1
|
Sharrock AV, Mumm JS, Bagdžiūnas G, Čėnas N, Arcus VL, Ackerley DF. The Crystal Structure of Engineered Nitroreductase NTR 2.0 and Impact of F70A and F108Y Substitutions on Substrate Specificity. Int J Mol Sci 2023; 24:ijms24076633. [PMID: 37047605 PMCID: PMC10095097 DOI: 10.3390/ijms24076633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Bacterial nitroreductase enzymes that convert prodrugs to cytotoxins are valuable tools for creating transgenic targeted ablation models to study cellular function and cell-specific regeneration paradigms. We recently engineered a nitroreductase (“NTR 2.0”) for substantially enhanced reduction of the prodrug metronidazole, which permits faster cell ablation kinetics, cleaner interrogations of cell function, ablation of previously recalcitrant cell types, and extended ablation paradigms useful for modelling chronic diseases. To provide insight into the enhanced enzymatic mechanism of NTR 2.0, we have solved the X-ray crystal structure at 1.85 Angstroms resolution and compared it to the parental enzyme, NfsB from Vibrio vulnificus. We additionally present a survey of reductive activity with eight alternative nitroaromatic substrates, to provide access to alternative ablation prodrugs, and explore applications such as remediation of dinitrotoluene pollutants. The predicted binding modes of four key substrates were investigated using molecular modelling.
Collapse
Affiliation(s)
- Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeff S. Mumm
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Gintautas Bagdžiūnas
- Institute of Biochemistry, University of Vilnius, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Narimantas Čėnas
- Institute of Biochemistry, University of Vilnius, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Vickery L. Arcus
- Te Aka Mātuatua-School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
2
|
Lai S, Kumari A, Liu J, Zhang Y, Zhang W, Yen K, Xu J. Chemical screening reveals Ronidazole is a superior prodrug to Metronidazole for nitroreductase-induced cell ablation system in zebrafish larvae. J Genet Genomics 2021; 48:1081-1090. [PMID: 34411714 DOI: 10.1016/j.jgg.2021.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The Metronidazole (MTZ)/nitroreductase (NTR)-mediated cell ablation system is the most commonly used chemical-genetic cell ablation method in zebrafish. This system can specifically ablate target cells under spatial and temporal control. The MTZ/NTR system has become a widely used cell ablation system in biological, developmental, and functional studies. However, the inadequate cell-ablation ability of some cell types and the side effects of high concentration MTZ impede extensive applications of the MTZ/NTR system. In the present study, the US drug collection library was searched to extend the NTR system. Six MTZ analogs were found, and the cell-ablation ability of these analogs was tested in zebrafish larvae. The results revealed that two of the NTR substrates, Furazolidone and Ronidazole, ablated target cells more efficiently than MTZ at lower concentrations. Furthermore, the working concentration of Ronidazole, but not Furazolidone and MTZ, did not affect axonal bridge formation during spinal cord regeneration. Our results, taken together, indicate that Ronidazole is a superior prodrug to MTZ for the NTR system, especially for the study of neuron regeneration in zebrafish larvae.
Collapse
Affiliation(s)
- Siting Lai
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ankita Kumari
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jixiang Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Kuangyu Yen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Sharrock AV, McManaway SP, Rich MH, Mumm JS, Hermans IF, Tercel M, Pruijn FB, Ackerley DF. Engineering the Escherichia coli Nitroreductase NfsA to Create a Flexible Enzyme-Prodrug Activation System. Front Pharmacol 2021; 12:701456. [PMID: 34163368 PMCID: PMC8215503 DOI: 10.3389/fphar.2021.701456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial nitroreductase enzymes that can efficiently convert nitroaromatic prodrugs to a cytotoxic form have numerous applications in targeted cellular ablation. For example, the generation of cytotoxic metabolites that have low bystander potential (i.e., are largely confined to the activating cell) has been exploited for precise ablation of specific cell types in animal and cell-culture models; while enzyme-prodrug combinations that generate high levels of bystander cell killing are useful for anti-cancer strategies such as gene-directed enzyme-prodrug therapy (GDEPT). Despite receiving substantial attention for such applications, the canonical nitroreductase NfsB from Escherichia coli has flaws that limit its utility, in particular a low efficiency of conversion of most prodrugs. Here, we sought to engineer a superior broad-range nitroreductase, E. coli NfsA, for improved activity with three therapeutically-relevant prodrugs: the duocarmycin analogue nitro-CBI-DEI, the dinitrobenzamide aziridine CB1954 and the 5-nitroimidazole metronidazole. The former two prodrugs have applications in GDEPT, while the latter has been employed for targeted ablation experiments and as a precise 'off-switch' in GDEPT models to eliminate nitroreductase-expressing cells. Our lead engineered NfsA (variant 11_78, with the residue substitutions S41Y, L103M, K222E and R225A) generated reduced metabolites of CB1954 and nitro-CBI-DEI that exhibited high bystander efficiencies in both bacterial and 2D HEK-293 cell culture models, while no cell-to-cell transfer was evident for the reduced metronidazole metabolite. We showed that the high bystander efficiency for CB1954 could be attributed to near-exclusive generation of the 2-hydroxylamine reduction product, which has been shown in 3D cell culture to cause significantly greater bystander killing than the 4-hydroxylamine species that is also produced by NfsB. We similarly observed a high bystander effect for nitro-CBI-DEI in HCT-116 tumor spheroids in which only a small proportion of cells were expressing variant 11_78. Collectively, our data identify variant 11_78 as a broadly improved prodrug-activating nitroreductase that offers advantages for both targeted cellular ablation and suicide gene therapy applications.
Collapse
Affiliation(s)
- Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sarah P. McManaway
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Michelle H. Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jeff S. Mumm
- The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ian F. Hermans
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Moana Tercel
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Frederik B. Pruijn
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
4
|
The YfkO Nitroreductase from Bacillus Licheniformis on Gold-Coated Superparamagnetic Nanoparticles: Towards a Novel Directed Enzyme Prodrug Therapy Approach. Pharmaceutics 2021; 13:pharmaceutics13040517. [PMID: 33918536 PMCID: PMC8070144 DOI: 10.3390/pharmaceutics13040517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
The bacterial nitroreductase NfnB has been the focus of a great deal of research for its use in directed enzyme prodrug therapy in combination with the nitroreductase prodrug CB1954 with this combination of enzyme and prodrug even entering clinical trials. Despite some promising results, there are major limitations to this research, such as the fact that the lowest reported Km for this enzyme far exceeds the maximum dosage of CB1954. Due to these limitations, new enzymes are now being investigated for their potential use in directed enzyme prodrug therapy. One such enzyme that has proved promising is the YfkO nitroreductase from Bacillus Licheniformis. Upon investigation, the YfkO nitroreductase was shown to have a much lower Km (below the maximum dosage) than that of NfnB as well as the fact that when reacting with the prodrug it produces a much more favourable ratio of enzymatic products than NfnB, forming more of the desired 4-hydroxylamine derivative of CB1954.
Collapse
|
5
|
Ball P, Halliwell J, Anderson S, Gwenin V, Gwenin C. Evaluation of two xenobiotic reductases from Pseudomonas putida for their suitability for magnetic nanoparticle-directed enzyme prodrug therapy as a novel approach to cancer treatment. Microbiologyopen 2020; 9:e1110. [PMID: 32979040 PMCID: PMC7568253 DOI: 10.1002/mbo3.1110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/03/2023] Open
Abstract
Directed enzyme prodrug therapy (DEPT) is a cancer chemotherapy strategy in which bacterial enzymes are delivered to a cancer site before prodrug administration, resulting in prodrug activation at the cancer site and more localized treatment. A major limitation to DEPT is the poor effectiveness of the most studied enzyme for the CB1954 prodrug, NfnB from Escherichia coli, at concentrations suitable for human use. Much research into finding alternative enzymes to NfnB has resulted in the identification of the Xenobiotic reductases, XenA and XenB, which have been shown in the literature to reduce environmentally polluting nitro‐compounds. In this study, they were assessed for their potential use in cancer prodrug therapy strategies. Both proteins were cloned into the pET28a+ expression vector to give the genetically modified proteins XenA‐his and XenB‐his, of which only XenB‐his was active when tested with CB1954. XenB‐his was further modified to include a cysteine‐tag to facilitate direct immobilization on to a gold surface for future magnetic nanoparticle DEPT (MNDEPT) treatments and was named XenB‐cys. When tested using high‐performance liquid chromatography (HPLC), XenB‐his and XenB‐cys both demonstrated a preference for reducing CB1954 at the 4‐nitro position. Furthermore, XenB‐his and XenB‐cys successfully induced cell death in SK‐OV‐3 cells when combined with CB1954. This led to XenB‐cys being identified as a promising candidate for use in future MNDEPT treatments.
Collapse
|
6
|
Ball P, Thompson E, Anderson S, Gwenin V, Gwenin C. Time dependent HPLC analysis of the product ratio of enzymatically reduced prodrug CB1954 by a modified and immobilised nitroreductase. Eur J Pharm Sci 2018; 127:217-224. [PMID: 30414836 DOI: 10.1016/j.ejps.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 02/01/2023]
Abstract
Directed enzyme prodrug therapy is a chemotherapy strategy that utilises prodrug-activating enzymes to activate prodrugs at the tumour location, thus reducing off-target effects. The most commonly investigated enzyme for use with the CB1954 prodrug is the NfnB nitroreductase from E. coli. Literature states that CB1954 is reduced by NfnB at the 2- or 4-position at a 1:1 ratio; deviation from this ratio has been observed in the literature, but not further investigated. The kinetic parameters for the genetically-modified enzymes; NfnB-his, NfnB-cys and AuNP-NfnB-cys were assessed and HPLC analysis was used to determine the hydroxylamine product ratios formed when reacted with CB1954. Time-dependent HPLC studies were carried out to assess how this ratio changes over time. It was shown that the hydroxylamine ratio formed by the reduction of CB1954 by a nitroreductase changes over time and that this change in ratio relates directly to the kinetics of the reaction. Thus, the hydroxylamine ratio measured using HPLC at a given time point was not a true indication of the preference of the nitroreductase enzymes during catalysis. These results question how nitroreductases are evaluated in terms of the hydroxylamine ratio and it is suspected that this phenomenon may also apply to other enzyme/prodrug combinations.
Collapse
Affiliation(s)
- Patrick Ball
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland
| | - Emma Thompson
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland
| | - Simon Anderson
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland
| | - Vanessa Gwenin
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland
| | - Chris Gwenin
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
7
|
Burke PJ, Wong LC, Jenkins TC, Knox RJ, Meikle IT, Stanforth SP. Studies relating to the synthesis, enzymatic reduction and cytotoxicity of a series of nitroaromatic prodrugs. Bioorg Med Chem Lett 2016; 26:5851-5854. [PMID: 27876476 DOI: 10.1016/j.bmcl.2016.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022]
Abstract
A series of N-nitroarylated-3-chloromethyl-1,2,3,4-tetrahydroisoquinoline derivatives, several of which also possessed a trifluoromethyl substituent, were prepared and assessed as potential nitroaromatic prodrugs. The enzymatic reduction of these compounds and their cytotoxicities were studied. The compounds were cytotoxic, but this is probably not related to their enzymatic reduction.
Collapse
Affiliation(s)
- Philip J Burke
- Morvus Technology Ltd, Llanvetherine Court, Llanvetherine, Abergavenny NP7 8NL, UK
| | - Lai Chun Wong
- Department of Applied Sciences, University of Northumbria, Newcastle-upon-Tyne NE1 8ST, UK
| | - Terence C Jenkins
- Morvus Technology Ltd, Llanvetherine Court, Llanvetherine, Abergavenny NP7 8NL, UK
| | - Richard J Knox
- Morvus Technology Ltd, Llanvetherine Court, Llanvetherine, Abergavenny NP7 8NL, UK
| | - Ian T Meikle
- Department of Applied Sciences, University of Northumbria, Newcastle-upon-Tyne NE1 8ST, UK
| | - Stephen P Stanforth
- Department of Applied Sciences, University of Northumbria, Newcastle-upon-Tyne NE1 8ST, UK.
| |
Collapse
|
8
|
Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 2015; 471:131-53. [PMID: 26431849 DOI: 10.1042/bj20150650] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.
Collapse
|
9
|
Bai J, Zhou Y, Chen Q, Yang Q, Yang J. Altering the regioselectivity of a nitroreductase in the synthesis of arylhydroxylamines by structure-based engineering. Chembiochem 2015; 16:1219-25. [PMID: 25917861 DOI: 10.1002/cbic.201500070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 11/07/2022]
Abstract
Nitroreductases have great potential for the highly efficient reduction of aryl nitro compounds to arylhydroxylamines. However, regioselective reduction of the desired nitro group in polynitroarenes is still a challenge. Here, we describe the structure-based engineering of Escherichia coli nitroreductase NfsB to alter its regioselectivity, in order to achieve reduction of a target nitro group. When 2,4-dinitrotoluene was used as the substrate, the wild-type enzyme regioselectively reduced the 4-NO2 group, but the T41L/N71S/F124W mutant primarily reduced the 2-NO2 group, without loss of activity. The crystal structure of T41L/N71S/F124W and docking experiments indicated that the regioselectivity change (from 4-NO2 to 2-NO2 ) might result from the increased hydrophobicity of residues 41 and 124 (proximal to FMN) and conformational changes in residues 70 and 124.
Collapse
Affiliation(s)
- Jing Bai
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian-116023 (China)
| | - Yong Zhou
- School of Software Technology, Dalian University of Technology, 321 Tuqiang Street, Development Zone, Dalian (China)
| | - Qi Chen
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian-116023 (China)
| | - Qing Yang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian-116023 (China)
| | - Jun Yang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian-116023 (China).
| |
Collapse
|
10
|
Nguyen-Tran HH, Zheng GW, Qian XH, Xu JH. Highly selective and controllable synthesis of arylhydroxylamines by the reduction of nitroarenes with an electron-withdrawing group using a new nitroreductase BaNTR1. Chem Commun (Camb) 2014; 50:2861-4. [PMID: 24488361 DOI: 10.1039/c3cc48590k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new bacterial nitroreductase has been identified and used as a biocatalyst for the controllable reduction of a variety of nitroarenes with an electron-withdrawing group to the corresponding N-arylhydroxylamines under mild reaction conditions with excellent selectivity (>99%). This method therefore represents a green and efficient method for the synthesis of arylhydroxylamines.
Collapse
Affiliation(s)
- Hieu-Huy Nguyen-Tran
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | |
Collapse
|
11
|
Chowdhury N, Dutta S, Nishitha B, Dasgupta S, Singh NP. N,O-Diacyl-4-benzoyl-N-phenylhydroxylamines as photoinduced DNA cleaving agents. Bioorg Med Chem Lett 2010; 20:5414-7. [DOI: 10.1016/j.bmcl.2010.07.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/21/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
|
12
|
Abstract
The trypanocidal agents nifurtimox and benznidazole both function as prodrugs and must undergo enzyme-mediated activation, a reaction catalyzed by type I nitroreductase (NTR). In the search for new parasitic therapies, we have utilized this finding to investigate whether aziridinyl nitrobenzamide derivatives have activity against bloodstream-form Trypanosoma brucei and Trypanosoma cruzi amastigotes, parasite stages that replicate in the mammalian host. For T. cruzi drug screening, we generated trypanosomes that expressed the luciferase reporter gene and optimized a mammalian infection model in a 96-well plate format. A subset of compounds having a 5-(aziridin-1-yl)-2,4-dinitrobenzyl structure was shown to be metabolized by purified T. brucei NTR and when screened against both parasite life cycle stages displayed significant growth-inhibitory properties: the most potent compounds generated 50% inhibitory concentrations of <1 μM. The trypanocidal activity was shown to be NTR specific, since parasites overexpressing this enzyme were hypersensitive to the aziridinyl dinitrobenzyl agents. We conclude that members of the aziridinyl nitrobenzamide class of nitroheterocycles provide new lead structures that have the potential to treat trypanosomal infections.
Collapse
|
13
|
An unexpected ring contraction of two nitroaryl pro-drugs: conversion of N-(nitroaryl)-3-chloropiperidine derivatives into N-(nitroaryl)-2-chloromethylpyrrolidines. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.05.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Rong Z, Du W, Wang Y, Lu L. Carbon supported Pt colloid as effective catalyst for selective hydrogenation of nitroarenes to arylhydroxylamines. Chem Commun (Camb) 2010; 46:1559-61. [DOI: 10.1039/b916686f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR. A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 2009; 65:791-801. [DOI: 10.1007/s00280-009-1188-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 11/12/2009] [Indexed: 11/28/2022]
|
16
|
Prosser GA, Copp JN, Syddall SP, Williams EM, Smaill JB, Wilson WR, Patterson AV, Ackerley DF. Discovery and evaluation of Escherichia coli nitroreductases that activate the anti-cancer prodrug CB1954. Biochem Pharmacol 2009; 79:678-87. [PMID: 19852945 DOI: 10.1016/j.bcp.2009.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) aims to achieve highly selective tumor-cell killing through the use of tumor-tropic gene delivery vectors coupled with systemic administration of otherwise inert prodrugs. Nitroaromatic prodrugs such as CB1954 hold promise for GDEPT as they are readily reduced to potent DNA alkylating agents by bacterial nitroreductase enzymes (NTRs). Transfection with the nfsB gene from Escherichia coli can increase the sensitivity of tumor cells to CB1954 by greater than 1000-fold. However, poor catalytic efficiency limits the activation of CB1954 by NfsB at clinically relevant doses. A lack of flexible, high-throughput screening technology has hindered efforts to discover superior NTR candidates. Here we demonstrate how the SOS chromotest and complementary screening technologies can be used to evaluate novel enzymes that activate CB1954 and other bioreductive and/or genotoxic prodrugs. We identify the major E. coli NTR, NfsA, as 10-fold more efficient than NfsB in activating CB1954 as purified protein (k(cat)/K(m)) and when over-expressed in an E. coli nfsA(-)/nfsB(-) gene deleted strain. NfsA also confers sensitivity to CB1954 when expressed in HCT-116 human colon carcinoma cells, with similar efficiency to NfsB. In addition, we identify two novel E. coli NTRs, AzoR and NemA, that have not previously been characterized in the context of nitroaromatic prodrug activation.
Collapse
Affiliation(s)
- G A Prosser
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Jarrom D, Jaberipour M, Guise CP, Daff S, White SA, Searle PF, Hyde EI. Steady-state and stopped-flow kinetic studies of three Escherichia coli NfsB mutants with enhanced activity for the prodrug CB1954. Biochemistry 2009; 48:7665-72. [PMID: 19580253 DOI: 10.1021/bi900674m] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme nitroreductase, NfsB, from Escherichia coli has entered clinical trials for cancer gene therapy with the prodrug CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, CB1954 is a poor substrate for the enzyme. Previously we made several NfsB mutants that show better activity with CB1954 in a cell-killing assay in E. coli. Here we compare the kinetic parameters of wild-type NfsB with CB1954 to those of the most active single, double, and triple mutants isolated to date. For wild-type NfsB the global kinetic parameters for both k(cat) and K(m) for CB1954 are about 20-fold higher than previously estimated; however, the measured specificity constant, k(cat)/K(m) is the same. All of the mutants are more active with CB1954 than the wild-type enzyme, the most active mutant showing about 100-fold improved specificity constant with CB1954 over the wild-type protein with little effect on k(cat). This enhancement in specificity constants for the mutants is not seen with the antibiotic nitrofurazone as substrate, leading to reversed nitroaromatic substrate selectivity for the double and triple mutants. However, similar enhancements in specificity constants are found with the quinone menadione. Stopped-flow kinetic studies suggest that the rate-determining step of the reaction is likely to be the release of products. The most active mutant is also selective for the 4-nitro group of CB1954, rather than the 2-nitro group, giving the more cytotoxic reduction product. The double and triple mutants should be much more effective enzymes for use with CB1954 in prodrug-activation gene therapy.
Collapse
Affiliation(s)
- David Jarrom
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Anticancer prodrugs designed to target specifically tumor cells should increase therapeutic effectiveness and decrease systemic side effects in the treatment of cancer. Over the last 20 years, significant advances have been made in the development of anticancer prodrugs through the incorporation of triggers for reductive activation. Reductively activated prodrugs have been designed to target hypoxic tumor tissues, which are known to overexpress several endogenous reductive enzymes. In addition, exogenous reductive enzymes can be delivered to tumor cells through fusion with tumor-specific antibodies or overexpressed in tumor cells through gene delivery approaches. Many anticancer prodrugs have been designed to use both the endogenous and exogenous reductive enzymes for target-specific activation and these prodrugs often contain functional groups such as quinones, nitroaromatics, N-oxides, and metal complexes. Although no new agents have been approved for clinical use, several reductively activated prodrugs are in various stages of clinical trial. This review mainly focuses on the medicinal chemistry aspects of various classes of reductively activated prodrugs including design principles, structure-activity relationships, and mechanisms of activation and release of active drug molecules.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | |
Collapse
|
19
|
Vass SO, Jarrom D, Wilson WR, Hyde EI, Searle PF. E. coli NfsA: an alternative nitroreductase for prodrug activation gene therapy in combination with CB1954. Br J Cancer 2009; 100:1903-11. [PMID: 19455141 PMCID: PMC2690450 DOI: 10.1038/sj.bjc.6605094] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Prodrug activation gene therapy is a developing approach to cancer treatment, whereby prodrug-activating enzymes are expressed in tumour cells. After administration of a non-toxic prodrug, its conversion to cytotoxic metabolites directly kills tumour cells expressing the activating enzyme, whereas the local spread of activated metabolites can kill nearby cells lacking the enzyme (bystander cell killing). One promising combination that has entered clinical trials uses the nitroreductase NfsB from Escherichia coli to activate the prodrug, CB1954, to a potent bifunctional alkylating agent. NfsA, the major E. coli nitroreductase, has greater activity with nitrofuran antibiotics, but it has not been compared in the past with NfsB for the activation of CB1954. We show superior in vitro kinetics of CB1954 activation by NfsA using the NADPH cofactor, and show that the expression of NfsA in bacterial or human cells results in a 3.5- to 8-fold greater sensitivity to CB1954, relative to NfsB. Although NfsB reduces either the 2-NO2 or 4-NO2 positions of CB1954 in an equimolar ratio, we show that NfsA preferentially reduces the 2-NO2 group, which leads to a greater bystander effect with cells expressing NfsA than with NfsB. NfsA is also more effective than NfsB for cell sensitisation to nitrofurans and to a selection of alternative, dinitrobenzamide mustard (DNBM) prodrugs.
Collapse
Affiliation(s)
- S O Vass
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham, UK
| | | | | | | | | |
Collapse
|
20
|
Abstract
NTR (nitroreductase NfsB from Escherichia coli) is a flavoprotein with broad substrate specificity, reducing nitroaromatics and quinones using either NADPH or NADH. One of its substrates is the prodrug CB1954 (5-[aziridin-1-yl]-2,4-dinitrobenzamide), which is converted into a cytotoxic agent; so NTR/CB1954 has potential for use in cancer gene therapy. However, wild-type NTR has poor kinetics and binding with CB1954, and the mechanism for the reduction of CB1954 by NTR is poorly understood. Computational methods have been utilized to study potential underlying reaction mechanisms so as to identify the order of electron and proton transfers that make up the initial reduction step and the sources of the protons. We have used Molecular Dynamics to examine the nature of the active site of the wild-type enzyme and the preferred binding mode of the substrate. A combination of these results has allowed us to unequivocally identify the reaction mechanism for the reduction of CB1954 by NTR.
Collapse
|
21
|
E. coli nitroreductase/CB1954 gene-directed enzyme prodrug therapy: role of arylamine N-acetlytransferase 2. Cancer Gene Ther 2008; 15:758-64. [PMID: 18600257 DOI: 10.1038/cgt.2008.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene-directed enzyme prodrug therapy is a promising approach to the local management of cancer and a number of gene prodrug combinations have entered clinical trials. The antitumor activity of Escherichia coli nitroreductase (NTR) in combination with the prodrug CB1954 relies on the reduction of the nitro groups to reactive N-hydroxylamine intermediates that are toxic in proliferating and nonproliferating cells. We examined whether secondary metabolic activation of the N-hydroxylamines by sulfotransferases or acetyltransferases altered cell responsiveness to the drug. We evaluated the coexpression of NTR with the human cytosolic sulfotransferases SULT1A1, 1A2, 1A3, 1E1 and 2A1, or the human arylamine N-acetyltransferases NAT1 and NAT2 on SKOV3 cell survival. Only NAT2 significantly altered the toxicity of CB1954, decreasing the IC(50) 16-fold from 0.61 to 0.04 microM. These results suggest that one or more of the N-hydroxyl metabolites are a substrate for O-acetylation by NAT2. We also examined the bystander effect of SKOV3 cells expressing NTR or NTR plus NAT2. Addition of the acetyltransferase resulted in a significant decreased bystander effect (P>0.01), possibly due to a lower concentration of reactive metabolites in the culture medium. These results suggest that a combination of bacterial NTR and NAT2 may provide a greater clinical response at therapeutic concentrations of CB1954 provided the reduction in bystander effect is not clinically significant. Moreover, endogenous NAT2, which is localized predominantly in the liver and gut, may be involved in the dose-limiting hepatic toxicity and gastrointestinal side effects seen in patients treated with the higher doses of CB1954.
Collapse
|
22
|
Chandor A, Dijols S, Ramassamy B, Frapart Y, Mansuy D, Stuehr D, Helsby N, Boucher JL. Metabolic activation of the antitumor drug 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by NO synthases. Chem Res Toxicol 2008; 21:836-43. [PMID: 18370414 DOI: 10.1021/tx7004234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nitric oxide synthases (NOSs) are flavohemeproteins that catalyze the oxidation of L-arginine to L-citrulline with formation of the signaling molecule nitric oxide (NO). In addition to their fundamental role in NO biosynthesis, NOSs are also involved in the formation of reactive oxygen and nitrogen species (RONS) and in the interactions with some drugs. 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) is a dinitroaromatic compound tested as an antitumor prodrug that requires reduction to the 2- and 4-hydroxylamines to be cytotoxic. Here, we studied the interaction of neuronal, inducible, and endothelial NOSs with CB1954. Our results showed that the three purified recombinant NOSs selectively reduced the 4-nitro group of CB1954 to the corresponding 4-hydroxylamine with minimal 2-nitroreduction. Little further two-electron reduction of the hydroxylamines to the corresponding 2- and 4-amines was observed. The reduction of CB1954 catalyzed by the neuronal NOS (nNOS) was inhibited by O 2 and a flavin/NADPH binding inhibitor, diphenyliodonium (DPI), but insensitive to the addition of the heme ligands imidazole and carbon monoxide and of l-arginine analogues. This reduction proceeded with intermediate formation of a nitro-anion free radical observed by EPR. Involvement of the reductase domain of nNOS in the reduction of CB1954 was confirmed by the ability of the isolated reductase domain of nNOS to catalyze the reaction and by the stimulating effect of Ca (2+)/calmodulin on the accumulation of 4- and 2-hydroxylamines. The recombinant inducible and endothelial NOS isoforms reduced CB1954 with lower activity but higher selectivity for the cytotoxic 4-hydroxylamine compared with nNOS. Finally, CB1954 did not modify the formation of l-citrulline and RONS catalyzed by nNOS. Our results show that all three NOS isoforms are involved in the nitroreduction of CB1954, with predominant formation of the cytotoxic 4-hydroxylamine derivative. This nitroreduction could be of interest for the selective activation of prodrugs by NOSs overexpressed in tumor cells.
Collapse
Affiliation(s)
- Alexia Chandor
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université R. Descartes, UMR 8601 CNRS, 45 rue des Saints-Pères, 75270 Paris cedex 06, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang MHY, Helsby NA, Goldthorpe MA, Thompson KM, Al-Ali S, Tingle MD. Hepatic nitroreduction, toxicity and toxicokinetics of the anti-tumour prodrug CB 1954 in mouse and rat. Toxicology 2007; 240:70-85. [PMID: 17804142 DOI: 10.1016/j.tox.2007.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 07/19/2007] [Accepted: 07/19/2007] [Indexed: 11/22/2022]
Abstract
5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954), a promising anti-tumour compound, is associated with clinical hepatotoxicity. We have previously demonstrated that human liver preparations are capable of endogenous 2- and 4-nitroreduction of CB 1954 to generate highly potent cytotoxins. The present study initially examined the in vitro metabolism of CB 1954 in S9 preparations of several non-clinical species and strains. The CD-1 nu/nu mouse and Sprague-Dawley rat were subsequently chosen for further assessment of in vivo metabolism and hepatotoxicity of CB 1954, as well as the mechanisms that may be involved. Animals were administered the maximum tolerated dose (MTD). At 562 micromol/kg, the mouse exhibited transaminase elevation and centrilobular hepatocyte injury. Moreover, thiol adducts as well as hepatic glutathione depletion paralleled temporally by maximal nitroreduction were observed. The rat had a much lower MTD of 40 micromol/kg and showed signs of gastro-intestinal disturbances. In contrast to mouse, peri-portal damage and biliary changes were observed in rat without any alterations in plasma biomarkers or hepatic glutathione levels. Immunohistochemical analysis did not reveal any correlation between the location of injury and expression of cytochrome P450 reductase and NAD(P)H quinone oxidoreductase 1, two enzymes implicated in the bioactivation of this drug. In conclusion, the present study showed that following administration of CB 1954 at the respective MTDs, hepatotoxicity was observed in both mouse and rat. However, the degree of sensitivity to the drug and the mechanisms of toxicity involved appear to be widely different between CD-1 nu/nu mice and Sprague-Dawley rats.
Collapse
Affiliation(s)
- Magdalene Huen Yin Tang
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
24
|
Fu Y, Buryanovskyy L, Zhang Z. Crystal structure of quinone reductase 2 in complex with cancer prodrug CB1954. Biochem Biophys Res Commun 2005; 336:332-8. [PMID: 16129418 DOI: 10.1016/j.bbrc.2005.08.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/11/2005] [Indexed: 11/18/2022]
Abstract
CB1954 is a cancer pro-drug that can be activated through reduction by Escherichia coli nitro-reductases and quinone reductases. Human quinone reductase 2 is very efficient in the activation of CB1954, approximately 3000 times more efficient than human QR1 in terms of k(cat)/K(m). We have solved the three-dimensional structure of QR2 in complex with CB1954 to a nominal resolution of 1.5A. The complex structure indicates the essentiality of the two nitro groups: one nitro group forms hydrogen bonds with the side-chain of Asn161 of QR2 to hold the other nitro group in position for the reduction. We further conclude that residue 161, an Asn in QR2 and a His in QR1, is critical in differentiating the substrate specificities of these two enzymes. Mutation of Asn161 to His161 in QR2 resulted in the total loss of the enzymatic activity towards activation of CB1954, whereas the rates of reduction towards menadione are not altered.
Collapse
Affiliation(s)
- Yue Fu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
25
|
Tang MHY, Helsby NA, Wilson WR, Tingle MD. Aerobic 2- and 4-nitroreduction of CB 1954 by human liver. Toxicology 2005; 216:129-39. [PMID: 16129536 DOI: 10.1016/j.tox.2005.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/22/2005] [Accepted: 07/28/2005] [Indexed: 11/24/2022]
Abstract
5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) is an anti-tumour prodrug which recently entered clinical trials in combination with Escherichia coli nitroreductase in a gene-directed enzyme prodrug therapy (GDEPT) context. A Phase I trial of the prodrug, however, revealed dose-limiting hepatotoxicity (transaminitis). The aim of this study was to find out whether the prodrug undergoes reductive metabolism in human liver to cytotoxic metabolites which may contribute to this clinical toxicity. CB 1954 (2.5-250 microM) was incubated with human liver preparations (2-8 mg/mL of S9, cytosolic or microsomal proteins) in the presence of NAD(P)H (1 mM). The NADH- and NADPH-dependent formation of both 2- and 4-nitroreduction products was demonstrated, with NADPH being the preferred cofactor, by HPLC and mass spectrometry. The major metabolite formed in all three human liver preparations was the 4-hydroxylamine, a potent DNA cross-linking cytotoxin. The 2-hydroxylamine and 2-amine metabolites were also detected, both of which have also been demonstrated to be highly cytotoxic. 2-Nitroreduction was far greater in S9 compared with cytosol and was not detected in microsomal preparations. Although 2- and 4-nitroreduction of CB 1954 was inhibited under hyperoxic conditions, substantial metabolism was observed under atmospheric oxygen levels. These studies demonstrate that human liver is capable of aerobic reductive bioactivation of CB 1954 to cytotoxic metabolites in vitro, possibly involving multiple enzymes, which may account for the clinical hepatotoxicity observed.
Collapse
Affiliation(s)
- Magdalene Huen Yin Tang
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
26
|
Abstract
Systemic cytotoxic (antiproliferative) anticancer drugs rely primarily for their therapeutic effect on cytokinetic differences between cancer and normal cells. One approach aimed at improving the selectivity of tumor cell killing by such compounds is the use of less toxic prodrug forms that can be selectively activated in tumor tissue (tumor-activated prodrugs; TAP). There are several mechanisms potentially exploitable for the selective activation of TAP. Some utilize unique aspects of tumor physiology such as selective enzyme expression or hypoxia. Others are based on tumor-specific delivery techniques, including activation of prodrugs by exogenous enzymes delivered to tumor cells via monoclonal antibodies (ADEPT) or generated in tumor cells from DNA constructs containing the corresponding gene (GDEPT). Whichever activating mechanism is used, only a small proportion of the tumor cells are likely to be competent to activate the prodrug. Therefore, TAP need to fully exploit these "activator" cells by being capable of killing activation-incompetent cells as well via a "bystander effect." A wide variety of chemistries have been explored for the selective activation of TAP. Examples are given of the most important-the reduction of quinones, N-oxides, and nitroaromatics by endogenous enzymes or radiation; the cleavage of amides by endogenous peptidases; and hydrolytic metabolism by a variety of exogenous enzymes, including phosphatases, kinases, amidases, and glycosidases.
Collapse
Affiliation(s)
- William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
27
|
Helsby NA, Ferry DM, Patterson AV, Pullen SM, Wilson WR. 2-Amino metabolites are key mediators of CB 1954 and SN 23862 bystander effects in nitroreductase GDEPT. Br J Cancer 2004; 90:1084-92. [PMID: 14997211 PMCID: PMC2409616 DOI: 10.1038/sj.bjc.6601612] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An important feature of gene-directed enzyme-prodrug therapy is that prodrug activation can provide diffusible cytotoxic metabolites capable of generating a local bystander effect in tumours. Activation of the aziridinyl dinitrobenzamide CB 1954 by E. coli nitroreductase (NTR) provides a bystander effect assumed to be due to the potently cytotoxic 4-hydroxylamine metabolite. We show that there are four cytotoxic extracellular metabolites of CB 1954 in cultures of NTR-expressing tumour cells (the 2- and 4-hydroxylamines and their corresponding amines). The 4-hydroxylamine is the most cytotoxic in DNA crosslink repair defective cells, but the 2-amino derivative (CB 10-236) is of similar potency to the 4-hydroxylamine in human tumour cell lines. Importantly, CB 10-236 has much superior diffusion properties to the 4-hydroxylamine in multicellular layers grown from the SiHa human cervical carcinoma cell line. These results suggest that the 2-amine, not the 4-hydroxylamine, is the major bystander metabolite when CB 1954 is activated by NTR in tumours. The corresponding dinitrobenzamide nitrogen mustard SN 23862 is reduced by NTR to form a single extracellular metabolite (also the 2-amine), which has superior cytotoxic potency and diffusion properties to the CB 1954 metabolites. These results are consistent with the reported high bystander efficiency of SN 23862 as an NTR prodrug in multicellular layers and tumour xenografts.
Collapse
Affiliation(s)
- N A Helsby
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - D M Ferry
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - A V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - S M Pullen
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - W R Wilson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand. E-mail:
| |
Collapse
|
28
|
|
29
|
Newell DR, Searle KM, Westwood NB, Burtles SS. Professor Tom Connors and the development of novel cancer therapies by the Phase I/II Clinical Trials Committee of Cancer Research UK. Br J Cancer 2003; 89:437-54. [PMID: 12888809 PMCID: PMC2394365 DOI: 10.1038/sj.bjc.6601106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- D R Newell
- Northern Institute for Cancer Research, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - K M Searle
- Drug Development Office, Cancer Research UK, PO Box 123, 61 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - N B Westwood
- Drug Development Office, Cancer Research UK, PO Box 123, 61 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - S S Burtles
- Drug Development Office, Cancer Research UK, PO Box 123, 61 Lincoln's Inn Fields, London WC2A 3PX, UK
- Drug Development Office, Cancer Research UK, PO Box 123, 61 Lincoln's Inn Fields, London WC2A 3PX, UK. E-mail:
| |
Collapse
|
30
|
Professor Tom Connors and the development of novel cancer therapies by the Phase I/II Clinical Trials Committee of Cancer Research UK. Br J Cancer 2003. [PMID: 12888809 DOI: 10.1038/sj.bjc.6601106+[doi]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
31
|
Newell DR, Searle KM, Westwood NB, Burtles SS. Professor Tom Connors and the development of novel cancer therapies by the Phase I/II Clinical Trials Committee of Cancer Research UK. Br J Cancer 2003. [DOI: 10.1038/sj.bjc.6601106 [doi]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
32
|
Denny WA. Prodrugs for Gene-Directed Enzyme-Prodrug Therapy (Suicide Gene Therapy). J Biomed Biotechnol 2003; 2003:48-70. [PMID: 12686722 PMCID: PMC179761 DOI: 10.1155/s1110724303209098] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 07/19/2002] [Indexed: 01/10/2023] Open
Abstract
This review focuses on the prodrugs used in suicide gene therapy. These prodrugs need to satisfy a number of criteria. They must be efficient and selective substrates for the activating enzyme, and be metabolized to potent cytotoxins preferably able to kill cells at all stages of the cell cycle. Both prodrugs and their activated species should have good distributive properties, so that the resulting bystander effects can maximize the effectiveness of the therapy, since gene transduction efficiencies are generally low. A total of 42 prodrugs explored for use in suicide gene therapy with 12 different enzymes are discussed, particularly in terms of their physiocochemical properties. An important parameter in determining bystander effects generated by passive diffusion is the lipophilicity of the activated form, a property conveniently compared by diffusion coefficients (log P for nonionizable compounds and log D(7) for compounds containing an ionizable centre). Many of the early antimetabolite-based prodrugs provide very polar activated forms that have limited abilities to diffuse across cell membranes, and rely on gap junctions between cells for their bystander effects. Several later studies have shown that more lipophilic, neutral compounds have superior diffusion-based bystander effects. Prodrugs of DNA alkylating agents, that are less cell cycle-specific than antimetabolites and more effective against noncycling tumor cells, appear in general to be more active prodrugs, requiring less prolonged dosing schedules to be effective. It is expected that continued studies to optimize the bystander effects and other properties of prodrugs and the activated species they generate will contribute to improvements in the effectiveness of suicide gene therapy.
Collapse
Affiliation(s)
- William A Denny
- Auckland Cancer Society Research Centre, School of Medical & Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1000, New Zealand
| |
Collapse
|
33
|
Anlezark GM, Vaughan T, Fashola-Stone E, Paul Michael N, Murdoch H, Sims MA, Stubbs S, Wigley S, Minton NP. Bacillus amyloliquefaciens orthologue of Bacillus subtilis ywrO encodes a nitroreductase enzyme which activates the prodrug CB 1954. MICROBIOLOGY (READING, ENGLAND) 2002; 148:297-306. [PMID: 11782522 DOI: 10.1099/00221287-148-1-297] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A nitroreductase with distinct properties that can activate the prodrug 5-aziridinyl-2,4-dinitrobenzamide (CB 1954) was isolated from Bacillus amyloliquefaciens. The encoding gene was identified as a homologue of the ywrO of Bacillus subtilis, and was obtained as a PCR product by reverse genetics, cloned and the entire nucleotide sequence determined. The gene was found to reside between homologues of the B. subtilis alsD and yswB genes; however, the ywrO and yswB genes of B. amyloliquefaciens were not separated by a fourth gene, ywsA. The B. amyloliquefaciens ywrO gene was overexpressed, the recombinant protein purified and its properties were compared with those of two CB 1954-activating enzymes, Escherichia coli B nitroreductase (NTR) and Walker DT-diaphorase (DTD). In common with these enzymes menadione was an electron acceptor (K(m) 3 microM) and activity with this substrate was inhibited by the presence of dicoumarol (K(i) 1.0 microM). In contrast, YwrO showed a marked preference for NADPH as a cofactor (K(m) 40 microM) and therefore could not be classified as a DTD (EC 1.6.99.2). The flavin FMN was an acceptor with high affinity. B. amyloliquefaciens YwrO was shown to be a flavoprotein with a monomeric molecular mass of 21.5 kDa by calculation and SDS-PAGE. The cytotoxic 4-hydroxylamine derivative was the single CB 1954 reduction product, but B. amyloliquefaciens YwrO was inactive with the bischloroethyl analogue of CB 1954, SN 23862. In both of these properties B. amyloliquefaciens YwrO more closely resembles DTD than NTR. Its K(m) for CB 1954 was lower than that of NTR (617 microM compared to 862 microM). Enhanced in vitro cytotoxicity of CB 1954 was demonstrated on incubation of V79 cells with prodrug, NADPH and B. amyloliquefaciens YwrO. The work has led to the identification of a previously unknown nitroreductase, B. amyloliquefaciens YwrO, with distinct properties which will aid the rational selection of appropriate genes for applications in directed enzyme prodrug therapy (DEPT).
Collapse
Affiliation(s)
- Gill M Anlezark
- Centre for Applied Microbiology and Research (CAMR), Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Thomas Vaughan
- Centre for Applied Microbiology and Research (CAMR), Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Elizabeth Fashola-Stone
- Centre for Applied Microbiology and Research (CAMR), Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - N Paul Michael
- Centre for Applied Microbiology and Research (CAMR), Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Heather Murdoch
- Centre for Applied Microbiology and Research (CAMR), Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Meg A Sims
- Centre for Applied Microbiology and Research (CAMR), Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Simon Stubbs
- Centre for Applied Microbiology and Research (CAMR), Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Stuart Wigley
- Centre for Applied Microbiology and Research (CAMR), Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Nigel P Minton
- Centre for Applied Microbiology and Research (CAMR), Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| |
Collapse
|
34
|
Cui W, Gusterson BA, Clark AJ. Inhibition of myc-dependent breast tumor formation in transgenic mice. Breast Cancer Res Treat 2002; 71:9-20. [PMID: 11859878 DOI: 10.1023/a:1013334013065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the most promising approaches for cancer gene therapy is the use of the so-called suicide genes, which encode prodrug-activating enzymes and render transduced cells more sensitive to prodrugs. The enzyme nitroreductase (NTR) converts prodrug CB1954 into a cytotoxic DNA interstrand cross-linking agent. We have established transgenic mice in which the pro-oncogene c-myc and NTR were fused to the internal ribosome entry site and coexpressed in luminal cells of the mammary gland under the control of mouse whey acidic protein (WAP) promoter to evaluate NTR mediated ablation of mammary tumors. More than 78% of transgenic females developed in situ or infiltrating carcinomas after three to four pregnancies. By contrast, if the transgenic female mice were given the prodrug CB1954 during their third lactation, the incidence of tumors decreased to less than 40% (P < 0.05). The total number of carcinomas was even more striking with 117 carcinomas identified in 14 non-ablated transgenics compared with only five in 15 treated animals (p < 0.05, student t test). C-myc induced pleomorphic nuclei and mitotic figures were seen as a field change in over 70% of the untreated transgenics compared to 20% in the treated group. Our results suggest that the enzyme pro-drug system NTR-CB1954 efficiently inhibit myc-dependent tumor formation and malignant progression in the mammary gland.
Collapse
Affiliation(s)
- Wei Cui
- Department of Gene Expression & Development, Roslin Institute, Midlothian, UK
| | | | | |
Collapse
|
35
|
Spooner RA, Maycroft KA, Paterson H, Friedlos F, Springer CJ, Marais R. Appropriate subcellular localisation of prodrug-activating enzymes has important consequences for suicide gene therapy. Int J Cancer 2001; 93:123-30. [PMID: 11391631 DOI: 10.1002/ijc.1288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Escherichia coli B nitroreductase (NR) has been expressed stably in MDA-MB-361 human breast adenocarcinoma cells either as the wild-type protein (wtNR), which is distributed evenly between the cytoplasmic and nuclear compartments, or targeted to the mitochondrion (mtNR). Whereas bacterial NR is active as a dimer, a proportion of wtNR is monomeric. In contrast, mtNR is mostly dimeric, suggesting that it adopts a more stable, native conformation. Despite this, when tested in gene-directed enzyme prodrug therapy cell cytotoxicity studies, cells expressing wtNR or mtNR had similar sensitivity to the prodrug CB1954 and mounted similar bystander killing effects. Furthermore, when short prodrug exposures were given, wtNR was more efficient at killing cells than mtNR. These data demonstrate that the site of enzyme expression and prodrug activation is an important variable that requires consideration in suicide gene therapy approaches.
Collapse
Affiliation(s)
- R A Spooner
- CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
At present, chemotherapy is not very effective against common solid cancers especially once they have metastasised. However, laboratory experiments and studies on dose intensification in humans have indicated that some anti-cancer agents might be curative but only if the dose given was very much higher than that presently obtainable clinically. Prodrugs, activated by enzymes expressed at raised level in tumors, can deliver at least 50-fold the normal dose and can cure animals with tumors normally resistant to chemotherapy. This approach has not yet proved to be practicable clinically because of the rarity of human tumors expressing a high level of an activating enzyme. However, new therapies have been proposed overcome this limitation of prodrug therapy. Enzymes that activate prodrugs can be directed to human tumor xenografts by conjugating them to tumor associated antibodies. After allowing for the conjugate to clear from the blood a prodrug is administered which is normally inert but which is activated by the enzyme delivered to the tumor. This procedure is referred trials are promising and indicate that ADEPT may become an effective treatment for all solid cancers for which tumor associated or tumor specific antibodies are known. Tumors have also been targeted with the genes encoding for a prodrug activating enzymes. This approach has been called gene-directed enzyme prodrug therapy (GDEPT) or VDEPT (virus-directed enzyme prodrug therapy) and has shown good results in animal models. These new therapies may finally realise the potential of prodrugs in cancer chemotherapy.
Collapse
Affiliation(s)
- Richard J Knox
- Imperial College School of Medicine, Department of Medical Oncology, London, England
| | | |
Collapse
|
37
|
Chen S, Wu K, Knox R. Structure-function studies of DT-diaphorase (NQO1) and NRH: quinone oxidoreductase (NQO2). Free Radic Biol Med 2000; 29:276-84. [PMID: 11035256 DOI: 10.1016/s0891-5849(00)00308-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DT-diaphorase, also referred to as NQO1 or NAD(P)H: quinone acceptor oxidoreductase, is a flavoprotein that catalyzes the two-electron reduction of quinones and quinonoid compounds to hydroquinones, using either NADH or NADPH as the electron donor. NRH (dihydronicotinamide riboside): quinone oxidoreductase, also referred to as NQO2, has a high nucleotide sequence identity to DT-diaphorase and is considered to be an isozyme of DT-diaphorase. These enzymes transfer two electrons to a quinone, resulting in the formation of a hydroquinone product without the accumulation of a dissociated semiquinone. Steady and rapid-reaction kinetic experiments have been performed to determine the reaction mechanism of DT-diaphorase. Furthermore, chimeric and site-directed mutagenesis experiments have been performed to determine the molecular basis of the catalytic differences between the two isozymes and to identify the critical amino acid residues that interact with various inhibitors of the enzymes. In addition, functional studies of a natural occurring mutant Pro-187 to Ser (P187S) have been carried out. Results obtained from these investigations are summarized and discussed.
Collapse
Affiliation(s)
- S Chen
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
38
|
Weedon SJ, Green NK, McNeish IA, Gilligan MG, Mautner V, Wrighton CJ, Mountain A, Young LS, Kerr DJ, Searle PF. Sensitisation of human carcinoma cells to the prodrug CB1954 by adenovirus vector-mediated expression of E. coli nitroreductase. Int J Cancer 2000; 86:848-54. [PMID: 10842200 DOI: 10.1002/(sici)1097-0215(20000615)86:6<848::aid-ijc14>3.0.co;2-b] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enzyme nitroreductase from E. coli can reduce the weak, monofunctional alkylating agent 5-(aziridin-1-yl)-2, 4-dinitrobenzamide (CB1954) to a potent cytotoxic species that generates interstrand crosslinks in DNA. Nitroreductase therefore has potential as a "suicide enzyme" for cancer gene therapy, as cells that express nitroreductase become selectively sensitive to the prodrug CB1954. We have incorporated a nitroreductase expression cassette into a replication-defective adenovirus vector (Ad-CMV-ntr), which allowed efficient gene transfer to SK-OV-3 or IGROV-1 ovarian carcinoma cells. Nitroreductase levels increased in line with multiplicity of infection, and this was reflected in increasing sensitisation of the cells to CB1954, reaching an optimum (approx. 2, 000-fold sensitisation) with 25-50 p.f.u. per cell. Similar Ad-CMV-ntr-dependent sensitisation to CB1954 was seen in 3 of 6 low-passage primary ovarian tumour lines. Cells grown at low-serum concentration to inhibit proliferation remained equally susceptible to the Ad-CMV-ntr-dependent cytotoxicity of CB1954, indicating a distinct advantage over retroviral gene delivery and other popular enzyme-prodrug systems for human tumours with a low rate of cell proliferation. Additionally, cisplatin-resistant cells were sensitised towards CB1954 by Ad-CMV-ntr as efficiently as the parental cells, indicating that the system could be effective in patients with cisplatin-resistant tumours. In a murine xenograft model for disseminated peritoneal carcinomatosis with ascites, treatment of nude mice bearing intraperitoneal SUIT2 tumours with Ad-CMV-ntr and CB1954 almost doubled the median survival from 14 to 26 days (p < 0.0001).
Collapse
Affiliation(s)
- S J Weedon
- The University of Birmingham CRC Institute for Cancer Studies, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Denny WA, Wilson WR. The design of selectively-activated anti-cancer prodrugs for use in antibody-directed and gene-directed enzyme-prodrug therapies. J Pharm Pharmacol 1998; 50:387-94. [PMID: 9625483 DOI: 10.1111/j.2042-7158.1998.tb06878.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systemic anti-proliferative agents (cytotoxins) have been the most successful single design concept for anti-cancer drugs. However, they have inherent limitations (they target dividing cells rather than cancer cells) which limit their clinical efficacy, especially toward the more slowly-growing solid tumours. New concepts are required to improve the selectivity of their killing of tumour cells. One possibility is the use of prodrugs which can be activated selectively in tumour tissue. Several potential mechanisms for this are being explored, including tumour hypoxia, low extracellular pH, therapeutic radiation and tumour-specific endogenous or exogenous enzymes. In the last approach the exogenous enzyme can be delivered by attachment to monoclonal antibodies (ADEPT) or as DNA constructs containing the corresponding gene (GDEPT). A limitation of both approaches is that only a small proportion of the tumour cells become activation-competent, but this can be substantially overcome by the design of appropriate prodrugs capable of killing activation-incompetent cells via a bystander effect. We have proposed a modular approach to prodrug design in which a trigger unit determines tumour selectivity and an effector unit achieves the desired level of killing of cells when the trigger is activated. For ADEPT and GDEPT prodrugs the primary requirement of the trigger is efficient and selective activation by the appropriate enzyme; the released effector must be a potent, diffusible cytotoxin which fully exploits the small proportion of cells capable of activating the prodrug. A wide variety of chemistries has been used, but many of the existing effectors do not have all of these properties. We report work on two types of cytotoxin derived from very potent anti-tumour antibiotics (enediynes and amino-seco-cyclopropylindolines) as effectors in prodrugs for ADEPT and GDEPT applications.
Collapse
Affiliation(s)
- W A Denny
- Cancer Society Research Laboratory, Faculty of Medicine and Health Science, The University of Auckland, New Zealand
| | | |
Collapse
|
40
|
Bridgewater JA, Knox RJ, Pitts JD, Collins MK, Springer CJ. The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cell-permeable metabolite. Hum Gene Ther 1997; 8:709-17. [PMID: 9113510 DOI: 10.1089/hum.1997.8.6-709] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The bystander effect is an important part of tumor kill using gene-directed enzyme prodrug therapy (GDEPT). Recently, we have described a novel enzyme prodrug system using bacterial nitroreductase and the prodrug CB1954 (NTR/CB1954). We demonstrate here the presence of a cell-permeable cytotoxic activity in the conditioned growth medium of nitroreductase (NTR)-transduced cells treated with CB1954 and show that its appearance corresponds to the appearance of two metabolites of CB1954 previously identified (Friedlos et al., 1992). The degree of bystander effect and the degree of transferred cytotoxicity correlates with the level of NTR enzyme expression. Two other prodrugs for NTR show little bystander killing and do not produce detectable cell permeable metabolites. The elucidation of the mechanism of the bystander effect may allow the more effective use of NTR/CB1954.
Collapse
Affiliation(s)
- J A Bridgewater
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | | | | | | | | |
Collapse
|
41
|
Anlezark GM, Melton RG, Sherwood RF, Wilson WR, Denny WA, Palmer BD, Knox RJ, Friedlos F, Williams A. Bioactivation of dinitrobenzamide mustards by an E. coli B nitroreductase. Biochem Pharmacol 1995; 50:609-18. [PMID: 7669063 DOI: 10.1016/0006-2952(95)00187-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A nitroreductase isolated and purified from Escherichia coli B has been demonstrated to have potential applications in ADEPT (antibody-directed enzyme prodrug therapy) by its ability in vitro to reduce dinitrobenzamides (e.g. 5-aziridinyl 2,4-dinitrobenzamide, CB 1954 and its bischloroethylamino analogue, SN 23862) to form cytotoxic derivatives. In contrast to CB 1954, in which either nitro group is reducible to the corresponding hydroxylamine, SN 23862 is reduced by the nitroreductase to form only the 2-hydroxylamine. This hydroxylamine can react with S-acetylthiocholine to form a species capable of producing interstrand crosslinks in naked DNA. In terms of ADEPT, SN 23862 has a potential advantage over CB 1954 in that it is not reduced by mammalian DT diaphorases. Therefore, a series of compounds related to SN 23862 has been synthesized, and evaluated as potential prodrugs both by determination of kinetic parameters and by ratio of IC50 against UV4 cells when incubated in the presence of prodrug, with and without the E. coli enzyme and cofactor (NADH). Results from the two studies were generally in good agreement in that compounds showing no increase in cytotoxicity in presence of enzyme and cofactor were not substrates for the enzyme. None of the analogues were activated by DT diaphorase isolated from Walker 256 carcinoma cells. For those compounds which were substrates for the E. coli nitroreductase, there was a positive correlation between kcat and IC50 ratio. Two compounds showed advantageous properties: SN 25261 (with a dihydroxypropylcarboxamide ring substituent) which has a more than 10-fold greater aqueous solubility than SN 23862 whilst retaining similar kinetic characteristics and cytotoxic potency; and SN 25084, where a change in the position of the carboxamide group relative to the mustard resulted in an increased cytotoxicity ratio and kcat compared with SN 23862 (IC50 ratios 214 and 135; kcat values of 75 and 26.4 sec-1, respectively). An analogue (SN 25507) incorporating both these structural changes had an enhanced kcat of 576 sec-1. This study elucidates some of the structural requirements of the enzyme and aids identification of further directions in the search for suitable prodrugs for an ADEPT nitroreductase system.
Collapse
Affiliation(s)
- G M Anlezark
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wilts, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Knox RJ, Friedlos F, Jarman M, Davies LC, Goddard P, Anlezark GM, Melton RG, Sherwood RF. Virtual cofactors for an Escherichia coli nitroreductase enzyme: relevance to reductively activated prodrugs in antibody directed enzyme prodrug therapy (ADEPT). Biochem Pharmacol 1995; 49:1641-7. [PMID: 7786305 DOI: 10.1016/0006-2952(95)00077-d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A nitroreductase enzyme has been isolated from Escherichia coli that has the unusual property of being equally capable of using either NADH or NADPH as a cofactor for the reduction of its substrates which include menadione as well as 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954). This property is shared with the mammalian enzyme, DT diaphorase. The nitroreductase can, like DT diaphorase, also use simple reduced pyridinium compounds as virtual cofactors. The intact NAD(P)H molecule is not required and the simplest quaternary (and therefore reducible) derivative of nicotinamide, 1-methylnicotinamide (reduced), is as effective as NAD(P)H in its ability to act as an electron donor for the nitroreductase. The structure-activity relationship is not identical to that of DT diaphorase and nicotinic acid riboside (reduced) is selective, being active only for the nitroreductase. Irrespective of the virtual cofactor used, the nitroreductase formed the same reduction products of CB 1954 (the 2- and 4-hydroxylamino derivatives in equal proportions). Nicotinic acid riboside (reduced), unlike NADH, was stable to metabolism by serum enzymes and had a plasma half-life of seven minutes in the mouse after an i.v. bolus administration. NADH had an unmeasurably short half-life. Nicotinic acid riboside (reduced) could also be produced in vivo by administration of nicotinic acid 5'-O-benzoyl riboside (reduced). These results demonstrate that the requirement for a cofactor need not be a limitation in the use of reductive enzymes in antibody directed enzyme prodrug therapy (ADEPT). It is proposed that the E. coli nitroreductase would be a suitable enzyme for ADEPT in combination with CB 1954 and a synthetic, enzyme-selective, virtual cofactor such as nicotinic acid riboside (reduced).
Collapse
Affiliation(s)
- R J Knox
- CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, U.K
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Michael NP, Brehm JK, Anlezark GM, Minton NP. Physical characterisation of the Escherichia coli B gene encoding nitroreductase and its over-expression in Escherichia coli K12. FEMS Microbiol Lett 1994; 124:195-202. [PMID: 7813889 DOI: 10.1111/j.1574-6968.1994.tb07284.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Escherichia coli B gene (nfnB) encoding nitroreductase has been cloned in Escherichia coli K-12 and its nucleotide sequence determined. The translated amino acid sequence was found to share substantial identity (88.5%) with the equivalent proteins of Enterobacter cloacae and Salmonella typhimurium. When the structural gene was placed under the transcriptional control of either the trp or lac promoter, recombinant nitroreductase was accumulated to 33% and 25% of the cell's soluble protein, respectively. Substitution of the nfrB ribosome binding site with that of the E. coli lacZ gene reduced production levels of nitroreductase. The sequenced region also contained two incomplete open reading frames of unknown function.
Collapse
Affiliation(s)
- N P Michael
- Department of Molecular Microbiology, Centre for Applied Microbiology and Research, Salisbury, Wiltshire, UK
| | | | | | | |
Collapse
|
44
|
Knox RJ, Friedlos F, Biggs PJ, Flitter WD, Gaskell M, Goddard P, Davies L, Jarman M. Identification, synthesis and properties of 5-(aziridin-1-yl)-2-nitro-4-nitrosobenzamide, a novel DNA crosslinking agent derived from CB1954. Biochem Pharmacol 1993; 46:797-803. [PMID: 8373433 DOI: 10.1016/0006-2952(93)90487-h] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
5-(Aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide, the active form of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954), can react spontaneously with oxygen, and in aqueous solution yields 5-(aziridin-1-yl)-2-nitro-4-nitrosobenzamide and hydrogen peroxide. Mild biological reducing agents such as NAD(P)H, reduced thiols and ascorbic acid rapidly re-reduced the nitroso compound to the hydroxylamine. Both compounds were equally efficient at inducing cytotoxicity and DNA interstrand crosslinking in cells when exposed in phosphate-buffered saline (PBS). Neither agent was capable of inducing cross-links in isolated DNA. When acetyl coenzyme A was included in the incubation, crosslink formation was seen with the hydroxylamine, but not with the nitroso compound. Thus, the nitroso compound is acting as a prodrug for the hydroxylamine, and needs to be reduced to this compound to exert its cytotoxic effects. In vivo anti-tumour tests showed that neither compound was effective in its own right. This may be due to the rapid reduction of the nitroso to the hydroxylamine, and the reaction of the hydroxylamine with serum proteins. The chemical synthesis of the 5-(aziridin-1-yl)-2-nitro-4-nitrosobenzamide, and an improved synthesis of 5-(aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide is described. These results emphasize the potential efficacy of the in situ activation of prodrugs such as CB1954 either by endogenous enzymes such as DT diaphorase, or by antibody directed enzyme prodrug therapy (ADEPT).
Collapse
Affiliation(s)
- R J Knox
- Molecular Pharmacology Unit, Institute of Cancer Research, Sutton, Surrey, U.K
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Denny WA, Wilson WR. Bioreducible mustards: a paradigm for hypoxia-selective prodrugs of diffusible cytotoxins (HPDCs). Cancer Metastasis Rev 1993; 12:135-51. [PMID: 8375017 DOI: 10.1007/bf00689806] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Existing hypoxia-selective cytotoxins (HSCs) are designed to kill only the hypoxic subpopulation in tumours, and to be used in conjunction with other therapies (e.g., radiation). A new class of drugs, hypoxia-activated prodrugs of diffusible cytotoxins (HPDCs) are proposed. These are designed to exploit, rather than merely deal with, tumour hypoxia, by releasing diffusible cytotoxins on bioreduction in hypoxic regions. Such diffusible cytotoxins are required to be much more cytotoxic than the parent prodrug, to be sufficiently stable (half lives from 0.1 to 10 min) to allow them to diffuse up to 200 microns from the hypoxic regions, and to be equally effective against all major tumour cell subpopulations, including non-cycling cells. Nitrogen mustards, which show little cell cycle specificity, which kill cells by a well-understood mechanism (DNA cross-links), and which have stabilities and reactivities able to be predictably controlled by structural variations, are proposed as suitable candidates fur such diffusible cytotoxins. Design parameters for two classes of potential HPDCs are discussed; nitro-deactivated aromatic mustards, and cobalt (III) complex-deactivated aliphatic mustards. Examples of both classes show greater cell-killing activity against intact compared with dissociated multi-cellular spheroids. This suggests they may indeed function as HPDCs, by penetrating to the hypoxic core of the spheroid and there releasing potent cytotoxins which diffuse out to kill surrounding cells at lower oxygen tensions.
Collapse
Affiliation(s)
- W A Denny
- Cancer Research Laboratory, University of Auckland School of Medicine, New Zealand
| | | |
Collapse
|
46
|
Knox RJ, Friedlos F, Boland MP. The bioactivation of CB 1954 and its use as a prodrug in antibody-directed enzyme prodrug therapy (ADEPT). Cancer Metastasis Rev 1993; 12:195-212. [PMID: 8375021 DOI: 10.1007/bf00689810] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Walker cells in vivo or in vitro are exceptionally sensitive to the monofunctional alkylating agent CB 1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide). The basis of the sensitivity is that CB 1954 forms DNA interstrand crosslinks in Walker cells but not in insensitive cells. Crosslink formation is due to the aerobic reduction of CB 1954 to form 5-(aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide by the enzyme DT diaphorase. The 4-hydroxylamine can not crosslink DNA directly but requires further activation by a non-enzymatic reaction with a thioester (such as acetyl coenzyme A). As predicted from their measured DT diaphorase activities, a number of rat hepatoma and hepatocyte cell lines are also sensitive to CB 1954. However, no CB 1954-sensitive tumours or cell lines of human origin have been found. This is because the rate of reduction of CB 1954 by the human form of DT diaphorase is much lower than that of the Walker enzyme (ratio of kcat = 6.4). To overcome this intrinsic resistance of human cells towards CB 1954 a number of strategies have been developed. First, analogues have been developed that are more rapidly reduced by the human form of CB 1954. Second, the cytotoxicity of CB 1954 can be potentiated by reduced pyridinium compounds. Third, a CB 1954 activating enzyme can be targeted to human tumours by conjugating it to an antibody (ADEPT). A nitroreductase enzyme has been isolated from E. coli that can bioactivate CB 1954 much more rapidly than Walker DT diaphorase and is very suitable for ADEPT. Thus CB 1954 may have a role in the therapy of human tumours.
Collapse
Affiliation(s)
- R J Knox
- Molecular Pharmacology Unit, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | |
Collapse
|
47
|
Knox RJ, Friedlos F, Sherwood RF, Melton RG, Anlezark GM. The bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954)--II. A comparison of an Escherichia coli nitroreductase and Walker DT diaphorase. Biochem Pharmacol 1992; 44:2297-301. [PMID: 1472095 DOI: 10.1016/0006-2952(92)90672-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A nitroreductase enzyme that has been isolated from Escherichia coli B is capable of bioactivating CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide] to a cytotoxic agent, a property shared with the mammalian enzyme Walker DT diaphorase [NAD(P)H dehydrogenase (quinone), EC 1.6.99.2] as isolated from Walker cells. In contrast to Walker DT diaphorase, which can only reduce the 4-nitro group of CB1954, the E. coli nitroreductase can reduce either (but not both) nitro groups of CB1954 to the corresponding hydroxylamino species. The two hydroxylamino species are formed in equal proportions and at the same rates. CB1954 is reduced much more rapidly by the E. coli nitroreductase than by Walker DT diaphorase. If the reduction of CB1954 was carried out in the presence of V79 cells (which are insensitive to CB1954) a large cytotoxic effect was evident. This cytotoxicity was only observed under conditions in which the E. coli nitroreductase or Walker DT diaphorase reduced the drug. It is proposed that E. coli B nitroreductase would be a suitable enzyme for antibody-directed enzyme prodrug therapy (ADEPT) in combination with CB1954.
Collapse
Affiliation(s)
- R J Knox
- Molecular Pharmacology Unit, Institute of Cancer Research, Sutton, Surrey, U.K
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- R J Riley
- Department of Medical Oncology, CRC Beatson Laboratories, University of Glasgow, U.K
| | | |
Collapse
|
49
|
Friedlos F, Quinn J, Knox RJ, Roberts JJ. The properties of total adducts and interstrand crosslinks in the DNA of cells treated with CB 1954. Exceptional frequency and stability of the crosslink. Biochem Pharmacol 1992; 43:1249-54. [PMID: 1562278 DOI: 10.1016/0006-2952(92)90499-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CB 1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) becomes, upon bioactivation, a difunctional alkylating agent. It can be up to a 100,000-fold more cytotoxic in cells that are able to bioactivate it than in those that cannot. This increase in cytotoxicity is much greater than would be predicted from the conversion of a monofunctional alkylating agent to a difunctional one. We now show that the interstrand crosslink formed in the DNA of CB 1954-sensitive cells has some unusual properties. In Walker cells, which are able to activate CB 1954, the interstrand crosslink is the major adduct and can constitute up to 70% of the total adducts. These crosslinks are only poorly excised, as are those produced in V79 cells (which are themselves unable to activate CB 1954) by co-culturing them with Walker cells. Also, CB 1954 is approximately 10-fold more reactive toward the DNA of Walker cells than V79 cells. These observations may explain the extent of the increase in cytotoxicity accompanying the bioactivation of CB 1954.
Collapse
Affiliation(s)
- F Friedlos
- Molecular Pharmacology Unit, Institute of Cancer Research, Sutton, Surrey, U.K
| | | | | | | |
Collapse
|