1
|
Franco ME, Schönenberger R, Hollender J, Schirmer K. Organ-specific biotransformation in salmonids: Insight into intrinsic enzyme activity and biotransformation of three micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171769. [PMID: 38499104 DOI: 10.1016/j.scitotenv.2024.171769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Aquatic ecosystems continue to be threatened by chemical pollution. To what extent organisms are able to cope with chemical exposure depends on their ability to display mechanisms of defense across different organs. Among these mechanisms, biotransformation processes represent key physiological responses that facilitate detoxification and reduce the bioaccumulation potential of chemicals. Biotransformation does not only depend on the ability of different organs to display biotransformation enzymes but also on the affinity of chemicals towards these enzymes. In the present study, we explored the ability of different organs and of two freshwater fish to support biotransformation processes through the determination of in vitro phase I and II biotransformation enzyme activity, and their role in supporting intrinsic clearance and the formation of biotransformation products. Three environmentally relevant pollutants were evaluated: the polycyclic aromatic hydrocarbon (PAH) pyrene (as recommended by the OECD 319b test guideline), the fungicide azoxystrobin, and the pharmaceutical propranolol. Comparative studies using S9 sub-cellular fractions derived from the liver, intestine, gills, and brain of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) revealed significant phase I and II enzyme activity in all organs. However, organ- and species-specific differences were found. In brown trout, significant extrahepatic biotransformation was observed for pyrene but not for azoxystrobin and propranolol. In rainbow trout, the brain appeared to biotransform azoxystrobin. In this same species, propranolol appeared to be biotransformed by the intestine and gills. Biotransformation products could be detected only from hepatic biotransformation, and their profiles and formation rates displayed species-specific patterns and occurred at different magnitudes. Altogether, our findings further contribute to the current understanding of organ-specific biotransformation capacity, beyond the expression and activity of enzymes, and its dependence on specific enzyme-chemical interactions to support mechanisms of defense against exposure.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - René Schönenberger
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland; School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Liu X, Follmer D, Zweier JR, Huang X, Hemann C, Liu K, Druhan LJ, Zweier JL. Characterization of the function of cytoglobin as an oxygen-dependent regulator of nitric oxide concentration. Biochemistry 2012; 51:5072-82. [PMID: 22577939 DOI: 10.1021/bi300291h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The endogenous vasodilator nitric oxide (NO) is metabolized in tissues in an O(2)-dependent manner. This regulates NO levels in the vascular wall; however, the underlying molecular basis of this O(2)-dependent NO consumption remains unclear. While cytoglobin (Cygb) was discovered a decade ago, its physiological function remains uncertain. Cygb is expressed in the vascular wall and can consume NO in an O(2)-dependent manner. Therefore, we characterize the process of the O(2)-dependent consumption of NO by Cygb in the presence of the cellular reductants and reducing systems ascorbate (Asc) and cytochrome P(450) reductase (CPR), measure rate constants of Cygb reduction by Asc and CPR, and propose a reaction mechanism and derive a related kinetic model for this O(2)-dependent NO consumption involving Cygb(Fe(3+)) as the main intermediate reduced back to ferrous Cygb by cellular reductants. This kinetic model expresses the relationship between the rate of O(2)-dependent consumption of NO by Cygb and rate constants of the molecular reactions involved. The predicted rate of O(2)-dependent consumption of NO by Cygb is consistent with experimental results supporting the validity of the kinetic model. Simulations based on this kinetic model suggest that the high efficiency of Cygb in regulating the NO consumption rate is due to the rapid reduction of Cygb by cellular reductants, which greatly increases the rate of consumption of NO at higher O(2) concentrations, and binding of NO to Cygb, which reduces the rate of consumption of NO at lower O(2) concentrations. Thus, the coexistence of Cygb with efficient reductants in tissues allows Cygb to function as an O(2)-dependent regulator of NO decay.
Collapse
Affiliation(s)
- Xiaoping Liu
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, 473 West 12th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Pinkerton KE, Peake JL, Espiritu I, Goldsmith M, Witschi H. Quantitative Histology and Cytochrome P-450 Immunocytochemistry of the Lung Parenchyma Following 6 Months of Exposure of Strain A/J Mice to Cigarette Sidestream Smoke. Inhal Toxicol 2008. [DOI: 10.3109/08958379609034271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Sells DM, Brix AE, Nyska A, Jokinen MP, Orzech DP, Walker NJ. Respiratory tract lesions in noninhalation studies. Toxicol Pathol 2007; 35:170-7. [PMID: 17325986 PMCID: PMC3433271 DOI: 10.1080/01926230601059969] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper reviews respiratory tract lesions observed in rodents administered various chemicals by noninhalation routes. Chemicals administered by inhalation caused lesions in the respiratory tract and were well described; however, when chemicals were administered by noninhalation routes the effort to evaluate tissues for lesions may have been less or not considered, especially in the upper respiratory tract, and some lesions may have gone undetected. Lesions described in this review mostly occurred in rodent chronic noninhalation studies conducted by the National Toxicology Program; however, some were noted in studies of shorter duration. The nasal cavity was vulnerable to damage when chemicals were administered by noninhalation routes. Changes included respiratory epithelial hyperplasia, degeneration and necrosis of olfactory epithelium, olfactory epithelial metaplasia, adenoma, adenocarcinoma, squamous cell carcinoma, and neuroblastoma. In the lung, compound-related lesions included alveolar histiocytosis, alveolar epithelial hyperplasia, bronchiolar metaplasia of the alveolar epithelium, squamous metaplasia, alveolar/bronchial adenoma and carcinoma, and squamous tumors. Pathogenesis of these lesions included regurgitation of volatiles, metabolites arriving from the blood stream, and additional metabolism by olfactory epithelium or Clara cells. The presence of respiratory tract lesions in noninhalation studies emphasizes the need for a thorough examination of the respiratory tract including nasal passages, regardless of the route of administration.
Collapse
|
5
|
Day KC, Plopper CG, Fanucchi MV. Age-specific pulmonary cytochrome P-450 3A1 expression in postnatal and adult rats. Am J Physiol Lung Cell Mol Physiol 2006; 291:L75-83. [PMID: 16461430 DOI: 10.1152/ajplung.00356.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major cause of death and illness in children under the age of five, most living in polluted cities, is respiratory disease. Previous studies have shown that neonatal animals are more susceptible to bioactivated pulmonary cytotoxicants than adults, despite lower expression of the pulmonary cytochrome P-450s (CYP450s) thought to be involved in bioactivation. One CYP450 that is well documented in the bioactivation of many drugs and environmental toxicants in adult lung, but whose expression has not been evaluated during postnatal pulmonary development, is CYP450 3A (CYP3A). We compared age-specific expression of CYP3A1 in 7-day-old and adult male Sprague-Dawley rats. Unlike those shown for previously studied pulmonary CYP450s, expression levels for CYP3A1 mRNA in differentiating airway cells of postnatal rats are the same as in fully differentiated airway cells of adults. CYP3A1 protein expression (28%) and enzymatic activity (23%) were lower in postnatal airways compared with adults. Although other CYP450 immunoreactive proteins are primarily expressed in nonciliated cells, immunoreactive CYP3A1 protein was expressed in both ciliated and nonciliated cells in postnatal and adult rat proximal airways. CYP3A1 protein is detected diffusely throughout ciliated and nonciliated cells in 7-day-old rats, whereas it is only detected in the apex of these cells in adult rats. This study demonstrates that the lungs of postnatal rats have detectable levels of CYP3A1 and that CYP3A1 mRNA expression appears not to be age dependent, whereas steady-state CYP3A1 protein levels and enzyme activity show an age-dependent pattern.
Collapse
Affiliation(s)
- Kimberly C Day
- Dept. of Veterinary Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Univ. of California, One Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
6
|
Chang H, Chang LW, Cheng YH, Tsai WT, Tsai MX, Lin P. Preferential induction of CYP1A1 and CYP1B1 in CCSP-positive cells. Toxicol Sci 2005; 89:205-13. [PMID: 16237193 DOI: 10.1093/toxsci/kfj025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Both benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are potent ligands of aryl hydrocarbon receptors (AhR). Although animal studies indicate that both compounds induce pathological changes in the peripheral lung, the specific cell type involved remains unclear. Clara cells, expressing Clara cell specific protein (CCSP) and abundant in cytochrome P450, are nonciliated bronchiolar epithelial cells in the peripheral lung. Here we explore the hypothesis that CCSP-positive Clara cells are highly responsive to AhR ligands and are the primary cell type involved in BaP- and TCDD-induced toxicities. The responsiveness to AhR ligands was evaluated by measuring the respective mRNA and protein levels of cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1) using real-time RT-PCR and immunocytochemistry assays. Two in vitro models were used: primary cultures of human small airway epithelial (SAE) cells and rat lung slice cultures. In the presence of calcium, human SAE cells differentiated into CCSP-positive cells. BaP- and TCDD-induced mRNA and protein levels of CYP1A1 and CYP1B1 levels were significantly elevated in CCSP-positive cell cultures. Similarly, AhR mRNA and protein levels were increased in CCSP-positive cell cultures, as determined by real-time RT-PCR and Western blot analysis. When rat lung slice cultures were treated with BaP or TCDD for 24 h, CYP1A1 and CYP1B1 proteins were strongly induced in Clara cells. These results indicate that, in the peripheral lung of both rats and humans, CCSP-positive cells (Clara cells) may be more sensitive to AhR ligands than other cell types.
Collapse
Affiliation(s)
- Han Chang
- Institute of Medicine, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
7
|
Foy JWD, Schatz RA. Inhibition of rat respiratory-tract cytochrome P-450 activity after acute low-level m-xylene inhalation: role in 1-nitronaphthalene toxicity. Inhal Toxicol 2004; 16:125-32. [PMID: 15204773 DOI: 10.1080/08958370490270927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The xylenes are commonly used industrial solvents that have been shown to inhibit cytochrome P-450 (CYP450) activities in an organ- and isozyme-specific pattern. This study examined the dose-response and durational effects of m-xylene inhalation on cytochrome P-450 activities in the respiratory tract and liver as well as the effects of these CYP450 alterations on 1-nitronaphthalene (1-NN)-induced respiratory or hepatic toxicity. After m-xylene inhalation exposure there was a dose-related inhibition of all nasal mucosa CYPs examined. At 300 ppm, inhibition was sustained up to 2 days after exposure, but on day 5 all CYP activities were increased. There was also dose-related inhibition of lung CYPs 2B1, 2E1, and 4B1. The activities of these CYPs returned to those of control by day 2 but lung CYP 2B1 was increased 5 days following m-xylene exposure. Hepatic CYP 2E1 activity was increased immediately following m-xylene exposure (300 ppm). CYP 2B1 and CYP 1A2 activities were increased through day 2, all activities returning to control values 5 days postexposure. 1-NN treatment caused severe respiratory toxicity that was prevented by prior m-xylene exposure. Lactate dehydrogenase (LDH) and protein were increased in nasal lavage fluid (NLF) but gamma-glutamyl transferase (GGT) was unchanged. m-Xylene coexposure prevented or ameliorated the increases in LDH and protein but increased GGT. 1-NN-induced increases in bronchoalveolar lavage fluid (BALF) LDH and GGT were attenuated by m-xylene. 1-NN caused pronounced histopathological changes in both respiratory and olfactory regions of the nasal mucosa. Lesions in both regions were characterized by acute epithelial necrosis and exfoliation and suppurative exudate in the airways. These changes were prevented by m-xylene coexposure. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were not changed in animals exposed to 1-NN but were increased by m-xylene coexposure. Low-level m-xylene exposure organ-selectively altered CYP450 isozyme activities and subsequent 1-NN toxicity.
Collapse
Affiliation(s)
- Jeffrey W-D Foy
- Toxicology Program, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
8
|
Ma JYC, Ma JKH. The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2002; 20:117-47. [PMID: 12515672 DOI: 10.1081/gnc-120016202] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exposure to diesel exhaust particles (DEP) is an environmental and occupational health concern. This review examines the cellular actions of the organic and the particulate components of DEP in the development of various lung diseases. Both the organic and the particulate components cause oxidant lung injury. The particulate component is known to induce alveolar epithelial damage, alter thiol levels in alveolar macrophages (AM) and lymphocytes, and activate AM in the production of reactive oxygen species (ROS) and pro-inflammatory cytokines. The organic component, on the other hand, is shown to generate intracellular ROS, leading to a variety of cellular responses including apoptosis. There are a number of differences between the biological actions exerted by these two components. The organic component is responsible for DEP induction of cytochrome P450 family 1 enzymes that are critical to the polycyclic aromatic hydrocarbons (PAH) and nitro-PAH metabolism in the lung as well as in the liver. The particulate component, on the other hand, causes a sustained down-regulation of CYP2B1 in the rat lung. The significance of this effect on pulmonary metabolism of xenobiotics and endobiotics remains to be seen, but may prove to be an important factor governing the interplay of the pulmonary metabolic and inflammatory systems. Long-term exposures to various particles including DEP, carbon black (CB), TiO2, and washed DEP devoid of the organic content, have been shown to produce similar tumorigenic responses in rodents. There is a lack of correlation between tumor development and DEP chemical-derived DNA adduct formation. But the organic component has been shown to generate ROS that produce 8-hydroxydeoxyguanosine (8-OHdG) in cell culture. The organic, but not the particulate, component of DEP suppresses the production of pro-inflammatory cytokines by AM and the development of Th1 cell-mediated immunity. The mechanism for this effect is not yet clear, but may involve the induction of heme oxygenase-1 (HO-1), a cellular genetic response to oxidative stress. Both the organic and the particulate components of DEP enhance respiratory allergic sensitization. Part of the DEP effects may be due to a depletion of glutathione in lymphocytes. The organic component, which is shown to induce IL-4 and IL-10 productions, may skew the immunity toward Th2 response, whereas the particulate component may stimulate both the Th1 and Th2 responses. In conclusion, the literature shows that the particulate and organic components of DEP exhibit different biological actions but both involve the induction of cellular oxidative stress. Together, these effects inhibit cell-mediated immunity toward infectious agents, exacerbate respiratory allergy, cause DNA damage, and under long-term exposure, induce the development of lung tumors.
Collapse
Affiliation(s)
- Jane Y C Ma
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | |
Collapse
|
9
|
Rodrigo L, Hernández AF, López-Caballero JJ, Gil F, Pla A. Immunohistochemical evidence for the expression and induction of paraoxonase in rat liver, kidney, lung and brain tissue. Implications for its physiological role. Chem Biol Interact 2001; 137:123-37. [PMID: 11551529 DOI: 10.1016/s0009-2797(01)00225-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Studies on the localization of paraoxonases (PON's) are of interest because of its involvement in both the detoxication of activated organophosphorus pesticides and in the prevention of peroxidative damage to phospholipids and cholesteryl-esters in LDL and HDL particles and cell membranes during the atherogenic process. In the present study, we have investigated the cellular localization of PON1 by immunohistochemistry in different rat tissues. The protein was mainly detected in the endothelial lining of every tissue studied (liver, kidney, lung and brain). Besides, it was found in hepatocytes from the centrolobular region of the liver, in the glomeruli and basal pole of the proximal convoluted tubule of the kidney, in cells from bronchiolar epithelium and type I pneumocytes of the lung, and in leptomeningeal cells, ependymal cells and ventricular side of choroid plexus cells of the brain. However, neurons and glia lacked immunostaining. After 3-methylcholanthrene induction an increase in the intensity of immunostaining was observed in the same areas, as well as an additional staining in midzonal hepatocytes. On the basis of the tissue distribution observed for PON1, it is proposed that this enzyme might have a function related to the inactivation of oxidative stress by-products (either at a cellular level or blood-vessel wall) and other environmental chemicals. At present it has not yet been established whether the paraoxonase detected in the various tissues is truly a product of the PON1 gene or could represent products of the PON2 or PON3 genes.
Collapse
Affiliation(s)
- L Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada Faculty of Medicine, Avda. Madrid, 11, 18071, Granada, Spain
| | | | | | | | | |
Collapse
|
10
|
Dinsdale D, Verschoyle RD. Cell-specific loss of cytochrome P450 2B1 in rat lung following treatment with pneumotoxic and non-pneumotoxic trialkylphosphorothioates. Biochem Pharmacol 2001; 61:493-501. [PMID: 11226384 DOI: 10.1016/s0006-2952(00)00572-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study was designed to test the hypothesis that the reduction in cytochrome P450 (CYP) 2B1 content and activity of rat lung microsomes, following dosing with pneumotoxic trimethylphosphorothioates, results from damage to specific cell types. Of the lung cells exhibiting immunolabelling for CYP2B1, only type I cells showed signs of susceptibility to the pneumotoxins O,O.S-trimethylphosphorothioate and O,S,S-trimethylphosphorodithioate. While most type I cells became necrotic, type II and Clara cells showed no signs of injury, despite their gradual loss of CYP2B1, as detected by immunogold labelling. This loss of labelling was accompanied by a 75% reduction in the immunoreactive CYP2B1 content and an 85% reduction in pentoxyresorufin O-dealkylase activity in lung microsomes. In contrast, the non-pneumotoxic analogue O,O,S-trimethylphosphorodithioate, differing from O,O,S-trimethylphosphorothioate by only the presence of a P = S rather than a P = O moiety, caused an even more rapid fall in pulmonary pentoxyresorufin O-dealkylase activity, but only a slight reduction in the microsomal content of CYP2B1. The recovery of this activity began within 12 hr of dosing. O,O,S-Trimethylphosphorodithioate, which acts as a suicidal inhibitor of pulmonary CYP2B1, did not cause any detectable lung injury or increase in cell division. These results are consistent with the initial reduction in both enzyme content and activity caused by the P = O - containing pneumotoxins resulting, almost entirely, from death of type I cells. Subsequent reductions that occur long after clearance of the toxin may be exacerbated by the onset of mitosis in Clara and type II cells.
Collapse
Affiliation(s)
- D Dinsdale
- MRC Toxicology Unit, PO Box 138, Lancaster Road, LE1 9HN, Leicester, UK.
| | | |
Collapse
|
11
|
Korte F, Kvesitadze G, Ugrekhelidze D, Gordeziani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F. Organic toxicants and plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2000; 47:1-26. [PMID: 10993699 DOI: 10.1006/eesa.2000.1929] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Organic xenobiotics absorbed by roots and leaves of higher plants are translocated by different physiological mechanisms. The following pathways of xenobiotic detoxication have been observed in higher plants: conjugation with such endogenous compounds as peptides, sugars, amino acids, and organic acids; oxidative degradation and consequent oxidation of xenobiotics with the final participation of their carbon atoms in regular cell metabolism. The small parts of xenobiotics are excreted maintaining their original structure and configuration. Enzymes catalyze oxidative degradation of xenobiotics from the initial hydroxylation to their deep oxidation. The wide intracellular distribution and inductive nature of oxidative enzymes lead to the high detoxication ability. With plant aging, transformation of the monooxygenase system into peroxidase takes place. Once in the cells, xenobiotics are incorporated into different cell organelles. All xenobiotics examined are characterized by a negative effect on cell ultrastructure. The penetration of high doses of xenobiotics into plant cells leads to significant deviations from the norm and, in some cases, even to the complete cell destruction and plant death.
Collapse
Affiliation(s)
- F Korte
- Durmishidze Institute of Plant Biochemistry, Academy of Sciences of Georgia, Digomi, Tbilisi, 380059, Georgia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cassel TN, Gustafsson JA, Nord M. CYP2B1 is regulated by C/EBP alpha and C/EBP delta inlung epithelial cells. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:42-7. [PMID: 10683316 DOI: 10.1006/mcbr.2000.0187] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary expression of several cytochrome P450 (CYP) monooxygenases is detected late in gestation. Little is known of the factors involved in this differentiation-dependent expression. C/EBP factors are known regulators of differentiation and differentiation-dependent gene expression in several tissues. In this study we demonstrate the importance of C/EBP alpha and C/EBP delta in pulmonary epithelial CYP2B1 gene expression. A 1.3 kb CYP2B1 promoter fragment which recently has been shown to confer lung tissue- and cell-specific expression of CYP2B1 in transgenic mice was used in transient transfection studies. Both C/EBP alpha and C/EBP delta transactivated the CYP2B1 promoter in the lung epithelial cell lines A549 and NCI-H441. C/EBP alpha in nuclear extracts from isolated rat primary bronchiolar Clara cells was capable of interacting with a C/EBP-binding site in the proximal CYP2B1 promoter. Site-directed mutagenesis studies showed that this proximal C/EBP-binding site is necessary for transactivation of the CYP2B1 gene by C/EBP alpha and C/EBP delta. Thi study shows that C/EBP factors have a role in pulmonary CYP2B1 expression and suggests that these transcription factors may be important for the differentiation-dependent expression of CYP2B1 in the lung.
Collapse
Affiliation(s)
- T N Cassel
- Department of Medical Nutrition, Karolinska Institutet, Huddinge University Hospital, F60 Novum, Huddinge, S-141 86, Sweden
| | | | | |
Collapse
|
13
|
Keeney DS, Waterman MR. Two novel sites of expression of NADPH cytochrome P450 reductase during murine embryogenesis: limb mesenchyme and developing olfactory neuroepithelia. Dev Dyn 1999; 216:511-7. [PMID: 10633870 DOI: 10.1002/(sici)1097-0177(199912)216:4/5<511::aid-dvdy19>3.0.co;2-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While all cells in eukaryotic organisms probably express the gene encoding NADPH cytochrome P450 reductase, we identified two novel sites which have the highest local concentrations of P450 reductase transcripts during murine embryogenesis. One site is in developing limbs, including lateral limb bud mesenchyme and condensing mesenchyme in the footplate which will form precartilage. A second site is in primitive neuroepithelia, including future olfactory epithelia and olfactory lobes of the brain. These high, local concentrations of P450 reductase transcripts revealed by in situ hybridization were transient and most prominent between embryonic (E) days 12.5-15.5. They cannot be explained by the known functions for P450 reductase. The precursor nature of the highest reductase-expressing cells suggests that differentiation-specific mechanisms regulate P450 reductase gene transcription during organogenesis. The data suggest this multifunctional protein might serve an important role in the formation of precartilage models from condensing limb mesenchyme and in the early development of joints that will form at apposed surfaces of these models.
Collapse
Affiliation(s)
- D S Keeney
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | | |
Collapse
|
14
|
Malkinson AM, Dwyer-Nield LD, Rice PL, Dinsdale D. Mouse lung epithelial cell lines--tools for the study of differentiation and the neoplastic phenotype. Toxicology 1997; 123:53-100. [PMID: 9347924 DOI: 10.1016/s0300-483x(97)00108-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several dozen lung epithelial cell lines have been established in culture over the past 20 years from normal lung explants and their spontaneous transformants, and from lung tumors that arose spontaneously or were induced with chemicals, viruses, or oncogenic transgenes. To provide information from which to choose appropriate lines for investigating problems in lung cell biology and pulmonary neoplasia, this review describes the origins of these lines and some of their characteristics. These include growth, morphology, tumorigenicity, ability to metastasize, xenobiotic metabolism, mutational status, signal transducing activities, cytogenetics, ability to form domes, and electric conductance. In addition to collecting this information in a single place for the first time, we describe previously unpublished apoptosis features of some of these lines. An increasing number of investigations are beginning to use these lines and this review contains references into 1997.
Collapse
Affiliation(s)
- A M Malkinson
- Department of Pharmaceutical Sciences, Colorado Cancer Center, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|