1
|
Rice AM, Faig A, Wolff DE, King SB. Sodium borohydride and thiol mediated nitrite release from nitroaromatic antibiotics. Bioorg Med Chem Lett 2021; 48:128245. [PMID: 34242759 DOI: 10.1016/j.bmcl.2021.128245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Nitroaromatic antibiotics are used to treat a variety of bacterial and parasitic infections. These prodrugs require reductive bioactivation for activity, which provides a pathway for the release of nitrogen oxide species such as nitric oxide, nitrite, and/or nitroxyl. Using sodium borohydride and 2-aminoethanol as model reductants, this work examines release of nitrogen oxide species from various nitroaromatic compounds through several characterization methods. Specifically, 4- and 5-nitroimidazoles reproducibly generate higher amounts of nitrite (not nitric oxide or nitroxyl) than 2-nitroimidazoles during the reaction of model hydride donors or thiols. Mass spectrometric analysis shows clean formation of products resulting from nucleophile addition and nitro group loss. 2-Nitrofurans generate nitrite upon addition of sodium borohydride or 2-aminoethanethiol, but these complex reactions do not produce clean organic products. A mechanism that includes nucleophile addition to the carbon βto the nitro group to generate a nitronate anion followed by protonation and nitrous acid elimination explains the observed products and labeling studies. These systematic studies give a better understanding of the release mechanisms of nitrogen oxide species from these compounds allowing for the design of more efficient therapeutics.
Collapse
Affiliation(s)
- Allison M Rice
- Wake Forest University, Department of Chemistry, Winston-Salem, NC 27101, United States of America
| | - Allison Faig
- Wake Forest University, Department of Chemistry, Winston-Salem, NC 27101, United States of America
| | - David E Wolff
- Wake Forest University, Department of Chemistry, Winston-Salem, NC 27101, United States of America
| | - S Bruce King
- Wake Forest University, Department of Chemistry, Winston-Salem, NC 27101, United States of America.
| |
Collapse
|
2
|
Rice AM, Long Y, King SB. Nitroaromatic Antibiotics as Nitrogen Oxide Sources. Biomolecules 2021; 11:267. [PMID: 33673069 PMCID: PMC7918234 DOI: 10.3390/biom11020267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the development of new treatments for these conditions, the associated toxicity and lack of clear mechanisms of action have limited their therapeutic development. Nitroaromatic antibiotics require reductive bioactivation for activity and this reductive metabolism can convert the nitro group to nitric oxide (NO) or a related reactive nitrogen species (RNS). As nitric oxide plays important roles in the defensive immune response to bacterial infection through both signaling and redox-mediated pathways, defining controlled NO generation pathways from these antibiotics would allow the design of new therapeutics. This review focuses on the release of nitrogen oxide species from various nitroaromatic antibiotics to portend the increased ability for these compounds to positively impact infectious disease treatment.
Collapse
Affiliation(s)
| | | | - S. Bruce King
- Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; (A.M.R.); (Y.L.)
| |
Collapse
|
3
|
Ferreira LP, Parra GG, Codognato DCK, Amado AM, da Silva RS. Light induced cytotoxicity of nitrofurantoin toward murine melanoma. Photochem Photobiol Sci 2017; 16:1071-1078. [PMID: 28513644 DOI: 10.1039/c6pp00306k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cytotoxicity of nitrofurantoin (NFT) in the dark and after light exposure (UVA irradiation, λ = 385 nm) was evaluated in murine melanoma B16F10 cells. NFT induces both cell proliferation and inhibition of cell viability. The dominance of one or the other effect depends on the drug concentration, incubation time (tinc) and irradiation dose. The uptake of NFT in these cells, as well as its photocytotoxicity, reaches saturation after 24 hours of incubation. The mechanism of cell death in the dark is associated with the enzymatic release of nitric oxide (NO). The increase of NFT cytotoxicity under light irradiation is associated with the increase of NO concentration due to photorelease. NO photorelease by NFT in solution was confirmed by chemiluminescence, while NO formation in cells was confirmed by fluorescence microscopy using DAF-2DA, a specific indicator of NO in living cells. The NFT does not enter nuclei, distributing preferentially in the cell cytoplasm, as shown by fluorescence microscopy.
Collapse
Affiliation(s)
- Lucimara P Ferreira
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| | - Gustavo G Parra
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| | - Débora C K Codognato
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| | - André M Amado
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| | - Roberto S da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo. Av. Prof. Zeferino Vaz s/n, Monte Alegre, CEP 14040-903, Ribeirão Preto, SP, Brazil and Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Borg DC, Schaich KM. Cytotoxicity from Coupled Redox Cycling of Autoxidizing Xenobiotics and Metals: A Selective Critical Review and Commentary on Work-in-Progress. Isr J Chem 2013. [DOI: 10.1002/ijch.198400007] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Espinosa-Aguirre J, Barajas-Lemus C, Hernández-Ojeda S, Govezensky T, Rubio J, Camacho-Carranza R. RecBCD and RecFOR dependent induction of chromosomal deletions by sodium selenite in Salmonella. Mutat Res 2009; 665:14-19. [PMID: 19427506 DOI: 10.1016/j.mrfmmm.2009.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/13/2009] [Accepted: 02/23/2009] [Indexed: 05/27/2023]
Abstract
RecBCD and RecFOR homologous recombination pathways induced bacterial chromosomal duplication-segregation by sodium selenite (SSe) at sub-inhibitory concentrations. This evidence suggests that SSe induces both, double and single DNA strand damage with a concomitant DNA repair response, however the strong dependence for recombinogenic activity of RecB product suggests that the main DNA repair pathway copes with dsDNA breaks. A role for SSe recombinogenic induction is proposed to explain its effect on DNA instability.
Collapse
Affiliation(s)
- Javier Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | | | | |
Collapse
|
6
|
Streker K, Freiberg C, Labischinski H, Hacker J, Ohlsen K. Staphylococcus aureus NfrA (SA0367) is a flavin mononucleotide-dependent NADPH oxidase involved in oxidative stress response. J Bacteriol 2005; 187:2249-56. [PMID: 15774866 PMCID: PMC1065224 DOI: 10.1128/jb.187.7.2249-2256.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NfrA protein, a putative essential oxidoreductase in the soil bacterium Bacillus subtilis, is induced under heat shock and oxidative stress conditions. In order to characterize the function of an homologous NfrA protein in Staphylococcus aureus, an nfrA deletion strain was constructed, the protein was purified, the enzymatic activity was determined, and the transcriptional regulation was investigated. The experiments revealed that NfrA is not essential in S. aureus. The purified protein oxidized NADPH but not NADH, producing NADP in the presence of flavin mononucleotide, suggesting that NfrA is an NADPH oxidase in S. aureus. In addition, the NfrA enzyme showed nitroreductase activity and weak disulfide reductase activity. Transcription was strongly induced by ethanol, diamide, and nitrofurantoin. Hydrogen peroxide induced nfrA transcription only at high concentrations. The expression of nfrA was independent of the alternative sigma factor sigma(B). Furthermore, the transcriptional start site was determined, which allowed identification of a PerR box homologous sequence upstream of the nfrA promoter. The observations presented here suggest that NfrA is a nonessential NADPH oxidoreductase which may play a role in the oxidative stress response of S. aureus, especially in keeping thiol-disulfide stress in balance.
Collapse
Affiliation(s)
- Karin Streker
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
7
|
Dubuisson ML, De Wergifosse B, Kremers P, Marchand-Brynaert J, Trouet A, Rees JF. Protection against nitrofurantoin-induced oxidative stress by coelenterazine analogues and their oxidation products in rat hepatocytes. Free Radic Res 2001; 34:285-96. [PMID: 11264902 DOI: 10.1080/10715760100300251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Coelenterazine (3,7-dihydro-2-(p-hydroxybenzyl)-6-(p-hydroxyphenyl)-8-benzylimidazolo[1,2-a]pyrazin-3- one) is a substrate for the bioluminescence reaction in many marine animals. Recent work showed that CLZn, its synthetic analogue CLZm, and their common oxidation product coelenteramine (CLM) have strong antioxidative properties in acellular lipid peroxidation systems as well as in rat hepatocytes subjected to tert-butyl hydroperoxide (t-BHP). Here, we analyzed the ability of CLZm and several imidazolopyrazinone (IMPZs) analogues to protect primary cultures of rat hepatocytes against a nitrofurantoin (NF)-induced oxidative stress. Comparison of protection capabilities with reference antioxidants yielded the following ranking: CLZm >>> BHT >Trolox C((R)) > probucol > alpha-tocopherol. The comparison of CLZm with analogues lacking the phenol group in R(1) revealed no differences although the presence of this phenol conferred superior protection against t-BHP. CLM, as well as its methoxylated analogue mCLM which lacks chain-breaking properties, were equally potent in preventing cellular damage caused by NF. mCLM and alpha-naphthoflavone, an inhibitor of cytochrome P450 (CYP450) IAI, similarly protected cells against NF-induced mortality and also equally inhibited EROD activity in methylcholanthrene-induced hepatocytes. The inhibition of EROD by CLZm and CLM was less pronounced. We suggest that the extent of protection conferred by IMPZs against NF-toxicity reflects both the occurrence of antioxidative properties detoxifying ROS produced within cells and inhibitory actions on CYP450 isoforms involved in the bioreduction of NF.
Collapse
Affiliation(s)
- M L Dubuisson
- Unité de Biologie Animale; Université Catholique de Louvain, Croix du Sud, 4-5; B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Squella JA, Gonzalez P, Bollo S, Núñez-Vergara LJ. Electrochemical generation and interaction study of the nitro radical anion from nimesulide. Pharm Res 1999; 16:161-4. [PMID: 9950296 DOI: 10.1023/a:1011950218824] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- J A Squella
- Bioelectrochemistry Laboratory, Chemical and Pharmaceutical Sciences Faculty, University of Chile, Santiago.
| | | | | | | |
Collapse
|
9
|
Guo G, Weiss B. Endonuclease V (nfi) mutant of Escherichia coli K-12. J Bacteriol 1998; 180:46-51. [PMID: 9422591 PMCID: PMC106847 DOI: 10.1128/jb.180.1.46-51.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/1997] [Accepted: 10/24/1997] [Indexed: 02/05/2023] Open
Abstract
Endonuclease V (deoxyinosine 3' endonuclease), the product of the nfi gene, has a specificity that encompasses DNAs containing dIMP, abasic sites, base mismatches, uracil, and even untreated single-stranded DNA. To determine its importance in DNA repair pathways, nfi insertion mutants and overproducers (strains bearing nfi plasmids) were constructed. The mutants displayed a twofold increase in spontaneous mutations for several markers and an increased sensitivity to killing by bleomycin and nitrofurantoin. An nfi mutation increased both cellular resistance to and mutability by nitrous acid. This agent should generate potential cleavage sites for the enzyme by deaminating dAMP and dCMP in DNA to dIMP and dUMP, respectively. Relative to that of a wild-type strain, an nfi mutant displayed a 12- to 1,000-fold increase in the frequency of nitrite-induced mutations to streptomycin resistance, which are known to occur in A x T base pairs. An nfi mutation also enhanced the lethality caused by a combined deficiency of exonuclease III and dUTPase, which has been attributed to unrepaired abasic sites. However, neither the deficiency nor the overproduction of endonuclease V affected the growth of the single-stranded DNA phages M13 or phiX174 nor of Uracil-containing bacteriophage lambda. These results suggest that endonuclease V has a significant role in the repair of deaminated deoxyadenosine (deoxyinosine) and abasic sites in DNA, but there was no evidence for its cleavage in vivo of single-stranded or uracil-containing DNA.
Collapse
Affiliation(s)
- G Guo
- Department of Pathology, University of Michigan Medical School, Ann Arbor 48109-0602, USA
| | | |
Collapse
|
10
|
Siim BG, Wilson WR. Efficient redox cycling of nitroquinoline bioreductive drugs due to aerobic nitroreduction in Chinese hamster cells. Biochem Pharmacol 1995; 50:75-82. [PMID: 7605348 DOI: 10.1016/0006-2952(95)00112-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitroquinoline bioreductive drugs with 4-alkylamino substituents undergo one-electron reduction in mammalian cells, resulting in futile redox cycling due to oxidation of the nitro radical anion in aerobic cultures, and eventual reduction to the corresponding amines in the absence of oxygen. Rates of drug-induced oxygen consumption (R) due to redox cycling in cyanide-treated AA8 cell cultures were determined for 17 nitroquinolines. There was a linear dependence of log R on the one-electron reduction potential at pH 7 (E(7)1 with a slope of 7.1 V-1, excluding compounds with substituents ortho to the nitro group. The latter had anomalously low rates of oxygen consumption relative to E(7)1, suggesting that interaction with the active site of nitroreductases is impeded sterically for such compounds. Absolute values of R (and the observed E(7)1 dependence) were well predicted by a simple kinetic model that used rates of net nitroreduction to the amines under anoxia as a measure of the rates of one-electron reduction in aerobic cells. This indicates that redox cycling of 4-alkylaminonitroquinolines occurs at high efficiency in aerobic cells, suggesting that there are no quantitatively significant fates of nitro radical anions in cells other than their reaction with oxygen (or their spontaneous disproportionation under hypoxia).
Collapse
Affiliation(s)
- B G Siim
- Department of Pathology, University of Auckland, New Zealand
| | | |
Collapse
|
11
|
Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 1994; 17:235-48. [PMID: 7982629 DOI: 10.1016/0891-5849(94)90079-5] [Citation(s) in RCA: 769] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eukaryotic cells have to constantly cope with highly reactive oxygen-derived free radicals. Their defense against these free radicals is achieved by natural antioxidant molecules but also by antioxidant enzymes. In this paper, we review some of the data comparing the efficiency of three different antioxidant enzymes: Cu/Zn-superoxide dismutase (Cu/Zn-SOD), catalase, and selenium-glutathione peroxidase. We perform our comparison on one experimental model (human fibroblasts) where the activities of these three antioxidant enzymes have been modulated inside the cells, and the repercussion of these changes was investigated in different conditions. We also focus our attention on the protecting role of selenium-glutathione peroxidase, because this enzyme is very rarely studied due to the difficulties linked to its biochemical properties. These studies evidenced that all three antioxidant enzymes give protection for the cells. They show a high efficiency for selenium-glutathione peroxidase and emphasize the fact that each enzyme has a specific as well as an irreplaceable function. They are all necessary for the survival of the cell even in normal conditions. In addition, these three enzymes act in a cooperative or synergistic way to ensure a global cell protection. However, optimal protection is achieved only when an appropriate balance between the activities of these enzymes is maintained. Interpretation of the deleterious effects of free radicals has to be analyzed not only as a function of the amount of free radicals produced but also relative to the efficiency and to the activities of these enzymatic and chemical antioxidant systems. The threshold of protection can indeed vary dramatically as a function of the level of activity of these enzymes.
Collapse
Affiliation(s)
- C Michiels
- Laboratoire de Biochimie Cellulaire, Facultés Universitaires Notre Dame de la Paix, Namur, Belgium
| | | | | | | |
Collapse
|
12
|
Biel B, Younes M, Brasch H. Cardiotoxic effects of nitrofurantoin and tertiary butylhydroperoxide in vitro: are oxygen radicals involved? PHARMACOLOGY & TOXICOLOGY 1993; 72:50-5. [PMID: 8441741 DOI: 10.1111/j.1600-0773.1993.tb01338.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Langendorff rat hearts were perfused for 15, 30 or 75 min. with the oxygen radical generators nitrofurantoin (0.25 or 0.5 mmol/l) or tertiary butylhydroperoxide (0.25 mmol/l). Both agents reduced the force of contraction and increased the release of glutathione, oxidized glutathione, lactate dehydrogenase and creatine phosphokinase into the perfusion fluid. The tissue concentration of glutathione was reduced. While there were no signs of an increased production of conjugated dienes, the tissue concentration of malondialdehyde was greater than in control experiments. The variability of the latter effect was large, however, and in most cases the increase was not statistically significant. Addition of catalase (100 mU/ml) or catechin (0.5 mmol/l) to the perfusion medium abolished the nitrofurantoin induced release of oxidized glutathione but did not not prevent or attenuate enzyme leakage from the cells and the development of a negative inotropic effect. These results suggest that the cardiotoxic effects of nitrofurantoin and tertiary butylhydroperoxide cannot be explained by the appearance of oxygen radicals alone and that an increased lipid peroxidation is not the mechanism which is primarily responsible for cell death.
Collapse
Affiliation(s)
- B Biel
- Institute of Pharmacology, Medical University of Lübeck, Germany
| | | | | |
Collapse
|
13
|
Shepherd RE, Isaacson Y, Chensny L, Zhang S, Kortes R, John K. Lactobionic and gluconic acid complexes of FeII and FeIII; control of oxidation pathways by an organ transplantation preservant. J Inorg Biochem 1993; 49:23-48. [PMID: 8433086 DOI: 10.1016/0162-0134(93)80046-c] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lactobionic acid, [4-beta-(galactosido)-D-gluconic acid] = LBA, is the major component of the Wisconsin organ transplantation preservant fluid and may suppress oxygen radical-induced tissue damage upon reperfusion by the control of FeII autoxidation. FeII and FeIII complexes of LBA and the related gluconic acid (GLC) have been studied herein by titrimetric, infrared, and electrochemical methods (CV; DPP). FeII(GLC) forms quickly at pH 7, but FeII(LBA) reacts in two steps, the second requiring 4 hr. The initial complex lacks coordination of the LBA carboxylate (C-1) and is bound by the "2,3,5" hydroxyl groups. The slow rearrangement forms a "1,2,3,6" chelate which FeII(LBA) shares in common with the donor set of the FeIII(LBA) complex. Titration data shows the removal of three protons from LBA through pH 5 and an additional proton from pH 6 to 9 which is indicative of the [FeIII(LBA)(OH)(H2O)]- formulation with LBA donating at the "1,2,3,6" positions. The more stable, second form of FeII(LBA) has been investigated in its oxidation mechanisms with H2O2 and O2 using selected trapping agents for HO. and ferryl intermediates. Eighty-six percent of the oxidation events of FeII(LBA)/H2O2 occurs in steps involving formation and reduction of freely diffusible HO.. These pathways are altered by the known HO. traps t-butanol, dmso, ethanol, and methanol in the manner predictable for beta-oxidizing radicals (from t-butanol or dmso) and alpha-reducing radicals (from ethanol and methanol). Fourteen percent of the FeII(LBA)/H2O2 reaction occurs via FeIVO intermediates not trapped by t-butanol or dmso, but intercepted by primary and secondary alcohols. The HO. generating pathways are responsible for a competitive LBA ligand oxidation at the C-2 position via HO., formed from FeII(LBA) and H2O2 within the original reaction cage. Competitive ligand oxidation at C-2 is absent for the FeII(LBA)/O2 autoxidation, indicative of a different redox mechanism. The FeII(LBA)/O2 reaction rate is first-order in each component and is insensitive to the presence of t-butanol as an HO. trap. These observations support a ferryl intermediate in the autoxidation pathway and the absence of HO. or free H2O2 during autoxidation. Although chelation of FeII by hard ligand donors such as edta4-, Cl-, or HPO4(2-) accelerate the rate of autoxidation of FeII, chelation of carboxylate, alkoxy, and hydroxyl donors of LBA does not accelerate autoxidation. The implications of these findings, and the absence of an inner-sphere coordination role of the 4-beta-(galactosido) functionality toward the action of LBA in organ preservant fluids, are discussed.
Collapse
Affiliation(s)
- R E Shepherd
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | | | | | | | | | | |
Collapse
|
14
|
Suntres ZE, Shek PN. Nitrofurantoin-induced pulmonary toxicity. In vivo evidence for oxidative stress-mediated mechanisms. Biochem Pharmacol 1992; 43:1127-35. [PMID: 1313237 DOI: 10.1016/0006-2952(92)90621-o] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The present study was carried out to examine whether nitrofurantoin-induced pulmonary toxicity in normal rats was mediated via oxidant stress mechanisms. The relative importance of the cellular antioxidant enzymes in nitrofurantoin toxicity was also assessed. For this, the pulmonary toxicity induced by nitrofurantoin in rats was evaluated at various time intervals after a single subcutaneous injection. Data from this study showed that nitrofurantoin (200 mg/kg, s.c.) resulted in transient but measurable lung damage as evidenced by the increases in wet lung weight/body weight ratio and decreases in lung angiotensin converting enzyme activity. A transient decrease in GSH concentrations with a concurrent increase in GSSG concentrations as well as an increase in lipid peroxidation levels (measured by the formation of diene conjugates and thiobarbituric acid reactants) were also evident in lungs of nitrofurantoin-treated rats. In addition, nitrofurantoin did not alter the pulmonary superoxide dismutase and glutathione peroxidase activities, but it did produce transient decreases in catalase and glutathione reductase activities. These data indicate that impairment of the ability of the lung to detoxify reactive oxygen species may play an important role in the development of nitrofurantoin-induced pulmonary toxicity. The results of the present study suggest that nitrofurantoin can damage the lungs of rats, probably through oxidative stress-mediated mechanisms. Also, our data have provided in vivo evidence for substantiating lipid peroxidation as a possible cause of lung damage.
Collapse
Affiliation(s)
- Z E Suntres
- Biosciences Division, Defence and Civil Institute of Environmental Medicine, North York, Ontario, Canada
| | | |
Collapse
|
15
|
Role of oxygen free radicals in the mutagenic effects of drugs and other xenobiotics (review). Pharm Chem J 1990. [DOI: 10.1007/bf00766539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Mordente A, Meucci E, Miggiano GA, Martorana GE. Prooxidant action of desferrioxamine: enhancement of alkaline phosphatase inactivation by interaction with ascorbate system. Arch Biochem Biophys 1990; 277:234-40. [PMID: 2155577 DOI: 10.1016/0003-9861(90)90574-i] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Desferrioxamine (DFO) nearly doubles alkaline phosphatase oxidative inactivation by the ascorbate system. The effect is dependent on ascorbate and desferrioxamine concentrations, exhibiting in both cases a saturation mechanism. Conversion of desferrioxamine to ferrioxamine abolishes the prooxidant action. Desferrioxamine also increases ascorbate-dependent oxygen consumption and nitroblue tetrazolium reduction. Superoxide dismutase, which blocks the desferrioxamine enhancing effect on enzyme inactivation, markedly slows down nitroblue tetrazolium reduction as well as oxygen consumption by ascorbate plus desferrioxamine, while it fails to protect against the ascorbate system alone. Therefore, in the presence of desferrioxamine, the metal-catalyzed ascorbate autooxidation becomes superoxide-dependent and thus inhibitable by superoxide dismutase. Catalase, peroxidase, and ascorbate oxidase protect alkaline phosphatase from inactivation by both ascorbate and ascorbate-desferrioxamine systems. Hemin shields the enzyme from ascorbate plus DFO attack but not from ascorbate alone. In air-saturated solution, desferrioxamine seems to mediate one electron transfer from ascorbate to oxygen, generating superoxide anions, which can either trigger a Fenton reaction or produce desferal nitroxide radicals. In the absence of oxygen, ascorbate alone is ineffective, but the ascorbate plus desferrioxamine system still inactivates the enzyme; catalase, peroxidase, and ascorbate oxidase, but not superoxide dismutase, afford protection.
Collapse
Affiliation(s)
- A Mordente
- Istituto di Chimica Biologica, Università Cattolica del S. Cuore, Facoltà di Medicina, Rome, Italy
| | | | | | | |
Collapse
|
17
|
Michiels C, Remacle J. Quantitative study of natural antioxidant systems for cellular nitrofurantoin toxicity. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 967:341-7. [PMID: 3196753 DOI: 10.1016/0304-4165(88)90096-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The toxicity of nitrofurantoin was studied on human WI-38 fibroblasts: this chemical was lethal when added at concentrations higher than 5.10(-5) M in the culture medium. The protection afforded by antioxidants was then tested: alpha-tocopherol gave at 10(-4) M a light protection in contrast to ascorbic acid which even became toxic at high concentrations. We also tested catalase, superoxide dismutase and glutathione peroxidase introduced intracellularly by the microinjection technique. On a molecular basis, glutathione peroxidase was 23-times more efficient than catalase and 3000-times more than superoxide dismutase. The results also showed that a similar range of enzyme concentrations was found for the protection against high oxygen pressure. This suggests that, in the case of both oxygen and nitrofurantoin toxicity, the peroxide derivatives are the most toxic intermediates of the free radical attacks.
Collapse
Affiliation(s)
- C Michiels
- Laboratoire de Biochimie Cellulaire, Facultés Universitaires Notre Dame de la Paix, Namur, Belgium
| | | |
Collapse
|
18
|
Washburn PC, Di Giulio RT. Nitrofurantoin-stimulated superoxide production by channel catfish (Ictalurus punctatus) hepatic microsomal and soluble fractions. Toxicol Appl Pharmacol 1988; 95:363-77. [PMID: 2847361 DOI: 10.1016/0041-008x(88)90355-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitroaromatic compounds, which frequently contaminate the environment, are known to be reduced to corresponding aromatic amines by fish as well as mammals under anaerobic conditions. Although amine products are not generally formed aerobically, "nitroreductase"-mediated redox cycling of nitroaromatics may occur under these conditions, leading to enhanced production of a potentially toxic oxygen species, superoxide (O-2). In this study, we have investigated the ability of channel catfish (Ictalurus punctatus) hepatic microsomal and soluble fractions to stimulate O-2) production upon exposure to a model redox cycling nitroaromatic compound, nitrofurantoin (NF). Two assays for O-2 production, cytochrome c reduction and cyanide-insensitive oxygen consumption, were stimulated by NF exposure to both hepatic fractions. These reactions were partially inhibited by superoxide dismutase (SOD), and by SOD and catalase in the oxygen consumption assay, providing specific evidence for the involvement of O-2 in the stimulatory effect by NF. Furthermore, results of cofactor requirement and inhibition studies suggest that NF enhancement of O-2 production was mediated by NADPH-cytochrome P-450 (c) reductase in the microsomal fraction and xanthine oxidase in the soluble fraction. These findings comprehensively suggest that the in vitro stimulation of O-2 production by nitroaromatics as indicated in mammals may also occur in fish and, therefore, suggests a similar potential for oxyradical-mediated toxicities in these species.
Collapse
Affiliation(s)
- P C Washburn
- Ecotoxicology Laboratory, School of Forestry and Environmental Studies, Duke University, Durham, North Carolina 27706
| | | |
Collapse
|
19
|
Abstract
A major portion of the toxicity of hydrogen peroxide in Escherichia coli is attributed to DNA damage mediated by a Fenton reaction that generates active forms of hydroxyl radicals from hydrogen peroxide, DNA-bound iron, and a constant source of reducing equivalents. Kinetic peculiarities of DNA damage production by hydrogen peroxide in vivo can be reproduced by including DNA in an in vitro Fenton reaction system in which iron catalyzes the univalent reduction of hydrogen peroxide by the reduced form of nicotinamide adenine dinucleotide (NADH). To minimize the toxicity of oxygen radicals, the cell utilizes scavengers of these radicals and DNA repair enzymes. On the basis of observations with the model system, it is proposed that the cell may also decrease such toxicity by diminishing available NAD(P)H and by utilizing oxygen itself to scavenge active free radicals into superoxide, which is then destroyed by superoxide dismutase.
Collapse
|
20
|
Touati D. Transcriptional and posttranscriptional regulation of manganese superoxide dismutase biosynthesis in Escherichia coli, studied with operon and protein fusions. J Bacteriol 1988; 170:2511-20. [PMID: 3131302 PMCID: PMC211164 DOI: 10.1128/jb.170.6.2511-2520.1988] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein and operon fusions between the manganese superoxide dismutase (MnSOD) gene, sodA, and genes of the lactose operon were constructed in an attempt to explore the effects of various factors on MnSOD expression and the level at which they operate. In sodA-lacZ protein fusions, induction of beta-galactosidase perfectly mimicked MnSOD induction (i.e., beta-galactosidase was not expressed in anaerobiosis and was induced by oxygen, redox-cycling compounds in aerobiosis, and iron chelators in anaerobiosis). In tac-sodA operon fusions, MnSOD induction was monitored only by the lactose operon inducer isopropyl-beta-D-thiogalactopyranoside. Various plasmids carrying part or all of the sodA regulatory and structural region inhibited aerobic beta-galactosidase induction in sodA-lacZ fusions. This included plasmids carrying only the transcription start and upstream region and also plasmids which did not contain this region and in which MnSOD was under foreign transcriptional control. The role of metal ions was also investigated. Addition of Mn(II) enhanced MnSOD activity but did not affect induction. The anaerobic expression of MnSOD from the oxygen-insensitive tac promoter was enhanced threefold by iron-chelating agents, implying a posttranscriptional or most likely a posttranslational modulation of enzyme activity via metal ions. To accommodate all these data, multiregulation of MnSOD is proposed.
Collapse
Affiliation(s)
- D Touati
- Laboratoire Génétique et Membranes, Institut Jacques Monod, Paris, France
| |
Collapse
|
21
|
Wagner GR, Youngman RJ, Elstner EF. Inhibition of chloroplast photo-oxidation by flavonoids and mechanisms of the antioxidative action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1988. [DOI: 10.1016/1011-1344(88)85006-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Affiliation(s)
- G L Kedderis
- Department of Animal Drug Metabolism, Merck Sharp & Dohme Research Laboratories, Rahway, New Jersey 07065
| | | |
Collapse
|
23
|
Elstner EF, Schütz W, Vogl G. Cooperative stimulation by sulfite and crocidolite asbestos fibres of enzyme catalyzed production of reactive oxygen species. Arch Toxicol 1988; 62:424-7. [PMID: 2854963 DOI: 10.1007/bf00288344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Methylthioketobutyric acid has been used as an indicator for the production of reactive oxygen species during incubation with xanthine oxidase or NADH diaphorase in the presence of an autooxidizable quinone. The production of OH-radical-type oxidants is enhanced in the presence of crocidolite but not by the asbestos types chrysotile or amosite. This activity of crocidolite in the diaphorase system is further stimulated by bisulfite. Crocidolite-dependent ethylene formation from methylthioketo-butyric acid is inhibited by both superoxide dismutase and catalase. In the presence of both crocidolite and bisulfite, however, the inhibition by superoxide dismutase is preserved, but the inhibition by catalase is lost. Since in some respect the NADH-diaphorase quinone system may reflect the situation in the activated macrophage, crocidolite activation may represent a biochemical model system describing potential asbestos toxicity.
Collapse
Affiliation(s)
- E F Elstner
- Institute of Botany and Microbiology, Biochemical Laboratory, Technical University of Munich, Federal Republic of Germany
| | | | | |
Collapse
|
24
|
Abstract
The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H2O2 produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, gamma rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O2. The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H2O2-inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals.
Collapse
|
25
|
Munday R. Studies on the mechanism of toxicity of the mycotoxin, sporidesmin. V. Generation of hydroxyl radical by sporidesmin. J Appl Toxicol 1987; 7:17-22. [PMID: 3611593 DOI: 10.1002/jat.2550070105] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sporidesmin, the mycotoxin responsible for "facial eczema' in ruminants, has previously been shown to generate superoxide radical and hydrogen peroxide. In the present study, the formation of the third "active oxygen' species, hydroxyl radical, has been demonstrated. This species is produced both during the autoxidation of the reduced (dithiol) form of the mycotoxin and in the cyclic reduction/autoxidation reaction between sporidesmin and glutathione. In view of the exceptional reactivity of the hydroxyl radical, this substance may be the proximate agent responsible for the toxic effects of sporidesmin.
Collapse
|
26
|
Affiliation(s)
- G Powis
- Department of Pharmacology, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| |
Collapse
|
27
|
|
28
|
Winterbourn CC, Sutton HC. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction. Arch Biochem Biophys 1986; 244:27-34. [PMID: 3004338 DOI: 10.1016/0003-9861(86)90090-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
O2- was produced by gamma irradiation of formate solutions, by the action of xanthine oxidase on hypoxanthine and O2, and by the action of ferredoxin reductase on NADPH and paraquat in the presence of O2. Its reaction with H2O2 and various iron chelates was studied. Oxidation of deoxyribose to thiobarbituric acid-reactive products that was appropriately inhibited by OH. scavengers, or formate oxidation to CO2, was used to detect OH(.). With each source of O2-, and by these criteria, Fe(EDTA) efficiently catalyzed this (Haber-Weiss) reaction, but little catalysis was detectable with iron bound to DTPA, citrate, ADP, ATP, or pyrophosphate, or without chelator in phosphate buffer. O2- produced from xanthine oxidase, but not from the other sources, underwent another iron-dependent reaction with H2O2, to produce an oxidant that did not behave as free OH(.). It was formed in phosphate or bicarbonate buffer, and caused deoxyribose oxidation that was readily inhibited by mannitol or Tris, but not by benzoate, formate, or dimethyl sulfoxide. It did not oxidize formate to CO2. Addition of EDTA changed the pattern of inhibition to that expected for a reaction of OH(.). The other chelators all inhibited deoxyribose oxidation, provided their concentrations were high enough. The results are compatible with iron bound to xanthine oxidase catalyzing production of a strong oxidant (which is not free OH.) from H2O2 and O2- produced by the enzyme.
Collapse
|
29
|
Florence T, Stauber J, Mann K. The reaction of copper-2,9-dimethyl-1,10-phenanthroline with hydrogen peroxide. J Inorg Biochem 1985. [DOI: 10.1016/0162-0134(85)85053-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
|
31
|
Hodgkiss RJ, Middleton RW. Effects of glutathione depletion using buthionine sulphoximine on the cytotoxicity of nitroaromatic compounds in mammalian cells in vitro. Biochem Pharmacol 1985; 34:2175-8. [PMID: 4004936 DOI: 10.1016/0006-2952(85)90414-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The inhibitor of glutathione biosynthesis, buthionine sulphoximine (BSO) has been used to deplete endogenous thiols in mammalian cells in vitro. The effect of such depletion on the toxicity of nitroaromatic compounds has been investigated. Substantial enhancement of both aerobic and hypoxic toxicity of the 2-nitroimidazole, misonidazole is observed in thiol-depleted cells; the hypoxic toxicities of metronidazole, nitrofurantoin and nimorazole are also increased by thiol depletion. These data of significance for the potential combined use of BSO with nitroaromatic radiosensitizers to increase their radiosensitizing efficiency in radiotherapy, and as a potential method for enhancing the efficiency of anti-protozoal nitroaromatic drugs.
Collapse
|
32
|
Younes M, Cornelius S, Siegers CP. Fe2+-supported in vivo lipid peroxidation induced by compounds undergoing redox cycling. Chem Biol Interact 1985; 54:97-103. [PMID: 4017107 DOI: 10.1016/s0009-2797(85)80155-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Treatment of male mice with the redox cycling compounds nitrofurantoin, paraquat, diquat or menadione failed to elicit in vivo lipid peroxidation as evidenced by ethane exhalation. The first three led to an enhanced ethane production, however, when the animals were pretreated with a low dose of Fe2+. While GSH-depletion by phorone pretreatment alone had no influence on the in vivo lipid peroxidation as evidenced by ethane expiration in the presence of either compound, the combined treatment with phorone, Fe2+ and nitrofurantoin, paraquat or diquat led to a further enhancement of ethane exhalation. These results indicate that redox cycling compounds do not initiate lipid peroxidation by themselves, but are well capable of stimulating the iron-induced LPO.
Collapse
|
33
|
Winterbourn CC, Sutton HC. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence. Arch Biochem Biophys 1984; 235:116-26. [PMID: 6093705 DOI: 10.1016/0003-9861(84)90260-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability of paraquat radicals (PQ+.) generated by xanthine oxidase and glutathione reductase to give H2O2-dependent hydroxyl radical production was investigated. Under anaerobic conditions, paraquat radicals from each source caused chain oxidation of formate to CO2, and oxidation of deoxyribose to thiobarbituric acid-reactive products that was inhibited by hydroxyl radical scavengers. This is in accordance with the following mechanism derived for radicals generated by gamma-irradiation [H. C. Sutton and C. C. Winterbourn (1984) Arch. Biochem. Biophys. 235, 106-115] PQ+. + Fe3+ (chelate)----Fe2+ (chelate) + PQ++ H2O2 + Fe2+ (chelate)----Fe3+ (chelate) + OH- + OH.. Iron-(EDTA) and iron-(diethylenetriaminepentaacetic acid) (DTPA) were good catalysts of the reaction; iron complexed with desferrioxamine or transferrin was not. Extremely low concentrations of iron (0.03 microM) gave near-maximum yields of hydroxyl radicals. In the absence of added chelator, no formate oxidation occurred. Paraquat radicals generated from xanthine oxidase (but not by the other methods) caused H2O2-dependent deoxyribose oxidation. However, inhibition by scavengers was much less than expected for a reaction of hydroxyl radicals, and this deoxyribose oxidation with xanthine oxidase does not appear to be mediated by free hydroxyl radicals. With O2 present, no hydroxyl radical production from H2O2 and paraquat radicals generated by radiation was detected. However, with paraquat radicals continuously generated by either enzyme, oxidation of both formate and deoxyribose was measured. Product yields decreased with increasing O2 concentration and increased with increasing iron(DTPA). These results imply a major difference in reactivity between free and enzymatically generated paraquat radicals, and suggest that the latter could react as an enzyme-paraquat radical complex, for which the relative rate of reaction with Fe3+ (chelate) compared with O2 is greater than is the case with free paraquat radicals.
Collapse
|
34
|
|
35
|
Reduction of nifurtimox and nitrofurantoin to free radical metabolites by rat liver mitochondria. Evidence of an outer membrane-located nitroreductase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(20)82140-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|