1
|
Yagodin S, Pivovarova NB, Andrews SB, Sattelle DB. Functional characterization of thapsigargin and agonist-insensitive acidic Ca2+ stores in Drosophila melanogaster S2 cell lines. Cell Calcium 1999; 25:429-38. [PMID: 10579054 DOI: 10.1054/ceca.1999.0043] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of acidic intracellular calcium stores in calcium homeostasis was investigated in the Drosophila Schneider cell line 2 (S2) by means of free cytosolic calcium ([Ca2+]i) and intracellular pH (pHi) imaging together with measurements of total calcium concentrations within intracellular compartments. Both a weak base (NH4Cl, 15 mM) and a Na+/H+ ionophore (monensin, 10 microM) evoked cytosolic alkalinization followed by Ca2+ release from acidic intracellular Ca2+ stores. Pretreatment of S2 cells with either thapsigargin (1 microM), an inhibitor of endoplasmic reticulum Ca(2+)-ATPases, or with the Ca2+ ionophore ionomycin (10 microM) was without effect on the amplitude of Ca2+ release evoked by alkalinization. Application of the cholinergic agonist carbamylcholine (100 microM) to transfected S2-DM1 cells expressing a Drosophila muscarinic acetylcholine receptor (DM1) emptied the InsP3-sensitive Ca2+ store but failed to affect the amplitude of alkalinization-evoked Ca2+ release. Glycyl-L-phenylalanine-beta-naphthylamide (200 microM), a weak hydrophobic base known to permeabilize lysosomes by osmotic swelling, triggered Ca2+ release from internal stores, while application of brefeldin A (10 microM), an antibiotic which disperses the Golgi complex, resulted in a smaller increase in [Ca2+]i. These results suggest that the alkali-evoked calcium release is largely attributable to lysosomes, a conclusion that was confirmed by direct measurements of total calcium content of S2 organelles. Lysosomes and endoplasmic reticulum were the only organelles found to have concentrations of total calcium significantly higher than the cytosol. However, NH4Cl (15 mM) reduced the level of total calcium only in lysosomes. Depletion of acidic Ca2+ stores did not elicit depletion-operated Ca2+ entry. They were refilled upon re-exposure of cells to normal saline ([Ca2+]o = 2 mM), but not by thapsigargin-induced [Ca2+]i elevation in Ca(2+)-free saline.
Collapse
Affiliation(s)
- S Yagodin
- Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| | | | | | | |
Collapse
|
2
|
Silinsky EM, Watanabe M, Redman RS, Qiu R, Hirsh JK, Hunt JM, Solsona CS, Alford S, MacDonald RC. Neurotransmitter release evoked by nerve impulses without Ca2+ entry through Ca2+ channels in frog motor nerve endings. J Physiol 1995; 482 ( Pt 3):511-20. [PMID: 7738845 PMCID: PMC1157778 DOI: 10.1113/jphysiol.1995.sp020536] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The requirement for extracellular Ca2+ in the process of evoked acetylcholine (ACh) release by nerve impulses was tested at endplates in frog skeletal muscle. Ca(2+)-containing lipid vesicles (Ca2+ liposomes) were used to elevate cytoplasmic Ca2+ concentrations under conditions in which Ca2+ entry from the extracellular fluid was prevented. 2. In an extracellular solution containing no added Ca2+ and 1 mM Mg2+ ('Ca(2+)-free' solution), Ca2+ liposomes promoted the synchronous release of ACh quanta, reflected electrophysiologically as endplate potentials (EPPs), in response to temporally isolated nerve impulses. 3. Motor nerve stimulation generated EPPs during superfusion with Ca2+ liposomes in Ca(2+)-free solutions containing the Ca2+ channel blocker Co2+ (1 mM), and the Ca2+ chelator EGTA (2 mM). As a physiological control for Ca2+ leakage from the liposomes to the extracellular fluid, the effect of Ca2+ liposomes on asynchronous evoked ACh release mediated by Ba2+ was examined. In contrast to the effects of 0.2-0.3 mM extracellular Ca2+, which generated EPPs but antagonized Ba(2+)-mediated asynchronous ACh release, Ca2+ liposomes generated EPPs but did not reduce asynchronous release mediated by Ba2+. The effects of Ca2+ liposomes were thus not due to leakage of Ca2+ from the liposome to the extracellular fluid. 4. Morphological studies using fluorescently labelled liposomes in conjunction with a confocal microscope demonstrate that lipid is transferred from the liposomes to nerve endings and liposomal contents are delivered to the nerve terminal cytoplasm. 5. The results suggest that when intracellular Ca2+ is elevated using liposomes as a vehicle, evoked ACh release can occur in the absence of Ca2+ entry via Ca2+ channels.
Collapse
Affiliation(s)
- E M Silinsky
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Nassar-Gentina V, Rojas E, Luxoro M. Rise in cytoplasmic Ca2+ induced by monensin in bovine medullary chromaffin cells. Cell Calcium 1994; 16:475-80. [PMID: 7712541 DOI: 10.1016/0143-4160(94)90077-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monensin, a Na+/H+ exchanger, induces catecholamine secretion from adrenal chromaffin cells by an unknown mechanism. We found and report here that in bovine chromaffin cells, monensin evokes profound changes in [Ca2+]i which were measured by means of the fluorescent Ca2+ indicator Indo-1. Application of monensin (10 microM) generated a marked [Ca2+]i rise. Removal of external Ca2+ did not prevent the elevation of [Ca2+]i, though it was significantly decreased. In the presence of nifedipine (10 microM) or tetrodotoxin (3 microM) the monensin-induced [Ca2+]i rise remained unchanged. In contrast, in the absence of extracellular Na+ the [Ca2+]i rise was abolished. Addition of caffeine (40 mM) at the peak response generated by monensin produced a further increase in [Ca2+]i, which was independent of external [Ca2+] or [Na+]. After depletion of the IP3-sensitive compartment by thapsigargin (1 microM), caffeine still induced a rise in [Ca2+]i while the monensin response was absent. We concluded that the origin of the Ca2+ for the [Ca2+]i increase elicited by the Na+/H+ exchanger in chromaffin cells is not the extracellular space. Clearly there seems to be at least two intracellular Ca2+ stores, one of which is affected by monensin. This Ca2+ pool, which is different than the pool stimulated by caffeine, is sensitive to the extracellular [Ca2+] and to thapsigargin. Our data are compatible with the idea that the monensin mediated Na+ entry could activate the production of inositol trisphosphate and this in turn could trigger Ca2+ release from the endoplasmic reticulum.
Collapse
Affiliation(s)
- V Nassar-Gentina
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Viña del Mar
| | | | | |
Collapse
|
4
|
Sorimachi M, Yamagami K, Nishimura S, Kuramoto K. Possible regulation of caffeine-induced intracellular Ca2+ mobilization by intracellular free Na+. J Neurochem 1992; 59:2271-7. [PMID: 1431907 DOI: 10.1111/j.1471-4159.1992.tb10120.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To gain some understanding of the regulatory mechanism involved in caffeine-induced Ca2+ release in adrenal chromaffin cells, we took advantage of the paradoxical observation that removal of divalent cations potentiated the secretory response to caffeine. We measured the concentration of cytosolic free Ca2+ ([Ca]in) in isolated cat chromaffin cells, by fura-2 microfluorometry, to see whether there was any correlation between the secretory response and the rise in [Ca]in. The caffeine-induced [Ca]in rise and catecholamine secretion were increased by treatment of cells with a divalent cation-deficient solution. These potentiated responses were strongly inhibited either by pretreatment with ryanodine, by the reduction of the external Na+ concentration, or by the addition of Ca2+ channel blockers. Removal of divalent cations caused a large rise in the cytosolic free Na+ concentration ([Na]in), which was measured using SBFI microfluorometry. This rise in [Na]in was reduced either by adding Ca2+ channel blockers or by reducing the external Na+ concentration. These results show a good correlation between caffeine-induced Ca2+ release and [Na]in at the time of stimulation, suggesting that caffeine-induced Ca2+ release is regulated by [Na]in.
Collapse
Affiliation(s)
- M Sorimachi
- Department of Physiology, Kagoshima University, School of Medicine, Japan
| | | | | | | |
Collapse
|
5
|
Morita K, Hamano S, Oka M, Yoshizumi M. Enhancement by cytochalasin B of ouabain-stimulated catecholamine secretion from cultured bovine adrenal chromaffin cells: possible relation to alteration in Na+/K(+)-pump activity. Cell Mol Neurobiol 1990; 10:525-37. [PMID: 1965424 DOI: 10.1007/bf00712846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. Catecholamine secretion evoked by ouabain from cultured bovine adrenal chromaffin cells has previously been shown to be markedly enhanced by pretreatment of the cells with cytochalasin B (Morita et al., 1988). To elucidate a possible mechanism of this enhancement, the stimulatory action of ouabain on Ca2+ influx as well as catecholamine secretion was then examined in the cells pretreated with or without cytochalasin B. The effect of cytochalasin B pretreatment on the inhibitory action of ouabain on the Na+/K+ pump was also examined by measuring 86Rb+ uptake into the cells. 2. Pretreatment of the cells with cytochalasin B caused enhancement of ouabain-induced catecholamine secretion, and this enhancement was accompanied by the elevation of ouabain-stimulated 45Ca2+ uptake into the cells. The inhibitory action of ouabain on 86Rb+ uptake was significantly enhanced by pretreatment of the cells with cytochalasin B under the same conditions. 3. These results indicate that the enhancement of ouabain-induced catecholamine secretion caused by cytochalasin B pretreatment may be due to the increase in ouabain-stimulated Ca2+ influx into the cells and, furthermore, suggest the possibility that this increase in Ca2+ influx may be attributed to the potentiation of the inhibitory action of ouabain on the Na+/K+ pump in the adrenal chromaffin cell. Thus, the present study provides an evidence for a possible role of microfilaments as one of the intrinsic factors modulating the plasma membrane functions.
Collapse
Affiliation(s)
- K Morita
- Department of Pharmacology, Tokushima University School of Medicine, Japan
| | | | | | | |
Collapse
|
6
|
Teraoka H, Yamada Y, Nakazato Y, Ohga A. The role of Na+ in muscarinic receptor-mediated catecholamine secretion in the absence of extracellular Ca2+ in cat perfused adrenal glands. Br J Pharmacol 1990; 101:67-72. [PMID: 2282468 PMCID: PMC1917635 DOI: 10.1111/j.1476-5381.1990.tb12090.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
1. The role of Na+ in muscarinic receptor-mediated catecholamine secretion, which is independent of extracellular Ca2+, was investigated by observing the effect of veratridine and ouabain in perfused adrenal glands of the cat. 2. Veratridine (10(-4) M) markedly enhanced catecholamine secretion evoked by acetylcholine (ACh, 10(-4) M) during perfusion with Ca2(+)-free Locke solution containing hexamethonium (10(-3) M). The enhancement tended to be larger for noradrenaline secretion than for adrenaline secretion. Qualitatively the same result was obtained in the response to pilocarpine (5 x 10(-4) M). 3. Ouabain (10(-4) M) also enhanced ACh- and pilocarpine-induced catecholamine secretions, especially noradrenaline secretion in the absence of extracellular Ca2+. 4. Tetrodotoxin (10(-6) M) blocked the enhancing effect of veratridine on ACh-induced catecholamine secretion, but not that of ouabain in the absence of extracellular Ca2+. 5. When NaCl was replaced with sucrose, there was no secretory response to ACh regardless of the presence or absence of veratridine or ouabain. However, when ouabain, but not veratridine, was infused with Na+ before the replacement of NaCl, the response to ACh was substantially augmented. 6. These results indicate that Na+ is essential in the initiation of muscarinic receptor-mediated catecholamine secretion and its enhancement by veratridine and ouabain in the absence of extracellular Ca2+. Both drugs seem to increase the intracellular concentration of Na+ through different mechanisms and result in increases in the efficiency of Ca2+ mobilization from intracellular Ca2+ pools linked to muscarinic receptors.
Collapse
Affiliation(s)
- H Teraoka
- Department of Pharmacology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
7
|
Barsigian C, Barbieri EJ. Extracellular sodium is required for methacholine-induced secretion of mucus glycoconjugates from canine tracheal explants. Cell Biochem Funct 1990; 8:171-5. [PMID: 2204495 DOI: 10.1002/cbf.290080308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular sodium is known to influence secretion by certain secretory cells, possibly by mobilizing calcium from cellular stores or by altering intracellular pH via regulation of a Na(+)-H+ antiport system. Using canine tracheal explants, we determined whether agents which alter sodium fluxes are capable of modulating basal or cholinergically-induced secretion of mucus glycoconjugates. Methacholine, a cholinergic agonist, increased mucus secretion from explants incubated in the presence or absence of calcium, but had no effect on secretion when incubated in sodium-deficient media, indicating (a) that cholinergically-induced secretion can be mediated by mobilization of cellular calcium and (b) that extracellular sodium was required for this stimulatory effect. Several agents which increase intracellular sodium were tested for their effect on mucus secretion. Ouabain, a sodium pump inhibitor, and veratridine, a sodium channel activator, did not significantly affect control or methacholine-induced secretion; gramicidin, a sodium ionophore, also had no effect on basal release. Tetrodotoxin, a sodium channel inhibitor, was also without effect on basal or methacholine-stimulated mucus release. Agents which alter intracellular pH were also examined for their effects on basal or methacholine-induced glycoconjugate secretion. Amiloride, which decreases intracellular pH by inhibiting Na(+)-H+ exchange, produced a 19 per cent increase in basal secretion (not statistically significant), but had no effect on methacholine-induced secretion. An agent, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which decreases intracellular pH by inhibiting HCO3(-)-Cl- exchange, elicited decreases in both basal and methacholine-induced secretion, but the inhibition did not reach statistical significance.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Barsigian
- Department of Pharmacology, Hahnemann University, Philadelphia, Pennsylvania 19102
| | | |
Collapse
|
8
|
Friedman JE, Lelkes PI, Rosenheck K, Oplatka A. Control of stimulus-secretion coupling in adrenal medullary chromaffin cells by microfilament-specific macromolecules. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38445-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Lelkes PI, Friedman JE. Interaction of French-pressed liposomes with isolated bovine adrenal chromaffin cells. Characterization of the cell-liposome interactions. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89663-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Etemadi AH. Functional and orientational features of protein molecules in reconstituted lipid membranes. ADVANCES IN LIPID RESEARCH 1985; 21:281-428. [PMID: 3161297 DOI: 10.1016/b978-0-12-024921-3.50014-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Suchard SJ, Lattanzio FA, Rubin RW, Pressman BC. Stimulation of catecholamine secretion from cultured chromaffin cells by an ionophore-mediated rise in intracellular sodium. J Cell Biol 1982; 94:531-9. [PMID: 7130269 PMCID: PMC2112218 DOI: 10.1083/jcb.94.3.531] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The significance of intracellular Na+ concentration in catecholamine secretion of cultured bovine adrenal chromaffin cells was investigated using the monovalent carboxylic ionophore monensin. This ionophore, which is known to mediate a one-for-one exchange of intracellular K+ for extracellular Na+, induces a slow, prolonged release of catecholamines which, at 6 h, amounts of 75-90% of the total catecholamines; carbachol induces a rapid pulse of catecholamine secretion of 25-35%. Although secretory granule numbers appear to be qualitatively reduced after carbachol, multiple carbachol, or Ba2+ stimulation, overall granule distribution remains similar to that in untreated cells. Monensin-stimulated catecholamine release requires extracellular Na+ but not Ca2+ whereas carbachol-stimulated catecholamine release requires extracellular Ca2+ and is partially dependent on extracellular Na+. Despite its high selectivity for monovalent ions, monensin is considerably more effective in promoting catecholamine secretion than the divalent ionophores, A23187 and ionomycin, which mediate a more direct entry of extracellular Ca2+ into the cell. We propose that the monensin-stimulated increase in intracellular Na+ levels causes an increase in the availability of intracellular Ca2+ which, in turn, stimulates exocytosis. This hypothesis is supported by the comparable stimulation of catecholamine release by ouabain which inhibits the outwardly directed Na+ pump and thus permits intracellular Na+ to accumulate. The relative magnitudes of the secretion elicited by monensin, carbachol, and the calcium ionophores, are most consistent with the hypothesis that, under normal physiological conditions, Na+ acts by decreasing the propensity of Ca2+-sequestering sites to bind the Ca2+ that enters the cell as a result of acetylcholine stimulation.
Collapse
|
12
|
Kharasch ED, Mellow AM, Silinsky EM. Intracellular magnesium does not antagonize calcium-dependent acetylcholine secretion. J Physiol 1981; 314:255-63. [PMID: 6273531 PMCID: PMC1249431 DOI: 10.1113/jphysiol.1981.sp013705] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1. The effects of intracellular application of Ca and Mg ions on evoked acetylcholine secretion at frog motor nerve terminals were studied. Ca and Mg were applied to the nerve-ending cytoplasm using liposomes as a vehicle. 2. Under conditions in which intracellular application of Ca produced many-fold increased in evoked acetylcholine release. 3. When Mg was applied to the nerve-ending cytoplasm concurrently with Ca, acetylcholine release was further increased above the level produced by introducing Ca alone. 4. The results suggest that intracellular Mg does not antagonize depolarization-secretion coupling and that antagonism of transmitter release by extracellular Mg occurs only at the external surface of the nerve ending.
Collapse
|
13
|
Hallett MB, Campbell AK. Uptake of liposomes containing the photoprotein obelin by rat isolated adipocytes. Adhesion, endocytosis or fusion? Biochem J 1980; 192:587-96. [PMID: 7236227 PMCID: PMC1162374 DOI: 10.1042/bj1920587] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
1. The uptake of liposomes containing the photoprotein obelin by rat isolated adipocytes was investigated with the aim of producing liposome-cell fusion, enabling obelin to be introduced into the cytoplasm of intact cells. 2. Incubation of liposomes containing obelin with rat isolated adipocytes resulted in a time-dependent uptake of entrapped obelin by the adipocytes. The uptake by adipocytes (at 2h) of liposomes prepared from phosphatidylcholine, phosphatidylcholine+phosphatidylserine (molar ratio 4:1) and phosphatidylcholine+N-octadecylamine (molar ratio 4:1) was approx. 6, 10 and 10% of original entrapped obelin per g dry wt. of adipocytes respectively. 3. During incubation with adipocytes some of the liposomes became permeable to Ca(2+) ions, resulting in stimulation of obelin luminescence from within the liposomes. This increase in permeability to Ca(2+) seemed to be the result of the interaction of liposomes with the cell membrane. 4. Approx. 50% of liposome uptake could be inhibited by cytochalasin B (500mum). This was consistent with this uptake being the result of endocytosis. The remaining uptake was probably the result of adhesion of liposomes to the cell membrane. 5. In an attempt to detect the presence of cytoplasmic obelin, after incubation of adipocytes with liposomes, a method of causing a rapid rise in cell-membrane permeability to Ca(2+) was developed in which an anti-cell anti-body-complement reaction occurred at the cell membrane. There was no detectable transfer of active obelin into the cell cytoplasm. 6. After incubation of liposomes with adipocytes in the absence of bovine serum albumin, obelin luminescence from a small proportion of liposomes increased (approx. 1.5%) in response to anti-(5'-nucleotidase) antibody plus complement. 7. It was concluded that under the conditions of these experiments, (a) no detectable transfer (<0.1%) of liposome-entrapped obelin to the adipocyte cytoplasm had occurred, (b) an increase in liposome permeability to Ca(2+) occurred during incubation with adipocytes, (c) at least 50% of liposome uptake by adipocytes was the result of endocytosis, presumably into secondary lysosomes, and the remaining uptake was apparently the result of loose attachment of liposomes to the cell surface, and (d) in the absence of bovine serum albumin, a portion of at least one surface antigen, the ectoenzyme 5'-nucleotidase, was transferred from the adipocyte membrane to the liposome membrane.
Collapse
|
14
|
Friedman JE, Lelkes PI, Rosenheck K, Oplatka A. The possible implication of membrane-associated actin in stimulus-secretion coupling in adrenal chromaffin cells. Biochem Biophys Res Commun 1980; 96:1717-23. [PMID: 6255953 DOI: 10.1016/0006-291x(80)91372-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Theoharides TC. Polyamines spermidine and spermine as modulators of calcium-dependent immune processes. Life Sci 1980; 27:703-13. [PMID: 6106144 DOI: 10.1016/0024-3205(80)90323-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|