1
|
Role of Polyamine-Induced Dimerization of Antizyme in Its Cellular Functions. Int J Mol Sci 2022; 23:ijms23094614. [PMID: 35563006 PMCID: PMC9104013 DOI: 10.3390/ijms23094614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1 (OAZ1). OAZ1 inhibits polyamine uptake and targets ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, for proteasomal degradation. Here we report, for the first time, that polyamines induce dimerization of mouse recombinant full-length OAZ1, forming an (OAZ1)2-Polyamine complex. Dimerization could be modulated by functionally active C-methylated spermidine mimetics (MeSpds) by changing the position of the methyl group along the Spd backbone—2-MeSpd was a poor inducer as opposed to 1-MeSpd, 3-MeSpd, and Spd, which were good inducers. Importantly, the ability of compounds to inhibit polyamine uptake correlated with the efficiency of the (OAZ1)2-Polyamine complex formation. Thus, the (OAZ1)2-Polyamine complex may be needed to inhibit polyamine uptake. The efficiency of polyamine-induced ribosomal +1 frameshifting of OAZ1 mRNA could also be differentially modulated by MeSpds—2-MeSpd was a poor inducer of OAZ1 biosynthesis and hence a poor downregulator of ODC activity unlike the other MeSpds. These findings offer new insight into the OAZ1-mediated regulation of polyamine homeostasis and provide the chemical tools to study it.
Collapse
|
2
|
Takamura H, Motose H, Otsu T, Shinohara S, Kouno R, Kadota I, Takahashi T. Chemical Synthesis and Biological Effect on Xylem Formation of Xylemin and Its Analogues. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Hiroyasu Motose
- Department of Biological Science; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Taichi Otsu
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Shiori Shinohara
- Department of Biological Science; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Ryugo Kouno
- Department of Biological Science; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Isao Kadota
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Taku Takahashi
- Department of Biological Science; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| |
Collapse
|
3
|
Sekula B, Dauter Z. Spermidine Synthase (SPDS) Undergoes Concerted Structural Rearrangements Upon Ligand Binding - A Case Study of the Two SPDS Isoforms From Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:555. [PMID: 31134111 PMCID: PMC6514230 DOI: 10.3389/fpls.2019.00555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 05/14/2023]
Abstract
Spermidine synthases (SPDSs) catalyze the production of the linear triamine, spermidine, from putrescine. They utilize decarboxylated S-adenosylmethionine (dc-SAM), a universal cofactor of aminopropyltransferases, as a donor of the aminopropyl moiety. In this work, we describe crystal structures of two SPDS isoforms from Arabidopsis thaliana (AtSPDS1 and AtSPDS2). AtSPDS1 and AtSPDS2 are dimeric enzymes that share the fold of the polyamine biosynthesis proteins. Subunits of both isoforms present the characteristic two-domain structure. Smaller, N-terminal domain is built of the two β-sheets, while the C-terminal domain has a Rossmann fold-like topology. The catalytic cleft composed of two main compartments, the dc-SAM binding site and the polyamine groove, is created independently in each AtSPDS subunits at the domain interface. We also provide the structural details about the dc-SAM binding mode and the inhibition of SPDS by a potent competitive inhibitor, cyclohexylamine (CHA). CHA occupies the polyamine binding site of AtSPDS where it is bound at the bottom of the active site with the amine group placed analogously to the substrate. The crystallographic snapshots show in detail the structural rearrangements of AtSPDS1 and AtSPDS2 that are required to stabilize ligands within the active site. The concerted movements are observed in both compartments of the catalytic cleft, where three major parts significantly change their conformation. These are (i) the neighborhood of the glycine-rich region where aminopropyl moiety of dc-SAM is bound, (ii) the very flexible gate region with helix η6, which interacts with both, the adenine moiety of dc-SAM and the bound polyamine or inhibitor, and (iii) the N-terminal β-hairpin, that limits the putrescine binding grove at the bottom of the catalytic site.
Collapse
|
4
|
Sprenger J, Carey J, Svensson B, Wengel V, Persson L. Binding and Inhibition of Spermidine Synthase from Plasmodium falciparum and Implications for In Vitro Inhibitor Testing. PLoS One 2016; 11:e0163442. [PMID: 27661085 PMCID: PMC5035006 DOI: 10.1371/journal.pone.0163442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/08/2016] [Indexed: 11/23/2022] Open
Abstract
The aminopropyltransferase spermidine synthase (SpdS) is a promising drug target in cancer and in protozoan diseases including malaria. Plasmodium falciparum SpdS (PfSpdS) transfers the aminopropyl group of decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine or to spermidine to form spermidine or spermine, respectively. In an effort to understand why efficient inhibitors of PfSpdS have been elusive, the present study uses enzyme activity assays and isothermal titration calorimetry with verified or predicted inhibitors of PfSpdS to analyze the relationship between binding affinity as assessed by KD and inhibitory activity as assessed by IC50. The results show that some predicted inhibitors bind to the enzyme with high affinity but are poor inhibitors. Binding studies with PfSpdS substrates and products strongly support an ordered sequential mechanism in which the aminopropyl donor (dcAdoMet) site must be occupied before the aminopropyl acceptor (putrescine) site can be occupied. Analysis of the results also shows that the ordered sequential mechanism adequately accounts for the complex relationship between IC50 and KD and may explain the limited success of previous efforts at structure-based inhibitor design for PfSpdS. Based on PfSpdS active-site occupancy, we suggest a classification of ligands that can help to predict the KD−IC50 relations in future design of new inhibitors. The present findings may be relevant for other drug targets that follow an ordered sequential mechanism.
Collapse
Affiliation(s)
- Janina Sprenger
- Center for Molecular Protein Science, Lund University, SE-221 00, Lund, Sweden
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, New Jersey, 08544, United States of America
| | - Bo Svensson
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Verena Wengel
- Center for Molecular Protein Science, Lund University, SE-221 00, Lund, Sweden
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
- * E-mail:
| |
Collapse
|
5
|
Yamasaki K, Tani O, Tateishi Y, Tanabe E, Namatame I, Niimi T, Furukawa K, Sakashita H. An NMR Biochemical Assay for Fragment-Based Drug Discovery: Evaluation of an Inhibitor Activity on Spermidine Synthase of Trypanosoma cruzi. J Med Chem 2016; 59:2261-6. [DOI: 10.1021/acs.jmedchem.5b01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Osamu Tani
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Yukihiro Tateishi
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Eiki Tanabe
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Ichiji Namatame
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Tatsuya Niimi
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Hitoshi Sakashita
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| |
Collapse
|
6
|
Sprenger J, Svensson B, Hålander J, Carey J, Persson L, Al-Karadaghi S. Three-dimensional structures of Plasmodium falciparum spermidine synthase with bound inhibitors suggest new strategies for drug design. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:484-93. [PMID: 25760598 PMCID: PMC4356361 DOI: 10.1107/s1399004714027011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023]
Abstract
The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5'-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substrate putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS.
Collapse
Affiliation(s)
- Janina Sprenger
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Bo Svensson
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
- SARomics Biostructures AB, Box 724, SE-220 07 Lund, Sweden
| | - Jenny Hålander
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, New Jersey, USA
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Salam Al-Karadaghi
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|
7
|
A novel inhibitor of Plasmodium falciparum spermidine synthase: a twist in the tail. Malar J 2015; 14:54. [PMID: 25651815 PMCID: PMC4342090 DOI: 10.1186/s12936-015-0572-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is the most pathogenic of the human malaria parasite species and a major cause of death in Africa. It's resistance to most of the current drugs accentuates the pressing need for new chemotherapies. Polyamine metabolism of the parasite is distinct from the human pathway making it an attractive target for chemotherapeutic development. Plasmodium falciparum spermidine synthase (PfSpdS) catalyzes the synthesis of spermidine and spermine. It is a major polyamine flux-determining enzyme and spermidine is a prerequisite for the post-translational activation of P. falciparum eukaryotic translation initiation factor 5A (elF5A). The most potent inhibitors of eukaryotic SpdS's are not specific for PfSpdS. METHODS 'Dynamic' receptor-based pharmacophore models were generated from published crystal structures of SpdS with different ligands. This approach takes into account the inherent flexibility of the active site, which reduces the entropic penalties associated with ligand binding. Four dynamic pharmacophore models were developed and two inhibitors, (1R,4R)-(N1-(3-aminopropyl)-trans-cyclohexane-1,4-diamine (compound 8) and an analogue, N-(3-aminopropyl)-cyclohexylamine (compound 9), were identified. RESULTS A crystal structure containing compound 8 was solved and confirmed the in silico prediction that its aminopropyl chain traverses the catalytic centre in the presence of the byproduct of catalysis, 5'-methylthioadenosine. The IC50 value of compound 9 is in the same range as that of the most potent inhibitors of PfSpdS, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and 4MCHA and 100-fold lower than that of compound 8. Compound 9 was originally identified as a mammalian spermine synthase inhibitor and does not inhibit mammalian SpdS. This implied that these two compounds bind in an orientation where their aminopropyl chains face the putrescine binding site in the presence of the substrate, decarboxylated S-adenosylmethionine. The higher binding affinity and lower receptor strain energy of compound 9 compared to compound 8 in the reversed orientation explained their different IC50 values. CONCLUSION The specific inhibition of PfSpdS by compound 9 is enabled by its binding in the additional cavity normally occupied by spermidine when spermine is synthesized. This is the first time that a spermine synthase inhibitor is shown to inhibit PfSpdS, which provides new avenues to explore for the development of novel inhibitors of PfSpdS.
Collapse
|
8
|
Yamazaki K, Ikeguchi Y, Niwa T, Hayashi K, Iwaki T, Ishii I, Niitsu M, Pegg AE, Shirahata A. Determination of cellular aminopropyltransferase activity using precolumn fluorescent etheno-derivatization with high-performance liquid chromatography. ANAL SCI 2013; 28:621-4. [PMID: 22729051 DOI: 10.2116/analsci.28.621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyamines such as spermidine (Spd) and spermine (Spm), produced by aminopropyltransferase (Apt), play roles in cell growth and differentiation. A sensitive and simple fluorometric high-performance liquid chromatographic determination for Apt activity of spermidine synthase (Spdsyn) and spermine synthase (Spmsyn) was developed in order to examine cellular functions of polyamine synthesis. The derivatization procedure for methylthioadenosine (MTA) produced from decarboxylated S-adenosylmethionine by Apt was the reaction with 2-chloroacetaldehyde to give fluorescent 1, N(6)-etheno methylthioadenosine. The reaction conditions for derivatization were optimized. A calibration curve was established, ranging from 0.01 to 25 pmol. Quantification of derivatized MTA was confirmed to be identical to Spd or Spm production. The developed method determined Spdsyn and Spmsyn activities in HepG2 cells treated with oleic acid as a cellular lipid accumulation model.
Collapse
Affiliation(s)
- Kenichi Yamazaki
- Laboratory of Bio-analytical Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ishii I, Ikeguchi Y, Mano H, Wada M, Pegg AE, Shirahata A. Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells. Amino Acids 2011; 42:619-26. [PMID: 21809076 PMCID: PMC3266501 DOI: 10.1007/s00726-011-1037-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/26/2011] [Indexed: 11/28/2022]
Abstract
Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N(1)-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis.
Collapse
Affiliation(s)
- Ikumi Ishii
- Laboratory of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Schwartz CE, Wang X, Stevenson RE, Pegg AE. Spermine synthase deficiency resulting in X-linked intellectual disability (Snyder-Robinson syndrome). Methods Mol Biol 2011; 720:437-445. [PMID: 21318891 DOI: 10.1007/978-1-61779-034-8_28] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polyamines, small positively charged molecules, are vital for cell proliferation and differentiation. They are found ubiquitously in eukaryotic cells. Additionally, they interact with a wide range of other molecules and some membrane associated receptors. Polyamines, spermidine and spermine, are synthesized by two aminopropyltransferases, spermidine synthase and spermine synthase. Recently, mutations in the latter enzyme have been shown to be responsible for an X-linked intellectual disability condition known as Snyder-Robinson syndrome. Spermine synthase deficiency is thus far the only known polyamine deficiency syndrome in humans.
Collapse
Affiliation(s)
- Charles E Schwartz
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, SC, USA.
| | | | | | | |
Collapse
|
11
|
Oka T, Ohtani M, Suzuki JI. [Identification of novel molecules regulating differentiation and hormone secretion and clarification of their functional mechanisms in pancreatic endocrine cells]. YAKUGAKU ZASSHI 2010; 130:377-88. [PMID: 20190522 DOI: 10.1248/yakushi.130.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to find novel bioactive molecules regulating differentiation and hormone secretion of pancreatic endocrine cells, the effects of various substances including purinergic receptor agonists and inhibitors of polyamine biosynthesis were examined in pancreatic islets and several pancreatic cell lines. The nicotinic alpha3beta4 receptor was found to be present and capable of increasing cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and insulin secretion in mouse pancreatic Beta-TC6 cells. Activation of both nicotinic and muscarinic M(3)/M(4) receptors resulted in reduction of insulin release when compared with stimulation of muscarinic receptor alone in Beta-TC6 cells. In mouse islets, purinergic P2Y(1) and P2Y(6) receptors, which are coupled to Gq proteins, were expressed and appeared to regulate insulin secretion through Ca(2+) mobilization from intracellular stores. Similar results were observed in Beta-TC6 cells. Spermidine, one of polyamines, was found to modulate insulin synthesis and [Ca(2+)](i) in Beta-TC6 cells by use of a specific spermidine synthesis inhibitor, trans-4-methylcyclohexylamine (MCHA). Antizyme, which binds to ornithine decarboxylase (ODC) and thereby reduces the cellular polyamine level, was found to be necessary for conversion of ASPC-1 cells, a pancreatic ductal tumor cell line, into alpha-cells forming the islet-like structure and expressing glucagon gene. These findings help advance our understanding of the complex mechanisms involved in the regulation of pancreatic endocrine cell function and develop new therapeutic agents in diabetes mellitus.
Collapse
Affiliation(s)
- Takami Oka
- Research Institute of Pharmaceutical Sciences, Musashino University, Japan.
| | | | | |
Collapse
|
12
|
Ohtani M, Mizuno I, Kojima Y, Ishikawa Y, Sodeno M, Asakura Y, Samejima K, Oka T. Spermidine Regulates Insulin Synthesis and Cytoplasmic Ca2+ in Mouse Beta-TC6 Insulinoma Cells. Cell Struct Funct 2009; 34:105-13. [DOI: 10.1247/csf.09008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Masahiro Ohtani
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Ikuko Mizuno
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Yumiko Kojima
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Yuichi Ishikawa
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Midori Sodeno
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Yuka Asakura
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Keijiro Samejima
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Takami Oka
- Research Institute of Pharmaceutical Sciences, Musashino University
| |
Collapse
|
13
|
Müller IB, Das Gupta R, Lüersen K, Wrenger C, Walter RD. Assessing the polyamine metabolism of Plasmodium falciparum as chemotherapeutic target. Mol Biochem Parasitol 2008; 160:1-7. [DOI: 10.1016/j.molbiopara.2008.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
|
14
|
Dufe VT, Qiu W, Müller IB, Hui R, Walter RD, Al-Karadaghi S. Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. J Mol Biol 2007; 373:167-77. [PMID: 17822713 DOI: 10.1016/j.jmb.2007.07.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/11/2007] [Accepted: 07/21/2007] [Indexed: 10/23/2022]
Abstract
Plasmodium falciparum is the causative agent of the most severe type of malaria, a life-threatening disease affecting the lives of over three billion people. Factors like widespread resistance against available drugs and absence of an effective vaccine are seriously compounding control of the malaria parasite. Thus, there is an urgent need for the identification and validation of new drug targets. The enzymes of the polyamine biosynthesis pathway have been suggested as possible targets for the treatment of malaria. One of these enzymes is spermidine synthase (SPDS, putrescine aminopropyltransferase), which catalyzes the transfer of an aminopropyl moiety from decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine, leading to the formation of spermidine and 5'-methylthioadenosine. Here we present the three-dimensional structure of P. falciparum spermidine synthase (pfSPDS) in apo form, in complex with dcAdoMet and two inhibitors, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and trans-4-methylcyclohexylamine (4MCHA). The results show that binding of dcAdoMet to pfSPDS stabilizes the conformation of the flexible gatekeeper loop of the enzyme and affects the conformation of the active-site amino acid residues, preparing the protein for binding of the second substrate. The complexes of AdoDATO and 4MCHA with pfSPDS reveal the mode of interactions of these compounds with the enzyme. While AdoDATO essentially fills the entire active-site pocket, 4MCHA only occupies part of it, which suggests that simple modifications of this compound may yield more potent inhibitors of pfSPDS.
Collapse
Affiliation(s)
- Veronica Tamu Dufe
- Department of Molecular Biophysics, Center for Molecular Protein Science, Lund University, S-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Burger PB, Birkholtz LM, Joubert F, Haider N, Walter RD, Louw AI. Structural and mechanistic insights into the action of Plasmodium falciparum spermidine synthase. Bioorg Med Chem 2007; 15:1628-37. [PMID: 17196392 DOI: 10.1016/j.bmc.2006.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/01/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Spermidine synthase is currently considered as a promising drug target in the malaria parasite, Plasmodium falciparum, due to the vital role of spermidine in the activation of the eukaryotic translation initiation factor (eIF5A) and cell proliferation. However, very limited information was available regarding the structure and mechanism of action of the protein at the start of this study. Structural and mechanistic insights of the P. falciparum spermidine synthase (PfSpdSyn) were obtained utilizing molecular dynamics simulations of a homology model based on the crystal structures of the Arabidopsis thaliana and Thermotoga maritima homologues. Our data are supported by in vitro site-directed mutagenesis of essential residues as well as by a crystal structure of the protein that became available recently. We provide, for the first time, dynamic evidence for the mechanism of the aminopropyltransferase action of PfSpdSyn. This characterization of the structural and mechanistic properties of the PfSpdSyn as well as the elucidation of the active site residues involved in substrate, product, and inhibitor interactions paves the way toward inhibitor selection or design of parasite-specific inhibitors.
Collapse
Affiliation(s)
- Pieter B Burger
- Bioinformatics and Computational Biology Unit, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
This review describes my work in the field of polyamine research for the last 35 years. My research started with developing the improved synthesis of decarboxylated S-adenosylmethionine and then moved to the purification of spermidine synthase from rat prostate. I also took considerable efforts to find the synthetic procedure for various polyamines with high yield in order to prepare (15)N-labeled polyamines. On the basis of these methodological work, I searched for the inhibitor of spermidine synthase and found trans-4-methylcyclohexylamine (MCHA), the most effective one at the present time. I also developed a new analytical method for polyamines using stable isotope and ionspray ionization mass spectrometry (IS-MS). Based on these studies I examined the role of polyamines in liver regeneration and found that oral administration of MCHA effectively changed the concentration of polyamines and inhibited the hepatic growth. I also found the close relationship between the concentration ratio of spermidine to spermine and the extent of liver regeneration. These results may shed new light on the control of cell growth by polyamine in vivo.
Collapse
Affiliation(s)
- Keijiro Samejima
- Faculty of Pharmaceutical Sciences, Josai University, Sakado City, Japan.
| |
Collapse
|
17
|
Enomoto K, Nagasaki T, Yamauchi A, Onoda J, Sakai K, Yoshida T, Maekawa K, Kinoshita Y, Nishino I, Kikuoka S, Fukunaga T, Kawamoto K, Numata Y, Takemoto H, Nagata K. Development of high-throughput spermidine synthase activity assay using homogeneous time-resolved fluorescence. Anal Biochem 2006; 351:229-40. [PMID: 16472757 DOI: 10.1016/j.ab.2006.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 01/06/2006] [Accepted: 01/09/2006] [Indexed: 12/28/2022]
Abstract
Spermidine synthase (SPDS) catalyzes transfer of the propylamine group from decarboxylated S-adenosylmethionine (dcSAM) to putrescine to yield methylthioadenosine (MTA) and spermidine. SPDS plays a regulatory role in cell proliferation and differentiation. This article describes the development of a high-throughput SPDS activity assay using homogeneous time-resolved fluorescence (HTRF) based on energy transfer from europium cryptate as a donor to crosslinked allophycocyanin (XL665) as an acceptor. First a highly specific anti-MTA monoclonal antibody, MTA-7H8, was generated, and then a competitive immunoassay for MTA determination was developed using europium cryptate-labeled MTA-7H8 and XL665-labeled MTA. In our homogeneous immunoassay, the percentage molar cross-reactivity of dcSAM with MTA-7H8 was 0.01% and the detection limit of MTA was 2.6 pmol/well. Our HTRF assay uses only one assay plate in which both enzyme reaction and MTA determination can be done successively. Therefore, our method can enable automatic screening of SPDS inhibitors from large numbers of samples.
Collapse
Affiliation(s)
- Koji Enomoto
- Discovery Research Laboratories, Shionogi & Company, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ikeguchi Y, Bewley MC, Pegg AE. Aminopropyltransferases: Function, Structure and Genetics. ACTA ACUST UNITED AC 2006; 139:1-9. [PMID: 16428313 DOI: 10.1093/jb/mvj019] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aminopropyltransferases use decarboxylated S-adenosylmethionine as an aminopropyl donor and an amine acceptor to form polyamines. This review covers their structure, mechanism of action, inhibition, regulation and function. The best known aminopropyltransferases are spermidine synthase and spermine synthase but other members of this family including an N(1)-aminopropylagmatine synthase have been characterized. Spermidine synthase is an essential gene in eukaryotes and is very widely distributed. Key regions in the active site, which are very highly conserved, were identified by structural studies with spermidine synthase from Thermotoga maritima bound to S-adenosyl-1,8-diamino-3-thiooctane, a multisubstrate analog inhibitor. A general mechanism for catalysis by aminopropyltransferases can be proposed based on these studies. Spermine synthase is less widely distributed and is not essential for growth in yeast. However, Gy mice lacking spermine synthase have multiple symptoms including a profound growth retardation, sterility, deafness, neurological abnormalities and a propensity to sudden death, which can all be prevented by transgenic expression of spermine synthase. A large reduction in spermine synthase in human males due to a splice site variant causes Snyder-Robinson syndrome with mental retardation, hypotonia and skeletal abnormalities.
Collapse
Affiliation(s)
- Yoshihiko Ikeguchi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295
| | | | | |
Collapse
|
19
|
Dufe VT, Lüersen K, Eschbach ML, Haider N, Karlberg T, Walter RD, Al-Karadaghi S. Cloning, expression, characterisation and three-dimensional structure determination of Caenorhabditis elegans spermidine synthase. FEBS Lett 2005; 579:6037-43. [PMID: 16226262 DOI: 10.1016/j.febslet.2005.09.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/14/2005] [Accepted: 09/16/2005] [Indexed: 11/21/2022]
Abstract
The polyamine synthesis enzyme spermidine synthase (SPDS) has been cloned from the model nematode Caenorhabditis elegans. Biochemical characterisation of the recombinantly expressed protein revealed a high degree of similarity to other eukaryotic SPDS with the exception of a low affinity towards the substrate decarboxylated S-adenosylmethionine (Km = 110 microM) and a less pronounced feedback inhibition by the second reaction product 5'-methylthioadenosine (IC50 = 430 microM). The C. elegans protein that carries a nematode-specific insertion of 27 amino acids close to its N-terminus was crystallized, leading to the first X-ray structure of a dimeric eukaryotic SPDS.
Collapse
Affiliation(s)
- Veronica T Dufe
- Department of Molecular Biophysics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Haider N, Eschbach ML, Dias SDS, Gilberger TW, Walter RD, Lüersen K. The spermidine synthase of the malaria parasite Plasmodium falciparum: Molecular and biochemical characterisation of the polyamine synthesis enzyme. Mol Biochem Parasitol 2005; 142:224-36. [PMID: 15913804 DOI: 10.1016/j.molbiopara.2005.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/24/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
The gene encoding spermidine synthase was cloned from the human malaria parasite Plasmodium falciparum. Northern and Western blot analyses revealed a stage specific expression during the erythrocytic schizogony with the maximal amount of transcript and protein in mature trophozoites. Immunofluorescence assays (IFAs) suggest a cytoplasmatic localisation of the spermidine synthase in P. falciparum. The spermidine synthase polypeptide of 321 amino acids has a molecular mass of 36.6kDa and contains an N-terminal extension of unknown function that, similarly, is also found in certain plants but not in animal or bacterial orthologues. Omitting the first 29 amino acids, a truncated form of P. falciparum spermidine synthase has been recombinantly expressed in Escherichia coli. The enzyme catalyses the transfer of an aminopropyl group from decarboxylated S-adenosylmethionine (dcAdoMet) onto putrescine with Km values of 35 and 52microM, respectively. In contrast to mammalian spermidine synthases, spermidine can replace to some extent putrescine as the aminopropyl acceptor. Hence, P. falciparum spermidine synthase has the capacity to catalyse the formation of spermine that is found in small amounts in the erythrocytic stages of the parasite. Among the spermidine synthase inhibitors tested against P. falciparum spermidine synthase, trans-4-methylcyclohexylamine (4MCHA) was found to be most potent with a Ki value of 0.18microM. In contrast to the situation in mammals, where inhibition of spermidine synthase has no or only little effect on cell proliferation, 4MCHA was an efficient inhibitor of P. falciparum cell growth in vitro with an IC50 of 35microM, indicating that P. falciparum spermidine synthase represents a putative drug target.
Collapse
Affiliation(s)
- Nashya Haider
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Goda H, Watanabe T, Takeda N, Kobayashi M, Wada M, Hosoda H, Shirahata A, Samejima K. Mammalian spermidine synthase--identification of cysteine residues and investigation of the putrescine binding site--. Biol Pharm Bull 2005; 27:1327-32. [PMID: 15340214 DOI: 10.1248/bpb.27.1327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homology modeling and inhibitory studies using substrate analogs were undertaken to construct a possible three-dimensional structure, including the putrescine-binding site, of rat spermidine synthase based on its primary sequence. Of the ten cysteine residues of the enzyme, six residues were chemically determined as sulfhydryl; similarly, one residue (C25) was determined as the disulfide. Using the model obtained from the Swiss-Model protein-modeling server, and based on the crystal structure of the Thermotoga maritima enzyme, the three remaining residues were assigned as sulfhydryl. Discussions are presented on the counterpart of the C25 residue, based on the apparent role of the bacterial N-terminal peptide region in reinforcing the binding between protomers in a functional oligomeric form. The active sites of the bacterial and mammalian versions of the enzyme were very similar. The putrescine-binding site of the rat enzyme was investigated using IC(50) values of the analogs of two known potent inhibitors, n-butylamine and trans-4-methylcyclohexylamine (4MCHA). Our results indicated that 5-amino-1-pentene and 4MCHA possess comparable inhibitory activities towards the enzyme.
Collapse
Affiliation(s)
- Hitomi Goda
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ikeguchi Y, Mackintosh CA, McCloskey DE, Pegg AE. Effect of spermine synthase on the sensitivity of cells to anti-tumour agents. Biochem J 2003; 373:885-92. [PMID: 12737625 PMCID: PMC1223546 DOI: 10.1042/bj20030246] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 04/09/2003] [Accepted: 05/09/2003] [Indexed: 12/17/2022]
Abstract
The role of spermine in the sensitivity of cells to various established and experimental anti-tumour agents was examined, using paired cell lines that possess or lack spermine synthase. All spermine-synthase-deficient cells had no detectable spermine, and elevated spermidine, content. Spermine content did not alter the cell growth rate. There was little or no difference in sensitivity of immortalized mouse embryonic fibroblasts to doxorubicin, etoposide, cisplatin, methylglyoxal bis(guanylhydrazone) or H(2)O(2) and only a slight increase in sensitivity to vinblastine and nocodazole. However, the absence of spermine clearly increased the sensitivity to 1,3-bis(2-chloroethyl)- N -nitrosourea, suggesting that depletion of spermine may be a useful way to increase the anti-neoplastic effects of anti-tumour agents that form chloroethyl-mediated interstrand DNA cross-links. The effects of spermine on the response to polyamine analogues (which have been proposed to be useful anti-neoplastic agents) were complex, and depended on the compound examined and on the cells tested. Sensitivity to CHENSpm ( N (1)-ethyl- N (11)-[(cycloheptyl)methyl]-4,8-diazaundecane) was substantially greater in immortalized fibroblasts that lack spermine. In contrast, BE-3-4-3 [ N (1), N (12)-bis(ethyl)spermine] and BE-3-3-3 [ N (1), N (11)-bis(ethyl)norspermine] were more active against cells that contained spermine. The presence of spermine correlated with a greater induction of spermidine/spermine- N (1)-acetyltransferase by BE-3-3-3, which is consistent with suggestions that this induction is important for the response to this drug. These findings support the concepts that different polyamine analogues have different sites of action and that CHENSpm has a different site of action from BE-3-3-3.
Collapse
Affiliation(s)
- Yoshihiko Ikeguchi
- Department of Cellular and Molecular Physiology (H166), Room C4737, Pennsylvania State University College of Medicine, 500 University Drive, P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Polyamines are aliphatic cations present in all cells. In normal cells, polyamine levels are intricately controlled by biosynthetic and catabolic enzymes. The biosynthetic enzymes are ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, and spermine synthase. The catabolic enzymes include spermidine/spermine acetyltransferase, flavin containing polyamine oxidase, copper containing diamine oxidase, and possibly other amine oxidases. Multiple abnormalities in the control of polyamine metabolism and uptake might be responsible for increased levels of polyamines in cancer cells as compared to that of normal cells. This review is designed to look at the current research in polyamine biosynthesis, catabolism, and transport pathways, enumerate the functions of polyamines, and assess the potential for using polyamine metabolism or function as targets for cancer therapy.
Collapse
Affiliation(s)
- Thresia Thomas
- Department of Environmental & Community Medicine, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | | |
Collapse
|
24
|
Orelli LR, Blanco MM, García MB, Hedrera ME, Perillo IA. A NEW SYNTHETIC APPROACH TON,N′-DISUBSTITUTED 1,n-ALKANEDIAMINES. SYNTHETIC COMMUN 2001. [DOI: 10.1081/scc-100103257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Kashiwagi K, Kuraishi A, Tomitori H, Igarashi A, Nishimura K, Shirahata A, Igarashi K. Identification of the putrescine recognition site on polyamine transport protein PotE. J Biol Chem 2000; 275:36007-12. [PMID: 10964926 DOI: 10.1074/jbc.m006083200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PotE protein can catalyze both uptake and excretion of putrescine. The K(m) values of putrescine for uptake and excretion are 1.8 and 73 microm, respectively. Uptake of putrescine is dependent on the membrane potential, whereas excretion involves putrescine-ornithine antiporter activity. Amino acids involved in both activities were identified using mutated PotE proteins. It was found that Cys(62), Trp(201), Trp(292), and Tyr(425) were strongly involved in both activities, and that Tyr(92), Cys(210), Cys(285), and Cys(286) were moderately involved in the activities. Mutations of Tyr(78), Trp(90), and Trp(422) mainly affected uptake activity, and the K(m) values for putrescine uptake by these PotE mutants increased greatly, indicating that these amino acids are involved in the high affinity uptake of putrescine by PotE. Mutations of Lys(301) and Tyr(308) mainly affected excretion activity (putrescine-ornithine antiporter activity), and excretion by these mutants was not stimulated by ornithine, indicating that these amino acids are involved in the recognition of ornithine. It was found that the putrescine and ornithine recognition site on PotE is located at the cytoplasmic surface and the vestibule of the pore consisting of 12 transmembrane segments. Based on the results of competition experiments with various putrescine analogues and the disulfide cross-linking of PotE between cytoplasmic loops and the COOH terminus, a model of the putrescine recognition site on PotE consisting of the identified amino acids is presented.
Collapse
Affiliation(s)
- K Kashiwagi
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Abe K, Chu P, Shirahata A, Samejima K, Saito H. Structural requirement for axonal regeneration-promoting effect of polyamines in cultured rat hippocampal neurons. Brain Res 1997; 766:281-4. [PMID: 9359617 DOI: 10.1016/s0006-8993(97)00750-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously found that spermine, spermidine and putrescine promote axonal regeneration following axotomy in cultured rat hippocampal neurons. In the present study, we investigated which part of the polyamine molecule is responsible for the regeneration-promoting effect. Testing the effects of several synthetic analogues revealed that the butanediamine moiety is essential for the activity and the terminal primary amines are necessary for full agonist activity. The structure-activity relationship indicates that the regeneration-promoting effects of polyamines are not associated with NMDA receptors.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
27
|
Bergeron RJ, Weimar WR, Wu Q, Feng Y, McManis JS. Polyamine analogue regulation of NMDA MK-801 binding: a structure-activity study. J Med Chem 1996; 39:5257-66. [PMID: 8978854 DOI: 10.1021/jm960545x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of analogues and homologues of spermine were synthesized, and their impact on MK-801 binding to the N-methyl-D-aspartate (NMDA) receptor was evaluated. These tetraamines encompass both linear and cyclic compounds. The linear molecules include norspermine, N1, N11-diethylnorspermine, N1,N12-bis(2,2,2-trifluoroethyl)spermine, homospermine, and N1,N14-diethylhomospermine. The cyclic tetraamines consist of the piperidine analogues N1,N3-bis(4-piperidinyl)-1,3-diaminopropane, N1,N4-bis(4-piperidinyl)-1,4-diaminobutane, N1,N4-bis(4-piperidinylmethyl)-1,4-diaminobutane, and N1,N4-bis[2-(4-piperidinyl)ethyl]-1,4-diaminobutane and the pyridine analogues N1,N3-bis(4-pyridyl)-1,3-diaminopropane, N1,N4-bis(4-pyridyl)-1,4-diaminobutane, N1,N4-bis(4-pyridylmethyl)-1,4-diaminobutane, and N1,N4-bis[2-(4-pyridyl)-ethyl]-1,4-diaminobutane. This structure-activity set makes it possible to establish the importance of charge, intercharge distance, and terminal nitrogen substitution on polyamine-regulated MK-801 binding in the NMDA channel. Four families of tetraamines are included in this set: norspermines, spermines, homospermines, and tetraazaoctadecanes. Calculations employing a SYBYL modeling program revealed that the distance between terminal nitrogens ranges between 12.62 and 19.61 A. The tetraamines are constructed such that within families cyclics and acyclics have similar lengths but different nitrogen pKa's and thus different protonation, or charge, states at physiological pH. The pKa values for all nitrogens of each molecule and its protonation state at physiological pH are described. The modifications at the terminal nitrogens include introduction of ethyl and beta,beta,beta-trifluoroethyl groups and incorporation into piperidinyl or pyridyl systems. The studies clearly indicate that polyamine length, charge, and terminal nitrogen substitution have a significant effect on how the tetraamine regulates MK-801 binding to the NMDA receptor. Thus a structure-activity basis set on which future design of MK-801 agonists and antagonists can be based is now available.
Collapse
Affiliation(s)
- R J Bergeron
- Department of Medicinal Chemistry, University of Florida, Gainesville 32610-0485, USA
| | | | | | | | | |
Collapse
|
28
|
Chu PJ, Shirahata A, Samejima K, Saito H, Abe K. Antagonistic effect of N-(3-Aminopropyl)cyclohexylamine on neurotrophic action of spermine in primary cultured rat hippocampal and cerebellar neurons. JAPANESE JOURNAL OF PHARMACOLOGY 1995; 69:311-5. [PMID: 8786633 DOI: 10.1254/jjp.69.311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously found that spermine potently promotes the neuronal survival and regeneration of primary cultured brain neurons. N-(3-Aminopropyl)cyclohexylamine (APCHA) was originally developed as a spermine synthase inhibitor. To test if endogenous spermine biosynthesis contributes to neuronal survival and morphogenesis, we examined the effects of APCHA in primary cultured rat hippocampal and cerebellar neurons. APCHA at concentrations up to 10(-6) M did not affect the neuronal survival, but significantly blocked the survival-promoting effect of spermine (10(-8) M). APCHA also blocked the spermine-induced promotion of neurite regeneration following axotomy. Unlike APCHA, another cyclohexylamine derivative trans-4-methylcyclohexylamine did not affect the neurotrophic effect of spermine. These results suggest that in primary cultured brain neurons, APCHA works as a spermine antagonist rather than as a spermine synthesis inhibitor.
Collapse
Affiliation(s)
- P J Chu
- Department of Chemical Pharmacology, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
29
|
Yoneda Y, Ogita K, Enomoto R, Kojima S, Shuto M, Shirahata A, Samejima K. Search for novel ligands selective at a polyamine recognition domain on the N-methyl-D-aspartate receptor complex using membrane binding techniques. Brain Res 1995; 679:15-24. [PMID: 7648257 DOI: 10.1016/0006-8993(95)00213-a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Among over 60 polyamine derivatives tested, only N-(3-aminopropyl)octanediamine and bis-(3-aminopropyl)nonanediamine (TE393) markedly inhibited [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne (MK-801) binding at equilibrium in the presence of added spermidine (SPD) in "non-washed" rat brain synaptic membranes, without affecting that in the absence of added SPD. Although TE393 significantly potentiated [3H]MK-801 binding before equilibrium in the presence of L-glutamic acid (Glu) alone or both Glu and glycine (Gly) added in "Triton-treated" membranes, the putative polyamine antagonists 1,10-decanediamine (DA10) and arcaine invariably inhibited binding irrespective of the addition of agonists. In the absence of added SPD, in addition, TE393 markedly enhanced abilities of both Glu and Gly to potentiate [3H]MK-801 binding before equilibrium. However, TE393 induced a rightward shift of the concentration-response curve of SPD for [3H]MK-801 binding before equilibrium. Moreover, TE393 was effective in potentiating binding of an antagonist but not an agonist radioligand to the NMDA domain and in inhibiting binding of an antagonist but not an agonist radioligand to the Gly domain. The potentiation of NMDA antagonist binding by TE393 occurred in a manner sensitive to prevention by arcaine but not by DA10. These results suggest that TE393 may be a novel ligand at the polyamine domain with an ability to interact with both the NMDA and Gly recognition domains in antagonist-preferring forms.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Pegg AE, Poulin R, Coward JK. Use of aminopropyltransferase inhibitors and of non-metabolizable analogs to study polyamine regulation and function. Int J Biochem Cell Biol 1995; 27:425-42. [PMID: 7641073 DOI: 10.1016/1357-2725(95)00007-c] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The polyamines spermidine and spermine are essential for the growth of mammalian cells. This review describes the properties of the two aminopropyltransferases that are responsible for their biosynthesis, the synthesis and use of specific aminopropyltransferase inhibitors, and the use of analogs of the polyamines to investigate polyamine transport and function. Highly specific and potent multisubstrate adduct inhibitors of these enzymes have been synthesized while less potent inhibitors have been obtained by the synthesis of amines that bind at the active site. Studies with these inhibitors indicate that polyamines are needed for a normal rate of growth and that, although some of the functions of polyamines may be interchangeable, other functions may have a specific requirement for spermidine or spermine. Two groups of growth-promoting polyamine analogs can be distinguished: the many that are effective in short-term experiments compared to the few that can act over a prolonged period. The more stringent structural requirements for long-term growth are probably due to a need for spermidine, or a closely related analog, as a precursor of hypusine in the protein eIF-5A. Metabolically resistant polyamine analogs can be used as model substrates for studies of the polyamine transport system, which plays a critical role in maintaining normal cellular polyamine levels. The feedback regulation by high levels of polyamines that downregulates transport is essential to prevent the accumulation of polyamines at toxic levels. Such accumulation may be associated with apoptosis and, therefore, polyamine analogs are useful tools for investigating the mechanism(s) of polyamine-mediated toxicity.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | |
Collapse
|
31
|
Chu PJ, Shirahata A, Samejima K, Saito H, Abe K. N-(3-aminopropyl)-cyclohexylamine blocks facilitation by spermidine of N-methyl-DL-aspartate-induced seizure in mice in vivo. Eur J Pharmacol 1994; 256:155-60. [PMID: 8050466 DOI: 10.1016/0014-2999(94)90240-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The facilitating or antagonizing effects of polyamine analogues on N-methyl-DL-aspartate (NMDLA)-induced seizures were investigated using mice. Intracerebroventricular injection of spermidine and spermine, but not putrescine, shortened the latency to appearance of clonic convulsion induced by subcutaneous administration of NMDLA. Injection of N-(3-aminopropyl)cyclohexylamine (APCHA) alone did not affect the NMDLA-induced seizure. However, APCHA, when administered together with spermidine, clearly antagonized the facilitating effect of spermidine on the NMDLA-induced seizure. Another cyclohexylamine derivative, trans-4-methylcyclohexylamine, did not block the effect of spermidine. APCHA also antagonized the facilitation by D-serine of NMDLA-induced seizure, although the blocking effect for D-serine was weaker than that for spermidine. APCHA should be useful as a new tool for pharmacological studies on the neuromodulatory action of polyamines.
Collapse
Affiliation(s)
- P J Chu
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
32
|
Pegg AE, Coward JK. Effect of N-(n-butyl)-1,3-diaminopropane on polyamine metabolism, cell growth and sensitivity to chloroethylating agents. Biochem Pharmacol 1993; 46:717-24. [PMID: 8395844 DOI: 10.1016/0006-2952(93)90559-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of N-(n-butyl)-1,3-diaminopropane (BDAP) on cell growth and polyamine content were examined in L1210, SV-3T3 and HT-29 cells. In all cases, BDAP was a specific and highly effective inhibitor of spermine synthesis, and spermine levels were greatly suppressed in the presence of 50 microM BDAP. At the same time, there was a parallel increase in spermidine, which equalled or exceeded the fall in spermine so that total polyamine levels were not reduced. Cell growth was not affected in short-term experiments but culture of L1210 cells for 72-144 hr in the presence of BDAP did lead to an effect on growth that was reversed by the addition of spermine. These results suggest that, in the short term, a normal growth rate is maintained by spermidine but that a function or cellular component critically dependent on spermine becomes depleted at longer times. BDAP was a weak inducer of spermidine/spermine-N1-acetyltransferase and this enzyme may be responsible for excretion or degradation of the inhibitor. The reduction of spermine produced by BDAP led to a substantial increase in the activity of S-adenosylmethionine decarboxylase (AdoMetDC) showing that the repression of this enzyme by spermine is greater than the repression by spermidine. Although higher concentrations were required, BDAP was as effective an inhibitor of spermine synthesis as the mechanism-based inhibitor, S-adenosyl-1,12-diamino-3-thio-9-azadodecane (AdoDATAD), and produced similar decreases in spermine and increases in AdoMetDC. Prior treatment of HT-29 human colon carcinoma cells with BDAP increased the killing by chloroethylating agents but to a much smaller extent than the increase brought about by the DNA repair inhibitor, O6-benzylguanine. The effect of BDAP is likely to be due to an increased interaction of chloroethylating drugs with nuclear DNA in the absence of spermine since BDAP treatment sensitized cells even in the presence of O6-benzylguanine, which prevents repair of these lesions.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033
| | | |
Collapse
|
33
|
Shirahata A, Takahashi N, Beppu T, Hosoda H, Samejima K. Effects of inhibitors of spermidine synthase and spermine synthase on polyamine synthesis in rat tissues. Biochem Pharmacol 1993; 45:1897-903. [PMID: 8494549 DOI: 10.1016/0006-2952(93)90449-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several inhibitors of aminopropyltransferases, developed recently in this laboratory, were tested for their specificity by measuring their effects on six enzyme activities related to polyamine biosynthesis and interconversion. Two of them, trans-4-methylcyclohexylamine (4MCHA) and N-(3-aminopropyl)cyclohexylamine (APCHA), selectively and potently inhibited the activities of spermidine synthase and spermine synthase, respectively. They were subjected to in vivo studies using rats. Oral administration of 4MCHA or APCHA dissolved in drinking water (0.02 and 0.1%) available ad lib. for a period of 10 days or 4 months caused a specific and marked decrease in spermidine or spermine in tissues (such as a 95% decrease) with a compensatory increase of spermine or spermidine, respectively, but without any observable change in the growth of the treated rats. Also, with extreme reduction of spermidine or spermine, when their sum was approximately constant, the activity of S-adenosyl-methionine decarboxylase in these tissues was enhanced significantly with no change in the activity of ornithine decarboxylase. These results suggested a separate role for spermidine or spermine in the in vivo enhancement of S-adenosylmethionine decarboxylase activity.
Collapse
Affiliation(s)
- A Shirahata
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | | | | | | | | |
Collapse
|
34
|
Shirahata A, Zhu CL, Akatsu S, Suzuki Y, Samejima K. Polyamine-linked sepharoses: preparation and application to mammalian spermine synthase. Protein Expr Purif 1991; 2:229-34. [PMID: 1821794 DOI: 10.1016/1046-5928(91)90077-v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seven different polyamine-linked Sepharose derivatives were prepared for the affinity chromatography of spermidine and spermine binding macromolecules: Spermine synthase from rat and hog brain was used as a model protein with a spermidine binding site. Comparative studies of the affinities of the enzymes for the seven matrixes suggested that two negative charges, three to four methylene groups apart, should be present at the decarboxylated S-adenosylmethionine binding site and should improve the binding of the enzyme to the Sepharose derivative. Two negative charges at the spermidine binding site would be expected to do the same. Three affinity matrixes linked with 1,17-diamino-4,9,14-triazaheptadecane, 1,21-diamino-4,9,13,18-tetraazaheneicosane, and 5-spermine carboxylic acid, respectively, had an affinity for spermine synthases higher than that of spermine-Sepharose, which has been used for the purification of spermine synthase. The first of these matrixes was used and proved to be effective for the purification.
Collapse
Affiliation(s)
- A Shirahata
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | | | | | | | | |
Collapse
|