1
|
Prohormone convertase 2 (PC2) null mice have increased mu opioid receptor levels accompanied by altered morphine-induced antinociception, tolerance and dependence. Neuroscience 2016; 329:318-25. [PMID: 27208618 DOI: 10.1016/j.neuroscience.2016.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/23/2022]
Abstract
Chronic morphine treatment increases the levels of prohormone convertase 2 (PC2) in brain regions involved in nociception, tolerance and dependence. Thus, we tested if PC2 null mice exhibit altered morphine-induced antinociception, tolerance and dependence. PC2 null mice and their wild-type controls were tested for baseline hot plate latency, injected with morphine (1.25-10mg/kg) and tested for antinociception 30min later. For tolerance studies, mice were tested in the hot plate test before and 30min following morphine (5mg/kg) on day 1. Mice then received an additional dose so that the final dose of morphine was 10mg/kg on this day. On days 2-4, mice received additional doses of morphine (20, 40 and 80mg/kg on days 1, 2, 3, and 4, respectively). On day 5, mice were tested in the hot plate test before and 30min following morphine (5mg/kg). For withdrawal studies, mice were treated with the escalating doses of morphine (10, 20, 40 and 80mg/kg) for 4days, implanted with a morphine pellet on day 5 and 3 days later injected with naloxone (1mg/kg) and signs of withdrawal were recorded. Morphine dose-dependently induced antinociception and the magnitude of this response was greater in PC2 null mice. Tolerance to morphine was observed in wild-type mice and this phenomenon was blunted in PC2 null mice. Withdrawal signs were also reduced in PC2 null mice. Immunohistochemical studies showed up-regulation of the mu opioid receptor (MOP) protein expression in the periaqueductal gray area, ventral tegmental area, lateral hypothalamus, medial hypothalamus, nucleus accumbens, and somatosensory cortex in PC2 null mice. Likewise, naloxone specific binding was increased in the brains of these mice compared to their wild-type controls. The results suggest that the PC2-derived peptides may play a functional role in morphine-induced antinociception, tolerance and dependence. Alternatively, lack of opioid peptides led to up-regulation of the MOP and altered morphine-induced antinociception, tolerance and dependence.
Collapse
|
2
|
Nie Y, Ferrini MG, Liu Y, Anghel A, Paez Espinosa EV, Stuart RC, Lutfy K, Nillni EA, Friedman TC. Morphine treatment selectively regulates expression of rat pituitary POMC and the prohormone convertases PC1/3 and PC2. Peptides 2013; 47:99-109. [PMID: 23891651 PMCID: PMC3787842 DOI: 10.1016/j.peptides.2013.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
Abstract
The prohormone convertases, PC1/3 and PC2 are thought to be responsible for the activation of many prohormones through processing including the endogenous opioid peptides. We propose that maintenance of hormonal homeostasis can be achieved, in part, via alterations in levels of these enzymes that control the ratio of active hormone to prohormone. In order to test the hypothesis that exogenous opioids regulate the endogenous opioid system and the enzymes responsible for their biosynthesis, we studied the effect of short-term morphine or naltrexone treatment on pituitary PC1/3 and PC2 as well as on the level of pro-opiomelanocortin (POMC), the precursor gene for the biosynthesis of the endogenous opioid peptide, β-endorphin. Using ribonuclease protection assays, we observed that morphine down-regulated and naltrexone up-regulated rat pituitary PC1/3 and PC2 mRNA. Immunofluorescence and Western blot analysis confirmed that the protein levels changed in parallel with the changes in mRNA levels and were accompanied by changes in the levels of phosphorylated cyclic-AMP response element binding protein. We propose that the alterations of the prohormone processing system may be a compensatory mechanism in response to an exogenous opioid ligand whereby the organism tries to restore its homeostatic hormonal milieu following exposure to the opioid, possibly by regulating the levels of multiple endogenous opioid peptides and other neuropeptides in concert.
Collapse
Affiliation(s)
- Ying Nie
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| | - Monica G. Ferrini
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Yanjun Liu
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Adrian Anghel
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Enma V. Paez Espinosa
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Ronald C. Stuart
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | - Kabirullah Lutfy
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Eduardo A. Nillni
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island 02903, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Theodore C. Friedman
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| |
Collapse
|
3
|
|
4
|
Stevens A, Begum G, Cook A, Connor K, Rumball C, Oliver M, Challis J, Bloomfield F, White A. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology 2010; 151:3652-64. [PMID: 20573728 DOI: 10.1210/en.2010-0094] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal food restriction is associated with the development of obesity in offspring. This study examined how maternal undernutrition in sheep affects the fetal hypothalamic glucocorticoid receptor (GR) and the appetite-regulating neuropeptides, proopiomelanocortin (POMC) and neuropeptide Y, which it regulates. In fetuses from ewes undernourished from -60 to +30 d around conception, there was increased histone H3K9 acetylation (1.63-fold) and marked hypomethylation (62% decrease) of the POMC gene promoter but no change in POMC expression. In the same group, acetylation of histone H3K9 associated with the hypothalamic GR gene was increased 1.60-fold and the GR promoter region was hypomethylated (53% decrease). In addition, there was a 4.7-fold increase in hypothalamic GR expression but no change in methylation of GR gene expression in the anterior pituitary or hippocampus. Interestingly, hypomethylation of both POMC and GR promoter markers in fetal hypothalami was also identified after maternal undernutrition from -60 to 0 d and -2 to +30 d. In comparison, the Oct4 gene, was hypermethylated in both control and underfed groups. Periconceptional undernutrition is therefore associated with marked epigenetic changes in hypothalamic genes. Increase in GR expression in the undernourished group may contribute to fetal programming of a predisposition to obesity, via altered GR regulation of POMC and neuropeptide Y. These epigenetic changes in GR and POMC in the hypothalamus may also predispose the offspring to altered regulation of food intake, energy expenditure, and glucose homeostasis later in life.
Collapse
Affiliation(s)
- Adam Stevens
- Faculties of Life Sciences and Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Peinado JR, Cruz-García D, Vázquez-Martínez R, Anouar Y, Tonon MC, Vaudry H, Gracia-Navarro F, Castaño JP, Malagón MM. RT-PCR analysis of the expression of POMC and its processing enzyme PC1 in amphibian melanotropes. Gen Comp Endocrinol 2006; 147:222-30. [PMID: 16480985 DOI: 10.1016/j.ygcen.2006.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/22/2005] [Accepted: 01/02/2006] [Indexed: 11/24/2022]
Abstract
The frog intermediate lobe comprises two functionally distinct cell subtypes, referred to as secretory and storage melanotropes, which differ in their ultrastructure, secretory, and synthetic rates, and display dissimilar responses to hypothalamic regulatory factors. All these differences make melanotrope subtypes an excellent model to analyze the expression and regulation of genes involved in the control and maintenance of the secretory state of endocrine cells. However, quantification of the expression levels of genes involved in the secretory process requires the characterization of a gene whose expression remains constant irrespective of the secretory state of the cells. In this study, we have cloned the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene from frog pituitary and have evaluated its suitability as internal standard in gene expression studies in melanotropes. A semiquantitative RT-PCR system developed to this end revealed that secretory melanotropes and storage melanotropes possess similar expression levels of GAPDH, whereas, as expected, secretory melanotropes showed higher levels of POMC transcripts than storage cells. Furthermore, we found that the expression of the convertase PC1, an intracellular protease involved in POMC processing, parallels that of POMC, thus suggesting that the higher secretory rate of the POMC-derived peptide alpha-MSH exhibited by secretory melanotropes is supported by their higher PC1 expression levels. In addition, we have shown that both POMC and PC1 mRNAs are up-regulated by the hypothalamic factor TRH in melanotrope cell cultures. In contrast, the inhibitory factor NPY reduced the expression level of the convertase but did not modify that of POMC. Taken together, these results demonstrate that PC1 expression is regulated in melanotropes by both stimulatory (TRH) and inhibitory (NPY) hypothalamic signals, in a manner which essentially parallels that observed for the precursor POMC.
Collapse
Affiliation(s)
- J R Peinado
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shen X, Li QL, Brent GA, Friedman TC. Regulation of regional expression in rat brain PC2 by thyroid hormone/characterization of novel negative thyroid hormone response elements in the PC2 promoter. Am J Physiol Endocrinol Metab 2005; 288:E236-45. [PMID: 15585599 DOI: 10.1152/ajpendo.00144.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prohormone convertases (PCs) PC1 and PC2 are involved in the tissue-specific endoproteolytic processing of neuropeptide precursors within the secretory pathway. We previously showed that changes in thyroid status altered pituitary PC2 mRNA and that this regulation was due to triiodothyronine-dependent interaction of the thyroid hormone receptor (TR) with negative thyroid hormone response elements (nTREs) contained in a large proximal region of the human PC2 promoter. In the current study, we examined the in vivo regulation of brain PC2 mRNA by thyroid status and found that 6-n-propyl-2-thiouracil-induced hypothyroidism stimulated, whereas thyroxine-induced hyperthyroidism suppressed, PC2 mRNA levels in the rat hypothalamus and cerebral cortex. To address the mechanism of T3 regulation of the PC2 gene, we used human PC2 (hPC2) promoter constructs transiently transfected into GH3 cells and found that triiodothyronine negatively and 9-cis-retinoic acid positively regulated hPC2 promoter activity. EMSAs, using purified TRalpha1 and retinoid X receptor-beta (RXRbeta) proteins demonstrated that TRalpha bound the distal putative nTRE-containing oligonucleotide in the PC2 promoter, and RXR bound to both nTRE-containing oligonucleotides. EMSAs with oligonucleotides containing deletion mutations of the nTREs demonstrated that the binding to TR and RXR separately is reduced, but specific binding to TR and RXR together persists even with deletion of each putative nTRE. We conclude that there are two novel TRE-like sequences in the hPC2 promoter and that these regions act in concert in a unique manner to facilitate the effects of thyroid hormone and 9-cis-retinoic acid on PC2.
Collapse
Affiliation(s)
- Xiaoxiong Shen
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Sciences, Los Angeles, CA 90059, USA
| | | | | | | |
Collapse
|
7
|
Nakashima M, Nie Y, Li QL, Friedman TC. Up-regulation of splenic prohormone convertases PC1 and PC2 in diabetic rats. REGULATORY PEPTIDES 2001; 102:135-45. [PMID: 11730986 DOI: 10.1016/s0167-0115(01)00311-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organisms respond to infection in a complex manner involving bidirectional interactions between the neuroendocrine and immune systems. Many of the bioactive endocrine/immune factors are synthesized in a precursor form and are expected to be activated by prohormone convertases (PCs). Since patients with both type 1 and type 2 diabetes have an increased incidence and severity of infections, we hypothesized that in a condition of hyperglycemia, these processing enzymes would be activated in an immune tissue, the spleen. To test this hypothesis, we treated rats with intraperitoneal streptozotocin (STZ) (50 mg/kg/day) daily for 5 days and measured splenic PC1 and PC2 mRNA by ribonuclease protection assay. We found that PC1 mRNA was increased 6.0+/-0.02-fold (P<0.05) and PC2 mRNA was increased 1.80+/-0.01-fold (P<0.005) in the spleen of rats that received STZ compared to rats that received vehicle. Western blot indicated that the 75-kDa form of PC1 was the only form of PC1 present in the spleen and that this form increased with STZ treatment. Immunohistochemistry revealed that PC1 was found in both the white pulp (T-lymphocytes) and red pulp (monocytes and macrophages) and that its increase in immunoreactivity occurred primarily in the white pulp. PC2 and pro-opiomelanocortin (POMC, a possible splenic substrate for PC1/PC2) immunoreactivity was found predominantly in the red pulp. STZ induced an increase in splenic PC1 and POMC, but not PC2 protein levels. We conclude that in the STZ model of diabetes, splenic PCs are induced, which could lead to an increased activation of many immune-derived hormones. We speculate that this up-regulation of prohormone converting enzymes may be related to the increased infections seen in patients with both type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- M Nakashima
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|
8
|
Mbikay M, Seidah NG, Chrétien M. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem J 2001; 357:329-42. [PMID: 11439082 PMCID: PMC1221959 DOI: 10.1042/0264-6021:3570329] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
7B2 is an acidic protein residing in the secretory granules of neuroendocrine cells. Its sequence has been elucidated in many phyla and species. It shows high similarity among mammals. A Pro-Pro-Asn-Pro-Cys-Pro polyproline motif is its most conserved feature, being carried by both vertebrate and invertebrate sequences. It is biosynthesized as a precursor protein that is cleaved into an N-terminal fragment and a C-terminal peptide. In neuroendocrine cells, 7B2 functions as a specific chaperone for the proprotein convertase (PC) 2. Through the sequence around its Pro-Pro-Asn-Pro-Cys-Pro motif, it binds to an inactive proPC2 and facilitates its transport from the endoplasmic reticulum to later compartments of the secretory pathway where the zymogen is proteolytically matured and activated. Its C-terminal peptide can inhibit PC2 in vitro and may contribute to keep the enzyme transiently inactive in vivo. The PC2-7B2 model defines a new neuroendocrine paradigm whereby proteolytic activation of prohormones and proneuropeptides in the secretory pathway is spatially and temporally regulated by the dynamics of interactions between converting enzymes and their binding proteins. Interestingly, unlike PC2-null mice, which are viable, 7B2-null mutants die early in life from Cushing's disease due to corticotropin ('ACTH') hypersecretion by the neurointermediate lobe, suggesting a possible involvement of 7B2 in secretory granule formation and in secretion regulation. The mechanism of this regulation is yet to be elucidated. 7B2 has been shown to be a good marker of several neuroendocrine cell dysfunctions in humans. The possibility that anomalies in its structure and expression could be aetiological causes of some of these dysfunctions warrants investigation.
Collapse
Affiliation(s)
- M Mbikay
- Diseases of Aging Program, Ottawa Health Research Institute, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada Y1K 4K9.
| | | | | |
Collapse
|
9
|
Dhanvantari S, Izzo A, Jansen E, Brubaker PL. Coregulation of glucagon-like peptide-1 synthesis with proglucagon and prohormone convertase 1 gene expression in enteroendocrine GLUTag cells. Endocrinology 2001; 142:37-42. [PMID: 11145564 DOI: 10.1210/endo.142.1.7870] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insulinotropic hormone glucagon-like peptide-1 (GLP-1) is synthesized in the intestinal L cell by prohormone convertase 1 (PC1)-mediated posttranslational processing of proglucagon. Previous studies have demonstrated that proglucagon gene transcription in the L cell is stimulated by the protein kinase A (PKA) pathway through a cAMP response element (CRE). Because the PC1 gene contains two functional CREs, the present studies were conducted to investigate whether the PC1 and proglucagon genes are coregulated by PKA, and to elucidate the temporal relationship(s) of PC1 and proglucagon gene expression with production of GLP-1, in the intestinal cell. The GLUTag enteroendocrine cell line, which is known to express the proglucagon gene and to synthesize and secrete GLP-1, was used as a model. Proglucagon and PC1 messenger RNA transcript levels were both increased after 12 h (but not 24 h) of treatment of GLUTag cells with forskolin/isobutylmethylxanthine (IBMX), by 2.7 +/- 0.3- and 2.4 +/- 0.3-fold, respectively, compared with controls (P < 0.01-0.001). Activation of PKA resulted in a 2.1 +/- 0.1-fold increase in PC1 reporter construct expression (P < 0.001) at 12 h, which was dependent on the presence of the CRE, and a 13- to 24-fold increment in PC1 protein levels (P < 0.01) at 12 and 24 h. Similarly, forskolin/IBMX increased secretion of GLP-1, by 1.8 +/- 0.2- and 2.2 +/- 0.6-fold at 12 and 24 h, respectively (P < 0.05-0.01). Although the cell content of GLP-1 was diminished after 12 h of treatment (P < 0.001), GLP-1 levels increased back to control values after 24 h of forskolin/IBMX treatment (P < 0.01 vs. 12-h levels). Thus, PKA-induced secretion of GLP-1 from the L cell is followed by restoration of the cellular peptide levels through a PKA-mediated, CRE-dependent up-regulation of proglucagon and PC1 gene expression.
Collapse
Affiliation(s)
- S Dhanvantari
- Section on Cellular Neurobiology Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The prohormone convertases (PCs) PC1 and PC2 are key enzymes capable of processing a variety of prohormones to their bioactive forms. In this study, we demonstrated that 6-n-propyl-2-thiouracil (PTU)-induced hypothyroidism stimulated, whereas triido-L-thyronine (T(3))-induced hyperthyroidism suppressed, PC1 mRNA levels in the rat anterior pituitary. Using 5' deletions of the human PC1 (hPC1) promoter transiently transfected into GH3 (a somatotroph cell line) cells, we found that T(3) negatively regulated hPC1 promoter activity and that this regulation required the region from -82 to +19 bp relative to the transcription start site. Electrophoretic mobility shift assays (EMSAs) using purified thyroid hormone receptor-alpha1 (TR alpha 1) and retinoid X receptor-beta (RXRbeta) proteins and GH3 nuclear extracts demonstrated that the region from -10 to +19 bp of the hPC1 promoter bound TR alpha 1 as both a monomer and a homodimer and bound TR alpha 1/RXR beta as a heterodimer and multimer. EMSAs with oligonucleotides containing point mutations of the putative negative thyroid response elements (TREs) exhibited diminished homodimer and loss of multimer binding. We conclude that there are multiple novel TRE-like sequences in the hPC1 promoter located from -10 to +19 bp.
Collapse
MESH Headings
- Alitretinoin
- Animals
- Antineoplastic Agents/pharmacology
- Aspartic Acid Endopeptidases/genetics
- Aspartic Acid Endopeptidases/metabolism
- Cells, Cultured
- Gene Deletion
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Genes, Reporter
- Hypothyroidism/chemically induced
- Hypothyroidism/metabolism
- Luciferases/genetics
- Male
- Mutagenesis, Insertional/physiology
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Peptide Fragments/metabolism
- Pituitary Gland, Anterior/metabolism
- Promoter Regions, Genetic/physiology
- Proprotein Convertases
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors
- Transcription Factors/metabolism
- Tretinoin/pharmacology
- Triiodothyronine/metabolism
- Uracil/analogs & derivatives
Collapse
Affiliation(s)
- Q L Li
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute--University of California at Los Angeles School of Medicine, Los Angeles, 90048, USA
| | | | | | | |
Collapse
|
11
|
Li QL, Jansen E, Brent GA, Naqvi S, Wilber JF, Friedman TC. Interactions between the prohormone convertase 2 promoter and the thyroid hormone receptor. Endocrinology 2000; 141:3256-66. [PMID: 10965896 DOI: 10.1210/endo.141.9.7674] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The majority of prohormones are cleaved at paired basic residues to generate bioactive hormones by prohormone convertases (PCs). As PC1 and PC2, two neuroendocrine-specific PCs, appear to be the key enzymes capable of processing a variety of prohormones, alterations of PC2 and/or PC1 levels will probably have a profound effect on hormonal homeostasis. We investigated the regulation of PC2 messenger RNA (mRNA) by thyroid hormone using GH3 cells to demonstrate that T3 negatively regulated PC2 mRNA levels in a dose- and time-dependent fashion. Functional analysis of progressive 5'-deletions of the human (h) PC2 promoter luciferase constructs in GH3 cells demonstrated that the regulation probably occurs at the transcriptional level, and that putative negative thyroid hormone response elements were located within the region from -44 to + 137 bp relative to the transcriptional start site. Transient transfections in JEG-3 cells and COS-1 cells showed that the suppressive effect of T3 was equally mediated by the thyroid hormone receptor (TR) isoforms TRalpha1 and TRbeta1. Electrophoretic mobility shift assays using purified TRal and retinoid X receptor-beta protein as well as GH3 nuclear extracts showed that regions from +51 to +71 bp and from +118 to +137 bp of the hPC2 promoter bind to TRalpha1 as both a monomer and a homodimer and with TRalpha1/retinoid X receptor-beta as a heterodimer. Finally, the in vivo regulation of pituitary PC2 mRNA by thyroid status was demonstrated in rats. These results demonstrate that T3 negatively regulates PC2 expression at the transcriptional level and that functional negative thyroid hormone response elements exist in the hPC2 promoter. We postulate that the alterations of PC2 activity may mediate some of the pathophysiological consequences of hypo- or hyperthyroidism.
Collapse
Affiliation(s)
- Q L Li
- Department of Medicine, Cedars-Sinai Research Institute, University of California School of Medicine, Los Angeles 90048, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The processing of pro-opiomelanocortin (POMC) to generate bioactive ACTH in the anterior pituitary is mediated by prohormone convertase 1 (PC1). Leukemia inhibitory factor (LIF) and interleukin 6 (IL-6), two cytokines sharing the common gp130 receptor subunit and functioning through activation of the intracellular JAK/STAT pathway, induce POMC synthesis and ACTH release. We investigated the effects of LIF and IL-6 on PC1 expression and its subsequent processing of POMC. A significant time-dependent up-regulation of both PC1 protein and mRNA by LIF and IL-6 was seen in mouse corticotroph AtT-20 cells. IL-6 or LIF increased the synthesis of ACTH-related products with a concomitant increase in bioactive 5 and 13 kDa ACTH indicating coordinated regulation of substrate and processing enzyme. AtT-20 cells transiently transfected with a human PC1-promoter-luciferase reporter construct and treated with LIF or IL-6 showed significantly increased luciferase activity. Additionally, lipopolysaccharide (LPS) administration to rats resulted in an increase in both pituitary PC1 and POMC mRNA. These findings suggest that the ACTH increase induced by LIF and IL-6 is due to both increased POMC synthesis as well as increased POMC processing by up-regulation of PC1. These two coordinately regulated processing events probably exert central roles in the pathophysiological response to some stresses, such as inflammatory stress.
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- Aspartic Acid Endopeptidases/genetics
- Aspartic Acid Endopeptidases/metabolism
- Blotting, Northern
- Blotting, Western
- Cell Extracts
- Cells, Cultured
- Cytokine Receptor gp130
- Growth Inhibitors/metabolism
- Growth Inhibitors/physiology
- Humans
- Interleukin-6/metabolism
- Interleukin-6/physiology
- Leukemia Inhibitory Factor
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Lipopolysaccharides/pharmacology
- Lymphokines/metabolism
- Lymphokines/physiology
- Male
- Membrane Glycoproteins/physiology
- Mice
- Pituitary Gland/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Proprotein Convertase 1
- Proprotein Convertases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytokine/metabolism
- Receptors, Cytokine/physiology
- Receptors, Interleukin-6/metabolism
- Receptors, Interleukin-6/physiology
- Receptors, OSM-LIF
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
Collapse
Affiliation(s)
- Q L Li
- Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
13
|
Miller MM, Bennett HP, Billiar RB, Franklin KB, Joshi D. Estrogen, the ovary, and neutotransmitters: factors associated with aging. Exp Gerontol 1998; 33:729-57. [PMID: 9951619 DOI: 10.1016/s0531-5565(98)00018-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our studies in the C57BL/6J mouse have been designed to examine the interactions of aging and the ovary, and their mutual effects on neuroendocrine function. In the pituitary, ovarian status and not age determines responsiveness to gonadotropin hormone releasing hormone (GnRH), but estrogen (E2) is an important mediator in CNS changes, and removal of the ovary (OVX) is deleterious to the neuroendocrine hypothalamus. OVX for just six days in young animals results in synaptic loss between noradrenergic terminals and gonadotropin hormone releasing hormone (GnRH) neurons. Long-term OVX, hypothesized to protect against neuroendocrine aging, fails to guard against any studied age-related changes. Some age-related changes occur as early as midlife. Although neuron number remains constant at middle age, opiatergic neurons undergo significant functional changes by producing opiate antagonist peptides. This change appears to be caused by alterations in the prohormone convertases, which cleave propeptide to peptide. Altered peptides may trigger the loss of reproductive capacity. The midlife shift in opiate peptide production is a component of natural developmental processes that begin in the neonate and continue through old age. In the cholinergic system, E2 mediates numbers of cholinergic receptors, cholinergic neurons, and cholinergic-modulated memory systems in both young and old animals. Regardless of age, ovarian steroids, if present at physiologic levels, are beneficial to the neuroendocrine CNS, and long-term deprivation from ovarian-produced factors is deleterious in the systems we have examined. Our studies have shown that deprivation from ovarian steroid hormones in the female appears to be a major factor in the health of the CNS and in events associated with aging.
Collapse
Affiliation(s)
- M M Miller
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
14
|
Joseph-Bravo P, Uribe RM, Vargas MA, Pérez-Martínez L, Zoeller T, Charli JL. Multifactorial modulation of TRH metabolism. Cell Mol Neurobiol 1998; 18:231-47. [PMID: 9535292 DOI: 10.1023/a:1022521020840] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Thyrotropin releasing hormone (TRH), synthesized in the paraventricular nucleus of the hypothalamus (PVN), is released in response to physiological stimuli through median eminence nerve terminals to control thyrotropin or prolactin secretion from the pituitary. 2. Several events participate in the metabolism of this neuropeptide: regulation of TRH biosynthesis and release as well as modulation of its inactivation by the target cell. 3. Upon a physiological stimulus such as cold stress or suckling, TRH is released and levels of TRH mRNA increase in a fast and transient manner in the PVN; a concomitant increase in cfos is observed only with cold exposure. 4. Hypothalamic cell cultures incubated with cAMP or phorbol esters show a rise in TRH mRNA levels; dexamethasone produces a further increase at short incubation times. TRH mRNA are thus controlled by transsynaptic and hormonal influences. 5. Once TRH is released, it is inactivated by a narrow specificity ectoenzyme, pyroglutamyl peptidase II (PPII). 6. In adenohypophysis, PPII is subject to stringent control: positive by thyroid hormones and negative by TRH; other hypothalamic factors such as dopamine and somatostatin also influence its activity. 7. These combined approaches suggest that TRH action is modulated in a coordinate fashion.
Collapse
Affiliation(s)
- P Joseph-Bravo
- Department of Molecular Genetics and Physiology, Institute of Biotechnology, Universidad Nacional Autónoma de México, Cuernavaca
| | | | | | | | | | | |
Collapse
|
15
|
Winkler H, Fischer-Colbrie R. Regulation of the biosynthesis of large dense-core vesicles in chromaffin cells and neurons. Cell Mol Neurobiol 1998; 18:193-209. [PMID: 9535290 DOI: 10.1023/a:1022516919932] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. The proteins of large dense-core vesicles (LDV) in neuroendocrine tissues are well characterized. Secretory components comprise chromogranins and neuropeptides. Intrinsic membrane proteins include cytochrome b-561, transporters, SV2, synaptotagmin, and synaptobrevin. 2. The effects of stimulation and of second messengers on the biosynthesis of LDV have been studied in detail. 3. Regulation of biosynthesis is complex. The cell can adapt to prolonged stimulation either by producing vesicles of normal size filled with a higher quantum of secretory peptides or by forming larger vesicles. In addition, some components, e.g., enzymes, can be upregulated specifically.
Collapse
Affiliation(s)
- H Winkler
- Department of Pharmacology, University of Innsbruck, Austria
| | | |
Collapse
|
16
|
Abstract
It has been well established that peptide precursors usually undergo limited proteolysis at pairs or single basic amino acids during their biosynthetic process. This posttranslational modification paradigm is common for numerous membrane-spanning and secreted proteins, neuropeptides, and peptide hormones of physiological significance, in which endoproteolytic cleavage is invariably essential for the accurate biosynthesis and full activity of the mature products. Establishment of an effective peptide profile is dependent on not only the presence of peptide precursor, but also the presence and the enzymatic specificities of cleavage enzymes. We have, therefore, characterized the spatial and temporal patterns of six subtilisin-like serine endoproteases known to be involved in proprotein processing, including furin, PC1, PC2, PC4, PC5, and PACE4, in rat prenatal development and related the results to the expression patterns of several peptide precursors. We have observed largely distinct and sometimes complementary expression patterns of individual PCs in various embryonic structures, suggesting PCs may be functionally distinct in processing different sets of proprotein substrates in development. From these studies, numerous tentative enzyme-substrate relationships in various embryonic structures have been proposed and should encourage more studies to test the in vitro cleavage potentialities of individual PCs toward these precursors. In the future, knowledge gained from these studies, when combined with insights gained from in vivo perturbation and genetic ablation studies, should lead to final comprehensive understanding of specific precursors cleaved by specific enzymes at specific cleavage sites in known spatial and temporal expression patterns during development.
Collapse
Affiliation(s)
- M Zheng
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
17
|
Waters SM, Rounseville MP, Davis TP. Effect of dopaminergic drugs on processing and degradative neuropeptidase mRNA in rat frontal cortex and caudate-putamen. Brain Res 1997; 754:28-34. [PMID: 9134956 DOI: 10.1016/s0006-8993(97)00038-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Drugs which act upon central dopamine receptors alter the level, mRNA expression and in vitro degradation of neuropeptides associated with dopamine neuron regulation. Changes in the degradation of certain neuropeptides are correlated with significant alterations in the activity of specific neuropeptidases, namely aminopeptidase N (APN) and neutral endopeptidase 24.11 (NEP 24.11). In the present study, we sought to examine the molecular mechanism of neuropeptidase activity changes in response to dopaminergic drug treatment. The effects of dopaminergic drugs on the mRNA level of APN and NEP 24.11 were determined by RNase protection assays of RNA extracted from rat frontal cortex and caudate-putamen. Additionally, the effects of dopaminergic drugs on the mRNA expression for the neuropeptide processing enzymes, prohormone convertase 1 (PC1) and PC2, were determined. After 7-day administration of the dopamine receptor antagonist, haloperidol (1 mg/kg), no effect on the mRNA expression of APN, NEP 24.11, PC1 or PC2 was observed in either of the rat brain regions studied. Administration of the dopamine receptor agonist, apomorphine (5 mg/kg, bid), altered only the expression of APN mRNA in rat caudate-putamen, where the greatest effect on APN activity has been previously observed. These results suggest that alterations in other post-transcriptional events, such as mRNA translation or insertion of neuropeptidase protein into the membrane, likely play a larger role than changes in mRNA expression in the modulation of neuropeptidase activity.
Collapse
Affiliation(s)
- S M Waters
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson 85724, USA
| | | | | |
Collapse
|
18
|
Friedman TC, Cool DR, Jayasvasti V, Louie D, Loh YP. Processing of pro-opiomelanocortin in GH3 cells: inhibition by prohormone convertase 2 (PC2) antisense mRNA. Mol Cell Endocrinol 1996; 116:89-96. [PMID: 8822269 DOI: 10.1016/0303-7207(95)03702-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The processing of pro-opiomelanocortin (POMC) was examined in GH3 cells, a rat sommatomammotrope cell line, by transiently-transfecting the cells with mouse POMC cDNA. The peptide products were extracted, chromatographed on HPLC and identified by specific radioimmunoassay. POMC was processed to generate ACTH-related peptides, beta-endorphin and Lys-gamma 3- MSH, with complete disappearance of the POMC precursor. The ACTH-related molecules were identified as ACTH1-14, ACTH1-15, ACTH1-17, as well as ACTH1-39. GH3 cells which were not transfected with POMC cDNA did not contain endogenous POMC-related peptides. RT-PCR demonstrated that GH3 cells contain prohormone convertase 2 (PC2) mRNA but no PC1 mRNA. To determine if PC2 was the enzyme responsible for POMC processing in this cell line, GH3 cells were stably-transfected with PC2 antisense cDNA. A cell line was obtained which showed an absence of PC2 protein compared to control untransfected GH3 cells, indicating successful hybridization of PC2 antisense mRNA to the endogenous PC2 mRNA. When this cell line was then transiently-transfected with POMC cDNA, POMC was not processed. The results from these experiments suggest that PC2 alone can correctly process POMC to biologically active smaller peptides in vivo. Additionally, the GH3 cell line with and without incorporation of PC2 antisense cDNA can be used as a model system to study the role of PC2 in the post-translational processing of other prohormones and proproteins in vivo.
Collapse
Affiliation(s)
- T C Friedman
- Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Schuppin GT, Rhodes CJ. Specific co-ordinated regulation of PC3 and PC2 gene expression with that of preproinsulin in insulin-producing beta TC3 cells. Biochem J 1996; 313 ( Pt 1):259-68. [PMID: 8546693 PMCID: PMC1216892 DOI: 10.1042/bj3130259] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Short-term (less than 2 h) glucose stimulation of isolated pancreatic islets specifically increases the biosynthesis of proinsulin and its converting enzymes PC2 and PC3 at the translation level. To determine whether gene expression of PC2 and PC3 was also regulated by longer-term (more than 6 h) glucose stimulation along with that of preproinsulin, studies were performed with the beta TC3 insulin-producing cell line. By Northern blot analysis, glucose maintained PC2 and PC3 mRNA levels in parallel with those of preproinsulin. After 48 h, mRNA levels of preproinsulin, PC2 and PC3 were, respectively, 2.9 (P < 0.05), 3.0 (P < 0.005) and 5.3 (P < 0.001) times greater in the presence of glucose than in beta TC3 cells cultured in the absence of glucose. Glucose-regulated PC2 and PC3 gene expression, like that of preproinsulin, was maximal at glucose concentrations above 5.5 mM. Studies of mRNA stability showed that the half-lives of PC2 (9 h) and PC3 (5 h) mRNA were much shorter than that of preproinsulin mRNA (over 24 h), but little effect of glucose on stability of these mRNAs was observed. Nuclear run-off analysis indicated that transcription of preproinsulin, PC2 and PC3 was modestly induced after 1 h exposure to 16.7 mM glucose. Therefore preproinsulin, PC2 and PC3 mRNA levels in beta TC3 cells were most probably maintained at the level of gene transcription. In contrast, elevation of cyclic AMP by forskolin had no effect on mRNA levels or gene transcription of preproinsulin, PC2 and PC3, despite a cyclic-AMP-induced phosphorylation of the cyclic AMP response element binding protein that correlated with a marked increase in cJun and cFos gene transcription in the same beta-cells. These results suggest that preproinsulin, PC2 and PC3 gene transcription can be specifically glucose-regulated in a mechanism that is unlikely to involve a key role for cyclic AMP. The co-ordinate increase in PC2 and PC3 mRNA levels with that of preproinsulin mRNA in response to chronic glucose represents a long-term means of catering for an increased demand on proinsulin conversion.
Collapse
Affiliation(s)
- G T Schuppin
- E. P. Joslin Research Laboratory, Joslin Diabetes Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
20
|
Pu LP, Van Leeuwen FW, Tracer HL, Sonnemans MA, Loh YP. Localization of vasopressin mRNA and immunoreactivity in pituicytes of pituitary stalk-transected rats after osmotic stimulation. Proc Natl Acad Sci U S A 1995; 92:10653-7. [PMID: 7479859 PMCID: PMC40670 DOI: 10.1073/pnas.92.23.10653] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The presence of [arginine] vasopressin (AVP) mRNA and AVP immunoreactivity in pituicytes of the neural lobe (NL) of intact and pituitary stalk-transected rats, with and without osmotic stimulation, was examined. AVP mRNA was analyzed by Northern blotting, as well as by in situ hybridization in combination with immunocytochemistry using anti-glial fibrillary acidic protein (GFAP) as a marker for pituicytes. In intact rats, a poly(A) tail-truncated 0.62-kb AVP mRNA was detected in the NL and was found to increase 10-fold with 7 days of continuous salt loading. Morphological analysis of the NL of 7-day salt-loaded rats revealed the presence of AVP mRNA in a significant number of GFAP-positive pituicytes in the NL and in areas most probably containing nerve fibers. Eight days after pituitary stalk transection the NL AVP mRNA diminished in animals given water to drink, whereas in those given 2% saline for 18 h followed by 6 h of water, a treatment repeated on 6 successive days beginning 2 days after surgery, the 0.62-kb AVP mRNA was present. The AVP mRNA in the pituitary stalk-transected, salt-loaded rats showed an exclusive cellular distribution in the NL, indicative of localization in pituicytes. Immunoelectron microscopy showed the presence of AVP immunoreactivity in a subpopulation of pituicytes 7 and 10 days after pituitary stalk transection in salt-loaded animals, when almost all AVP fibers had disappeared from the NL. These data show that a subset of pituicytes in the NL is activated to synthesize AVP mRNA and AVP in response to osmotic stimulation.
Collapse
Affiliation(s)
- L P Pu
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
21
|
Pu LP, Hayes WP, Mill JF, Ghose S, Friedman TC, Loh YP. Frog prohormone convertase PC2 mRNA has a mammalian-like expression pattern in the central nervous system and is colocalized with a subset of thyrotropin-releasing hormone-expressing neurons. J Comp Neurol 1995; 354:71-86. [PMID: 7615876 DOI: 10.1002/cne.903540107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The prohormone convertase (PC2) is expressed in the mammalian central nervous system (CNS) and has been shown to play an important role in the processing of certain neuropeptide precursors and prohormones at paired basic residues. Amphibian PC2 cDNA was recently cloned for the frog Xenopus laevis, and both its sequence and its pituitary expression pattern were shown to be very similar to those of mammalian PC2. To investigate further the function of PC2 in the vertebrate CNS, we used in situ hybridization histochemistry to localize the distribution of cells expressing PC2 mRNA in the frog brain and the spinal cord. The distribution of PC2-expressing cells was also compared with that of cells expressing thyrotropin-releasing hormone (TRH) mRNA or peptide. PC2-expressing cells were detected in specific nuclei that were widely distributed in the frog CNS. In forebrain, telencephalic PC2 mRNA was found in the olfactory bulb, pallium, striatum, amygdala, and septum, and diencephalic PC2 mRNA was seen in the preoptic area, thalamus, and hypothalamus. More posteriorly, PC2 cells were localized to midbrain tegmentum, the torus semicircularis, and the optic tectum, as well as the cerebellum, brainstem, and spinal cord. Despite this wide distribution steady-state levels of PC2 mRNA were clearly different in various brain nuclei. Regions with higher levels showed good correspondence to areas shown by others in frog to contain large numbers of neuropeptide-expressing cells, including TRH cells. On the other hand, not all brain areas with high levels of TRH mRNA had high levels of PC2 mRNA. Localization studies combining in situ hybridization and immunocytochemistry showed that, at least in optic tectum and brainstem, PC2 mRNA and pro-TRH peptide coexist. These findings suggest that pro-TRH is processed by PC2 in some, but possibly not all, brain regions. Thus, different converting enzymes may be involved in pro-TRH processing in different brain regions.
Collapse
Affiliation(s)
- L P Pu
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
22
|
Martin SK, Carroll R, Benig M, Steiner DF. Regulation by glucose of the biosynthesis of PC2, PC3 and proinsulin in (ob/ob) mouse islets of Langerhans. FEBS Lett 1994; 356:279-82. [PMID: 7805854 DOI: 10.1016/0014-5793(94)01284-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The prohormone convertases PC2 and PC3 have been shown to catalyze the processing of proinsulin to insulin in pancreatic beta-cells. In these studies we have compared the effects of glucose on PC2 and PC3 biosynthesis in freshly isolated islets from normal and hyperglycemic (ob/ob) mice. In contrast to normal islets [Alarcón, et al. (1993) J. Biol. Chem. 268, 4276] the biosynthesis of both PC2 and PC3 is stimulated by glucose, parallel to the stimulation of proinsulin in the (ob/ob) islets. Inhibition of PC2 biosynthesis by glucose in normal islet non beta-cells may obscure stimulation of PC2 biosynthesis in normal islet beta-cells.
Collapse
Affiliation(s)
- S K Martin
- Department of Biochemistry, University of Chicago, IL 60637
| | | | | | | |
Collapse
|
23
|
Birch NP, Hakes DJ, Dixon JE, Mezey E. Distribution and regulation of the candidate prohormone processing enzymes SPC2 and SPC3 in adult rat brain. Neuropeptides 1994; 27:307-22. [PMID: 7898639 DOI: 10.1016/0143-4179(94)90057-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A number of candidate mammalian prohormone processing enzymes related to the yeast Kex2 endoprotease have been cloned and demonstrated to cleave several prohormone precursors at single, pairs and tetra basic amino acid processing sites. We have mapped the distribution of the mRNAs encoding two of these endoproteases in adult rat brain. SPC3 message levels showed a more restricted distribution and generally lower levels than SPC2 transcripts. The highest levels of SPC2 mRNA were found in the pyramidal cells of the hippocampus, several thalamic nuclei, the habenula and selected nuclei in the hypothalamus. SPC3 mRNA was most abundant in dentate gyrus granule cells, the habenula and selected hypothalamic nuclei. In the hypothalamus overlapping and unique distributions of the two transcripts were seen in the paraventricular nucleus with SPC3 mRNA predominantly expressed in lateral magnocellular cells. Both SPC2 and SPC3 mRNA were upregulated in the paraventricular and supraoptic hypothalamic nuclei following chronic salt loading. Combined immunocytochemistry/in situ hybridization histochemistry demonstrated that SPC2 and SPC3 transcripts were both expressed in the vasopressinergic subpopulation of magnocellular neurons in the supraoptic nucleus. SPC3 mRNA, but not SPC2 transcripts, also colocalized with immunoreactive vasopressin-associated neurophysin in the suprachiasmatic nucleus. These results remain consistent with roles for SPC2 and SPC3 in the biosynthesis of neuropeptides and for a specific role for SPC3 in the processing of provasopressin. Increased levels of SPC2 and SPC3 transcripts following a chronic osmotic stimulus suggests these proteases are coregulated with prohormone substrates and may be useful as an indicator of peptidergic activity.
Collapse
Affiliation(s)
- N P Birch
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
24
|
Tezapsidis N, Parish DC. Characterization of a metalloprotease from ovine chromaffin granules which cleaves a proenkephalin fragment (BAM12P) at a single arginine residue. Biochem J 1994; 301 ( Pt 2):607-14. [PMID: 8043007 PMCID: PMC1137124 DOI: 10.1042/bj3010607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A metalloprotease has been identified in ovine chromaffin granules which cleaves the proenkephalin fragment BAM12P to produce adrenorphin-Gly. This cleavage occurs at a single arginine residue and is an intermediate step in the production of the opiate adrenorphin in vivo. The identity of the product was confirmed by reverse-phase and ion-exchange chromatography. The adrenorphin-Gly-generating enzyme (AGE) was determined by chromatofocusing to have a pI value of 5.2 and bound strongly to a metal-chelate affinity column. After purification by gel-filtration and ion-exchange chromatography AGE was free of contaminating activities, as cleavage of radiolabelled BAM12P generated a single product as judged by reverse-phase and ion-exchange chromatography. The enzyme has a molecular mass of approx. 45 kDa and a pH optimum of 8.6 in Mops, Taps and Hepes buffers, but was inhibited by phosphate buffers. It was inhibited by micromolar concentrations of copper and zinc ions, but not by millimolar concentrations of calcium or manganese ions. The addition of BAM22P, dynorphin 1-13 or dynorphin 1-8 to the incubation mixture inhibited the cleavage of radiolabelled BAM12P. The cleavage was also inhibited by the presence of catecholamines at concentrations similar to those found within the chromaffin granule. This may explain the known effect of reserpine on chromaffin cells of reducing catecholamine levels and simultaneously increasing adrenorphin levels. It may also indicate a function for AGE and adrenorphin as reporters of intragranular conditions.
Collapse
Affiliation(s)
- N Tezapsidis
- Unit of Metabolic Medicine, St. Mary's Hospital Medical School, Imperial College of Science, Technology and Medicine, Paddington, London, U.K
| | | |
Collapse
|
25
|
Walker JA, Molloy SS, Thomas G, Sakaguchi T, Yoshida T, Chambers TM, Kawaoka Y. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J Virol 1994; 68:1213-8. [PMID: 8289354 PMCID: PMC236564 DOI: 10.1128/jvi.68.2.1213-1218.1994] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The virulence of avian influenza viruses correlates with the sensitivity of their hemagglutinin (HA) to cellular proteases. Furin, a proprotein-processing subtilisin-related endoprotease, is a leading candidate for the enzyme that cleaves the HA of virulent avian viruses. We therefore compared the specificity of furin with those of proteases in a variety of cultured cells and in a rat Golgi fraction, using the HA cleavage mutants of a virulent avian influenza virus, A/Turkey/Ireland/1378/85 (H5N8). The results indicated similar sequence specificities among the endoproteases when purified furin was used. In experiments with the vaccinia virus expression system, overexpressed furin cleaved mutant HAs that were not recognized by the endogenous proteases, resulting in an apparent broader specificity of furin. These findings authenticate the proposed role of furin as an HA-activating protease in vivo and caution against the use of expression vectors to study protease sequence specificity.
Collapse
Affiliation(s)
- J A Walker
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Benjannet S, Rondeau N, Paquet L, Boudreault A, Lazure C, Chrétien M, Seidah NG. Comparative biosynthesis, covalent post-translational modifications and efficiency of prosegment cleavage of the prohormone convertases PC1 and PC2: glycosylation, sulphation and identification of the intracellular site of prosegment cleavage of PC1 and PC2. Biochem J 1993; 294 ( Pt 3):735-43. [PMID: 8397508 PMCID: PMC1134524 DOI: 10.1042/bj2940735] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present herein the pulse-chase analysis of the biosynthesis of the prohormone convertases PC1 and PC2 in the endocrine GH4C1 cells infected with vaccinia virus recombinants expressing these convertases. Characterization of the pulse-labelled enzymes demonstrated that pro-PC1 (88 kDa) is cleaved into PC1 (83 kDa) and pro-PC2 (75 kDa) into PC2 (68 kDa). Secretion of glycosylated and sulphated PC1 (84 kDa) occurs about 30 min after the onset of biosynthesis, whereas glycosylated and sulphated PC2 (68 kDa) is detected in the medium after between 1 and 2 h. Furthermore, in the case of pro-PC2 only, we observed that a fraction of this precursor escapes glycosylation. A small proportion (about 5%) of the intracellular glycosylated pro-PC2 (75 kDa) is sulphated, and it is this glycosylated and sulphated precursor that is cleaved into the secretable 68 kDa form of PC2. Major differences in the carbohydrate structures of PC1 and PC2 are demonstrated by the resistance of the secreted PC1 to endoglycosidase H digestion and sensitivity of the secreted PC2 to this enzyme. Inhibition of N-glycosylation with tunicamycin caused a dramatic intracellular degradation of these convertases within the endoplasmic reticulum, with the net effect of a reduction in the available activity of PC1 and PC2. These results emphasize the importance of N-glycosylation in the folding and stability of PC1 and PC2. Pulse-labelling experiments in uninfected mouse beta TC3 and rat Rin m5F insulinoma cells, which endogenously synthesize PC2, showed that, as in infected GH4C1 cells, pro-PC2 predominates intracellularly. In order to define the site of prosegment cleavage, pulse-chase analysis was performed at low temperature (15 degrees C) or after treatment of GH4C1 cells with either brefeldin A or carbonyl cyanide m-chlorophenylhydrazone. These results demonstrated that the onset of the conversions of pro-PC1 into PC1 and non-glycosylated pro-PC2 into PC2 (65 kDa) occur in a pre-Golgi compartment, presumably within the endoplasmic reticulum. In contrast, pulse labelling in the presence of Na(2)35SO4 demonstrated that the processing of glycosylated and sulphated pro-PC2 occurs within the Golgi apparatus. In order to test the possibility that zymogen processing is performed by furin, we co-expressed this convertase with either pro-PC1 or pro-PC2. The data demonstrated the inability of furin to cleave either proenzyme.
Collapse
Affiliation(s)
- S Benjannet
- J.A. DeSève Laboratory of Molecular Neuroendocrinology, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Tracer HL, Loh YP. The effect of salt-loading on corticotropin releasing hormone and arginine vasopressin mRNA levels in the mouse hypothalamus: a quantitative in situ hybridization analysis. Neuropeptides 1993; 25:161-7. [PMID: 8247254 DOI: 10.1016/0143-4179(93)90098-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previously, we showed that during salt-loading in mice there was an acute rise in plasma ACTH levels after 2 days followed by a transient decrease after 4 and 9 days. Pro-opiomelanocortin (POMC) mRNA levels in the anterior pituitary increased after 2 days and returned to normal thereafter. In this study, changes in hypothalamic CRH and AVP mRNA levels during salt-loading were investigated using quantitative in situ hybridization histochemistry. CRH mRNA was expressed only in the paraventricular nucleus (PVN), while AVP mRNA was expressed in both the supraoptic (SON) and paraventricular nuclei. CRH mRNA levels were unchanged after 2 days salt-loading, but declined to 77% of control levels after 9 days. AVP mRNA levels rose to 260% and 634% of control levels in the SON, and to 352% and 522% of control levels in the PVN, after 2 and 9 days salt-loading, respectively. These data suggest a major role of AVP in the acute stimulation of ACTH secretion and POMC mRNA levels seen after 2 days salt-loading. Desensitization of AVP receptors at the corticotroph level and a centrally mediated inhibition of CRH release may account for the decrease of ACTH secretion and POMC mRNA levels in the anterior pituitary with prolonged salt-loading.
Collapse
Affiliation(s)
- H L Tracer
- Section on Cellular Neurobiology, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
29
|
Alarcón C, Lincoln B, Rhodes C. The biosynthesis of the subtilisin-related proprotein convertase PC3, but no that of the PC2 convertase, is regulated by glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53606-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
|
31
|
Affiliation(s)
- Y P Loh
- Section of Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
32
|
Braks JA, Guldemond KC, van Riel MC, Coenen AJ, Martens GJ. Structure and expression of Xenopus prohormone convertase PC2. FEBS Lett 1992; 305:45-50. [PMID: 1633858 DOI: 10.1016/0014-5793(92)80652-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The multifunctional prohormone, proopiomelanocortin (POMC), is processed in the melanotrope cells of the pituitary pars intermedia at pairs of basic amino acid residues to give a number of peptides, including alpha-melanophore-stimulating hormone (alpha-MSH). This hormone causes skin darkening in amphibians during background adaptation. Here we report the complete structure of Xenopus laevis prohormone convertase PC2, the enzyme thought to be responsible for processing of POMC to alpha-MSH. A comparative structural analysis revealed an overall amino acid sequence identity of 85-87% between Xenopus PC2 and its mammalian counterparts, with the lowest degree of identity in the signal peptide sequence (28-36%) and the region amino-terminal to the catalytic domain (59-60%). The occurrence of a second, structurally different PC2 protein reflects the expression of two Xenopus PC2 genes. The expression pattern of PC2 in the Xenopus pituitary gland of black- and white-adapted animals was found to be similar to that of POMC, namely high expression in active melanotrope cells of black animals. This observation is in line with a physiological role for PC2 in processing POMC to alpha-MSH.
Collapse
Affiliation(s)
- J A Braks
- Department of Animal Physiology, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Processing of adrenocorticotropin by two proteases in bovine intermediate lobe secretory vesicle membranes. A distinct acidic, tetrabasic residue-specific calcium-activated serine protease and a PC2-like enzyme. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42539-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|