1
|
Kumar S, Chhabra V, Shenoy S, Daksh R, Ravichandiran V, Swamy RS, Kumar N. Role of Flavonoids in Modulation of Mitochondria Dynamics during Oxidative Stress. Mini Rev Med Chem 2024; 24:908-919. [PMID: 37861054 DOI: 10.2174/0113895575259219230920093214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Flavonoids are a widespread category of naturally occurring polyphenols distinguished by the flavan nucleus in plant-based foods and beverages, known for their various health benefits. Studies have suggested that consuming 150-500 mg of flavonoids daily is beneficial for health. Recent studies suggest that flavonoids are involved in maintaining mitochondrial activity and preventing impairment of mitochondrial dynamics by oxidative stress. OBJECTIVE This review emphasized the significance of studying the impact of flavonoids on mitochondrial dynamics, oxidative stress, and inflammatory response. METHODS This review analysed and summarised the findings related to the impact of flavonoids on mitochondria from publicly available search engines namely Pubmed, Scopus, and Web of Science. DESCRIPTION Any disruption in mitochondrial dynamics can contribute to cellular dysfunction and diseases, including cancer, cardiac conditions, and neurodegeneration. Flavonoids have been shown to modulate mitochondrial dynamics by regulating protein expression involved in fission and fusion events. Furthermore, flavonoids exhibit potent antioxidant properties by lowering the production of ROS and boosting the performance of antioxidant enzymes. Persistent inflammation is a characteristic of many different disorders. This is because flavonoids also alter the inflammatory response by controlling the expression of numerous cytokines and chemokines involved in the inflammatory process. Flavonoids exhibit an impressive array of significant health effects, making them an effective therapeutic agent for managing various disorders. Further this review summarised available mechanisms underlying flavonoids' actions on mitochondrial dynamics and oxidative stress to recognize the optimal dose and duration of flavonoid intake for therapeutic purposes. CONCLUSION This review may provide a solid foundation for developing targeted therapeutic interventions utilizing flavonoids, ultimately benefiting individuals afflicted with various disorders.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| |
Collapse
|
2
|
Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules 2020; 25:molecules25133060. [PMID: 32635481 PMCID: PMC7412508 DOI: 10.3390/molecules25133060] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of diverse mechanisms that lead to cytoprotection have been described to date. Perhaps, not surprisingly, the role of mitochondria in these phenomena is notable. In addition to being metabolic centers, due to their role in cell catabolism, ATP synthesis, and biosynthesis these organelles are triggers and/or end-effectors of a large number of signaling pathways. Their role in the regulation of the intrinsic apoptotic pathway, calcium homeostasis, and reactive oxygen species signaling is well documented. In this review, we aim to characterize the prospects of influencing cytoprotective mitochondrial signaling routes by natural substances of plant origin, namely, flavonoids (e.g., flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones). Flavonoids are a family of widely distributed plant secondary metabolites known for their beneficial effects on human health and are widely applied in traditional medicine. Their pharmacological characteristics include antioxidative, anticarcinogenic, anti-inflammatory, antibacterial, and antidiabetic properties. Here, we focus on presenting mitochondria-mediated cytoprotection against various insults. Thus, the role of flavonoids as antioxidants and modulators of antioxidant cellular response, apoptosis, mitochondrial biogenesis, autophagy, and fission and fusion is reported. Finally, an emerging field of flavonoid-mediated changes in the activity of mitochondrial ion channels and their role in cytoprotection is outlined.
Collapse
|
3
|
Fuchs C, Bakuradze T, Steinke R, Grewal R, Eckert GP, Richling E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
4
|
Abstract
A series of novel coumarin-1,2,3-triazole derivatives were synthesized in good yield via click chemistry using Cu(I) catalyzed intermolecular Huisgen [3+2] cycloaddition reaction. All the synthesized compounds were characterized spectroscopically. This piece of work could be helpful to develop biologically relevant coumarin analogs.
Collapse
Affiliation(s)
- Ritu Mamgain
- Department of Chemistry, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune-411007, India
| |
Collapse
|
5
|
Houghton MJ, Kerimi A, Tumova S, Boyle JP, Williamson G. Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells. Free Radic Biol Med 2018; 129:296-309. [PMID: 30266680 DOI: 10.1016/j.freeradbiomed.2018.09.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 01/15/2023]
Abstract
Hyperglycemia augments formation of intracellular reactive oxygen species (ROS) with associated mitochondrial damage and increased risk of insulin resistance in type 2 diabetes. We examined whether quercetin could reverse chronic high glucose-induced oxidative stress and mitochondrial dysfunction. Following long-term high glucose treatment, complex I activity was significantly decreased in isolated mitochondria from HepG2 cells. Quercetin dose-dependently recovered complex I activity and lowered cellular ROS generation under both high and normal glucose conditions. Respirometry studies showed that quercetin could counteract the detrimental increase in inner mitochondrial membrane proton leakage resulting from high glucose while it increased oxidative respiration, despite a decrease in electron transfer system (ETS) capacity, and lower non-ETS oxygen consumption. A quercetin-stimulated increase in cellular NAD+/NADH was evident within 2 h and a two-fold increase in PGC-1α mRNA within 6 h, in both normal and high glucose conditions. A similar pattern was also found for the mRNA expression of the repulsive guidance molecule b (RGMB) and its long non-coding RNA (lncRNA) RGMB-AS1 with quercetin, indicating a potential change of the glycolytic phenotype and suppression of aberrant cellular growth which is characteristic of the HepG2 cells. Direct effects of quercetin on PGC-1α activity were minimal, as quercetin only weakly enhanced PGC-1α binding to PPARα in vitro at higher concentrations. Our results suggest that quercetin may protect mitochondrial function from high glucose-induced stress by increasing cellular NAD+/NADH and activation of PGC-1α-mediated pathways. Lower ROS in combination with improved complex I activity and ETS coupling efficiency under conditions of amplified oxidative stress could reinforce mitochondrial integrity and improve redox status, beneficial in certain metabolic diseases.
Collapse
Affiliation(s)
- Michael J Houghton
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarka Tumova
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John P Boyle
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Magcwebeba TU, Riedel S, Swanevelder S, Swart P, De Beer D, Joubert E, Andreas Gelderblom WC. The potential role of polyphenols in the modulation of skin cell viability by Aspalathus linearis and Cyclopia spp. herbal tea extracts in vitro. ACTA ACUST UNITED AC 2016; 68:1440-1453. [PMID: 27671741 DOI: 10.1111/jphp.12629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The relationship between polyphenol constituents, antioxidant properties of aqueous and methanol extracts of green tea (Camellia sinensis), the herbal teas, rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.), against skin cell viability was investigated in vitro. METHODS The effect of extracts, characterised in terms of polyphenol content and antioxidant properties, on cell viability of premalignant, normal and malignant skin cells was determined. KEY FINDINGS Phenolic composition, particularly high levels of potent antioxidants, of rooibos and green tea methanol extracts was associated with a strong reduction in cell viability specifically targeting premalignant cells. In contrast, the aqueous extracts of Cyclopia spp. were more effective in reducing cell viability. This correlated with a relatively high flavanol/proanthocyanidin content and ABTS radical cation scavenging capacity. The major green tea flavanol (epigallocatechin gallate) and rooibos dihydrochalcone (aspalathin) exhibited differential effects against cell viability, while the major honeybush xanthone (mangiferin) and flavanone (hesperidin) lacked any effect presumably due to a cytoprotective effect. The underlying mechanisms against skin cell viability are likely to involve mitochondrial dysfunction resulting from polyphenol-iron interactions. CONCLUSIONS The polyphenol constituents and antioxidant parameters of herbal tea extracts are useful tools to predict their activity against skin cell survival in vitro and potential chemopreventive effects in vivo.
Collapse
Affiliation(s)
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Sonja Swanevelder
- Biostatistics Unit, South African Medical Research Council, Tygerberg, South Africa
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Dalene De Beer
- Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Elizabeth Joubert
- Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Wentzel Christoffel Andreas Gelderblom
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa. .,Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville, South Africa.
| |
Collapse
|
7
|
Sandoval-Acuña C, Ferreira J, Speisky H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 2014; 559:75-90. [PMID: 24875147 DOI: 10.1016/j.abb.2014.05.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/17/2014] [Indexed: 01/08/2023]
Abstract
Polyphenols, ubiquitously present in fruits and vegetables, have been traditionally viewed as antioxidant molecules. Such contention emerged, mainly from their well established in vitro ability to scavenge free radicals and other reactive oxygen species (ROS). During the last decade, however, increasing evidence has emerged supporting the ability of certain polyphenols to also exert numerous ROS-scavenging independent actions. Although the latter can comprise the whole cell, particular attention has been placed on the ability of polyphenols to act, whether favorably or not, on a myriad of mitochondrial processes. Thus, some particular polyphenols are now recognized as molecules capable of modulating pathways that define mitochondrial biogenesis (i.e., inducing sirtuins), mitochondrial membrane potential (i.e., mitochondrial permeability transition pore opening and uncoupling effects), mitochondrial electron transport chain and ATP synthesis (i.e., modulating complexes I to V activity), intra-mitochondrial oxidative status (i.e., inhibiting/inducing ROS formation/removal enzymes), and ultimately mitochondrially-triggered cell death (i.e., modulating intrinsic-apoptosis). The present review describes recent evidence on the ability of some polyphenols to modulate each of the formerly mentioned pathways, and discusses on how, by acting on such mitochondrial processes, polyphenols may afford protection against those mitochondrial damaging events that appear to be key in the cellular toxicity induced by various xenobiotics as well as that seen during the development of several ROS-related diseases.
Collapse
Affiliation(s)
- Cristian Sandoval-Acuña
- Nutrition and Food Technology Institute, University of Chile, Santiago, Chile; Clinical and Molecular Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hernán Speisky
- Nutrition and Food Technology Institute, University of Chile, Santiago, Chile; Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
8
|
Silva G, Fachin AL, Beleboni RO, França SC, Marins M. In vitro action of flavonoids in the canine malignant histiocytic cell line DH82. Molecules 2013; 18:15448-63. [PMID: 24352006 PMCID: PMC6270055 DOI: 10.3390/molecules181215448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023] Open
Abstract
Cancer is commonly diagnosed in dogs over the age of 10 and is a leading cause of death due to the lack of effective drugs. Flavonoids possess antioxidant, anti-inflammatory and anticarcinogenic properties and have been studied as chemopreventive agents in human cancer therapy. However, the literature on dogs is sparse. In this study, we analyzed the effect of nine flavonoids on cell viability, DNA damage and topoisomerase IIa/IIb gene expression in a canine tumor cell line (DH82). Apigenin, luteolin, trans-chalcone and 4-methoxychalcone showed the highest degree of cytotoxicity in the absence of considerable DNA damage, whereas genistein exhibited low cytotoxicity but induced a high level of DNA damage. These five flavonoids inhibited topoisomerase IIa and IIb gene expression to variable extents and with variable specificity. Genistein exerted a lower inhibitory effect on the two topoisomerases than luteolin and apigenin. trans-Chalcone and 4-methoxychalcone exerted greater inhibition of topoisomerase IIa expression than topoisomerase IIb. The differences in the effects between genistein and luteolin and apigenin might be explained by the position of ring B, whereas the more specific effect of chalcones on topoisomerase IIa might be due to their open chain structure.
Collapse
Affiliation(s)
| | | | | | | | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto 14096-900, SP, Brazil.
| |
Collapse
|
9
|
Chemometric studies on natural products as potential inhibitors of the NADH oxidase from Trypanosoma cruzi using the VolSurf approach. Molecules 2010; 15:7363-77. [PMID: 20966878 PMCID: PMC6259467 DOI: 10.3390/molecules15107363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 11/16/2022] Open
Abstract
Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.
Collapse
|
10
|
Importance of the core structure of flavones in promoting inhibition of the mitochondrial respiratory chain. Chem Biol Interact 2010; 188:52-8. [DOI: 10.1016/j.cbi.2010.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/21/2023]
|
11
|
Yang XH, Zheng X, Cao JG, Xiang HL, Liu F, Lv Y. 8-bromo-7-methoxychrysin-induced apoptosis of hepatocellular carcinoma cells involves ROS and JNK. World J Gastroenterol 2010; 16:3385-93. [PMID: 20632440 PMCID: PMC2904884 DOI: 10.3748/wjg.v16.i27.3385] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether the apoptotic activities of 8-bromo-7-methoxychrysin (BrMC) involve reactive oxygen species (ROS) generation and c-Jun N-terminal kinase (JNK) activation in human hepatocellular carcinoma cells (HCC).
METHODS: HepG2, Bel-7402 and L-02 cell lines were cultured in vitro and the apoptotic effects of BrMC were evaluated by flow cytometry (FCM) after propidium iodide (PI) staining, caspase-3 activity using enzyme-linked immunosorbent assay (ELISA), and DNA agarose gel electrophoresis. ROS production was evaluated by FCM after dichlorodihydrofluorescein diacetate (DCHF-DA) probe labeling. The phosphorylation level of JNK and c-Jun protein was analyzed by Western blotting.
RESULTS: FCM after PI staining showed a dose-dependent increase in the percentage of the sub-G1 cell population (P < 0.05), reaching 39.0% ± 2.8% of HepG2 cells after 48 h of treatment with BrMC at 10 μmol/L. The potency of BrMC to HepG2 and Bel-7402 (32.1% ± 2.6%) cells was found to be more effective than the lead compound, chrysin (16.2% ± 1.6% for HepG2 cells and 11.0% ± 1.3% for Bel-7402 cell) at 40 μmol/L and similar to 5-flurouracil (33.0% ± 2.1% for HepG2 cells and 29.3% ± 2.3% for Bel-7402 cells) at 10 μmol/L. BrMC had little effect on human embryo liver L-02 cells, with the percentage of sub-G1 cell population 5.4% ± 1.8%. Treatment of HepG2 cells with BrMC for 48 h also increased the levels of active caspase-3, in a concentration-dependent manner. z-DEVD-fmk, a caspase-3-specific inhibitor, prevented the activation of caspase-3. Treatment with BrMC at 10 μmol/L for 48 h resulted in the formation of a DNA ladder. Treatment of cells with BrMC (10 μmol/L) increased mean fluorescence intensity of DCHF-DA in HepG2 cells from 7.2 ± 1.12 at 0 h to 79.8 ± 3.9 at 3 h and 89.7 ± 4.7 at 6 h. BrMC did not affect ROS generation in L-02 cells. BrMC treatment failed to induce cell death and caspase-3 activation in HepG2 cells pretreated with N-acetylcysteine (10 mmol/L). In addition, in HepG2 cells treated with BrMC (2.5, 5.0, 10.0 μmol/L) for 12 h, JNK activation was observed. Peak JNK activation occurred at 12 h post-treatment and this activation persisted for up to 24 h. The expression of phosphorylated JNK and c-Jun protein after 12 h with BrMC-treated cells was inhibited by N-acetylcysteine and SP600125 pre-treatment, but GW9662 had no effect. SP600125 substantially reduced BrMC-induced cell death and caspase-3 activation of HepG2 cells. N-acetylcysteine and GW9662 also attenuated induction of cell death and caspase-3 activation in HepG2 cells treated with BrMC.
CONCLUSION: BrMC induces apoptosis of HCC cells by ROS generation and sustained JNK activation.
Collapse
|
12
|
Holder S, Lilly M, Brown ML. Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase. Bioorg Med Chem 2007; 15:6463-73. [PMID: 17637507 DOI: 10.1016/j.bmc.2007.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 12/31/2022]
Abstract
The PIM-1 protein, the product of the pim-1 oncogene, is a serine/threonine kinase. Dysregulation of the PIM-1 kinase has been implicated in the development of human malignancies including lymphomas, leukemias, and prostate cancer. Comparative molecular field analysis (CoMFA) is a 3-D QSAR technique that has been widely used, with notable success, to correlate biological activity with the steric and electrostatic properties of ligands. We have used a set of 15 flavonoid inhibitors of the PIM-1 kinase, aligned de novo by common substructure, to generate a CoMFA model for the purpose of elucidating the steric and electrostatic properties involved in flavonoid binding to the PIM-1 kinase. Partial least squares correlation between observed and predicted inhibitor potency (expressed as -logIC50), using a non-cross-validated partial least squares analysis, generated a non-cross-validated q2=0.805 for the training set (n=15) of flavonoids. The CoMFA generated steric map indicated that the PIM-1-binding site was sterically hindered, leading to more efficient binding of planar molecules over (R) or (S) compounds. The electrostatic map identified that positive charges near the flavonoid atom C8 and negative charges near C4' increased flavonoid binding. The CoMFA model accurately predicted the potency of a test set of flavonoids (n=6), generating a correlation between observed and predicted potency of q2=0.825. CoMFA models generated from additional alignment rules, which were guided by co-crystal structure ligand orientations, did not improve the correlative value of the model. Superimposing the PIM-1 kinase crystal structure onto the CoMFA contours validated the steric and electrostatic maps, elucidating the amino acid residues that potentially contribute to the CoMFA fields. Thus we have generated the first predictive model that may be used for the rational design of small-molecule inhibitors of the PIM-1 kinase.
Collapse
Affiliation(s)
- Sheldon Holder
- Center for Molecular Biology & Gene Therapy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | |
Collapse
|
13
|
Kachadourian R, Day BJ. Flavonoid-induced glutathione depletion: potential implications for cancer treatment. Free Radic Biol Med 2006; 41:65-76. [PMID: 16781454 PMCID: PMC3983951 DOI: 10.1016/j.freeradbiomed.2006.03.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/19/2006] [Accepted: 03/06/2006] [Indexed: 02/03/2023]
Abstract
The ability of a number of flavonoids to induce glutathione (GSH) depletion was measured in lung (A549), myeloid (HL-60), and prostate (PC-3) human tumor cells. The hydroxychalcone (2'-HC) and the dihydroxychalcones (2',2-, 2',3-, 2',4-, and 2',5'-DHC) were the most effective in A549 and HL-60 cells, depleting more than 50% of intracellular GSH within 4 h of exposure at 25 microM. In contrast, the flavones chrysin and apigenin were the most effective in PC-3 cells, depleting 50-70% of intracellular GSH within 24 h of exposure at 25 microM. In general, these flavonoids were more effective than three classical substrates of multidrug resistance protein 1 (MK-571, indomethacin, and verapamil). Prototypic flavonoids (2',5'-DHC and chrysin) were subsequently tested for their abilities to potentiate the toxicities of prooxidants (etoposide, rotenone, 2-methoxyestradiol, and curcumin). In A549 cells, 2',5'-DHC potentiated the cytotoxicities of rotenone, 2-methoxyestradiol, and curcumin, but not etoposide. In HL-60 and PC-3 cells, chrysin potentiated the cytotoxicity of curcumin, cytotoxicity that was attenuated by the catalytic antioxidant manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP). Assessments of mitochondrial GSH levels mitochondrial membrane potential and cytochrome c release showed that the potentiation effects induced by 2',5'-DHC and chrysin involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Remy Kachadourian
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - Brian J. Day
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA
- Departments of Medicine, Immunology, and Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80206, USA
- Corresponding author. Department of Medicine, K715A, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA. Fax: +1 303 270 2168. (B.J. Day)
| |
Collapse
|
14
|
Dabaghi-Barbosa P, Mariante Rocha A, Franco da Cruz Lima A, Heleno de Oliveira B, Benigna Martinelli de Oliveira M, Gunilla Skare Carnieri E, Cadena SMSC, Eliane Merlin Rocha M. Hispidulin: antioxidant properties and effect on mitochondrial energy metabolism. Free Radic Res 2005; 39:1305-15. [PMID: 16298860 DOI: 10.1080/13561820500177659] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hispidulin (6-methoxy-5,7,4'-trihydroxyflavone) and eupafolin (6-methoxy-5,7,3',4'-tetrahydroxyflavone), are flavonoids found in the leaves of Eupatorium litoralle. They have recognized antioxidant and antineoplastic properties, although their action mechanisms have not been previously described. We now report the effects of hispidulin on the oxidative metabolism of isolated rat liver mitochondria (Mit) and have also investigated the prooxidant and antioxidant capacity of both flavonoids. Hispidulin (0.05-0.2 mM) decreased the respiratory rate in state III and stimulated it in state IV, when glutamate or succinate was used as oxidizable substrate. Hispidulin inhibited enzymatic activities between complexes I and III of the respiratory chain. In broken Mit hispidulin (0.2 mM) slightly inhibited ATPase activity (25%). However, when intact Mit were used, the flavonoid stimulated this activity by 100%. Substrate energized mitochondrial swelling was markedly inhibited by hispidulin. Both hispidulin and eupafolin were able to promote iron release from ferritin, this effect being more accentuated with eupafolin with the suggestion of a possible involvement of H2O2 in the process. Hispidulin was incapable of donating electrons to the stable free radical DPPH, while eupafolin reacted with it in a similar way to ascorbic acid. The results indicate that hispidulin as an uncoupler of oxidative phosphorylation, is able to release iron from ferritin, but has distinct prooxidant and antioxidant properties when compared to eupafolin.
Collapse
Affiliation(s)
- Priscila Dabaghi-Barbosa
- Departamento de Bioquímica, Universidade Federal do Paraná, CP 19046, Curitiba, PR, CEP 81531-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Flavonoids and cardiovascular diseases. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1572-5995(01)80018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
16
|
Antiulcer and Gastroprotective Activity of Flavonic Compounds: Mechanisms Involved. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1572-5995(00)80032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
17
|
Murakami S, Muramatsu M, Tomisawa K. Inhibition of gastric H+, K(+)-ATPase by flavonoids: a structure-activity study. JOURNAL OF ENZYME INHIBITION 1999; 14:151-66. [PMID: 10445040 DOI: 10.3109/14756369909036551] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gastric H+, K(+)-ATPase plays a pivotal role in the final step of gastric acid secretion. Over 80 flavonoids, including flavones, flavanones, isoflavones and anthocyanidins were examined for their in vitro effect on gastric H+, K(+)-ATPase and some were found to be inhibitors of this enzyme. Kinetic studies showed that the inhibition of H+, K(+)-ATPase by flavonoids was competitive with respect to ATP, and non-competitive with respect to K+. Structure-activity analysis revealed the following: (1) The inhibitory potency of flavonoids depends on the number of hydroxyl groups up to four per molecule and that above this, no marked enhancement is seen; (2) The hydroxylation pattern is an important determinant of inhibitory potency. Two adjacent hydroxyl groups (catechol-type), three adjacent hydroxyl groups (pyrogallol-type) or hydroxyl groups at C-3, C-5 and C-7 are a minimum requirement for high potency inhibition; (3) Protection of the hydroxyl group(s) by glycosylation or methylation decreases potency; (4) Saturation of the C-2-C-3 double bond results in a decrease in potency; and (5) A ketone at C-4 is not essential for inhibition.
Collapse
Affiliation(s)
- S Murakami
- Medicinal Research Laboratories, Taisho Pharmaceutical Co. Ltd., Ohmiya, Japan.
| | | | | |
Collapse
|
18
|
Abstract
The antioxidant and prooxidant behavior of flavonoids and the related activity-structure relationships were investigated in this study using the oxygen radical absorbance capacity assay. Three different reactive species were used in the assay: 2,2'-azobis(2-amidino-propane) dihydrochloride, a peroxyl radical generator; Cu(2+)-H2O2, mainly a hydroxyl radical generator; and Cu2+, a transition metal. Flavonoids including flavones, isoflavones, and flavanones acted as antioxidants against peroxyl and hydroxyl radicals and served as prooxidants in the presence of Cu2+. Both the antioxidant and the copper-initiated prooxidant activities of a flavonoid depend upon the number of hydroxyl substitutions in its backbone structure, which has neither antioxidant nor prooxidant action. In general, the more hydroxyl substitutions, the stronger the antioxidant and prooxidant activities. The flavonoids that contain multiple hydroxyl substitutions showed antiperoxyl radical activities several times stronger than Trolox, an alpha-to copherol analogue. The single hydroxyl substitution at position 5 provides no activity, whereas the di-OH substitution at 3' and 4' is particularly important to the peroxyl radical absorbing activity of a flavonoid. The conjugation between rings A and B does not affect the antioxidant activity but is very important for the copper-initiated prooxidant action of a flavonoid. The O-methylation of the hydroxyl substitutions inactivates both the antioxidant and the prooxidant activities of the flavonoids.
Collapse
Affiliation(s)
- G Cao
- U.S. Department of Agriculture, Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | | | | |
Collapse
|
19
|
Korkina LG, Afanas'ev IB. Antioxidant and chelating properties of flavonoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 38:151-63. [PMID: 8895808 DOI: 10.1016/s1054-3589(08)60983-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- L G Korkina
- Institute of Pediatric Hematology, Moscow, Russia
| | | |
Collapse
|
20
|
Pardini RS. Toxicity of oxygen from naturally occurring redox-active pro-oxidants. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1995; 29:101-118. [PMID: 7606039 DOI: 10.1002/arch.940290203] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The survival of all aerobic life forms requires the ground-state of molecular oxygen, O2. However, the activation of O2 to reactive oxygen species (ROS) is responsible for universal toxicity. ROS are responsible in deleterious intracellular reactions associated with oxidative stress including membrane lipid peroxidation, and the oxidation of proteins and DNA. Redox-active allelochemicals such as quinones and phenolic compounds are involved in activating O2 to its deleterious forms including superoxide anion free radical, O2.-, hydrogen peroxide, H2O2, and hydroxyl radical, OH. Molecular oxygen is also activated in biologically relevant photosensitizing reactions to the singlet form, 1O2. The insect lifestyle exposes them to a broad diversity of pro-oxidant allelochemicals and, like mammalian species, they have developed an elaborate antioxidant system comprised of chemical antioxidants and a bank of anti-oxidant enzymes. We have found that an insect's antioxidant adaptation to a particular food correlates well with its risk of exposure to potential pro-oxidants.
Collapse
Affiliation(s)
- R S Pardini
- Department of Biochemistry, University of Nevada, Reno 89557-0014, USA
| |
Collapse
|
21
|
Fesen MR, Pommier Y, Leteurtre F, Hiroguchi S, Yung J, Kohn KW. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem Pharmacol 1994; 48:595-608. [PMID: 7520698 DOI: 10.1016/0006-2952(94)90291-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The inhibition of HIV-1 integrase by flavones and related compounds was investigated biochemically and by means of structure-activity relationships. Purified enzyme and synthetic oligonucleotides were used to assay for three reactions catalysed by integrase: (1) processing of 3' termini by cleavage of the terminal dinucleotide; (2) strand transfer, which models the integration step; and (3) "disintegration," which models the reversal of the strand transfer reaction. Inhibitions of all three reactions by flavones generally occurred in parallel, but caffeic acid phenethyl ester (CAPE) appeared to inhibit reaction 2 selectively. CAPE, however, inhibited reactions 1 and 3 effectively when preincubated with the enzyme, suggesting that this compound differs from the flavones primarily in requiring more time to block the enzyme. The core integrase fragment consisting of amino acids 50-212 retained the ability to catalyse reaction 3, and flavones and CAPE retained the ability to inhibit. Hence, the putative zinc-finger region that is deleted in this fragment is probably not the target of inhibition. Inhibition by flavones usually required the presence of at least one ortho pair of phenolic hydroxyl groups and at least one or two additional hydroxyl groups. Potency was enhanced by the presence of additional hydroxyl groups, especially when present in ortho pairs or in adjacent groups of three. Inhibitory activity was reduced or eliminated by methoxy or glycosidic substitutions or by saturation of the 2,3 double bond. These structure-activity findings for flavones were generally concordant with those previously reported for reverse transcriptase and topoisomerase II. These findings are discussed in the context of a review of the effects of flavones on various enzymes, the possible mechanisms of inhibition, and the potential for building upon a general pharmacophore to generate target specificity.
Collapse
Affiliation(s)
- M R Fesen
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
22
|
Hodnick WF, Duval DL, Pardini RS. Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavonoids. Biochem Pharmacol 1994; 47:573-80. [PMID: 8117326 DOI: 10.1016/0006-2952(94)90190-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A continuation of our structure-activity study on flavonoids possessing varied hydroxyl ring configurations was conducted. We tested six additional flavonoids for their ability to inhibit beef heart mitochondrial succinoxidase and NADH-oxidase activities. In every case, the IC50 observed for the NADH-oxidase enzyme system was lower than for succinoxidase activity, demonstrating a primary site of inhibition in the complex I (NADH-coenzyme Q reductase) portion of the respiratory chain. The order of potency for inhibition of NADH-oxidase activity was robinetin, rhamnetin, eupatorin, baicalein, 7,8-dihydroxyflavone, and norwogonin with IC50 values of 19, 42, 43, 77, 277 and 340 nmol/mg protein, respectively. Flavonoids with adjacent tri-hydroxyl or para-dihydroxyl groups exhibited a substantial rate of auto-oxidation which was accelerated by the addition of cyanide (CN-). Flavonoids possessing a catechol configuration exhibited a slow rate of auto-oxidation in buffer that was stimulated by the addition of CN-. The addition of superoxide dismutase (SOD) and catalase in the auto-oxidation experiments each decreased the rate of oxygen consumption, indicating that O2- and H2O2 are generated during auto-oxidation. In the CN(-)-stimulated oxidation experiments, the addition of SOD also slowed the rate of oxygen consumption. These findings demonstrate that the CN-/flavonoid interaction generated O2- non-enzymatically, which could have biological implications.
Collapse
Affiliation(s)
- W F Hodnick
- Allie M. Lee Laboratory for Cancer Research, Department of Biochemistry, University of Nevada-Reno 89557
| | | | | |
Collapse
|
23
|
Kandaswami C, Middleton E. Free radical scavenging and antioxidant activity of plant flavonoids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 366:351-76. [PMID: 7771265 DOI: 10.1007/978-1-4615-1833-4_25] [Citation(s) in RCA: 253] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C Kandaswami
- Department of Medicine, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14203, USA
| | | |
Collapse
|
24
|
Amić D, Davidović-Amić D, Trinajstić N. Application of topological indices to chromatographic data. J Chromatogr A 1993. [DOI: 10.1016/0021-9673(93)80398-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Rastelli G, Costantino L, Albasini A. Physico-chemical properties of anthocyanidins. Part 1. Theoretical evaluation of the stability of the neutral and anionic tautomeric forms. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0166-1280(93)90063-h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Wei H, Wei L, Frenkel K, Bowen R, Barnes S. Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr Cancer 1993; 20:1-12. [PMID: 8415125 DOI: 10.1080/01635589309514265] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Here we report that genistein, a soybean isoflavone, strongly inhibits tumor promoter-induced H2O2 formation both in vivo and in vitro. Genistein suppressed H2O2 production by 12-O-tetradecanoylphorbol-13-acetate- (TPA) stimulated human polymorphonuclear leukocytes (PMNs) and HL-60 cells in a dose-dependent manner over the concentration range 1-150 microM. Human PMNs were more sensitive to the inhibitory effect of genistein than HL-60 cells (50% inhibitory concentration 14.8 and 30.2 microM, respectively). In addition, genistein moderately inhibited superoxide anion formation by HL-60 cells and scavenged exogenously added H2O2 under the same conditions as in cell culture. However, the H2O2-scavenging effect of genistein was about 50% lower than its inhibition of cell-derived H2O2 formation at all concentrations. In the CD-1 mouse skin model, genistein strongly inhibited TPA-induced oxidant formation, edema, and PMN infiltration in mouse skin. Inhibition of TPA-mediated H2O2 in vivo may result from decreased cell-derived H2O2 formation, scavenging of H2O2 produced, and/or suppression of PMN infiltration into the dermis. The antioxidant properties of genistein may be responsible for its anticarcinogenic effects, and the dietary availability of genistein makes it a promising candidate for the prevention of human cancers.
Collapse
Affiliation(s)
- H Wei
- Department of Environmental Health Sciences, University of Alabama, Birmingham 35294
| | | | | | | | | |
Collapse
|
27
|
Elliott AJ, Scheiber SA, Thomas C, Pardini RS. Inhibition of glutathione reductase by flavonoids. A structure-activity study. Biochem Pharmacol 1992; 44:1603-8. [PMID: 1329770 DOI: 10.1016/0006-2952(92)90478-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A structure-activity study of fourteen chemically related flavonoids was conducted to evaluate their abilities to inhibit glutathione reductase (GR). By comparing the I50 values of flavonoids from different classes possessing an identical hydroxyl configuration, we determined the following order of potency for inhibition of GR: anthocyanidin > dihydroflavonol = chalcone > flavonol > catechin. Enzyme inhibition by delphinidin chloride and myricetin was partially prevented in a N2 atmosphere which implicates a role for oxygen in the mechanism of inhibition. To determine the role of oxygen species in enzyme inhibition, GR was preincubated with either mannitol, diethylenetriaminepenta-acetic acid (DETAPAC), superoxide dismutase (SOD), catalase (CAT), or SOD and CAT prior to assays for enzyme inhibition by flavonoids. Enzyme inhibition by delphinidin chloride and myricetin was suppressed by the addition of SOD, suggesting that superoxide (O2-.) is involved. However, inhibition by quercetin and morin was not sensitive to antioxidants. To further investigate the role of O2-. in GR inhibition, a superoxide generating system was utilized in the presence and absence of flavonoid. The O2-. generating system failed to inhibit GR in the absence of flavonoid but enhanced the inhibition by myricetin, indicating that the O2-. did not directly inhibit GR but reacted directly with certain flavonoids to form a reactive intermediate which, in turn, inhibited GR. These findings suggest that the mechanism of inhibition of GR by flavonoids is complex and may have oxygen-dependent and oxygen-independent components.
Collapse
Affiliation(s)
- A J Elliott
- Allie M. Lee Laboratory for Cancer Research, Department of Biochemistry, University of Nevada, Reno 89557
| | | | | | | |
Collapse
|
28
|
Kuppusamy UR, Das NP. Inhibitory effects of flavonoids on several venom hyaluronidases. EXPERIENTIA 1991; 47:1196-200. [PMID: 1765130 DOI: 10.1007/bf01918384] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vitro studies showed that the flavonoid aglycones apigenin, luteolin and kaempferol inhibited the hyaluronidase activity of five different venoms dose-dependently. They were also able to delay the venom action when injected into mice. Naringenin, catechin and flavonoid glycosides had no effect. The flavonoids with unsubstituted hydroxyl groups at C-positions 5, 7 and 4', a double bond between carbons 2 and 3, as well as a ketone group at position 4, exhibited potent inhibitory actions on the venom hyaluronidases.
Collapse
Affiliation(s)
- U R Kuppusamy
- Department of Biochemistry, Faculty of Medicine, National University of Singapore
| | | |
Collapse
|
29
|
Anderson WM, Chambers BB, Wood JM, Benninger L. Inhibitory effects of two structurally related carbocyanine laser dyes on the activity of bovine heart mitochondrial and Paracoccus denitrificans NADH-ubiquinone reductase. Evidence for a rotenone-type mechanism. Biochem Pharmacol 1991; 41:677-84. [PMID: 1900156 DOI: 10.1016/0006-2952(91)90066-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two cationic, lipophilic laser dyes, 1,1',3,3,3',3'-hexamethylindodicarbocyanine iodide (HIDC) and 1,1',3,3,3',3'-hexamethylindotricarbocyanine iodide (HITC), inhibit bovine heart mitochondrial and Paracoccus denitrificans NADH oxidase activities. The mitochondrial I50 values were 0.5 microM (HIDC) and 1.2 microM (HITC), and the P. denitrificans I50 values 1.2 microM (HIDC) and 1.5 microM (HITC). Neither succinate nor cytochrome oxidase (EC 1.9.3.1) activities were inhibited significantly by either compound, localizing the site of inhibition to the segment of each electron transport chain between NADH and ubiquinone. With submitochrondrial particles (SMP), NADH-dependent reduction of menadione, duroquinone and coenzyme Q1 was inhibited markedly (HIDC was the more potent inhibitor). Using purified complex I, only NADH-dependent reduction of duroquinone and coenzyme Q1 was inhibited markedly (HIDC was the more potent inhibitor) and reduction of menadione was inhibited slightly. With P. denitrificans membrane vesicles, NADH-dependent reduction of menadione, juglone, and coenzyme Q1 was inhibited slightly and duroquinone reduction was inhibited markedly. Membrane-dependent interactions appear to be involved, since the compounds were more inhibitory with membrane preparations than with complex I. The mechanism of inhibition (except for the HIDC effect on coenzyme Q1 reduction with P. denitrificans) appeared to be through the interaction of dye with the rotenone site on NADH-ubiquinone reductase (EC 1.6.99.3), since rotenone-insensitive preparations of complex I and P. denitrificans membrane vesicles were also insensitive to HIDC and HITC inhibition.
Collapse
Affiliation(s)
- W M Anderson
- Indiana University School of Medicine, Northwest Center for Medical Education, Gary 46408
| | | | | | | |
Collapse
|
30
|
Hodnick WF, Milosavljević EB, Nelson JH, Pardini RS. Electrochemistry of flavonoids. Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem Pharmacol 1988; 37:2607-11. [PMID: 3390220 DOI: 10.1016/0006-2952(88)90253-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have investigated the redox behavior of a series of structurally related flavonoids employing cyclic voltammetry under physiological conditions. The flavonoids that auto-oxidized and produced oxygen radicals had oxidation potentials (E 1/2) significantly lower [-30 to +60 mV vs (SCE)] than those that did not undergo auto-oxidation (+130 to +340 mV vs SCE). The range of E 1/2 values for the auto-oxidizable flavonoids was comparable to the E 1/2 range reported for the optimum quinone induced production of superoxide (O2 pi) in mitochondrial NADH-CoQ reductase (complex I). The most potent flavonoid inhibitors of mitochondrial succinate-CoQ reductase (complex II) possessed hydroxyl configurations capable of supporting redox reactions. For a series of 3,5,7-trihydroxyflavones that differed by b-ring hydroxylation it was found that decreasing E 1/2 of the flavonoids was associated with decreasing I50 values towards succinoxidase. These findings suggest that the electrochemical properties of the flavonoids may contribute to their biological activity.
Collapse
Affiliation(s)
- W F Hodnick
- Department of Chemistry, University of Nevada-Reno 89557
| | | | | | | |
Collapse
|