1
|
Kahnt AS, Häfner AK, Steinhilber D. The role of human 5-Lipoxygenase (5-LO) in carcinogenesis - a question of canonical and non-canonical functions. Oncogene 2024; 43:1319-1327. [PMID: 38575760 PMCID: PMC11065698 DOI: 10.1038/s41388-024-03016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
5-Lipoxygenase (5-LO), a fatty acid oxygenase, is the central enzyme in leukotriene (LT) biosynthesis, potent arachidonic acid-derived lipid mediators released by innate immune cells, that control inflammatory and allergic responses. In addition, through interaction with 12- and 15-lipoxgenases, the enzyme is involved in the formation of omega-3 fatty acid-based oxylipins, which are thought to be involved in the resolution of inflammation. The expression of 5-LO is frequently deregulated in solid and liquid tumors, and there is strong evidence that the enzyme plays an important role in carcinogenesis. However, global inhibition of LT formation and signaling has not yet shown the desired success in clinical trials. Curiously, the release of 5-LO-derived lipid mediators from tumor cells is often low, and the exact mechanism by which 5-LO influences tumor cell function is poorly understood. Recent data now show that in addition to releasing oxylipins, 5-LO can also influence gene expression in a lipid mediator-independent manner. These non-canonical functions, including modulation of miRNA processing and transcription factor shuttling, most likely influence cancer cell function and the tumor microenvironment and might explain the low clinical efficacy of pharmacological strategies that previously only targeted oxylipin formation and signaling by 5-LO. This review summarizes the canonical and non-canonical functions of 5-LO with a particular focus on tumorigenesis, highlights unresolved issues, and suggests future research directions.
Collapse
Affiliation(s)
- Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany.
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| |
Collapse
|
2
|
Transcriptome-Based Traits of Radioresistant Sublines of Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24033042. [PMID: 36769365 PMCID: PMC9917840 DOI: 10.3390/ijms24033042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Radioresistance is a major obstacle for the successful therapy of many cancers, including non-small cell lung cancer (NSCLC). To elucidate the mechanism of radioresistance of NSCLC cells and to identify key molecules conferring radioresistance, the radioresistant subclones of p53 wild-type A549 and p53-deficient H1299 cell cultures were established. The transcriptional changes between parental and radioresistant NSCLC cells were investigated by RNA-seq. In total, expression levels of 36,596 genes were measured. Changes in the activation of intracellular molecular pathways of cells surviving irradiation relative to parental cells were quantified using the Oncobox bioinformatics platform. Following 30 rounds of 2 Gy irradiation, a total of 322 genes were differentially expressed between p53 wild-type radioresistant A549IR and parental A549 cells. For the p53-deficient (H1299) NSCLC cells, the parental and irradiated populations differed in the expression of 1628 genes and 1616 pathways. The expression of genes associated with radioresistance reflects the complex biological processes involved in clinical cancer cell eradication and might serve as a potential biomarker and therapeutic target for NSCLC treatment.
Collapse
|
3
|
Sohn SI, Priya A, Balasubramaniam B, Muthuramalingam P, Sivasankar C, Selvaraj A, Valliammai A, Jothi R, Pandian S. Biomedical Applications and Bioavailability of Curcumin-An Updated Overview. Pharmaceutics 2021; 13:2102. [PMID: 34959384 PMCID: PMC8703330 DOI: 10.3390/pharmaceutics13122102] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a yellow-colored molecule derived from the rhizome of Curcuma longa, has been identified as the bioactive compound responsible for numerous pharmacological activities of turmeric, including anticancer, antimicrobial, anti-inflammatory, antioxidant, antidiabetic, etc. Nevertheless, the clinical application of curcumin is inadequate due to its low solubility, poor absorption, rapid metabolism and elimination. Advancements in recent research have shown several components and techniques to increase the bioavailability of curcumin. Combining with adjuvants, encapsulating in carriers and formulating in nanoforms, in combination with other bioactive agents, synthetic derivatives and structural analogs of curcumin, have shown increased efficiency and bioavailability, thereby augmenting the range of applications of curcumin. The scope for incorporating biotechnology and nanotechnology in amending the current drawbacks would help in expanding the biomedical applications and clinical efficacy of curcumin. Therefore, in this review, we provide a comprehensive overview of the plethora of therapeutic potentials of curcumin, their drawbacks in efficient clinical applications and the recent advancements in improving curcumin's bioavailability for effective use in various biomedical applications.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
| | | | - Pandiyan Muthuramalingam
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Chandran Sivasankar
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India;
| | - Anthonymuthu Selvaraj
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA;
| | - Alaguvel Valliammai
- Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Beersheba 84990, Israel;
| | - Ravi Jothi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
4
|
Cherkasova V, Kovalchuk O, Kovalchuk I. Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer. Cancers (Basel) 2021; 13:4353. [PMID: 34503163 PMCID: PMC8430689 DOI: 10.3390/cancers13174353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Despite the multiple preventive measures and treatment options, colorectal cancer holds a significant place in the world's disease and mortality rates. The development of novel therapy is in critical need, and based on recent experimental data, cannabinoids could become excellent candidates. This review covered known experimental studies regarding the effects of cannabinoids on intestinal inflammation and colorectal cancer. In our opinion, because colorectal cancer is a heterogeneous disease with different genomic landscapes, the choice of cannabinoids for tumor prevention and treatment depends on the type of the disease, its etiology, driver mutations, and the expression levels of cannabinoid receptors. In this review, we describe the molecular changes of the endocannabinoid system in the pathologies of the large intestine, focusing on inflammation and cancer.
Collapse
Affiliation(s)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| |
Collapse
|
5
|
Pochard C, Gonzales J, Bessard A, Mahe MM, Bourreille A, Cenac N, Jarry A, Coron E, Podevin J, Meurette G, Neunlist M, Rolli-Derkinderen M. PGI 2 Inhibits Intestinal Epithelial Permeability and Apoptosis to Alleviate Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:1037-1060. [PMID: 33971327 PMCID: PMC8342971 DOI: 10.1016/j.jcmgh.2021.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Inflammatory bowel diseases (IBDs) that encompass both ulcerative colitis and Crohn's disease are a major public health problem with an etiology that has not been fully elucidated. There is a need to improve disease outcomes and preventive measures by developing new effective and lasting treatments. Although polyunsaturated fatty acid metabolites play an important role in the pathogenesis of several disorders, their contribution to IBD is yet to be understood. METHODS Polyunsaturated fatty acids metabolite profiles were established from biopsy samples obtained from Crohn's disease, ulcerative colitis, or control patients. The impact of a prostaglandin I2 (PGI2) analog on intestinal epithelial permeability was tested in vitro using Caco-2 cells and ex vivo using human or mouse explants. In addition, mice were treated with PGI2 to observe dextran sulfate sodium (DSS)-induced colitis. Tight junction protein expression, subcellular location, and apoptosis were measured in the different models by immunohistochemistry and Western blotting. RESULTS A significant reduction of PGI2 in IBD patient biopsies was identified. PGI2 treatment reduced colonic inflammation, increased occludin expression, decreased caspase-3 cleavage and intestinal permeability, and prevented colitis development in DSS-induced mice. Using colonic explants from mouse and human control subjects, the staurosporine-induced increase in paracellular permeability was prevented by PGI2. PGI2 also induced the membrane location of occludin and reduced the permeability observed in colonic biopsies from IBD patients. CONCLUSIONS The present study identified a PGI2 defect in the intestinal mucosa of IBD patients and demonstrated its protective role during colitis.
Collapse
Affiliation(s)
- Camille Pochard
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Jacques Gonzales
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Anne Bessard
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Maxime M Mahe
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France; Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Arnaud Bourreille
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France; CHU de Nantes, Hôpital Hôtel-Dieu, Nantes, France; CIC 1413, Nantes, France
| | - Nicolas Cenac
- UMR1220, IRSD, INSERM, INRA, INP-ENVT, Université de Toulouse, Toulouse, France
| | - Anne Jarry
- Université de Nantes, Inserm, CRCINA, Nantes, France
| | - Emmanuel Coron
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France; CHU de Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | | | - Guillaume Meurette
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France; CHU de Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - Michel Neunlist
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France.
| |
Collapse
|
6
|
Dhingra AK, Chopra B. Inflammation as a Therapeutic Target for Various Deadly Disorders: A Review. Curr Drug Targets 2020; 21:582-588. [DOI: 10.2174/1389450120666191204154115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
Inflammation is the multifaceted biological response of vascular tissues against injurious
stimuli such as pathogens, irritants or infection. However, when inflammation goes away, it leads to
produce quite serious life-threatening diseases like Alzheimer's, rheumatoid arthritis, heart attacks, colon
cancer, etc. Therefore, inflammation suddenly has become one of the hottest areas of medical research.
The present review article is aimed to provide a detailed outline of the fundamental causes and
the surprising relationship of inflammation in the onset of sundry diseases or illnesses. Furthermore,
the role of various anti-inflammatory drugs alone and in combination with other therapeutic drugs, in
alleviating the life-threatening diseases has also been discussed.
Collapse
Affiliation(s)
- Ashwani K. Dhingra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
7
|
Participation of 5-lipoxygenase and LTB4 in liver regeneration after partial hepatectomy. Sci Rep 2019; 9:18176. [PMID: 31796842 PMCID: PMC6890767 DOI: 10.1038/s41598-019-54652-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regeneration is the unmatched liver ability for recovering its functional mass after tissue lost. Leukotrienes (LT) are a family of eicosanoids with the capacity of signaling to promote proliferation. We analyzed the impact of blocking LT synthesis during liver regeneration after partial hepatectomy (PH). Male Wistar rats were subjected to two-third PH and treated with zileuton, a specific inhibitor of 5-lipoxygenase (5-LOX). Our first find was a significant increment of intrahepatic LTB4 during the first hour after PH together with an increase in 5-LOX expression. Zileuton reduced hepatic LTB4 levels at the moment of hepatectomy and also inhibited the increase in hepatic LTB4. This inhibition produced a delay in liver proliferation as seen by decreased PCNA and cyclin D1 nuclear expression 24 h post-PH. Results also showed that hepatic LTB4 diminution by zileuton was associated with a decrease in NF-ĸB activity. Additionally, decreased hepatic LTB4 levels by zileuton affected the recruitment of neutrophils and macrophages. Non-parenchymal cells (NPCs) from zileuton-treated PH-rats displayed higher apoptosis than NPCs from PH control rats. In conclusion, the present work provides evidences that 5-LOX activation and its product LTB4 are involved in the initial signaling events for liver regeneration after PH and the pharmacological inhibition of this enzyme can delay the initial time course of the phenomenon.
Collapse
|
8
|
Bazzaz R, Bijanpour H, Pirouzpanah SMB, Yaghmaei P, Rashtchizadeh N. Adjuvant therapy with γ-tocopherol-induce apoptosis in HT-29 colon cancer via cyclin-dependent cell cycle arrest mechanism. J Biochem Mol Toxicol 2019; 33:e22399. [PMID: 31587439 DOI: 10.1002/jbt.22399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/30/2019] [Accepted: 09/12/2019] [Indexed: 01/27/2023]
Abstract
Resistance to chemotherapy with 5-fluorouracil (5-FU) in patients with colorectal cancer (CRC) is the major obstacle to reach the maximum efficiency of CRC treatment. Combination therapy has emerged as a novel anticancer strategy. The present study evaluates the cotreatment of γ-tocopherol and 5-FU in enhancing the efficacy of chemotherapy against HT-29 colon cancer cells. Cytotoxic effect of this combination was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and a synergistic effect was evaluated by a combination index technique. Nuclear morphology was studied via 4',6-diamidino-2-phenylindole staining and flow cytometric assays were conducted to identify molecular mechanisms of apoptosis and cell cycle progression. We investigated the expression of Cyclin D1, Cyclin E, Bax, and Bcl-2 by a quantitative real-time polymerase chain reaction. The IC50 values for 5-FU and γ-tocopherol were 21.8 ± 2.5 and 14.4 ± 2.6 μM, respectively, and also this combination therapeutic increased the percentage of apoptotic cells from 35% ± 2% to 40% ± 4% (P < .05). Furthermore, incubation HT-29 colon cells with combined concentrations of two drugs caused significant accumulation of cells in the subGsubG1 phase. Our results presented the combination therapy with 5-FU and γ-tocopherol as a novel therapeutic approach, which can enhance the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Roya Bazzaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossain Bijanpour
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Turkey
| | - Seyed M B Pirouzpanah
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Turkey
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nadereh Rashtchizadeh
- Department of Clinical Biochemistry, Sarab University of Medical Sciences, Sarab, Iran.,Connective Tissue Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
9
|
Hassanshahi M, Anderson PH, Sylvester CL, Stringer AM. Current evidence for vitamin D in intestinal function and disease. Exp Biol Med (Maywood) 2019; 244:1040-1052. [PMID: 31366237 DOI: 10.1177/1535370219867262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vitamin D activity is associated with the modulation of a wide variety of biological systems, in addition to its roles in calcium homeostatic mechanisms. While vitamin D is well known to promote gastrointestinal calcium absorption, vitamin D also plays a role in attenuating and/or preventing the progression of several gastrointestinal diseases including Crohn’s disease, ulcerative colitis, and colorectal cancer, and may also play a role in chemotherapy-induced intestinal mucositis. The pro-differentiation, immunomodulatory, and anti-inflammatory effects of vitamin D, which has been reported in numerous circumstances, are key potential mechanisms of action in the prevention of gastrointestinal disorders. While the debate of the effectiveness of vitamin D to treat bone pathologies continues, the clinical importance of vitamin D therapy to prevent gastrointestinal disorders should be investigated given current evidence, using both nutritional and pharmaceutical intervention approaches.Impact statementThe non-skeletal functions of vitamin D play an important role in health and disease. The anti-inflammatory properties and maintenance of intestinal function fulfilled by vitamin D impact other systems in the body though downstream processing. This review provides insight into the mechanisms underpinning the potential benefits of vitamin D in both maintaining intestinal homeostasis and associated diseased states.
Collapse
Affiliation(s)
| | - Paul H Anderson
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Cyan L Sylvester
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Andrea M Stringer
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia.,2 Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
10
|
Abstract
Colorectal cancers develop through at least 3 major pathways, including chromosomal instability, mismatch repair, and methylator phenotype. These pathways can coexist in a single individual and occur in both sporadic and inherited colorectal cancers. In spite of the unique molecular and genetic signatures of colorectal cancers, nonspecific chemotherapy based on the antineoplastic effects of 5-fluorouracil is the cornerstone of therapy for stage III and some stage II disease. Techniques to recognize colorectal cancer at the molecular level have facilitated development of new signature drugs designed to inhibit the unique pathways of colorectal cancer growth and immunity.
Collapse
|
11
|
Mahmood B, Damm MMB, Jensen TSR, Backe MB, Dahllöf MS, Poulsen SS, Bindslev N, Hansen MB. Phosphodiesterases in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia. BMC Cancer 2016; 16:938. [PMID: 27927168 PMCID: PMC5141637 DOI: 10.1186/s12885-016-2980-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022] Open
Abstract
Background Intracellular signaling through cyclic nucleotides, both cyclic AMP and cyclic GMP, is altered in colorectal cancer. Accordingly, it is hypothesized that an underlying mechanism for colorectal neoplasia involves altered function of phosphodiesterases (PDEs), which affects cyclic nucleotide degradation. Here we present an approach to evaluate the function of selected cyclic nucleotide-PDEs in colonic endoscopic biopsies from non-neoplastic appearing mucosa. Methods Biopsies were obtained from patients with and without colorectal neoplasia. Activities of PDEs were characterized functionally by measurements of transepithelial ion transport and their expression and localization by employing real-time qPCR and immunohistochemistry. Results In functional studies PDE subtype-4 displayed lower activity in colorectal neoplasia patients (p = 0.006). Furthermore, real-time qPCR analysis showed overexpression of subtype PDE4B (p = 0.002) and subtype PDE5A (p = 0.02) in colorectal neoplasia patients. Finally, immunohistochemistry for 7 PDE isozymes demonstrated the presence of all 7 isozymes, albeit with weak reactions, and with no differences in localization between colorectal neoplasia and control patients. Of note, quantification of PDE subtype immunostaining revealed a lower amount of PDE3A (p = 0.04) and a higher amount of PDE4B (p = 0.02) in samples from colorectal neoplasia patients. Conclusion In conclusion, functional data indicated lower activity of PDE4 subtypes while expressional and abundance data indicated a higher expression of PDE4B in patients with colorectal neoplasia. We suggest that cyclic nucleotide-PDE4B is overexpressed as a malfunctioning protein in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia. If a predisposition of reduced PDE4B activity in colonic mucosa from colorectal neoplasia patients is substantiated further, this subtype could be a potential novel early diagnostic risk marker and may even be a target for future medical preventive treatment of colorectal cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2980-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Badar Mahmood
- Digestive Disease Center K, Bispebjerg Hospital, Copenhagen, DK-2400, Denmark. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.
| | - Morten Matthiesen Bach Damm
- Digestive Disease Center K, Bispebjerg Hospital, Copenhagen, DK-2400, Denmark.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | | | - Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Mattias Salling Dahllöf
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Mark Berner Hansen
- Digestive Disease Center K, Bispebjerg Hospital, Copenhagen, DK-2400, Denmark.,Zealand Pharma, Glostrup, DK-2600, Denmark
| |
Collapse
|
12
|
Bellamkonda K, Chandrashekar NK, Osman J, Selvanesan BC, Savari S, Sjölander A. The eicosanoids leukotriene D4 and prostaglandin E2 promote the tumorigenicity of colon cancer-initiating cells in a xenograft mouse model. BMC Cancer 2016; 16:425. [PMID: 27388564 PMCID: PMC4937611 DOI: 10.1186/s12885-016-2466-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer is one of the most common types of cancers worldwide. Recent studies have identified cancer-initiating cells (CICs) as a subgroup of replication-competent cells in the development of colorectal cancer. Although it is understood that an inflammation-rich tumor microenvironment presumably supports CIC functions, the contributory factors are not very well defined. The present study advances our understanding of the role of the eicosanoids leukotriene D4 (LTD4) and prostaglandin E2 (PGE2) in the tumorigenic ability of CICs and investigates the consequential changes occurring in the tumor environment that might support tumor growth. Methods In this study we used human HCT-116 colon cancer ALDH+ cells in a nude mouse xenograft model. Protein expression and immune cell was determined in tumor-dispersed cells by flow cytometry and in tumor sections by immunohistochemistry. mRNA expressions were quantified using RT-q-PCR and plasma cytokine levels by Multiplex ELISA. Results We observed that LTD4 and PGE2 treatment augmented CIC-induced tumor growth. LTD4-and PGE2-treated xenograft tumors revealed a robust increase in ALDH and Dclk1 protein expression, coupled with activated β-catenin signaling and COX-2 up-regulation. Furthermore, LTD4 or PGE2 accentuated the accumulation of CD45 expressing cells within xenograft tumors. Further analysis revealed that these infiltrating immune cells consisted of neutrophils (LY6G) and M2 type macrophages (CD206+). In addition, LTD4 and PGE2 treatment significantly elevated the plasma levels of cysteinyl leukotrienes and PGE2, as well as levels of IL-1β, IL-2, IL-6, TNF-α and CXCL1/KC/GRO. In addition, increased mRNA expression of IL-1β, IL-6 and IL-10 were detected in tumors from mice that had been treated with LTD4 or PGE2. Conclusion Our data suggest that both LTD4 and PGE2 promote CICs in initiating tumor growth by allowing modifications in the tumor environment. Our data indicate that new therapeutic strategies targeting eicosanoids, specifically LTD4 and PGE2, could be tested for better therapeutic management of colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2466-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kishan Bellamkonda
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Naveen Kumar Chandrashekar
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Janina Osman
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Benson Chellakkan Selvanesan
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Sayeh Savari
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| |
Collapse
|
13
|
Kwok AHY, Wang Y, Ho WS. Cytotoxic and pro-oxidative effects of Imperata cylindrica aerial part ethyl acetate extract in colorectal cancer in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:558-565. [PMID: 27064015 DOI: 10.1016/j.phymed.2016.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 01/26/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer. Its global incidence and mortality have been on the rise. Recent strategy of therapies has involved the use of non-steroid anti-inflammatory drugs and cyclooxygenase-selective inhibitors. Aerial parts of Imperata cylindrical L. Raeusch (IMP) have been used as an anti-inflammatory agent in traditional Chinese medicine. HYPOTHESIS Asarachidonate acid cascadeis often involved in inflammation-related malignancy and IMP is an anti-inflammatory agent, hence it is hypothesized that IMP aerial part ethyl acetate extract exerts cytotoxic effects on colorectal cancer cells in vitro. STUDY DESIGN The HT-29 adenocarcinoma cell line was used to elucidate its pro-apoptotic activities. Flow cytometry and fluorescent microscopy were performed to assess cell cycle arrest and the accumulation of reactive oxygen species (ROS). The mRNA and hormone levels of arachidonate acid pathways were studied via quantitative reverse transcription PCR (qRT-PCR) and ELISA. RESULTS The 50% growth inhibitory effect (GI50) of the IMP extract on HT-29 was measured with a value of 14.5 µg/ml. Immuno-blot and caspase-3/7 activity assay showed the pro-apoptotic effect of IMP on the activation of caspase cascade. G2/M arrest was observed via flow cytometry. The ROS activity was modulated by the IMP extraction a concentration-dependent manner in HT-29 cells. The IMP extract increased PGE2 and PGF2α levels qRT-PCR revealed that transcripts of rate-limiting PGE2- and PGF2α-biosynthetic enzymes - COX-1, mPGES1 and AKR1C3 were notably up-regulated. Among the prostanoid receptors, EP1 and FP transcripts were up-regulated while EP4 transcripts decreased. The findings suggest that the proliferative effect of PGE2, which is generally believed to associate with heightened DNA synthesis and cross-talk with MAPK pathways, is likely triggered by the pro-apoptotic or -oxidative effects exerted by IMP extract in HT-29 cells. Concurring with this notion, indomethacin (COX-1/2-inhibitor) was demonstrated to potentiate the cytotoxic effect of IMP extract (GI50 ≦ 10.8 µg/ml). The results show that the cytotoxic effect of IMP extract predominates over the influence of proliferative prostanoids released by challenged colorectal cancer cells, and may present a potential source for development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Amy Ho Yan Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Yan Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Wing Shing Ho
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
14
|
Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype. J Clin Med 2016; 5:jcm5020025. [PMID: 26891335 PMCID: PMC4773781 DOI: 10.3390/jcm5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 01/11/2023] Open
Abstract
Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis.
Collapse
|
15
|
van Harten-Gerritsen AS, Balvers MGJ, Witkamp RF, Kampman E, van Duijnhoven FJB. Vitamin D, Inflammation, and Colorectal Cancer Progression: A Review of Mechanistic Studies and Future Directions for Epidemiological Studies. Cancer Epidemiol Biomarkers Prev 2015; 24:1820-8. [PMID: 26396142 DOI: 10.1158/1055-9965.epi-15-0601] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Survival from colorectal cancer is positively associated with vitamin D status. However, whether this association is causal remains unclear. Inflammatory processes may link vitamin D to colorectal cancer survival, and therefore investigating inflammatory markers as potential mediators may be a valuable next step. This review starts with an overview of inflammatory processes suggested to be involved in colorectal cancer progression and regulated by vitamin D. Next, we provide recommendations on how to study inflammatory markers in future epidemiologic studies on vitamin D and colorectal cancer survival. Mechanistic studies have shown that calcitriol-active form of vitamin D-influences inflammatory processes involved in cancer progression, including the enzyme cyclooxygenase 2, the NF-κB pathway, and the expression of the cytokines TNFα, IL1β, IL6, IL8, IL17, and TGFβ1. Based on this and taking into account methodologic issues, we recommend to include analysis of specific soluble peptides and proteins, such as cytokines, in future epidemiologic studies on this issue. Vitamin D and the markers should preferably be measured at multiple time points during disease progression or recovery and analyzed using mediation analysis. Including these markers in epidemiologic studies may help answer whether inflammation mediates a causal relationship between vitamin D and colorectal cancer survival.
Collapse
Affiliation(s)
| | - Michiel G J Balvers
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands. Clinical Chemistry and Haematology Laboratory, Gelderse Vallei Hospital, Ede, the Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands. Department for Health Evidence, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands. Department for Health Science, VU University Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
16
|
A potential role of PUFAs and COXIBs in cancer chemoprevention. Prostaglandins Other Lipid Mediat 2015; 120:97-102. [DOI: 10.1016/j.prostaglandins.2015.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/28/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
|
17
|
Tsioulias GJ, Go MF, Rigas B. NSAIDs and Colorectal Cancer Control: Promise and Challenges. ACTA ACUST UNITED AC 2015; 1:295-301. [PMID: 26688785 DOI: 10.1007/s40495-015-0042-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemoprevention of colorectal cancer (CRC) is a realistic option given the low acceptance and cost of screening colonoscopy. NSAIDs, currently not recommended for CRC prevention, are the most promising agents. Here, we review relevant work and assess the chemopreventive potential of NSAIDs. The chemopreventive efficacy of NSAIDs is established by epidemiological and interventional studies as well as analyses of cardiovascular-prevention randomized clinical trials. The modest chemopreventive efficacy of NSAIDs is compounded by their significant toxicity that can be cumulative. Efforts to overcome these limitations include the use of drug combinations; the emphasis on the early stages of colon carcinogenesis such as aberrant crypt foci, which may require shorter periods of drug administration; and the development of several families of chemically modified NSAIDs such as derivatives of sulindac, nitro-NSAIDs and phospho-NSAIDs, with some of them appearing to have higher safety and efficacy than conventional NSAIDs and thus to be better candidate agents. The successful development of NSAIDs as chemopreventive agents will likely require a combination of the following: identification of subjects at high risk and/or those most likely to benefit from chemoprevention; optimization of the timing, dose and duration of administration of the chemopreventive agent; novel NSAID derivatives and/or combinations of agents; and agents that may prevent other diseases in addition to CRC. Ultimately, the clinical implementation of NSAIDs for the prevention of CRC will depend on a strategy that drastically shifts the currently unacceptable risk/benefit ratio in favor of chemoprevention.
Collapse
Affiliation(s)
- George J Tsioulias
- Department of Surgery, Medical Sciences Building G530, Rutgers Medical School of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, Tel: 973-676-1000 x1801
| | - Mae F Go
- Gastroenterology Section, VA Southern Nevada Healthcare System, 6900 N. Pecos Rd, North Las Vegas, NV 89086, Tel: 702-791-9000
| | - Basil Rigas
- Stony Brook University, HSC, L4, Room 169, Stony Brook, NY 11794-8430, Tel: 631-638-2141
| |
Collapse
|
18
|
Rigas B, Tsioulias GJ. The evolving role of nonsteroidal anti-inflammatory drugs in colon cancer prevention: a cause for optimism. J Pharmacol Exp Ther 2015; 353:2-8. [PMID: 25589413 PMCID: PMC4366757 DOI: 10.1124/jpet.114.220806] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is a serious yet preventable disease. The low acceptance and cost of colonoscopy as a screening method or CRC make chemoprevention an important option. Nonsteroidal anti-inflammatory drugs (NSAIDs), not currently recommended for CRC prevention, have the potential to evolve into the agents of choice for this indication. Here, we discuss the promise and challenge of NSAIDs for this chemopreventive application.Multiple epidemiologic studies, randomized clinical trials (RCTs) of sporadic colorectal polyp recurrence, RCTs in patients with hereditary colorectal cancer syndromes, and pooled analyses of cardiovascular-prevention RCTs linked to cancer outcomes have firmly established the ability of conventional NSAIDs to prevent CRC. NSAIDs, however, are seriously limited by their toxicity,which can become cumulative with their long-term administration for chemoprevention, whereas drug interactions in vulnerable elderly patients compound their safety. Newer, chemically modified NSAIDs offer the hope of enhanced efficacy and safety.Recent work also indicates that targeting earlier stages of colorectal carcinogenesis, such as the lower complexity aberrant crypt foci, is a promising approach that may only require relatively short use of chemopreventive agents. Drug combination approaches exemplified by sulindac plus difluoromethylornithine appear very efficacious. Identification of those at risk or most likely to benefit from a given intervention using predictive biomarkers may usher in personalized chemoprevention. Agents that offer simultaneous chemoprevention of diseases in addition to CRC, e.g., cardiovascular and/or neurodegenerative diseases,may have a much greater potential for a broad clinical application.
Collapse
Affiliation(s)
- Basil Rigas
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA. basil.rigas@stonybrookmedicine
| | | |
Collapse
|
19
|
Otake S, Yoshida K, Seira N, Sanchez CM, Regan JW, Fujino H, Murayama T. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells. Pharmacol Res Perspect 2014; 3:e00083. [PMID: 25692008 PMCID: PMC4317221 DOI: 10.1002/prp2.83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/27/2022] Open
Abstract
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.
Collapse
Affiliation(s)
- Sho Otake
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Kenji Yoshida
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Naofumi Seira
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Christopher M Sanchez
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona Tucson, Arizona, 85721-0207
| | - John W Regan
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona Tucson, Arizona, 85721-0207
| | - Hiromichi Fujino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
20
|
Shin D, Kim IS, Lee JM, Shin SY, Lee JH, Baek SH, Cho KH. The hidden switches underlying RORα-mediated circuits that critically regulate uncontrolled cell proliferation. J Mol Cell Biol 2014; 6:338-48. [PMID: 24831657 DOI: 10.1093/jmcb/mju023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostaglandin E2 (PGE2) is known to have a key role in the development of colorectal cancer, but previous experiments showed its contrasting (i.e. tumor-promoting or tumor-suppressive) roles depending on experimental conditions. To elucidate the mechanisms underlying such contrasting roles of PGE2 in tumorigenesis, we investigated all the previous experiments and found a new signal transduction pathway mediated by retinoic acid receptor-related orphan receptor (ROR)α, in which PGE2/PKCα-dependent phosphorylation of RORα attenuates Wnt target gene expression in colon cancer cells. From mathematical simulations combined with biochemical experimentation, we revealed that RORα induces a biphasic response of Wnt target genes to PGE2 stimulation through a regulatory switch formed by an incoherent feedforward loop, which provides a mechanistic explanation on the contrasting roles of PGE2 observed in previous experiments. More interestingly, we found that RORα constitutes another regulatory switch formed by coupled positive and negative feedback loops, which regulates the hysteretic response of Wnt signaling and eventually converts a proliferative cellular state into an anti-proliferative state in a very delicate way. Our results indicate that RORα is the key regulator at the center of these hidden switches that critically regulate cancer cell proliferation and thereby being a promising anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Ik Soo Kim
- Department of Biological Sciences, Creative Research Initiative Center for Chromatin Dynamics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Min Lee
- Department of Biological Sciences, Creative Research Initiative Center for Chromatin Dynamics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Young Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jong-Hoon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Creative Research Initiative Center for Chromatin Dynamics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| |
Collapse
|
21
|
Goodman JR, Grossman D. Aspirin and other NSAIDs as chemoprevention agents in melanoma. Cancer Prev Res (Phila) 2014; 7:557-64. [PMID: 24694780 DOI: 10.1158/1940-6207.capr-14-0018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melanoma incidence is increasing and, despite recent therapeutic advances, the prognosis for patients with metastatic disease remains poor. Thus, early detection and chemoprevention are promising strategies for improving patient outcomes. Aspirin (acetylsalicylic acid) and other nonsteroidal anti-inflammatory drugs (NSAID) have demonstrated chemoprotective activity in several other cancers, and have been proposed as chemopreventive agents for melanoma. Throughout the last decade, however, a number of case-control, prospective, and interventional studies of NSAIDs and melanoma risk have yielded conflicting results. These inconsistent findings have led to uncertainty about the clinical utility of NSAIDs for melanoma chemoprevention. This mini-review highlights current knowledge of NSAID mechanisms of action and rationale for use in melanoma, provides a comparative review of outcomes and limitations of prior studies, and discusses the future challenges in demonstrating that these drugs are effective agents for mitigating melanoma risk.
Collapse
Affiliation(s)
- James R Goodman
- Authors' Affiliations: Huntsman Cancer Institute; Departments of Dermatology and Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Douglas Grossman
- Authors' Affiliations: Huntsman Cancer Institute; Departments of Dermatology and Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UtahAuthors' Affiliations: Huntsman Cancer Institute; Departments of Dermatology and Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UtahAuthors' Affiliations: Huntsman Cancer Institute; Departments of Dermatology and Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
22
|
Abstract
Colorectal cancer (CRC) is the one of the leading causes of cancer-related deaths in the world. CRC is responsible for more than 600,000 deaths annually and incidence rates are increasing in most of the developing countries. Epidemiological and laboratory investigations suggest that environmental factors such as western style dietary habits, tobacco-smoking, and lack of physical activities are considered as risks for CRC. Molecular pathobiology of CRC implicates pro-inflammatory conditions to promote the tumor malignant progression, invasion, and metastasis. It is well known that patients with inflammatory bowel disease are at higher risk of CRC. Many evidences exist reiterating the link between Inflammation and CRC. Inflammation involves interaction between various immune cells, inflammatory cells, chemokines, cytokines, and pro-inflammatory mediators, such as cyclooxygenase (COX) and lipoxygenase (LOX) pathways, which may lead to signaling towards, tumor cell proliferation, growth, and invasion. Thus, this review will focus on mechanisms by which pro-inflammatory mediators and reactive oxygen/nitrogen species play a role in promoting CRC. Based on these mechanisms, various preventive strategies, involving anti-inflammatory agents, such as COX inhibitors, COX-LOX inhibitors, iNOS inhibitors, natural supplements/agents, and synthetic agents, that blocks the inflammatory pathways and suppress CRC are discussed in this review.
Collapse
|
23
|
Abstract
Numerous epidemiologic studies have reported that the long-term use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with a significant decrease in cancer incidence and delayed progression of malignant disease. The use of NSAIDs has also been linked with reduced risk from cancer-related mortality and distant metastasis. Certain prescription-strength NSAIDs, such as sulindac, have been shown to cause regression of precancerous lesions. Unfortunately, the extended use of NSAIDs for chemoprevention results in potentially fatal side effects related to their COX-inhibitory activity and suppression of prostaglandin synthesis. Although the basis for the tumor growth-inhibitory activity of NSAIDs likely involves multiple effects on tumor cells and their microenvironment, numerous investigators have concluded that the underlying mechanism is not completely explained by COX inhibition. It may therefore be possible to develop safer and more efficacious drugs by targeting such COX-independent mechanisms. NSAID derivatives or metabolites that lack COX-inhibitory activity, but retain or have improved anticancer activity, support this possibility. Experimental studies suggest that apoptosis induction and suppression of β-catenin-dependent transcription are important aspects of their antineoplastic activity. Studies show that the latter involves phosphodiesterase inhibition and the elevation of intracellular cyclic GMP levels. Here, we review the evidence for COX-independent mechanisms and discuss progress toward identifying alternative targets and developing NSAID derivatives that lack COX-inhibitory activity but have improved antineoplastic properties.
Collapse
Affiliation(s)
- Evrim Gurpinar
- Authors' Affiliations: Department of Pharmacology and Toxicology; Department of Pathology, The University of Alabama at Birmingham, Birmingham; and Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | | | | |
Collapse
|
24
|
Kodela R, Chattopadhyay M, Goswami S, Gan ZY, Rao PPN, Nia KV, Velázquez-Martínez CA, Kashfi K. Positional isomers of aspirin are equally potent in inhibiting colon cancer cell growth: differences in mode of cyclooxygenase inhibition. J Pharmacol Exp Ther 2013; 345:85-94. [PMID: 23349335 PMCID: PMC3608450 DOI: 10.1124/jpet.112.201970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/08/2013] [Indexed: 01/05/2023] Open
Abstract
We compared the differential effects of positional isomers of acetylsalicylic acid (o-ASA, m-ASA, and p-ASA) on cyclooxygenase (COX) inhibition, gastric prostaglandin E2 (PGE2), malondialdehyde, tumor necrosis factor-alpha (TNF-α) levels, superoxide dismutase (SOD) activity, human adenocarcinoma colon cancer cell growth inhibition, cell proliferation, apoptosis, and cell-cycle progression. We also evaluated the gastric toxicity exerted by ASA isomers. All ASA isomers inhibit COX enzymes, but only the o-ASA exerted an irreversible inhibitory profile. We did not observe a significant difference between ASA isomers in their ability to decrease the in vivo synthesis of PGE2 and SOD activity. Furthermore, all isomers increased the levels of gastric and TNF-α when administered orally at equimolar doses. We observed a dose-dependent cell growth inhibitory effect; the order of potency was p-ASA > m-ASA ≈ o-ASA. There was a dose-dependent decrease in cell proliferation and an increase in apoptosis, with a concomitant Go/G1 arrest. The ulcerogenic profile of the three ASA isomers showed a significant difference between o-ASA (aspirin) and its two positional isomers when administered orally at equimolar doses (1 mmol/kg); the ulcer index (UI) for o-ASA indicated extensive mucosal injury (UI = 38), whereas m-ASA and p-ASA produced a significantly decreased toxic response (UI = 12 and 8, respectively) under the same experimental conditions. These results suggest that the three positional isomers of ASA exert practically the same biologic profile in vitro and in vivo but showed different safety profiles. The mechanism of gastric ulcer formation exerted by aspirin and its two isomers warrants a more detailed and thorough investigation.
Collapse
Affiliation(s)
- Ravinder Kodela
- Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, New York 10031, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang S, Jiang L, Zhang MZ. 11β-Hydroxysteroid Dehydrogenase Type II is a Potential Target for Prevention of Colorectal Tumorigenesis. ACTA ACUST UNITED AC 2013; 1. [PMID: 23936870 DOI: 10.13188/2325-2340.1000002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death, yet primary prevention remains the best approach to reducing overall morbidity and mortality. There is a clear molecular link between cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) production and CRC progression. Although selective COX-2 inhibitors as well as non-steroidal anti-inflammatory drugs (NSAIDs) reduce the number and sizes of colonic adenomas, increased cardiovascular risks of selective COX-2 inhibitors and increased gastrointestinal side-effects of NSAIDs limit their use in chemoprevention of CRC. Glucocorticoids induce apoptosis and are endogenous, potent COX-2 inhibitors. Glucocorticoids have been used for the treatment of hematologic malignancies, but not for solid tumors due to adverse side-effects such as immunosuppression and osteoporosis. In tissues, glucocorticoid actions are down-regulated by t y p e 2 1 1 β-hydroxysteroid dehydrogenase (11βHSD2), and inhibition of 11βHSD2 activity will elevate intracellular active glucocorticoid to levels that effectively suppress COX-2 expression. Both COX-2 and 11βHSD2 increase in Apc+/min mouse intestinal adenomas and human colonic adenomas and either pharmacologic or genetic 11βHSD2 inhibition leads to decreases in COX-2-mediated PGE2 production in tumors and prevents adenoma formation, tumor growth, and metastasis. 11βHSD2 inhibition may represent a novel approach for CRC chemoprevention by increasing tumor cell intracellular glucocorticoid activity, which in turn inhibits tumor growth by suppressing the COX-2-derived PGE2 pathway, as well as other pathways, without potential side-effects relating to chronic application of COX-2 inhibitors, NSAIDs and glucocorticoids.
Collapse
Affiliation(s)
- Shilin Yang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
26
|
Hong B, Krusche CA, Schwabe K, Friedrich S, Klein R, Krauss JK, Nakamura M. Cyclooxygenase-2 supports tumor proliferation in vestibular schwannomas. Neurosurgery 2012; 68:1112-7. [PMID: 21221032 DOI: 10.1227/neu.0b013e318208f5c7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent studies have shown that cyclooxygenase-2 (COX-2) plays an important role in tumor growth and neovascularization. However, COX-2 expression in vestibular schwannomas (VSs) has not been investigated. OBJECTIVE To analyze the pattern of COX-2 expression in sporadic and neurofibromatosis type 2 (NF2)-associated VSs and its relationship with tumor proliferation and microvessel density. METHODS Fifteen sporadic and 15 NF2-associated VSs were examined for COX-2 expression, microvessel density, and proliferation rate by immunohistochemical methods. Immunohistochemical scores were used to interpret the extent and intensity of COX-2 staining. Microvessel density (MVD) was determined using von Willebrand factor (vWf). Proliferation rate was quantified using Ki-67. The relationship among COX-2 expression, MVD, and proliferation rate was statistically analyzed. RESULTS COX-2 expression was detected in 29 (96.67%) of 30 VSs, with no significant difference between sporadic and NF2-associated VSs (P = .722). In 6 (20%) VSs, COX-2 expression was graded as strong, in 12 (40%) as moderate, and in 11 (36.7%) as weak. VSs with high proliferation showed significantly higher COX-2 expression (P = .015) than VSs with low proliferation. COX-2 expression and MVD did not show specific biological correlations (P = .035). CONCLUSION Our data demonstrate that COX-2 is expressed in VSs. High COX-2 expression in VSs with high proliferation rates suggests that the COX-2 pathway may be involved in the development and growth of VSs.
Collapse
Affiliation(s)
- Bujung Hong
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med 2012; 52:2013-37. [PMID: 22391222 DOI: 10.1016/j.freeradbiomed.2012.02.035] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 12/12/2022]
Abstract
The role of inflammation in carcinogenesis has been extensively investigated and well documented. Many biochemical processes that are altered during chronic inflammation have been implicated in tumorigenesis. These include shifting cellular redox balance toward oxidative stress; induction of genomic instability; increased DNA damage; stimulation of cell proliferation, metastasis, and angiogenesis; deregulation of cellular epigenetic control of gene expression; and inappropriate epithelial-to-mesenchymal transition. A wide array of proinflammatory cytokines, prostaglandins, nitric oxide, and matricellular proteins are closely involved in premalignant and malignant conversion of cells in a background of chronic inflammation. Inappropriate transcription of genes encoding inflammatory mediators, survival factors, and angiogenic and metastatic proteins is the key molecular event in linking inflammation and cancer. Aberrant cell signaling pathways comprising various kinases and their downstream transcription factors have been identified as the major contributors in abnormal gene expression associated with inflammation-driven carcinogenesis. The posttranscriptional regulation of gene expression by microRNAs also provides the molecular basis for linking inflammation to cancer. This review highlights the multifaceted role of inflammation in carcinogenesis in the context of altered cellular redox signaling.
Collapse
|
28
|
Abstract
Unresolved inflammation, due to insufficient production of proresolving anti-inflammatory lipid mediators, can lead to an increased risk of tumorigenesis and tumor cell invasiveness. Various bioactive lipids, particularly those formed by cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, have been well established as therapeutic targets for many epithelial cancers. Emerging studies suggest that there is a role for anti-inflammatory bioactive lipids and their mediators during the resolution phase of inflammation. These proresolving bioactive lipids, including lipoxins (LXs) and resolvins (RVs), have potent anti-inflammatory and anti-carcinogenic properties. The molecular signaling pathways controlling generation and degradation of the proresolving mediators LXs and RVs are now being elucidated, and the component molecules may serve as new targets for regulation of inflammation and inflammation-associated cancers like colon and pancreatic cancers. This review will highlight the recent advances in our understanding of how these bioactive lipids and proresolving mediators may function with various immune cells and cytokines in inhibiting tumor cell proliferation and progression and invasiveness of colon and pancreatic cancers.
Collapse
|
29
|
Neilson AP, Djuric Z, Ren J, Hong YH, Sen A, Lager C, Jiang Y, Reuven S, Smith WL, Brenner DE. Effect of cyclooxygenase genotype and dietary fish oil on colonic eicosanoids in mice. J Nutr Biochem 2011; 23:966-76. [PMID: 21937210 DOI: 10.1016/j.jnutbio.2011.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/21/2011] [Accepted: 05/03/2011] [Indexed: 01/20/2023]
Abstract
Dietary ω3 fatty acids can modulate substrate availability for cyclooxygenases (COXs) and lipoxygenases, thus modulating downstream eicosanoid formation. This could be an alternative approach to using nonsteroidal anti-inflammatory drugs and other COX inhibitors for limiting Prostaglandin E(2) (PGE(2)) synthesis in colon cancer prevention. The aims of this study were to evaluate to what extent COX- and lipoxygenase-derived products could be modulated by dietary fish oil in normal colonic mucosa and to evaluate the role of COX-1 and COX-2 in the formation of these products. Mice (wild-type, COX-1 null or COX-2 null) were fed a diet supplying a broad mixture of fatty acids present in European/American diets, supplemented with either olive oil (oleate control diet) or menhaden (fish) oil ad libitum for 9-11 weeks. Colonic eicosanoid levels were measured by liquid chromatography tandem mass spectroscopy (LC-MS/MS), and proliferation was assessed by Ki67 immunohistochemistry. For the dietary alteration of colonic arachidonic acid: eicosapentaenoic ratios resulted in large shifts in formation of COX and lipoxygenase metabolites. COX-1 knockout virtually abolished PGE(2) formation, but interestingly, 12-hydroxyeicosatetraenoic (12-HETE) acid and 15-HETE formation was increased. The large changes in eicosanoid profiles were accompanied by relatively small changes in colonic crypt proliferation, but such changes in eicosanoid formation might have greater biological impact upon carcinogen challenge. These results indicate that in normal colon, inhibition of COX-2 would have little effect on reducing PGE(2) levels.
Collapse
Affiliation(s)
- Andrew P Neilson
- Department of Family Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Das UN. Essential fatty acids enhance free radical generation and lipid peroxidation to induce apoptosis of tumor cells. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
CXCR4 in Cancer and Its Regulation by PPARgamma. PPAR Res 2011; 2008:769413. [PMID: 18779872 PMCID: PMC2528256 DOI: 10.1155/2008/769413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/25/2008] [Accepted: 07/10/2008] [Indexed: 12/20/2022] Open
Abstract
Chemokines are peptide mediators involved in normal development,
hematopoietic and immune regulation, wound healing, and
inflammation. Among the chemokines is CXCL12, which binds
principally to its receptor CXCR4 and regulates leukocyte
precursor homing to bone marrow and other sites. This role of
CXCL12/CXCR4 is “commandeered” by cancer cells to facilitate the
spread of CXCR4-bearing tumor cells to tissues with high CXCL12
concentrations. High CXCR4 expression by cancer cells predisposes
to aggressive spread and metastasis and ultimately to poor patient
outcomes. As well as being useful as a marker for disease
progression, CXCR4 is a potential target for anticancer therapies.
It is possible to interfere directly with the CXCL12:CXCR4 axis
using peptide or small-molecular-weight antagonists. A further
opportunity is offered by promoting strategies that downregulate
CXCR4 pathways: CXCR4 expression in the tumor microenvironment is
modulated by factors such as hypoxia, nucleosides, and
eicosanoids. Another promising approach is through targeting PPAR
to suppress CXCR4 expression. Endogenous PPARγ such as 15-deoxy-Δ12,14-PGJ2 and synthetic agonists such as the
thiazolidinediones both cause downregulation of CXCR4 mRNA and
receptor. Adjuvant therapy using PPARγ agonists may, by
stimulating PPARγ-dependent downregulation of CXCR4 on cancer cells, slow the rate of metastasis and impact beneficially on
disease progression.
Collapse
|
32
|
Steinhilber D, Fischer AS, Metzner J, Steinbrink SD, Roos J, Ruthardt M, Maier TJ. 5-lipoxygenase: underappreciated role of a pro-inflammatory enzyme in tumorigenesis. Front Pharmacol 2010; 1:143. [PMID: 21833182 PMCID: PMC3153017 DOI: 10.3389/fphar.2010.00143] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 12/10/2010] [Indexed: 01/14/2023] Open
Abstract
Leukotrienes constitute a group of bioactive lipids generated by the 5-lipoxygenase (5-LO) pathway. An increasing body of evidence supports an acute role for 5-LO products already during the earliest stages of pancreatic, prostate, and colorectal carcinogenesis. Several pieces of experimental data form the basis for this hypothesis and suggest a correlation between 5-LO expression and tumor cell viability. First, several independent studies documented an overexpression of 5-LO in primary tumor cells as well as in established cancer cell lines. Second, addition of 5-LO products to cultured tumor cells also led to increased cell proliferation and activation of anti-apoptotic signaling pathways. 5-LO antisense technology approaches demonstrated impaired tumor cell growth due to reduction of 5-LO expression. Lastly, pharmacological inhibition of 5-LO potently suppressed tumor cell growth by inducing cell cycle arrest and triggering cell death via the intrinsic apoptotic pathway. However, the documented strong cytotoxic off-target effects of 5-LO inhibitors, in combination with the relatively high concentrations of 5-LO products needed to achieve mitogenic effects in cell culture assays, raise concern over the assignment of the cause, and question the relationship between 5-LO products and tumorigenesis.
Collapse
Affiliation(s)
- Dieter Steinhilber
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Nath G, Gulati AK, Shukla VK. Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J Gastroenterol 2010; 16:5395-404. [PMID: 21086555 PMCID: PMC2988230 DOI: 10.3748/wjg.v16.i43.5395] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carcinoma of the gallbladder (CaGB) is the fifth commonest gastrointestinal tract cancer and is endemic in several countries. The interplay of genetic susceptibility, infections, and life style factors has been proposed to be responsible for carcinogenesis of gallbladder. Persistence of infection leading to chronic inflammation, and production of certain toxins and metabolites with carcinogenic potentials, by certain bacteria has been speculated to be involved in the transformation of the gallbladder epithelium. Therefore, any bacteria that have evolved to acquire both of the above carcinogenic mechanisms can cause cancer. Salmonella typhi has been found to be prominently associated with CaGB. Chronic typhoid carriage (persistence) and production of mediators of chronic inflammation and a genotoxic toxin (cytotoxic distending toxin, CdtB) are also known for this bacterium. Furthermore, the natural concentrating function of the gallbladder might amplify the carcinogenic effect of the mediators of carcinogenesis. In addition to S. typhi, certain species of Helicobacter (H. bilis and H. hepaticus) and Escherichia coli have also been implicated in carcinogenesis. As the isolation rate is very poor with the presently available culture techniques, the existence of bacteria in a viable but non-cultivable state is quite likely; therefore, sensitive and specific molecular techniques might reveal the etiological role of bacterial infection in gallbladder carcinogenesis. If bacteria are found to be causing cancers, then eradication of such infections might help in reducing the incidence of some cancers.
Collapse
|
34
|
Oi N, Jeong CH, Nadas J, Cho YY, Pugliese A, Bode AM, Dong Z. Resveratrol, a red wine polyphenol, suppresses pancreatic cancer by inhibiting leukotriene A₄hydrolase. Cancer Res 2010; 70:9755-64. [PMID: 20952510 DOI: 10.1158/0008-5472.can-10-2858] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The anticancer effects of red wine have attracted considerable attention. Resveratrol (3,5,4'-trihydroxy-trans -stilbene) is a well-known polyphenolic compound of red wine with cancer chemopreventive activity. However, the basis for this activity is unclear. We studied leukotriene A(4) hydrolase (LTA(4)H) as a relevant target in pancreatic cancer. LTA(4)H knockdown limited the formation of leukotriene B(4) (LTB(4)), the enzymatic product of LTA(4)H, and suppressed anchorage-independent growth of pancreatic cancer cells. An in silico shape similarity algorithm predicted that LTA(4)H might be a potential target of resveratrol. In support of this idea, we found that resveratrol directly bound to LTA(4)H in vitro and in cells and suppressed proliferation and anchorage-independent growth of pancreatic cancer by inhibiting LTB(4) production and expression of the LTB(4) receptor 1 (BLT(1)). Notably, resveratrol exerted relatively stronger inhibitory effects than bestatin, an established inhibitor of LTA(4)H activity, and the inhibitory effects of resveratrol were reduced in cells where LTA(4)H was suppressed by shRNA-mediated knockdown. Importantly, resveratrol inhibited tumor formation in a xenograft mouse model of human pancreatic cancer by inhibiting LTA(4)H activity. Our findings identify LTA(4)H as a functionally important target for mediating the anticancer properties of resveratrol.
Collapse
Affiliation(s)
- Naomi Oi
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhao Y, Weng CC, Tong M, Wei J, Tai HH. Restoration of leukotriene B(4)-12-hydroxydehydrogenase/15- oxo-prostaglandin 13-reductase (LTBDH/PGR) expression inhibits lung cancer growth in vitro and in vivo. Lung Cancer 2010; 68:161-9. [PMID: 19595472 PMCID: PMC2847056 DOI: 10.1016/j.lungcan.2009.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/11/2009] [Accepted: 06/14/2009] [Indexed: 01/29/2023]
Abstract
Leukotriene B(4)-12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase (LTBDH/PGR) is a bifunctional enzyme capable of inactivating leukotriene B(4) (LTB(4)) and 15-oxo-prostaglandins (15-PGs). Its role in growth suppressive functions in lung cancer was studied in in vitro and in vivo systems. The LTBDH/PGR gene was expressed in lung cancer cell lines through recombinant adenovirus infection, and through a tetracycline-inducible expression system. After restoration of LTBDH/PGR expression in LTBDH/PGR-negative (H1299) or -low (A549) lung cancer cell lines, the restored enzyme induced apoptosis and growth inhibition in vitro. Ectopic expression of LTBDH/PGR caused also suppression of tumorigenicity of A549 cells in nude mice. In contrast, LTBDH/PGR over-expression in LTBDH/PGR-positive (H157) lung cancer cell line induced little apoptosis and growth inhibition. This study indicates that restoration of LTBDH/PGR expression is effective in preventing lung cancer growth in vitro and in vivo.
Collapse
Affiliation(s)
| | - Chu-Chun Weng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082
| | - Min Tong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082
| | | | - Hsin-Hsiung Tai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082
| |
Collapse
|
36
|
TGF-β1 Reverses Inhibition of COX-2 With NS398 and Increases Invasion in Prostate Cancer Cells. Am J Med Sci 2010; 339:425-32. [DOI: 10.1097/maj.0b013e3181d7c9db] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Colquhoun A. Lipids, mitochondria and cell death: implications in neuro-oncology. Mol Neurobiol 2010; 42:76-88. [PMID: 20429043 DOI: 10.1007/s12035-010-8134-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 12/31/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are known to inhibit cell proliferation of many tumour types both in vitro and in vivo. Their capacity to interfere with cell proliferation has been linked to their induction of reactive oxygen species (ROS) production in tumour tissues leading to cell death through apoptosis. However, the exact mechanisms of action of PUFAs are far from clear, particularly in brain tumours. The loss of bound hexokinase from the mitochondrial voltage-dependent anion channel has been directly related to loss of protection from apoptosis, and PUFAs can induce this loss of bound hexokinase in tumour cells. Tumour cells overexpressing Akt activity, including gliomas, are sensitised to ROS damage by the Akt protein and may be good targets for chemotherapeutic agents, which produce ROS, such as PUFAs. Cardiolipin peroxidation may be an initial event in the release of cytochrome c from the mitochondria, and enriching cardiolipin with PUFA acyl chains may lead to increased peroxidation and therefore an increase in apoptosis. A better understanding of the metabolism of fatty acids and eicosanoids in primary brain tumours such as gliomas and their influence on energy balance will be fundamental to the possible targeting of mitochondria in tumour treatment.
Collapse
Affiliation(s)
- Alison Colquhoun
- Laboratory of Tumour Cell Metabolism, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, Avenida Prof. Lineu Prestes 1524, CEP 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
38
|
Poole EM, Hsu L, Xiao L, Kulmacz RJ, Carlson CS, Rabinovitch PS, Makar KW, Potter JD, Ulrich CM. Genetic variation in prostaglandin E2 synthesis and signaling, prostaglandin dehydrogenase, and the risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev 2010; 19:547-57. [PMID: 20086108 DOI: 10.1158/1055-9965.epi-09-0869] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Prostaglandins are important inflammatory mediators; prostaglandin E2 (PGE2) is the predominant prostaglandin in colorectal neoplasia and affects colorectal carcinogenesis. Prostaglandins are metabolites of omega-6 and omega-3 polyunsaturated fatty acids; their biosynthesis is the primary target of nonsteroidal anti-inflammatory drugs (NSAID), which reduce colorectal neoplasia risk. METHODS We investigated candidate and tagSNPs in PGE2 synthase (PGES), PGE2 receptors (EP2 and EP4), and prostaglandin dehydrogenase (PGDH) in a case-control study of adenomas (n = 483) versus polyp-free controls (n = 582) and examined interactions with NSAID use or fish intake, a source of omega-3 fatty acids. RESULTS A 30% adenoma risk reduction was observed for EP2 4950G>A (intron 1; OR(GA/AA vs. GG), 0.71; 95% confidence interval, 0.52-0.99). For the candidate polymorphism EP4 Val294Ile, increasing fish intake was associated with increased adenoma risk among those with variant genotypes, but not among those with the Val/Val genotype (P(interaction) = 0.02). An interaction with fish intake was also observed for PGES -664A>T (5' untranslated region; P(interaction) = 0.01). Decreased risk with increasing fish intake was only seen among those with the AT or TT genotypes (OR(>2 t/wk vs. <1 t/wk), 0.56; 95% confidence interval, 0.28-1.13). We also detected interactions between NSAIDs and EP2 9814C>A (intron 1) and PGDH 343C>A (intron 1). However, none of the observed associations was statistically significant after adjustment for multiple testing. We investigated potential gene-gene interactions using the Chatterjee 1 degree of freedom Tukey test and logic regression; neither method detected significant interactions. CONCLUSIONS These data provide little support for associations between adenoma risk and genetic variability related to PGE(2), yet suggest gene-environment interactions with anti-inflammatory exposures.
Collapse
Affiliation(s)
- Elizabeth M Poole
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kraft TE, Parisotto D, Schempp C, Efferth T. Fighting Cancer with Red Wine? Molecular Mechanisms of Resveratrol. Crit Rev Food Sci Nutr 2009; 49:782-99. [DOI: 10.1080/10408390802248627] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Löffler I, Grün M, Böhmer FD, Rubio I. Role of cAMP in the promotion of colorectal cancer cell growth by prostaglandin E2. BMC Cancer 2008; 8:380. [PMID: 19099561 PMCID: PMC2615781 DOI: 10.1186/1471-2407-8-380] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 12/19/2008] [Indexed: 12/21/2022] Open
Abstract
Background Prostaglandin E2 (PGE2), a product of the cyclooxygenase (COX) reaction, stimulates the growth of colonic epithelial cells. It is inferred that the abrogation of prostaglandins' growth-promoting effects as a result of COX inhibition underlies the advantageous effects of non-steroidal anti-inflammatory drugs in colorectal carcinoma (CRC). Despite this appreciation, the underlying molecular mechanisms remain obscure since cell culture studies have yielded discrepant results regarding PGE2's mitogenicity. Methods We have employed several alternative approaches to score cell proliferation and apoptosis of 4 CRC cell lines exposed to PGE2 under various conditions. To investigate the role of cAMP in PGE2's functions, activation of the cAMP pathway was assessed at different levels (changes in cAMP levels and PKA activity) in cells subjected to specific manipulations including the use of specific inhibitors or prostanoid receptor-selective agonists/antagonists. Results Our data document that the dose-response curve to PGE2 is 'bell-shaped', with nano molar concentrations of PGE2 being more mitogenic than micro molar doses. Remarkably, mitogenicity inversely correlates with the ability of PGE2 doses to raise cAMP levels. Consistent with a major role for cAMP, cAMP raising agents and pertussis toxin revert the mitogenic response to PGE2. Accordingly, use of prostanoid receptor-selective agonists argues for the involvement of the EP3 receptor and serum deprivation of HT29 CRC cells specifically raises the levels of Gi-coupled EP3 splice variants. Conclusion The present data indicate that the mitogenic action of low PGE2 doses in CRC cells is mediated via Gi-proteins, most likely through the EP3 receptor subtype, and is superimposed by a second, cAMP-dependent anti-proliferative effect at higher PGE2 doses. We discuss how these findings contribute to rationalize conflictive literature data on the proliferative action of PGE2.
Collapse
Affiliation(s)
- Ivonne Löffler
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, Friedrich-Schiller-University Jena, Drackendorfer Str,1, 07747 Jena, Germany.
| | | | | | | |
Collapse
|
41
|
Sun Y, Chen J, Rigas B. Chemopreventive agents induce oxidative stress in cancer cells leading to COX-2 overexpression and COX-2-independent cell death. Carcinogenesis 2008; 30:93-100. [PMID: 18952595 DOI: 10.1093/carcin/bgn242] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemopreventive agents generate oxidative stress, which culminates in cell death and may be part of a general mechanism of chemoprevention. The redox-responsive cyclooxygenase (COX)-2, overexpressed during carcinogenesis, has been a target for cancer prevention. To assess the potential link between chemopreventive agents, oxidative stress and COX-2, we studied the chemopreventive sulindac and nitric oxide-donating aspirin (NO-ASA). Both generated oxidative stress and induced COX-2 in various cell lines, more prominently in dying cells. Two antioxidants and an inhibitor of NADPH oxidase abrogated the induction of COX-2 and cell death. Exogenous xanthine/xanthine oxidase, which produce O(2)(-)., had the same effect. Inhibition of caspases and cox-2 knockdown showed that COX-2 did not participate in reactive oxygen species (ROS) generation or cell death induction in response to NO-ASA. Our results support three potentially useful ideas: (i) the concept that ROS are a critical component of the action of chemopreventive agents; (ii) the notion that COX-2 may not be an ideal target for chemoprevention and (iii) the possibility that COX-2 may be overexpressed in cancer cells due to their state of oxidative stress. It is conceivable that, if further substantiated, these findings may inform the rational design of chemotherapeutic strategies, in particular the choice of agents in combination approaches.
Collapse
Affiliation(s)
- Yu Sun
- Division of Cancer Prevention, Stony Brook University, Life Sciences Building, Stony Brook, NY 11794-5200, USA
| | | | | |
Collapse
|
42
|
O'Callaghan G, Kelly J, Shanahan F, Houston A. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells. Br J Cancer 2008; 99:502-12. [PMID: 18648368 PMCID: PMC2527805 DOI: 10.1038/sj.bjc.6604490] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fas ligand (FasL/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E2 (PGE2), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE2 increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E2-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE2 positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE2.
Collapse
Affiliation(s)
- G O'Callaghan
- Department of Medicine, University College Cork, National University of Ireland, Clinical Science Building, Cork University Hospital, Wilton, Cork, Ireland
| | | | | | | |
Collapse
|
43
|
PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway. Blood 2008; 112:1120-8. [PMID: 18541723 DOI: 10.1182/blood-2007-09-112268] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of a new vascular network is essential for the onset and progression of many pathophysiologic processes. Cyclooxygenase-2 displays a proangiogenic activity in in vitro and in vivo models, mediated principally through its metabolite prostaglandin E(2) (PGE(2)). Here, we provide evidence for a novel signaling route through which PGE(2) activates the Alk5-Smad3 pathway in endothelial cells. PGE(2) induces Alk5-dependent Smad3 nuclear translocation and DNA binding, and the activation of this pathway involves the release of active TGFbeta from its latent form through a process mediated by the metalloproteinase MT1-MMP, whose membrane clustering is promoted by PGE(2). MT1-MMP-dependent transforming growth factor beta (TGFbeta) signaling through Alk5 is also required for PGE(2)-induced endothelial cord formation in vitro, and Alk5 kinase activity is required for PGE(2)-induced neovascularization in vivo. These findings identify a novel signaling pathway linking PGE(2) and TGFbeta, 2 effectors involved in tumor growth and angiogenesis, and reveal potential targets for the treatment of angiogenesis-related disorders.
Collapse
|
44
|
Banu N, Buda A, Chell S, Elder D, Moorghen M, Paraskeva C, Qualtrough D, Pignatelli M. Inhibition of COX-2 with NS-398 decreases colon cancer cell motility through blocking epidermal growth factor receptor transactivation: possibilities for combination therapy. Cell Prolif 2007; 40:768-79. [PMID: 17877615 PMCID: PMC6496834 DOI: 10.1111/j.1365-2184.2007.00459.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The use of non-steroidal anti-inflammatory drugs has proved of great interest in the prevention and treatment of colorectal cancer, although their precise mechanisms of action remain unclear. Overexpression of cyclooxygenase-2 (COX-2) and subsequent prostaglandin production promote metastasis and have been shown to increase cell motility in vitro. OBJECTIVE We have aimed to elucidate whether specific inhibition of COX-2 with NS-398 (NS-398 is a selective inhibitor of COX-2) would be able to inhibit motility of colorectal cancer cells and whether this was modulated through epidermal growth factor receptor (EGFR) transactivation. MATERIALS AND METHODS A transwell filter assay was used to study cell motility. Expression of COX-2, EGFR phosphorylation and prostaglandin E(2) (PGE(2)) receptors were assessed by Western blot analysis and reverse transcriptase-polymerase chain reaction. PGE(2) concentrations after NS-398 treatment were estimated by enzyme immunoassay. RESULTS Treatment with NS-398 significantly reduced PGE(2) levels and reduced cell migration in the HT29 and HCA7 colorectal carcinoma cell lines and this effect was rescued by addition of PGE(2). Furthermore, specific inhibition of COX-2 with NS-398 reduced EGFR phosphorylation in colorectal cancer cells. Direct inhibition of EGFR activity with AG1478 reduced PGE(2)-stimulated motility, clearly demonstrating that PGE(2 )acts via the EGFR-signalling pathway. The novel combination of NS-398 and AG1478 dramatically reduced migration of colorectal cancer cells. CONCLUSION The data presented indicate that the use of NS-398 in chemoprevention and adjuvant therapy for colorectal cancer may work in part, through the inhibition of cell motility. Furthermore, our data suggest that the combined use of non-steroidal anti-inflammatory drugs with EGFR antagonists could be explored further for future use in the clinic.
Collapse
Affiliation(s)
- N Banu
- Division of Histopathology, Department of Cellular and Molecular Medicine, School of Medical Sciences and Bristol Royal Infirmary, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Shen G, Khor TO, Hu R, Yu S, Nair S, Ho CT, Reddy BS, Huang MT, Newmark HL, Kong ANT. Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+ mouse. Cancer Res 2007; 67:9937-44. [PMID: 17942926 DOI: 10.1158/0008-5472.can-07-1112] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer chemopreventive agent sulforaphane (SFN) and dibenzoylmethane (DBM) showed antitumorigenesis effects in several rodent carcinogenesis models. In this study, we investigated the cancer chemopreventive effects and the underlying molecular mechanisms of dietary administration of SFN and DBM alone or in combination in the ApcMin/+ mice model. Male ApcMin/+ mice (12 per group) at age of 5 weeks were given control AIN-76A diet, diets containing 600 ppm SFN and 1.0% DBM, or a combination of 300 ppm SFN and 0.5% DBM for 10 weeks. Mice were then sacrificed, and tumor numbers and size were examined. Microarray analysis, Western blotting, ELISA, and immunohistochemical staining were done to investigate the underlying molecular mechanisms of cancer chemopreventive effects of SFN and DBM. Dietary administrations of SFN and DBM alone or in combination significantly inhibited the development of intestinal adenomas by 48% (P=0.002), 50% (P=0.001), and 57% (P<0.001), respectively. Dietary administration of 600 ppm SFN and 1.0% DBM also reduced colon tumor numbers by 80% (P=0.016) and 60% (P=0.103), respectively, whereas the combination of SFN and DBM treatment blocked the colon tumor development (P=0.002). Both SFN and DBM treatments resulted in decreased levels of prostaglandin E2 or leukotriene B4 in intestinal polyps or apparently normal mucosa. Treatments also led to the inhibition of cell survival and growth-related signaling pathways (such as Akt and extracellular signal-regulated kinase) or biomarkers (such as cyclooxygenase-2, proliferating cell nuclear antigen, cleaved caspases, cyclin D1, and p21). In conclusion, our results showed that both SFN and DBM alone as well as their combination are potent natural dietary compounds for chemoprevention of gastrointestinal cancers.
Collapse
Affiliation(s)
- Guoxiang Shen
- Center for Cancer Prevention Research, Department of Pharmaceutics, and Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Qualtrough D, Kaidi A, Chell S, Jabbour HN, Williams AC, Paraskeva C. Prostaglandin F(2alpha) stimulates motility and invasion in colorectal tumor cells. Int J Cancer 2007; 121:734-40. [PMID: 17437271 PMCID: PMC2694992 DOI: 10.1002/ijc.22755] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased expression of cyclooxygenase-2 (COX-2) and subsequent prostaglandin production is an important event in several human malignancies, including colorectal cancer. COX-2 mediated prostanoid synthesis has been shown to play a key role in tumor progression with prostaglandin E(2) (PGE(2)) being shown to promote tumor growth, invasion and angiogenesis. The role of the other prostaglandins produced by COX-2 in tumors remains poorly understood. We have shown that colorectal tumor cells produce prostaglandin F(2alpha) (PGF(2alpha)) and provide evidence that PGF(2alpha) may play an important role in colorectal tumorigenesis. Our data show that PGF(2alpha) is secreted by both colorectal adenoma and carcinoma-derived cell lines at levels in excess of those detected for PGE(2). These cell lines were also found to express the PGF(2alpha) receptor (FP) indicating potential autocrine effects of PGF(2alpha). This finding is further supported by an in vivo immunohistochemical study of FP expression in resected colon tissue. These data show epithelial expression of FP in normal colorectal mucosa and also in colorectal adenomas and carcinomas. We compared the relative abilities of PGF(2alpha) and PGE(2) to induce cell motility in vitro in colorectal tumor cell lines and show the first evidence of prostaglandin-induced cell motility in colorectal adenoma cell lines. PGF(2alpha) induced cell motility with equivalent potency to PGE(2) in all the cell lines tested and was also shown to increase the invasion of carcinoma-derived cells into reconstituted basement membrane. These data show that PGF(2alpha) may play an important role in the malignant progression of colorectal tumors.
Collapse
Affiliation(s)
- David Qualtrough
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | |
Collapse
|
47
|
Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:105-25. [PMID: 17569207 DOI: 10.1007/978-0-387-46401-5_3] [Citation(s) in RCA: 794] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin, a yellow pigment from Curcuma longa, is a major component of turmeric and is commonly used as a spice and food-coloring agent. It is also used as a cosmetic and in some medical preparations. The desirable preventive or putative therapeutic properties of curcumin have also been considered to be associated with its antioxidant and anti-inflammatory properties. Because free-radical-mediated peroxidation of membrane lipids and oxidative damage of DNA and proteins are believed to be associated with a variety of chronic pathological complications such as cancer, atherosclerosis, and neurodegenerative diseases, curcumin is thought to play a vital role against these pathological conditions. The anti-inflammatory effect of curcumin is most likely mediated through its ability to inhibit cyclooxygenase-2 (COX-2), lipoxygenase (LOX), and inducible nitric oxide synthase (iNOS). COX-2, LOX, and iNOS are important enzymes that mediate inflammatory processes. Improper upregulation of COX-2 and/or iNOS has been associated with the pathophysiology of certain types of human cancer as well as inflammatory disorders. Because inflammation is closely linked to tumor promotion, curcumin with its potent anti-inflammatory property is anticipated to exert chemopreventive effects on carcinogenesis. Hence, the past few decades have witnessed intense research devoted to the antioxidant and anti-inflammatory properties of curcumin. In this review, we describe both antioxidant and anti-inflammatory properties of curcumin, the mode of action of curcumin, and its therapeutic usage against different pathological conditions.
Collapse
Affiliation(s)
- Venugopal P Menon
- Department of Biochemistry & Center for Micronutrient Research, Annamalai University, Tamilnadu, India.
| | | |
Collapse
|
48
|
Richard CL, Lowthers EL, Blay J. 15-Deoxy-delta(12,14)-prostaglandin J(2) down-regulates CXCR4 on carcinoma cells through PPARgamma- and NFkappaB-mediated pathways. Exp Cell Res 2007; 313:3446-58. [PMID: 17707368 DOI: 10.1016/j.yexcr.2007.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 12/17/2022]
Abstract
The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE(2), PGA(2), PGD(2), PGJ(2) and 15dPGJ(2) each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD(2) and its metabolites PGJ(2) and 15dPGJ(2). Down-regulation was most rapid with the end-product 15dPGJ(2) and was accompanied by a marked reduction in CXCR4 mRNA. 15dPGJ(2) is known to be a ligand for the nuclear receptor PPARgamma. Down-regulation of CXCR4 was also observed with the PPARgamma agonist rosiglitazone, while 15dPGJ(2)-induced CXCR4 down-regulation was substantially diminished by the PPARgamma antagonists GW9662 and T0070907. These data support the involvement of PPARgamma. However, the 15dPGJ(2) analogue CAY10410, which can act on PPARgamma but which lacks the intrinsic cyclopentenone structure found in 15dPGJ(2), down-regulated CXCR4 substantially less potently than 15dPGJ(2). The cyclopentenone grouping is known to inhibit the activity of NFkappaB. Consistent with an additional role for NFkappaB, we found that the cyclopentenone prostaglandin PGA(2) and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NFkappaB p50 and that 15dPGJ(2) interfered with this p50 nuclear localization. These data suggest that 15dPGJ(2) can down-regulate CXCR4 on cancer cells through both PPARgamma and NFkappaB. 15dPGJ(2), present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.
Collapse
Affiliation(s)
- Cynthia Lee Richard
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Building, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
49
|
Hubbard NE, Lim D, Erickson KL. Conjugated linoleic acid alters matrix metalloproteinases of metastatic mouse mammary tumor cells. J Nutr 2007; 137:1423-9. [PMID: 17513401 DOI: 10.1093/jn/137.6.1423] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Conjugated linoleic acid (CLA) is a group of linoleic acid derivatives that has been implicated in animal studies to reduce a number of components of mammary tumorigenesis. Previously, we showed that CLA could alter the latency and metastasis of the highly metastatic transplantable line 4526 mouse mammary tumor. Several possible mechanisms have been proposed for the actions of CLA, but here we assessed how CLA may act to alter the expression and activity of matrix-modifying proteins within tumors from line 4526. In vitro, highly metastatic mouse mammary tumor cells had significantly decreased invasiveness after treatment with CLA, an indication that matrix-modifying proteins may have been altered. Using these same highly metastatic cells, primary tumors were grown in mice of separate groups fed 0, 0.1, 0.5, and 1% CLA (wt:wt) and evaluated for their levels and activities of matrix-modifying enzymes, enzyme inhibitors, and enzyme activators. The addition of CLA to the diet increased steady-state levels of messenger RNA (mRNA) of the matrix metalloproteinases (MMP) -2 and -9 in primary tumors removed from mice. However, western analysis revealed that although relative levels of the proform of MMP-9 were consistent with the mRNA observations, MMP-2 proform levels were actually decreased by dietary CLA. The activity of MMP-2 was barely detectable, but gelatin zymography and an in vitro activity assay showed that MMP-9 activity was significantly decreased by CLA. The steady-state mRNA and protein levels of tissue inhibitors of metalloproteinase-1 (TIMP-1) and TIMP-2, natural inhibitors of MMP, were increased at higher dietary CLA levels relative to low or no CLA. Suppression of MMP activity, therefore, may be 1 pathway through which CLA reduces tumor invasion and spread.
Collapse
Affiliation(s)
- Neil E Hubbard
- Department of Cell Biology and Human Anatomy, University of California School of Medicine, Davis, CA 95616-8643, USA.
| | | | | |
Collapse
|
50
|
Siqueira JM, Peters RR, Gazola AC, Krepsky PB, Farias MR, Rae GA, de Brum-Fernandes AJ, Ribeiro-do-Valle RM. Anti-inflammatory effects of a triterpenoid isolated from Wilbrandia ebracteata Cogn. Life Sci 2007; 80:1382-7. [PMID: 17286991 DOI: 10.1016/j.lfs.2006.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 12/12/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Wilbrandia ebracteata (WE), a Brazilian medicinal plant used in folk medicine for the treatment of rheumatic diseases, displays anti-inflammatory properties and constitutes a rich source of cucurbitacins and cucurbitacin-related compounds. The current study investigated the potential anti-inflammatory properties of Dihydrocucurbitacin B (DHCB), a cucurbitacin-derived compound isolated from roots of WE, in some in vivo and in vitro experimental models. Intraperitoneal treatment of mice with DHCB reduced both carrageenan-induced paw edema (0.3, 1 and 3 mg/kg caused inhibitions of 26, 44 and 56 % at 2 h after stimulation, respectively) and pleurisy (10 mg/kg inhibited leukocyte numbers and LTB(4) levels in the pleural fluid by 51 and 75% at 6 h after cavity challenge, respectively). In vitro, DHCB (up to 10 microg/mL) failed to modify LTB(4) production by human neutrophils or PGE(2) production by COS-7 cells transfected with COX-1, but PGE(2) production by COX-2 transfected COS-7 cells was markedly inhibited (by 72%). The levels of COX-1 or COX-2 proteins in IL-1alpha-stimulated NIH3T3 cells were unaffected by DHCB. The results corroborate the potential anti-inflammatory properties ascribed to W. ebracteata Cogn. in folk medicine and suggest that they might be attributed, at least in part, to the capacity of one of this plants main constituents, DHCB, to inhibit COX-2 activity (but not its expression) during inflammation.
Collapse
Affiliation(s)
- Jarbas Mota Siqueira
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|