1
|
Marshansky V. Discovery and Study of Transmembrane Rotary Ion-Translocating Nano-Motors: F-ATPase/Synthase of Mitochondria/Bacteria and V-ATPase of Eukaryotic Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:702-719. [PMID: 36171652 DOI: 10.1134/s000629792208003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
This review discusses the history of discovery and study of the operation of the two rotary ion-translocating ATPase nano-motors: (i) F-ATPase/synthase (holocomplex F1FO) of mitochondria/bacteria and (ii) eukaryotic V-ATPase (holocomplex V1VO). Vacuolar adenosine triphosphatase (V-ATPase) is a transmembrane multisubunit complex found in all eukaryotes from yeast to humans. It is structurally and functionally similar to the F-ATPase/synthase of mitochondria/bacteria and the A-ATPase/synthase of archaebacteria, which indicates a common evolutionary origin of the rotary ion-translocating nano-motors built into cell membranes and invented by Nature billions of years ago. Previously we have published several reviews on this topic with appropriate citations of our original research. This review is focused on the historical analysis of the discovery and study of transmembrane rotary ion-translocating ATPase nano-motors functioning in bacteria, eukaryotic cells and mitochondria of animals.
Collapse
|
2
|
Lucero RA, Mercedes EP, Thorsten L, Giovanni GC, Michael F, Guadalupe Z, Pablo PJ, Federico M, Oscar FH. Deletion of the natural inhibitory protein Inh1 in Ustilago maydis has no effect on the dimeric state of the F 1F O-ATP synthase but increases the ATPase activity and reduces the stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148429. [PMID: 33862003 DOI: 10.1016/j.bbabio.2021.148429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Transduction of electrochemical proton gradient into ATP synthesis is performed by F1FO-ATP synthase. The reverse reaction is prevented by the regulatory subunit Inh1. Knockout of the inh1 gene in the basidiomycete Ustilago maydis was generated in order to study the function of this protein in the mitochondrial metabolism and cristae architecture. Deletion of inh1 gen did not affect cell growth, glucose consumption, and biomass production. Ultrastructure and fluorescence analyzes showed that size, cristae shape, network, and distribution of mitochondria was similar to wild strain. Membrane potential, ATP synthesis, and oxygen consumption in wild type and mutant strains had similar values. Kinetic analysis of ATPase activity of complex V in permeabilized mitochondria showed similar values of Vmax and KM for both strains, and no effect of pH was observed. Interestingly, the dimeric state of complex V occurs in the mutant strain, indicating that this subunit is not essential for dimerization. ATPase activity of the isolated monomeric and dimeric forms of complex V indicated Vmax values 4-times higher for the mutant strain than for the WT strain, suggesting that the absence of Inh1 subunit increased ATPase activity, and supporting a regulatory role for this protein; however, no effect of pH was observed. ATPase activity of WT oligomers was stimulated several times by dodecyl-maltoside (DDM), probably by removal of ADP from F1 sector, while DDM induced an inactive form of the mutant oligomers.
Collapse
Affiliation(s)
- Romero-Aguilar Lucero
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, México, Mexico
| | - Esparza-Perusquía Mercedes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, México, Mexico
| | - Langner Thorsten
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Department of Biology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - García-Cruz Giovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, México, Mexico
| | - Feldbrügge Michael
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Department of Biology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Zavala Guadalupe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Pardo Juan Pablo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, México, Mexico
| | - Martínez Federico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, México, Mexico
| | - Flores-Herrera Oscar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, México, Mexico.
| |
Collapse
|
3
|
Vinogradov AD. New Perspective on the Reversibility of ATP Synthesis and Hydrolysis by F o×F 1-ATP Synthase (Hydrolase). BIOCHEMISTRY (MOSCOW) 2019; 84:1247-1255. [PMID: 31760915 DOI: 10.1134/s0006297919110038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fo×F1-ATPases of mitochondria, chloroplasts, and microorganisms catalyze transformation of proton motive force (the difference between the electrochemical potentials of hydrogen ion across a coupling membrane) to the free energy of ATP phosphoryl potential. It is often stated that Fo×F1-ATPases operate as reversible chemo-mechano-electrical molecular machines that provide either ATP synthesis or hydrolysis depending on particular physiological demands of an organism; the microreversibility principle of the enzyme catalysis is usually taken as a dogma. Since 1980, the author has upheld the view that the mechanisms of ATP synthesis and hydrolysis by the Fo×F1 complex are different (Vinogradov, A. D. (2000) J. Exp. Biol., 203, 41-49). In this paper, the author proposes a new model considering the existence in coupling membranes of two non-equilibrium isoforms of Fo×F1 unidirectionally catalyzing synthesis and/or hydrolysis of ATP.
Collapse
Affiliation(s)
- A D Vinogradov
- Lomonosov Moscow State University, School of Biology, Department of Biochemistry, Moscow, 119234, Russia.
| |
Collapse
|
4
|
Lapashina AS, Shugaeva TE, Berezina KM, Kholina TD, Feniouk BA. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2019; 84:407-415. [PMID: 31228932 DOI: 10.1134/s0006297919040084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proton-translocating FOF1-ATP synthase (F-type ATPase, F-ATPase or FOF1) performs ATP synthesis/hydrolysis coupled to proton transport across the membrane in mitochondria, chloroplasts, and most eubacteria. The ATPase activity of the enzyme is suppressed in the absence of protonmotive force by several regulatory mechanisms. The most conserved of these mechanisms is noncompetitive inhibition of ATP hydrolysis by the MgADP complex (ADP-inhibition) which has been found in all the enzymes studied. When MgADP binds without phosphate in the catalytic site, the enzyme enters an inactive state, and MgADP gets locked in the catalytic site and does not exchange with the medium. The degree of ADP-inhibition varies in FOF1 enzymes from different organisms. In the Escherichia coli enzyme, ADP-inhibition is relatively weak and, in contrast to other organisms, is enhanced rather than suppressed by phosphate. In this study, we used site-directed mutagenesis to investigate the role of amino acid residues β139, β158, β189, and β319 of E. coli FOF1-ATP synthase in the mechanism of ADP-inhibition and its modulation by the protonmotive force. The amino acid residues in these positions differ in the enzymes from beta- and gammaproteobacteria (including E. coli) and FOF1-ATP synthases from other eubacteria, mitochondria, and chloroplasts. The βN158L substitution produced no effect on the enzyme activity, while substitutions βF139Y, βF189L, and βV319T only slightly affected ATP (1 mM) hydrolysis. However, in a mixture of ATP and ADP, the activity of the mutants was less suppressed than that of the wild-type enzyme. In addition, mutations βF189L and βV319T weakened the ATPase activity inhibition by phosphate in the presence of ADP. We suggest that residues β139, β189, and β319 are involved in the mechanism of ADP-inhibition and its modulation by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T E Shugaeva
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - K M Berezina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - T D Kholina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
The β-hairpin region of the cyanobacterial F 1-ATPase γ-subunit plays a regulatory role in the enzyme activity. Biochem J 2019; 476:1771-1780. [PMID: 31164401 DOI: 10.1042/bcj20190242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/21/2023]
Abstract
The γ-subunit of cyanobacterial and chloroplast ATP synthase, the rotary shaft of F1-ATPase, equips a specific insertion region that is only observed in photosynthetic organisms. This region plays a physiologically pivotal role in enzyme regulation, such as in ADP inhibition and redox response. Recently solved crystal structures of the γ-subunit of F1-ATPase from photosynthetic organisms revealed that the insertion region forms a β-hairpin structure, which is positioned along the central stalk. The structure-function relationship of this specific region was studied by constraining the expected conformational change in this region caused by the formation of a disulfide bond between Cys residues introduced on the central stalk and this β-hairpin structure. This fixation of the β-hairpin region in the α3β3γ complex affects both ADP inhibition and the binding of the ε-subunit to the complex, indicating the critical role that the β-hairpin region plays as a regulator of the enzyme. This role must be important for the maintenance of the intracellular ATP levels in photosynthetic organisms.
Collapse
|
6
|
Lapashina AS, Feniouk BA. ADP-Inhibition of H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2018; 83:1141-1160. [PMID: 30472953 DOI: 10.1134/s0006297918100012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Kondo K, Takeyama Y, Sunamura EI, Madoka Y, Fukaya Y, Isu A, Hisabori T. Amputation of a C-terminal helix of the γ subunit increases ATP-hydrolysis activity of cyanobacterial F 1 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:319-325. [PMID: 29470949 DOI: 10.1016/j.bbabio.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/01/2022]
Abstract
F1 is a soluble part of FoF1-ATP synthase and performs a catalytic process of ATP hydrolysis and synthesis. The γ subunit, which is the rotary shaft of F1 motor, is composed of N-terminal and C-terminal helices domains, and a protruding Rossman-fold domain located between the two major helices parts. The N-terminal and C-terminal helices domains of γ assemble into an antiparallel coiled-coil structure, and are almost embedded into the stator ring composed of α3β3 hexamer of the F1 molecule. Cyanobacterial and chloroplast γ subunits harbor an inserted sequence of 30 or 39 amino acids length within the Rossman-fold domain in comparison with bacterial or mitochondrial γ. To understand the structure-function relationship of the γ subunit, we prepared a mutant F1-ATP synthase of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, in which the γ subunit is split into N-terminal α-helix along with the inserted sequence and the remaining C-terminal part. The obtained mutant showed higher ATP-hydrolysis activities than those containing the wild-type γ. Contrary to our expectation, the complexes containing the split γ subunits were mostly devoid of the C-terminal helix. We further investigated the effect of post-assembly cleavage of the γ subunit. We demonstrate that insertion of the nick between two helices of the γ subunit imparts resistance to ADP inhibition, and the C-terminal α-helix is dispensable for ATP-hydrolysis activity and plays a crucial role in the assembly of F1-ATP synthase.
Collapse
Affiliation(s)
- Kumiko Kondo
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yu Takeyama
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | - Ei-Ichiro Sunamura
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yuka Madoka
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yuki Fukaya
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | - Atsuko Isu
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan.
| |
Collapse
|
8
|
Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 2015; 34:1475-86. [PMID: 24727893 DOI: 10.1038/onc.2014.96] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/20/2014] [Accepted: 02/27/2014] [Indexed: 12/14/2022]
Abstract
The term mitochondrial permeability transition (MPT) is commonly used to indicate an abrupt increase in the permeability of the inner mitochondrial membrane to low molecular weight solutes. Widespread MPT has catastrophic consequences for the cell, de facto marking the boundary between cellular life and death. MPT results indeed in the structural and functional collapse of mitochondria, an event that commits cells to suicide via regulated necrosis or apoptosis. MPT has a central role in the etiology of both acute and chronic diseases characterized by the loss of post-mitotic cells. Moreover, cancer cells are often relatively insensitive to the induction of MPT, underlying their increased resistance to potentially lethal cues. Thus, intense efforts have been dedicated not only at the understanding of MPT in mechanistic terms, but also at the development of pharmacological MPT modulators. In this setting, multiple mitochondrial and extramitochondrial proteins have been suspected to critically regulate the MPT. So far, however, only peptidylprolyl isomerase F (best known as cyclophilin D) appears to constitute a key component of the so-called permeability transition pore complex (PTPC), the supramolecular entity that is believed to mediate MPT. Here, after reviewing the structural and functional features of the PTPC, we summarize recent findings suggesting that another of its core components is represented by the c subunit of mitochondrial ATP synthase.
Collapse
Affiliation(s)
- M Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Interdisciplinary Centre for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - C Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - O Kepp
- 1] Equipe 11 labelisée par la Ligue Nationale contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France [2] Université Paris Descartes/Paris 5, Sorbonne Paris Cité, Paris, France [3] Metabolomics and Cell Biology platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - G Kroemer
- 1] Equipe 11 labelisée par la Ligue Nationale contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France [2] Université Paris Descartes/Paris 5, Sorbonne Paris Cité, Paris, France [3] Metabolomics and Cell Biology platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France [4] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - L Galluzzi
- 1] Equipe 11 labelisée par la Ligue Nationale contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France [2] Université Paris Descartes/Paris 5, Sorbonne Paris Cité, Paris, France [3] Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - P Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Interdisciplinary Centre for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Buchert F, Konno H, Hisabori T. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:441-450. [PMID: 25660164 DOI: 10.1016/j.bbabio.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 11/26/2022]
Abstract
The soluble F1 complex of ATP synthase (FoF1) is capable of ATP hydrolysis, accomplished by the minimum catalytic core subunits α3β3γ. A special feature of cyanobacterial F1 and chloroplast F1 (CF1) is an amino acid sequence inserted in the γ-subunit. The insertion is extended slightly into the CF1 enzyme containing two additional cysteines for regulation of ATPase activity via thiol modulation. This molecular switch was transferred to a chimeric F1 by inserting the cysteine-containing fragment from spinach CF1 into a cyanobacterial γ-subunit [Y. Kim et al., redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch, J Biol Chem, 286 (2011) 9071-9078]. Under oxidizing conditions, the obtained F1 tends to lapse into an ADP-inhibited state, a common regulation mechanism to prevent wasteful ATP hydrolysis under unfavorable circumstances. However, the information flow between thiol modulation sites on the γ-subunit and catalytic sites on the β-subunits remains unclear. Here, we clarified a possible interplay for the CF1-ATPase redox regulation between structural elements of the βDELSEED-loop and the γ-subunit neck region, i.e., the most convex part of the α-helical γ-termini. Critical residues were assigned on the β-subunit, which received the conformation change signal produced by disulfide/dithiol formation on the γ-subunit. Mutant response to the ATPase redox regulation ranged from lost to hypersensitive. Furthermore, mutant cross-link experiments and inversion of redox regulation indicated that the γ-redox state might modulate the subunit interface via reorientation of the βDELSEED motif region.
Collapse
Affiliation(s)
- Felix Buchert
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan; Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan.
| |
Collapse
|
10
|
Malyan AN. Noncatalytic nucleotide binding sites: properties and mechanism of involvement in ATP synthase activity regulation. BIOCHEMISTRY (MOSCOW) 2014; 78:1512-23. [PMID: 24490737 DOI: 10.1134/s0006297913130099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP synthases (FoF1-ATPases) of chloroplasts, mitochondria, and bacteria catalyze ATP synthesis or hydrolysis coupled with the transmembrane transfer of protons or sodium ions. Their activity is regulated through their reversible inactivation resulting from a decreased transmembrane potential difference. The inactivation is believed to conserve ATP previously synthesized under conditions of sufficient energy supply against unproductive hydrolysis. This review is focused on the mechanism of nucleotide-dependent regulation of the ATP synthase activity where the so-called noncatalytic nucleotide binding sites are involved. Properties of these sites varying upon free enzyme transition to its membrane-bound form, their dependence on membrane energization, and putative mechanisms of noncatalytic site-mediated regulation of the ATP synthase activity are discussed.
Collapse
Affiliation(s)
- A N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
11
|
Hisabori T, Sunamura EI, Kim Y, Konno H. The chloroplast ATP synthase features the characteristic redox regulation machinery. Antioxid Redox Signal 2013; 19:1846-54. [PMID: 23145525 PMCID: PMC3837435 DOI: 10.1089/ars.2012.5044] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. RECENT ADVANCES The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. CRITICAL ISSUES Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. FUTURE DIRECTIONS The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.
Collapse
Affiliation(s)
- Toru Hisabori
- 1 Chemical Resources Laboratory, Tokyo Institute of Technology , Yokohama, Japan
| | | | | | | |
Collapse
|
12
|
Adaptation in Haloalkaliphiles and Natronophilic Bacteria. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Sunamura EI, Konno H, Imashimizu M, Mochimaru M, Hisabori T. A conformational change of the γ subunit indirectly regulates the activity of cyanobacterial F1-ATPase. J Biol Chem 2012; 287:38695-704. [PMID: 23012354 DOI: 10.1074/jbc.m112.395053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30-40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α(3)β(3)γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ε inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ε inhibition.
Collapse
Affiliation(s)
- Ei-Ichiro Sunamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
14
|
Sims LM, Igarashi RY. Regulation of the ATPase activity of ABCE1 from Pyrococcus abyssi by Fe-S cluster status and Mg²⁺: implication for ribosomal function. Arch Biochem Biophys 2012; 524:114-22. [PMID: 22609615 DOI: 10.1016/j.abb.2012.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 01/29/2023]
Abstract
Ribosomal function is dependent on multiple proteins. The ABCE1 ATPase, a unique ABC superfamily member that bears two Fe₄S₄ clusters, is crucial for ribosomal biogenesis and recycling. Here, the ATPase activity of the Pyrococcus abyssi ABCE1 (PabABCE1) was studied using both apo- (without reconstituted Fe-S clusters) and holo- (with full complement of Fe-S clusters reconstituted post-purification) forms, and is shown to be jointly regulated by the status of Fe-S clusters and Mg²⁺. Typically ATPases require Mg²⁺, as is true for PabABCE1, but Mg²⁺ also acts as a negative allosteric effector that modulates ATP affinity of PabABCE1. Physiological [Mg²⁺] inhibits the PabABCE1 ATPase (K(i) of ∼1 μM) for both apo- and holo-PabABCE1. Comparative kinetic analysis of Mg²⁺ inhibition shows differences in degree of allosteric regulation between the apo- and holo-PabABCE1 where the apparent ATP K(m) of apo-PabABCE1 increases >30-fold from ∼30 μM to over 1 mM with M²⁺. This effect would significantly convert the ATPase activity of PabABCE1 from being independent of cellular energy charge (φ) to being dependent on φ with cellular [Mg²⁺]. These findings uncover intricate overlapping effects by both [Mg²⁺] and the status of Fe-S clusters that regulate ABCE1's ATPase activity with implications to ribosomal function.
Collapse
Affiliation(s)
- Lynn M Sims
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | | |
Collapse
|
15
|
Chinopoulos C, Adam-Vizi V. Modulation of the mitochondrial permeability transition by cyclophilin D: moving closer to F(0)-F(1) ATP synthase? Mitochondrion 2012; 12:41-5. [PMID: 21586346 DOI: 10.1016/j.mito.2011.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/21/2011] [Accepted: 04/29/2011] [Indexed: 01/08/2023]
Abstract
Cyclophilin D was recently shown to mask an inhibitory site of the mitochondrial permeability transition pore (PTP) for phosphate, and to constitutively bind F(0)-F(1) ATP synthase resulting in the slowing of ATP synthesis and hydrolysis rates, thus regulating matrix adenine nucleotide levels. Here we review the striking similarities of the factors affecting the threshold for PTP induction, to those affecting binding of phosphate to formerly proposed sides on F(1)-ATPase affecting ATP hydrolytic activity, including critical arginine residues, matrix pH, [Mg(2+)], adenine nucleotides and proton motive force. Based on these similarities, we scrutinize the hypothesis that in depolarized mitochondria exhibiting reversal of F(0)-F(1) ATP synthase operation, the genetic ablation of cyclophilin D or its inhibition by cyclosporin A results in accelerated proton pumping by ATP hydrolysis, opposing a further decrease in membrane potential and promoting high matrix phosphate levels, both negatively affecting the probability of PTP opening.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary
| | | |
Collapse
|
16
|
Konno H, Isu A, Kim Y, Murakami-Fuse T, Sugano Y, Hisabori T. Characterization of the relationship between ADP- and epsilon-induced inhibition in cyanobacterial F1-ATPase. J Biol Chem 2011; 286:13423-9. [PMID: 21345803 DOI: 10.1074/jbc.m110.155986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATPase activity of chloroplast and bacterial F(1)-ATPase is strongly inhibited by both the endogenous inhibitor ε and tightly bound ADP. Although the physiological significance of these inhibitory mechanisms is not very well known for the membrane-bound F(0)F(1), these are very likely to be important in avoiding the futile ATP hydrolysis reaction and ensuring efficient ATP synthesis in vivo. In a previous study using the α(3)β(3)γ complex of F(1) obtained from the thermophilic cyanobacteria, Thermosynechococcus elongatus BP-1, we succeeded in determining the discrete stop position, ∼80° forward from the pause position for ATP binding, caused by ε-induced inhibition (ε-inhibition) during γ rotation (Konno, H., Murakami-Fuse, T., Fujii, F., Koyama, F., Ueoka-Nakanishi, H., Pack, C. G., Kinjo, M., and Hisabori, T. (2006) EMBO J. 25, 4596-4604). Because γ in ADP-inhibited F(1) also pauses at the same position, ADP-induced inhibition (ADP-inhibition) was assumed to be linked to ε-inhibition. However, ADP-inhibition and ε-inhibition should be independent phenomena from each other because the ATPase core complex, α(3)β(3)γ, also lapses into the ADP-inhibition state. By way of thorough biophysical and biochemical analyses, we determined that the ε subunit inhibition mechanism does not directly correlate with ADP-inhibition. We suggest here that the cyanobacterial ATP synthase ε subunit carries out an important regulatory role in acting as an independent "braking system" for the physiologically unfavorable ATP hydrolysis reaction.
Collapse
Affiliation(s)
- Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Milgrom YM. ATP binding and hydrolysis steps of the uni-site catalysis by the mitochondrial F(1)-ATPase are affected by inorganic phosphate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1768-74. [PMID: 20646992 DOI: 10.1016/j.bbabio.2010.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
The effect of inorganic phosphate (P(i)) on uni-site ATP binding and hydrolysis by the nucleotide-depleted F(1)-ATPase from beef heart mitochondria (ndMF(1)) has been investigated. It is shown for the first time that P(i) decreases the apparent rate constant of uni-site ATP binding by ndMF(1) 3-fold with the K(d) of 0.38+/-0.14mM. During uni-site ATP hydrolysis, P(i) also shifts equilibrium between bound ATP and ADP+P(i) in the direction of ATP synthesis with the K(d) of 0.17+/-0.03mM. However, 10mM P(i) does not significantly affect ATP binding during multi-site catalysis.
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
18
|
Sunamura EI, Konno H, Imashimizu-Kobayashi M, Sugano Y, Hisabori T. Physiological impact of intrinsic ADP inhibition of cyanobacterial FoF1 conferred by the inherent sequence inserted into the gammasubunit. PLANT & CELL PHYSIOLOGY 2010; 51:855-65. [PMID: 20421199 DOI: 10.1093/pcp/pcq061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The F(o)F(1)-ATPase, which synthesizes ATP with a rotary motion, is highly regulated in vivo in order to function efficiently, although there remains a limited understanding of the physiological significance of this regulation. Compared with its bacterial and mitochondrial counterparts, the gamma subunit of cyanobacterial F(1), which makes up the central shaft of the motor enzyme, contains an additional inserted region. Although deletion of this region results in the acceleration of the rate of ATP hydrolysis, the functional significance of the region has not yet been determined. By analysis of rotation, we successfully determined that this region confers the ability to shift frequently into an ADP inhibition state; this is a highly conserved regulatory mechanism which prevents ATP synthase from carrying out the reverse reaction. We believe that the physiological significance of this increased likelihood of shifting into the ADP inhibition state allows the intracellular ATP levels to be maintained, which is especially critical for photosynthetic organisms.
Collapse
Affiliation(s)
- Ei-Ichiro Sunamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
19
|
Pronin AS, Malyan AN. Interaction of pyrophosphate with catalytic and noncatalytic sites of chloroplast ATP synthase. BIOCHEMISTRY. BIOKHIMIIA 2009; 74:775-80. [PMID: 19747098 DOI: 10.1134/s0006297909070104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of pyrophosphate (PP(i)) on labeled nucleotide incorporation into noncatalytic sites of chloroplast ATP synthase was studied. In illuminated thylakoid membranes, PP(i) competed with nucleotides for binding to noncatalytic sites. In the dark, PP(i) was capable of tight binding to noncatalytic sites previously vacated by endogenous nucleotides, thereby preventing their subsequent interaction with ADP and ATP. The effect of PP(i) on ATP hydrolysis kinetics was also elucidated. In the dark at micromolar ATP concentrations, PP(i) inhibited ATPase activity of ATP synthase. Addition of PP(i) to the reaction mixture at the step of preliminary illumination inhibited high initial activity of the enzyme, but stimulated its activity during prolonged incubation. These results indicate that the stimulating effect of PP(i) light preincubation with thylakoid membranes on ATPase activity is caused by its binding to ATP synthase noncatalytic sites. The inhibition of ATP synthase results from competition between PP(i) and ATP for binding to catalytic sites.
Collapse
Affiliation(s)
- A S Pronin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
20
|
Effect of epsilon subunit on the rotation of thermophilic Bacillus F1-ATPase. FEBS Lett 2009; 583:1121-6. [PMID: 19265694 DOI: 10.1016/j.febslet.2009.02.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 11/22/2022]
Abstract
F(1)-ATPase is an ATP-driven motor in which gammaepsilon rotates in the alpha(3)beta(3)-cylinder. It is attenuated by MgADP inhibition and by the epsilon subunit in an inhibitory form. The non-inhibitory form of epsilon subunit of thermophilic Bacillus PS3 F(1)-ATPase is stabilized by ATP-binding with micromolar K(d) at 25 degrees C. Here, we show that at [ATP]>2 microM, epsilon does not affect rotation of PS3 F(1)-ATPase but, at 200 nM ATP, epsilon prolongs the pause of rotation caused by MgADP inhibition while the frequency of the pause is unchanged. It appears that epsilon undergoes reversible transition to the inhibitory form at [ATP] below K(d).
Collapse
|
21
|
Hong S, Pedersen PL. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 2008; 72:590-641, Table of Contents. [PMID: 19052322 PMCID: PMC2593570 DOI: 10.1128/mmbr.00016-08] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and P(i), the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology.
Collapse
Affiliation(s)
- Sangjin Hong
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
22
|
Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase. Results Probl Cell Differ 2007; 45:279-308. [PMID: 18026702 DOI: 10.1007/400_2007_043] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
H(+)-F(O)F(1)-ATP synthase catalyzes synthesis of ATP from ADP and inorganic phosphate using the energy of transmembrane electrochemical potential difference of proton (deltamu(H)(+). The enzyme can also generate this potential difference by working as an ATP-driven proton pump. Several regulatory mechanisms are known to suppress the ATPase activity of F(O)F(1): 1. Non-competitive inhibition by MgADP, a feature shared by F(O)F(1) from bacteria, chloroplasts and mitochondria 2. Inhibition by subunit epsilon in chloroplast and bacterial enzyme 3. Inhibition upon oxidation of two cysteines in subunit gamma in chloroplast F(O)F(1) 4. Inhibition by an additional regulatory protein (IF(1)) in mitochondrial enzyme In this review we summarize the information available on these regulatory mechanisms and discuss possible interplay between them.
Collapse
|
23
|
Feniouk BA, Rebecchi A, Giovannini D, Anefors S, Mulkidjanian AY, Junge W, Turina P, Melandri BA. Met23Lys mutation in subunit gamma of F(O)F(1)-ATP synthase from Rhodobacter capsulatus impairs the activation of ATP hydrolysis by protonmotive force. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1319-30. [PMID: 17904517 DOI: 10.1016/j.bbabio.2007.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/26/2022]
Abstract
H(+)-F(O)F(1)-ATP synthase couples proton flow through its membrane portion, F(O), to the synthesis of ATP in its headpiece, F(1). Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the epsilon subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the gamma subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced gammaLys23 with the DELSEED region of subunit beta stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit gamma rotation which is necessary for the activation.
Collapse
Affiliation(s)
- Boris A Feniouk
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, D-49069, Osnabrück, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Malyan AN. Interaction of ADP and ATP with noncatalytic sites of isolated and membrane-bound chloroplast coupling factor CF1. BIOCHEMISTRY. BIOKHIMIIA 2007; 72:728-34. [PMID: 17680764 DOI: 10.1134/s0006297907070061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study of ATP and ADP binding to noncatalytic sites of membrane-bound CF1 (ATP synthase) revealed two noncatalytic sites with different specificities and affinities for nucleotides. One of these is characterized by a high affinity and specificity to ADP (Kd=2.6+/-0.3 microM). However, a certain increase in ADP apparent dissociation constant at high ATP/ADP ratio in the medium allows a possibility that ATP binds to this site as well. The other site displays high specificity to ATP. When the ADP-binding site is vacant, it shows a comparatively low affinity for ATP, which greatly increases with increasing ADP concentration accompanied by filling of the ADP-binding site. The reported specificities of these two sites are independent of thylakoid membrane energization, since both in the dark and in the light the ratios of ATP/ADP tightly bound to the noncatalytic sites were very close. The difference in noncatalytic site affinity for ATP and ADP is shown to depend on the amount of delta subunit in a particular sample. Thylakoid membrane ATP synthase, with stoichiometric content of delta-subunit (one delta-subunit per CF1 molecule), showed the maximal difference in ADP and ATP affinities for the noncatalytic sites. For CF1, with substoichiometric delta subunit values, this difference was less, and after delta subunit removal it decreased still more.
Collapse
Affiliation(s)
- A N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
25
|
Feniouk BA, Suzuki T, Yoshida M. Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase. J Biol Chem 2006; 282:764-72. [PMID: 17092944 DOI: 10.1074/jbc.m606321200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP synthase couples transmembrane proton transport, driven by the proton motive force (pmf), to the synthesis of ATP from ADP and inorganic phosphate (P(i)). In certain bacteria, the reaction is reversed and the enzyme generates pmf, working as a proton-pumping ATPase. The ATPase activity of bacterial enzymes is prone to inhibition by both ADP and the C-terminal domain of subunit epsilon. We studied the effects of ADP, P(i), pmf, and the C-terminal domain of subunit epsilon on the ATPase activity of thermophilic Bacillus PS3 and Escherichia coli ATP synthases. We found that pmf relieved ADP inhibition during steady-state ATP hydrolysis, but only in the presence of P(i). The C-terminal domain of subunit epsilon in the Bacillus PS3 enzyme enhanced ADP inhibition by counteracting the effects of pmf. It appears that these features allow the enzyme to promptly respond to changes in the ATP:ADP ratio and in pmf levels in order to avoid potentially wasteful ATP hydrolysis in vivo.
Collapse
Affiliation(s)
- Boris A Feniouk
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Midori-ku, Yokohama 226-0026, Japan
| | | | | |
Collapse
|
26
|
Konno H, Murakami-Fuse T, Fujii F, Koyama F, Ueoka-Nakanishi H, Pack CG, Kinjo M, Hisabori T. The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the epsilon subunit. EMBO J 2006; 25:4596-604. [PMID: 16977308 PMCID: PMC1589999 DOI: 10.1038/sj.emboj.7601348] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/22/2006] [Indexed: 11/09/2022] Open
Abstract
The chloroplast-type F(1) ATPase is the key enzyme of energy conversion in chloroplasts, and is regulated by the endogenous inhibitor epsilon, tightly bound ADP, the membrane potential and the redox state of the gamma subunit. In order to understand the molecular mechanism of epsilon inhibition, we constructed an expression system for the alpha(3)beta(3)gamma subcomplex in thermophilic cyanobacteria allowing thorough investigation of epsilon inhibition. epsilon Inhibition was found to be ATP-independent, and different to that observed for bacterial F(1)-ATPase. The role of the additional region on the gamma subunit of chloroplast-type F(1)-ATPase in epsilon inhibition was also determined. By single molecule rotation analysis, we succeeded in assigning the pausing angular position of gamma in epsilon inhibition, which was found to be identical to that observed for ATP hydrolysis, product release and ADP inhibition, but distinctly different from the waiting position for ATP binding. These results suggest that the epsilon subunit of chloroplast-type ATP synthase plays an important regulator for the rotary motor enzyme, thus preventing wasteful ATP hydrolysis.
Collapse
Affiliation(s)
- Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Tomoe Murakami-Fuse
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Fumihiko Fujii
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Fumie Koyama
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Hanayo Ueoka-Nakanishi
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Chan-Gi Pack
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masataka Kinjo
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan. Tel.: +81 45 924 5234; Fax: +81 45 924 5277; E-mail:
| |
Collapse
|
27
|
Berger G, Girault G, Pezennec S, Zimmermann JL. The use of HPLC for the Study of Chloroplast ATPase Enzymatic Activity and ATP Binding. J LIQ CHROMATOGR R T 2006. [DOI: 10.1080/10826079808006600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- G. Berger
- a Section de Bioenergetique , DBCM, CEA Saclay , Gif sur Yvette Cedex, F-91191, France
| | - G. Girault
- a Section de Bioenergetique , DBCM, CEA Saclay , Gif sur Yvette Cedex, F-91191, France
| | - S. Pezennec
- a Section de Bioenergetique , DBCM, CEA Saclay , Gif sur Yvette Cedex, F-91191, France
| | - J. L. Zimmermann
- a Section de Bioenergetique , DBCM, CEA Saclay , Gif sur Yvette Cedex, F-91191, France
| |
Collapse
|
28
|
Malyan AN. Light-dependent incorporation of adenine nucleotide into noncatalytic sites of chloroplast ATP synthase. BIOCHEMISTRY (MOSCOW) 2006; 70:1245-50. [PMID: 16336184 DOI: 10.1007/s10541-005-0254-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of ADP and ATP to noncatalytic sites of dithiothreitol-modified chloroplast ATP synthase was studied. Selective binding of nucleotides to noncatalytic sites was provided by preliminary light incubation of thylakoid membranes with [14C]ADP followed by its dissociation from catalytic sites during dark ATP hydrolysis stimulated by bisulfite ions ("cold chase"). Incorporation of labeled nucleotides increased with increasing light intensity. Concentration-dependent equilibrium between free and bound nucleotides was achieved within 2-10 min with the following characteristic parameters: the maximal value of nucleotide incorporation was 1.5 nmol/mg of chlorophyll, and the dissociation constant was 1.5 microM. The dependence of nucleotide incorporation on Mg2+ concentration was slight and changed insignificantly upon substituting Ca2+ for Mg2+. Dissociation of nucleotide from noncatalytic sites was illumination-dependent. The dissociation kinetics suggested the existence of at least two nucleotide-binding sites with different dissociation rate constants.
Collapse
Affiliation(s)
- A N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
29
|
Feniouk BA, Suzuki T, Yoshida M. The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:326-38. [PMID: 16701076 DOI: 10.1016/j.bbabio.2006.03.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/13/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
The regulation of ATP synthase activity is complex and involves several distinct mechanisms. In bacteria and chloroplasts, subunit epsilon plays an important role in this regulation, (i) affecting the efficiency of coupling, (ii) influencing the catalytic pathway, and (iii) selectively inhibiting ATP hydrolysis activity. Several experimental studies indicate that the regulation is achieved through large conformational transitions of the alpha-helical C-terminal domain of subunit epsilon that occur in response to membrane energization, change in ATP/ADP ratio or addition of inhibitors. This review summarizes the experimental data obtained on different organisms that clarify some basic features as well as some molecular details of this regulatory mechanism. Multiple functions of subunit epsilon, its role in the difference between the catalytic pathways of ATP synthesis and hydrolysis and its influence on the inhibition of ATP hydrolysis by ADP are also discussed.
Collapse
Affiliation(s)
- Boris A Feniouk
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation (JST), 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan.
| | | | | |
Collapse
|
30
|
Feniouk BA, Junge W. Regulation of the F0F1-ATP synthase: the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation. FEBS Lett 2005; 579:5114-8. [PMID: 16154570 DOI: 10.1016/j.febslet.2005.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 11/22/2022]
Abstract
F(0)F(1)-ATP synthase couples ATP synthesis/hydrolysis with transmembrane proton transport. The catalytic mechanism involves rotation of the gamma epsilon c(approximately 10)-subunits complex relative to the rest of the enzyme. In the absence of protonmotive force the enzyme is inactivated by the tight binding of MgADP. Subunit epsilon also modulates the activity: its conformation can change from a contracted to extended form with C-terminus stretched towards F(1). The latter form inhibits ATP hydrolysis (but not synthesis). We propose that the directionality of the coiled-coil subunit gamma rotation determines whether subunit epsilon is in contracted or extended form. Block of rotation by MgADP presumably induces the extended conformation of subunit epsilon. This conformation might serve as a safety lock, stabilizing the ADP-inhibited state upon de-energization and preventing spontaneous re-activation and wasteful ATP hydrolysis. The hypothesis merges the known regulatory effects of ADP, protonmotive force and conformational changes of subunit epsilon into a consistent picture.
Collapse
Affiliation(s)
- Boris A Feniouk
- Division of Biophysics, Faculty of Biology/Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany.
| | | |
Collapse
|
31
|
Territo PR, French SA, Dunleavy MC, Evans FJ, Balaban RS. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering. J Biol Chem 2001; 276:2586-99. [PMID: 11029457 DOI: 10.1074/jbc.m002923200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parallel activation of heart mitochondria NADH and ATP production by Ca(2+) has been shown to involve the Ca(2+)-sensitive dehydrogenases and the F(0)F(1)-ATPase. In the current study we hypothesize that the response time of Ca(2+)-activated ATP production is rapid enough to support step changes in myocardial workload ( approximately 100 ms). To test this hypothesis, the rapid kinetics of Ca(2+) activation of mV(O(2)), [NADH], and light scattering were evaluated in isolated porcine heart mitochondria at 37 degrees C using a variety of optical techniques. The addition of Ca(2+) was associated with an initial response time (IRT) of mV(O(2)) that was dose-dependent with a minimum IRT of 0.27 +/- 0.02 s (n = 41) at 535 nm Ca(2+). The IRTs for NADH fluorescence and light scattering in response to Ca(2+) additions were similar to mV(O(2)). The Ca(2+) IRT for mV(O(2)) was significantly shorter than 1.6 mm ADP (2.36 +/- 0.47 s; p < or = 0.001, n = 13), 2.2 mm P(i) (2.32 +/- 0.29, p < or = 0.001, n = 13), or 10 mm creatine (15.6.+/-1.18 s, p < or = 0.001, n = 18) under similar experimental conditions. Calcium effects were inhibited with 8 microm ruthenium red (2.4 +/- 0.31 s; p < or = 0.001, n = 16) and reversed with EGTA (1.6 +/- 0.44; p < or = 0.01, n = 6). Estimates of Ca(2+) uptake into mitochondria using optical Ca(2+) indicators trapped in the matrix revealed a sufficiently rapid uptake to cause the metabolic effects observed. These data are consistent with the notion that extramitochondrial Ca(2+) can modify ATP production, via an increase in matrix Ca(2+) content, rapidly enough to support cardiac work transitions in vivo.
Collapse
Affiliation(s)
- P R Territo
- Laboratory of Cardiac Energetics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1061, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The mitochondrial ATP synthase is a molecular motor that drives the phosphorylation of ADP to ATP. The yeast mitochondrial ATP synthase is composed of at least 19 different peptides, which comprise the F1 catalytic domain, the F0 proton pore, and two stalks, one of which is thought to act as a stator to link and hold F1 to F0, and the other as a rotor. Genetic studies using yeast Saccharomyces cerevisiae have suggested the hypothesis that the yeast mitochondrial ATP synthase can be assembled in the absence of 1, and even 2, of the polypeptides that are thought to comprise the rotor. However, the enzyme complex assembled in the absence of the rotor is thought to be uncoupled, allowing protons to freely flow through F0 into the mitochondrial matrix. Left uncontrolled, this is a lethal process and the cell must eliminate this leak if it is to survive. In yeast, the cell is thought to lose or delete its mitochondrial DNA (the petite mutation) thereby eliminating the genes encoding essential components of F0. Recent biochemical studies in yeast, and prior studies in E. coli, have provided support for the assembly of a partial ATP synthase in which the ATP synthase is no longer coupled to proton translocation.
Collapse
Affiliation(s)
- D M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Illinois 60064, USA.
| |
Collapse
|
33
|
Kinetics of ATP hydrolysis by the F1-ATPase from Bacillus PS3: a reappraisal of the effects of ATP and Mg2+. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00071-p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Syroeshkin AV, Vasilyeva EA, Vinogradov AD. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity. FEBS Lett 1995; 366:29-32. [PMID: 7789510 DOI: 10.1016/0014-5793(95)00487-t] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ADP(Mg2+)-deactivated oligomycin-sensitive F1-F0 ATPase of coupled submitochondrial particles treated with the substoichiometric amount of oligomycin was studied to test whether ATP synthesis and hydrolysis proceed in either direction through the same intermediates. The initial rates of ATP hydrolysis, oxidative phosphorylation, ATP-dependent, succinate-supported NAD+ reduction, and ATP-induced delta microH+ generation were measured using deactivated ATPase trapped by azide [Biochem. J. (1982) 202, 15-23]. Three ATP consuming reactions were strongly inhibited when azide was present in the assay mixtures, whereas ATP synthesis was not altered by azide. The unidirectional effect of azide is not consistent with three alternating binding sites mechanism operating in ATP synthesis and support our hypothesis on the existence of nucleotide(Mg2+)-controlled 'synthase' and 'hydrolase' states of the mitochondrial F1-F0 ATPase.
Collapse
Affiliation(s)
- A V Syroeshkin
- Department of Biochemistry, School of Biology, Moscow State University, Russian Federation
| | | | | |
Collapse
|
35
|
Nucleotide-binding sites on Escherichia coli F1-ATPase. Specificity of noncatalytic sites and inhibition at catalytic sites by MgADP. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61988-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Jault J, Allison W. Hysteretic inhibition of the bovine heart mitochondrial F1-ATPase is due to saturation of noncatalytic sites with ADP which blocks activation of the enzyme by ATP. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42351-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Bulygin VV, Syroeshkin AV, Vinogradov AD. Nucleotide/H(+)-dependent change in Mg2+ affinity at the ATPase inhibitory site of the mitochondrial F1-F0 ATP synthase. FEBS Lett 1993; 328:193-6. [PMID: 8344425 DOI: 10.1016/0014-5793(93)80991-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The interactions between ADP and Mg2+ that result in the slowly reversible inhibition of the mitochondrial F1-F0 ATPase were studied. The Ki for the inhibitory Mg2+ is shown to be strongly dependent on the occupation of the nucleotide-binding sites. The inhibitory binding site for Mg2+ is not seen unless a stoichiometric amount of ADP is added [Biochem. J. 276 (1991) 149-156]; it appears (Ki = 2.10(-6) M) in the presence of stoichiometric ADP and the affinity for inhibitory Mg2+ decreases to a Ki value of 7.10(-5) M when the second nucleotide binding site with Kd = 5.10(-6) M is loaded with ADP. The binding of the inhibitory Mg2+ is competitively inhibited by H+ ions within the pH interval 6.8-8.2. The nucleotide-dependent affinity transition of the Mg(2+)-specific site suggests that H+/Mg2+ exchange may play an important role in the catalytic mechanism of ATP synthesis/hydrolysis at the active site(s) of F1-F0 ATP synthase.
Collapse
Affiliation(s)
- V V Bulygin
- Department of Biochemistry, School of Biology, Moscow State University, Russian Federation
| | | | | |
Collapse
|
38
|
Chernyak BV, Cross RL. Adenine nucleotide-binding sites on mitochondrial F1-ATPase: studies of the inactive complex formed upon binding ADP at a catalytic site. Arch Biochem Biophys 1992; 295:247-52. [PMID: 1534000 DOI: 10.1016/0003-9861(92)90514-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ADP-induced inhibition of mitochondrial F1-ATPase has been studied. It is shown that in the presence of magnesium and the absence of light, the photoaffinity ADP analog, 2-azido-ADP, induces a reversible inhibition of native F1 that is indistinguishable from that obtained with ADP. Photolysis of the inactive complex results in the predominant labeling of a catalytic-site peptide identified previously (Cross et al., 1987, Proc. Natl. Acad. Sci. USA 84, 5715-5719). Dissociation of the inactive complex formed between F1 and ADP is biphasic with a rapid azide-insensitive phase followed by a slow azide-sensitive phase (k approximately 3 x 10(-3) s-1). It is also shown that incubation of the ADP-inhibited enzyme with EDTA or phosphate does not result in release or migration of ADP from the catalytic site. However, it does convert the complex to a form that reactivates in the presence of 100 microM ATP at a rate too rapid to observe using manual mixing.
Collapse
Affiliation(s)
- B V Chernyak
- Department of Biochemistry and Molecular Biology, State University of New York, Syracuse 13210
| | | |
Collapse
|
39
|
Bulygin VV, Vinogradov AD. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition. Biochem J 1991; 276 ( Pt 1):149-56. [PMID: 1828147 PMCID: PMC1151157 DOI: 10.1042/bj2760149] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bovine heart submitochondrial particles incubated with a low concentration of ADP in the presence of Mg2+ and passed through a Sephadex column equilibrated with EDTA exhibit sensitivity of their initial ATPase activity to preincubation with Mg2+. By using particles thus prepared, several characteristics of a Mg(2+)-specific inhibitory site on F0.F1 ATPase were studied. The inhibition was shown to be both time- and Mg(2+)-concentration-dependent, with an equilibrium constant (at infinite time) of 2 x 10(-6) M (25 degrees C, pH 7.5). The dependence of the pseudo-first-order rate constant for the inhibition process on Mg2+ concentration suggests the presence of a single Mg(2+)-binding site with K8 = 1.1 x 10(-4) M. The data obtained are consistent with a two-step mechanism of Mg(2+)-F0.F1 interaction which results in a loss of the ATPase activity; it includes rapid pH-dependent binding of Mg2+ at the site with K8 = 1.1 x 10(-4) M, followed by a slow interconversion of the Mg(2+)-F1 complex into inactive ATPase (kin. = 0.65 min-1, kact. = 0.01 min-1). The Mg(2+)-inhibited ATPase is very slowly (t1/2 approximately 90 min) re-activated in the presence of EDTA. The rate of EDTA-induced re-activation is pH-independent and can be dramatically increased by added ATP, Pi and sulphite. The dissociation constants for free ATP and P1 (5 x 10(-7) M and 1 x 10(-3) M respectively) and the maximal activation rates were determined by measuring the hyperbolic dependencies of the EDTA-induced re-activation of Mg(2+)-de-activated ATPase on the concentrations of the accelerating ligands. Taken together, the data obtained show two functionally detectable free nucleotide-specific binding sites, one site for Pi and one Mg(2+)-specific ATPase-inhibitory site on the F0.F1 mitochondrial ATP synthase complex.
Collapse
Affiliation(s)
- V V Bulygin
- Department of Biochemistry, School of Biology, Moscow State University, U.S.S.R
| | | |
Collapse
|
40
|
Guerrero KJ, Xue ZX, Boyer PD. Active/Inactive state transitions of the chloroplast F1 ATPase are induced by a slow binding and release of Mg2+. Relationship to catalysis and control of F1 ATPases. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46219-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Bulygin VV, Vinogradov AD. Three adenine nucleotide binding sites in F1-F0 mitochondrial ATPase as revealed by presteady-state and steady-state kinetics of ATP hydrolysis. Evidence for two inhibitory ADP-specific noncatalytic sites. FEBS Lett 1988; 236:497-500. [PMID: 2900778 DOI: 10.1016/0014-5793(88)80085-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Preincubation of submitochondrial particles with ADP in the presence of Mg2+ results in the complete inhibition of ATPase which is slowly reactivated in the assay mixture containing ATP and the ATP regenerating system. Significantly, the rate of activation increases as the concentration of ADP in the preincubation mixture rises from 1 microM to 20 microM and reaches a constant value at higher ADP concentrations. The first-order rate constant for the activation process in the assay mixture is ATP-dependent at any level of inhibitory ADP. The data obtained strongly suggest that two ADP-specific inhibitory sites and one ATP-specific hydrolytic site are present in F1-F0 ATPase. Taking into account the (3 alpha.3 beta).gamma.delta.epsilon structure of F1, it is concluded that the synchronous discharge of ADP from two inhibitory sites during the activation occurs after ATP binds to the ATPase catalytic site.
Collapse
Affiliation(s)
- V V Bulygin
- Department of Biochemistry, School of Biology, Moscow State University, USSR
| | | |
Collapse
|
42
|
Beharry S, Gresser MJ. Dissociation of phosphate from beef heart mitochondrial F1-ATPase. Effect of adenine nucleotides. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61010-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Dreyfus G. Regulation of the Pi-ATP exchange and hydrolytic reactions in F0-F1 reconstituted liposomes. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38993-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Drobinskaya IY, Kozlov IA, Murataliev MB, Vulfson EN. Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme. FEBS Lett 1985; 182:419-24. [PMID: 2858407 DOI: 10.1016/0014-5793(85)80346-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The binding of one ADP molecule at the catalytic site of the nucleotide depleted F1-ATPase results in a decrease in the initial rate of ATP hydrolysis. The addition of an equimolar amount of ATP to the nucleotide depleted F1-ATPase leads to the same effect, but, in this case, inhibition is time dependent. The half-time of this process is about 30 s, and the inhibition is correlated with Pi dissociation from the F1-ATPase catalytic site (uni-site catalysis). The F1-ATPase-ADP complex formed under uni-site catalysis conditions can be reactivated in two ways: (i) slow ATP-dependent ADP release from the catalytic site (tau 1/2 20 s) or (ii) binding of Pi in addition to MgADP and the formation of the triple F1-ATPase-MgADP-Pi complex. GTP and GDP are also capable of binding to the catalytic site, however, without changes in the kinetic properties of the F1-ATPase. It is proposed that ATP-dependent dissociation of the F1-ATPase-GDP complex occurs more rapidly, than that of the F1-ATPase-ADP complex.
Collapse
|
45
|
Abstract
The interaction of inorganic phosphate with native and nucleotide-depleted F1-ATPase was studied. F1-ATPase depleted of tightly bound nucleotides loses the ability to bind inorganic phosphate. The addition of ATP, ADP, GTP and GDP but not AMP, restores the phosphate binding. The nucleotides affecting the phosphate binding to F1-ATPase are located at the catalytic (exchangeable) site of the enzyme. The phosphate is thought to bind to the same catalytic site where the nucleotide is already bound. It is thought that ADP is the first substrate to bind to F1-ATPase in the ATP synthesis reaction.
Collapse
|
46
|
Fernández-Belda FJ, García-Carmona F, García-Cánovas F, Lozano JA, Gómez-Fernández JC. Mitochondrial ATPase inactivation by interaction with its substrate. Arch Biochem Biophys 1982; 215:40-6. [PMID: 6212024 DOI: 10.1016/0003-9861(82)90276-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Vasilyeva EA, Minkov IB, Fitin AF, Vinogradov AD. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics. Biochem J 1982; 202:9-14. [PMID: 6211173 PMCID: PMC1158067 DOI: 10.1042/bj2020009] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. A substantial increase of the initial rate of ATP hydrolysis was observed after preincubation of bovine heart submitochondrial particles with phosphoenolpyruvate and pyruvate kinase. 2. The activation was accompanied by an increase of Vmax, without change of Km for ATP. 3. The activated particles catalysed the biphasic hydrolysis of ATP in the presence of an ATP-regenerating system; the initial rapid phase was followed by a second, slower, phase in a time-dependent fashion. 4. The higher the ATP concentration used as a substrate, the higher is the rate of transition between these two phases. 5. The particles catalysed the hydrolysis of ITP with a lag phase; after preincubation with phosphoenolpyruvate and pyruvate kinase, ITP was hydrolysed at a constant rate. 6. Qualitatively the same phenomena were observed when soluble mitochondrial ATPase (F1-ATPase) prepared by the conventional method in the presence of ATP was used as nucleotide triphosphatase. 7. A kinetic scheme is proposed, in which the intermediate active enzyme-product complex (E.ADP) formed during ATP hydrolysis is in slow equilibrium with the inactive E*.ADP complex forming as a result of dislocation of ADP from the active site of ATPase to the other site, which is not in rapid equilibrium with the surrounding medium.
Collapse
|
48
|
Vasilyeva EA, Minkov IB, Fitin AF, Vinogradov AD. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Biochem J 1982; 202:15-23. [PMID: 6211171 PMCID: PMC1158068 DOI: 10.1042/bj2020015] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The initial rapid phase of ATP hydrolysis by bovine heart submitochondrial particles or by soluble F1-ATPase is insensitive to anion activation (sulphite) or inhibition (azide). 2. The second slow phase of ATP hydrolysis is hyperbolically inhibited by azide (Ki approximately 10(-5) M); the inosine triphosphatase activity of submitochondrial particles or F1-ATPase is insensitive to azide or sulphite. 3. The rate of interconversion between rapid azide-insensitive and slow azide-sensitive phases of ATP hydrolysis does not depend on azide concentration, but strongly depends on ATP concentration. 4. Sulphite prevents the interconversion of the rapid initial phase of the reaction into the slower second phase, and also prevents and slowly reverses the inhibition by azide. 5. The presence of sulphite in the mixture when ADP reacts with ATPase of submitochondrial particles changes the pattern of the following activation process. 6. Azide blocks the activation of ATP-inhibited ATPase of submitochondrial particles by phosphoenolpyruvate and pyruvate kinase. 7. The results obtained suggest that the inhibiting effect of azide on mitochondrial ATPase is due to stabilization of inactive E*.ADP complex formed during ATP hydrolysis; the activation of ATPase by sulphite is also realized through the equilibrium between intermediate active E.ADP complex and inactive E*.ADP complex.
Collapse
|
49
|
Lowe PN, Beechey RB. Involvement of the endogenous inhibitor protein in the MgATP-induced inhibition of soluble mitochondrial adenosine triphosphatase activity. Biochem J 1981; 200:655-61. [PMID: 6211169 PMCID: PMC1163588 DOI: 10.1042/bj2000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chloroform-released ATPase from ox heart mitochondria contains significant amounts of inhibitor protein. There is a correlation between processes that affect the interactions between the inhibitor protein and the ATPase molecule and the ability of MgATP to induce an inhibition of ATPase activity. Evidence is presented suggesting that the endogenous inhibitor protein is involved in the process of MgATP-induced inhibition of soluble ATPase activity.
Collapse
|
50
|
Slooten L, Nuyten A. Nucleotide exchange and control of ATPase activity in Rhodospirillum rubrum chromatophores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1981. [DOI: 10.1016/0005-2728(81)90242-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|