The findings suggest that the presence of longer acyl bearing aliphatic chain (5Cs) and aromatic groups could significantly affect the enzymatic activity.
Collapse
Affiliation(s)
- Chean Hui Ng
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, 43400 UPM Serdang, Malaysia.
| | - Kamal Rullah
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | | | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, 43400 UPM Serdang, Malaysia.
| | - Kok Wai Lam
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, 43400 UPM Serdang, Malaysia.
| | - Radhakrishnan Narayanaswamy
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, 43400 UPM Serdang, Malaysia.
| | | | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, 43400 UPM Serdang, Malaysia.
| |
Collapse
|
47
|
Li M, Li L, Dunwell JM, Qiao X, Liu X, Zhang S. Characterization of the lipoxygenase (LOX) gene family in the Chinese white pear (Pyrus bretschneideri) and comparison with other members of the Rosaceae. BMC Genomics 2014; 15:444. [PMID: 24906560 PMCID: PMC4072886 DOI: 10.1186/1471-2164-15-444] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022] Open
Abstract
Background Lipoxygenases (LOXs), a type of non-haem iron-containing dioxygenase, are ubiquitous enzymes in plants and participate in the formation of fruit aroma which is a very important aspect of fruit quality. Amongst the various aroma volatiles, saturated and unsaturated alcohols and aldehydes provide the characteristic aroma of the fruit. These compounds are formed from unsaturated fatty acids through oxidation, pyrolysis and reduction steps. This biosynthetic pathway involves at least four enzymes, including LOX, the enzyme responsible for lipid oxidation. Although some studies have been conducted on the LOX gene family in several species including Arabidopsis, soybean, cucumber and apple, there is no information from pear; and the evolutionary history of this gene family in the Rosaceae is still not resolved. Results In this study we identified 107 LOX homologous genes from five Rosaceous species (Pyrus bretschneideri, Malus × domestica, Fragaria vesca, Prunus mume and Prunus persica); 23 of these sequences were from pear. By using structure analysis, phylogenic analysis and collinearity analysis, we identified variation in gene structure and revealed the phylogenetic evolutionary relationship of this gene family. Expression of certain pear LOX genes during fruit development was verified by analysis of transcriptome data. Conclusions 23 LOX genes were identified in pear and these genes were found to have undergone a duplication 30–45 MYA; most of these 23 genes are functional. Specific gene duplication was found on chromosome4 in the pear genome. Useful information was provided for future research on the evolutionary history and transgenic research on LOX genes. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-444) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
48
|
Feussner I, Fritz IG, Hause B, Ullrich WR, Wasternack C. Induction of a new Lipoxygenase Form in Cucumber Leaves by Salicylic Acid or 2,6-Dichloroisonicotinic Acid*. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1997.tb00616.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Felton GW, Bi JL, Summers CB, Mueller AJ, Duffey SS. Potential role of lipoxygenases in defense against insect herbivory. J Chem Ecol 2013; 20:651-66. [PMID: 24242119 DOI: 10.1007/bf02059605] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1993] [Accepted: 11/03/1993] [Indexed: 11/25/2022]
Abstract
The potential role of the plant enzyme lipoxygenase in host resistance against the corn earwormHelicoverpa zea was examined. Lipoxygenase is present in most of the common host plants ofH. zea, with highest activity in the leguminous hosts such as soybean and redbean. Treatment of dietary proteins with linoleic acid and lipoxygenase significantly reduced the nutritive quality of soybean protein and soy foliar protein. Larval growth was reduced from 24 to 63% depending upon treatment. Feeding byH. zea on soybean plants caused damage-induced increases in foliar lipoxygenase and lipid peroxidation products. Larvae feeding on previously wounded plant tissue demonstrated decreased growth rates compared to larvae feeding on unwounded tissue. Midgut epithelium from larvae feeding on wounded tissues showed evidence of oxidative damage as indicated by significant increases in lipid peroxidation products and losses in free primary amines. The potential role of oxidative and nutritional stress as a plant defensive response to herbivory is discussed.
Collapse
Affiliation(s)
- G W Felton
- Department of Entomology, University of Arkansas, 72701, Fayetteville, Arkansas
| | | | | | | | | |
Collapse
|
50
|
Nguyen MD, Nguyen DH, Yoo JM, Myung PK, Kim MR, Sok DE. Effect of endocannabinoids on soybean lipoxygenase-1 activity. Bioorg Chem 2013; 49:24-32. [PMID: 23856367 DOI: 10.1016/j.bioorg.2013.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/17/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022]
Abstract
Endocannabinoids appear to be involved in a variety of physiological processes. Lipoxygenase activity has been known to be affected by unsaturated fatty acids or phenolic compounds. In this study, we examined whether endocannabinoids containing both N-acyl group and phenolic group can affect the activity of soybean lipoxygenase (LOX)-1, similar to mammalian 15-lipoxygenase in physicochemical properties. First, N-arachidonoyl dopamine and N-oleoyl dopamine were found to inhibit soybean LOX-1-catalyzed oxygenation of linoleic acid in a non-competitive manner with a Ki value of 3.7 μM and 6.2 μM, respectively. Meanwhile, other endocannabinoids failed to show a remarkable inhibition of soybean LOX-1. Separately, N-arachidonoyl dopamine and N-arachidonoyl serotonin were observed to inactivate soybean LOX-1 with Kin value of 27 μM and 24 μM, respectively, and k3 value of 0.12 min(-1) and 0.35 min(-1), respectively. Furthermore, such an inactivation was enhanced by ascorbic acid, but suppressed by 13(S)-hydroperoxy-9,11-octadecadienoic acid. Taken together, it is proposed that endocannabinoids containing polyunsaturated acyl moiety and phenolic group may be efficient for the inhibition as well as inactivation of 15-lipoxygenase.
Collapse
Affiliation(s)
- Minh Duc Nguyen
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | |
Collapse
|