1
|
Ko SH, Cho KA, Li X, Ran Q, Liu Z, Chen L. GPX modulation promotes regenerative axonal fusion and functional recovery after injury through PSR-1 condensation. Nat Commun 2025; 16:1079. [PMID: 39870634 PMCID: PMC11772683 DOI: 10.1038/s41467-025-56382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C. elegans in a dose-sensitive manner. Ferroptosis-induced lipid peroxidation enhances injury-triggered phosphatidylserine exposure (PS) to promote axonal fusion through PS receptor (PSR-1) and EFF-1 fusogen. Axon injury induces PSR-1 condensate formation and disruption of PSR-1 condensation inhibits axonal fusion. Extending these findings to mammalian nerve repair, we show that loss of Glutathione peroxidase 4 (GPX4), a crucial suppressor of ferroptosis, promotes functional recovery after sciatic nerve injury. Applying ferroptosis inducers to mouse sciatic nerves retains nerve innervation and significantly enhances functional restoration after nerve transection and resuture without affecting axon regeneration. Our study reveals an evolutionarily conserved function of lipid peroxidation in promoting axonal fusion, providing insights for developing therapeutic strategies for nerve injury.
Collapse
Affiliation(s)
- Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Kyung-Ah Cho
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xin Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Qitao Ran
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
3
|
Cadiz Diaz A, Schmidt NA, Yamazaki M, Hsieh CJ, Lisse TS, Rieger S. Coordinated NADPH oxidase/hydrogen peroxide functions regulate cutaneous sensory axon de- and regeneration. Proc Natl Acad Sci U S A 2022; 119:e2115009119. [PMID: 35858442 PMCID: PMC9340058 DOI: 10.1073/pnas.2115009119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Tissue wounding induces cutaneous sensory axon regeneration via hydrogen peroxide (H2O2) that is produced by the epithelial NADPH oxidase, Duox1. Sciatic nerve injury instead induces axon regeneration through neuronal uptake of the NADPH oxidase, Nox2, from macrophages. We therefore reasoned that the tissue environment in which axons are damaged stimulates distinct regenerative mechanisms. Here, we show that cutaneous axon regeneration induced by tissue wounding depends on both neuronal and keratinocyte-specific mechanisms involving H2O2 signaling. Genetic depletion of H2O2 in sensory neurons abolishes axon regeneration, whereas keratinocyte-specific H2O2 depletion promotes axonal repulsion, a phenotype mirrored in duox1 mutants. Intriguingly, cyba mutants, deficient in the essential Nox subunit, p22Phox, retain limited axon regenerative capacity but display delayed Wallerian degeneration and axonal fusion, observed so far only in invertebrates. We further show that keratinocyte-specific oxidation of the epidermal growth factor receptor (EGFR) at a conserved cysteine thiol (C797) serves as an attractive cue for regenerating axons, leading to EGFR-dependent localized epidermal matrix remodeling via the matrix-metalloproteinase, MMP-13. Therefore, wound-induced cutaneous axon de- and regeneration depend on the coordinated functions of NADPH oxidases mediating distinct processes following injury.
Collapse
Affiliation(s)
| | | | - Mamiko Yamazaki
- Department of Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04672
| | - Chia-Jung Hsieh
- Department of Biology, University of Miami, Coral Gables, FL 33146
| | - Thomas S. Lisse
- Department of Biology, University of Miami, Coral Gables, FL 33146
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
4
|
Ho XY, Coakley S, Amor R, Anggono V, Hilliard MA. The metalloprotease ADM-4/ADAM17 promotes axonal repair. SCIENCE ADVANCES 2022; 8:eabm2882. [PMID: 35294233 PMCID: PMC8926332 DOI: 10.1126/sciadv.abm2882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/25/2022] [Indexed: 05/28/2023]
Abstract
Axonal fusion is an efficient means of repair following axonal transection, whereby the regenerating axon fuses with its own separated axonal fragment to restore neuronal function. Despite being described over 50 years ago, its molecular mechanisms remain poorly understood. Here, we demonstrate that the Caenorhabditis elegans metalloprotease ADM-4, an ortholog of human ADAM17, is essential for axonal fusion. We reveal that animals lacking ADM-4 cannot repair their axons by fusion, and that ADM-4 has a cell-autonomous function within injured neurons, localizing at the tip of regrowing axon and fusion sites. We demonstrate that ADM-4 overexpression enhances fusion to levels higher than wild type, and that the metalloprotease and phosphatidylserine-binding domains are essential for its function. Last, we show that ADM-4 interacts with and stabilizes the fusogen EFF-1 to allow membranes to merge. Our results uncover a key role for ADM-4 in axonal fusion, exposing a molecular target for axonal repair.
Collapse
Affiliation(s)
- Xue Yan Ho
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sean Coakley
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rumelo Amor
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A. Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Juanez K, Ghose P. Repurposing the Killing Machine: Non-canonical Roles of the Cell Death Apparatus in Caenorhabditis elegans Neurons. Front Cell Dev Biol 2022; 10:825124. [PMID: 35237604 PMCID: PMC8882910 DOI: 10.3389/fcell.2022.825124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Here we highlight the increasingly divergent functions of the Caenorhabditis elegans cell elimination genes in the nervous system, beyond their well-documented roles in cell dismantling and removal. We describe relevant background on the C. elegans nervous system together with the apoptotic cell death and engulfment pathways, highlighting pioneering work in C. elegans. We discuss in detail the unexpected, atypical roles of cell elimination genes in various aspects of neuronal development, response and function. This includes the regulation of cell division, pruning, axon regeneration, and behavioral outputs. We share our outlook on expanding our thinking as to what cell elimination genes can do and noting their versatility. We speculate on the existence of novel genes downstream and upstream of the canonical cell death pathways relevant to neuronal biology. We also propose future directions emphasizing the exploration of the roles of cell death genes in pruning and guidance during embryonic development.
Collapse
|
6
|
Disruption of RAB-5 Increases EFF-1 Fusogen Availability at the Cell Surface and Promotes the Regenerative Axonal Fusion Capacity of the Neuron. J Neurosci 2019; 39:2823-2836. [PMID: 30737314 DOI: 10.1523/jneurosci.1952-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022] Open
Abstract
Following a transection injury to the axon, neurons from a number of species have the ability to undergo spontaneous repair via fusion of the two separated axonal fragments. In the nematode Caenorhabditis elegans, this highly efficient regenerative axonal fusion is mediated by epithelial fusion failure-1 (EFF-1), a fusogenic protein that functions at the membrane to merge the two axonal fragments. Identifying modulators of axonal fusion and EFF-1 is an important step toward a better understanding of this repair process. Here, we present evidence that the small GTPase RAB-5 acts to inhibit axonal fusion, a function achieved via endocytosis of EFF-1 within the injured neuron. Therefore, we find that perturbing RAB-5 activity is sufficient to restore axonal fusion in mutant animals with decreased axonal fusion capacity. This is accompanied by enhanced membranous localization of EFF-1 and the production of extracellular EFF-1-containing vesicles. These findings identify RAB-5 as a novel regulator of axonal fusion in C. elegans hermaphrodites and the first regulator of EFF-1 in neurons.SIGNIFICANCE STATEMENT Peripheral and central nerve injuries cause life-long disabilities due to the fact that repair rarely leads to reinnervation of the target tissue. In the nematode Caenorhabditis elegans, axonal regeneration can proceed through axonal fusion, whereby a regrowing axon reconnects and fuses with its own separated distal fragment, restoring the original axonal tract. We have characterized axonal fusion and established that the fusogen epithelial fusion failure-1 (EFF-1) is a key element for fusing the two separated axonal fragments back together. Here, we show that the small GTPase RAB-5 is a key cell-intrinsic regulator of the fusogen EFF-1 and can in turn regulate axonal fusion. Our findings expand the possibility for this process to be controlled and exploited to facilitate axonal repair in medical applications.
Collapse
|
7
|
Neumann B, Linton C, Giordano-Santini R, Hilliard MA. Axonal fusion: An alternative and efficient mechanism of nerve repair. Prog Neurobiol 2018; 173:88-101. [PMID: 30500382 DOI: 10.1016/j.pneurobio.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Injuries to the nervous system can cause lifelong morbidity due to the disconnect that occurs between nerve cells and their cellular targets. Re-establishing these lost connections is the ultimate goal of endogenous regenerative mechanisms, as well as those induced by exogenous manipulations in a laboratory or clinical setting. Reconnection between severed neuronal fibers occurs spontaneously in some invertebrate species and can be induced in mammalian systems. This process, known as axonal fusion, represents a highly efficient means of repair after injury. Recent progress has greatly enhanced our understanding of the molecular control of axonal fusion, demonstrating that the machinery required for the engulfment of apoptotic cells is repurposed to mediate the reconnection between severed axon fragments, which are subsequently merged by fusogen proteins. Here, we review our current understanding of naturally occurring axonal fusion events, as well as those being ectopically produced with the aim of achieving better clinical outcomes.
Collapse
Affiliation(s)
- Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia.
| | - Casey Linton
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
8
|
Basu A, Dey S, Puri D, Das Saha N, Sabharwal V, Thyagarajan P, Srivastava P, Koushika SP, Ghosh-Roy A. let-7 miRNA controls CED-7 homotypic adhesion and EFF-1-mediated axonal self-fusion to restore touch sensation following injury. Proc Natl Acad Sci U S A 2017; 114:E10206-E10215. [PMID: 29109254 PMCID: PMC5703274 DOI: 10.1073/pnas.1704372114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal injury often leads to devastating consequences such as loss of senses or locomotion. Restoration of function after injury relies on whether the injured axons can find their target cells. Although fusion between injured proximal axon and distal fragment has been observed in many organisms, its functional significance is not clear. Here, using Caenorhabditis elegans mechanosensory neurons, we address this question. Using two femtosecond lasers simultaneously, we could scan and sever posterior lateral microtubule neurons [posterior lateral microtubules (PLMs)] on both sides of the worm. We showed that axotomy of both PLMs leads to a dramatic loss of posterior touch sensation. During the regenerative phase, only axons that fuse to their distal counterparts contribute to functional recovery. Loss of let-7 miRNA promotes functional restoration in both larval and adult stages. In the L4 stage, loss of let-7 increases fusion events by increasing the mRNA level of one of the cell-recognition molecules, CED-7. The ability to establish cytoplasmic continuity between the proximal and distal ends declines with age. Loss of let-7 overcomes this barrier by promoting axonal transport and enrichment of the EFF-1 fusogen at the growing tip of cut processes. Our data reveal the functional property of a regenerating neuron.
Collapse
Affiliation(s)
- Atrayee Basu
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Shirshendu Dey
- Bruker India Scientific Private Ltd, New Delhi 110019, India
| | - Dharmendra Puri
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Nilanjana Das Saha
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Vidur Sabharwal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | - Pankajam Thyagarajan
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Prerna Srivastava
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | | | - Anindya Ghosh-Roy
- National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India;
- Wellcome Trust-Department of Biotechnology India Alliance, Banjara Hills, Hyderabad, Telangana 500034, India
| |
Collapse
|
9
|
Phosphatidylserine save-me signals drive functional recovery of severed axons in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:E10196-E10205. [PMID: 29109263 PMCID: PMC5703272 DOI: 10.1073/pnas.1703807114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nervous system injury can cause lifelong disability, because repair rarely leads to reconnection with the target tissue. In the nematode Caenorhabditis elegans and in several other species, regeneration can proceed through a mechanism of axonal fusion, whereby regrowing axons reconnect and fuse with their own separated fragments, rapidly and efficiently restoring the original axonal tract. We have found that the process of axonal fusion restores full function to damaged neurons. In addition, we show that injury-induced changes to the axonal membrane that result in exposure of lipid “save-me” signals mediate the level of axonal fusion. Thus, our results establish axonal fusion as a complete regenerative mechanism that can be modulated by changing the level of save-me signals exposed after injury. Functional regeneration after axonal injury requires transected axons to regrow and reestablish connection with their original target tissue. The spontaneous regenerative mechanism known as axonal fusion provides a highly efficient means of achieving targeted reconnection, as a regrowing axon is able to recognize and fuse with its own detached axon segment, thereby rapidly reestablishing the original axonal tract. Here, we use behavioral assays and fluorescent reporters to show that axonal fusion enables full recovery of function after axotomy of Caenorhabditis elegans mechanosensory neurons. Furthermore, we reveal that the phospholipid phosphatidylserine, which becomes exposed on the damaged axon to function as a “save-me” signal, defines the level of axonal fusion. We also show that successful axonal fusion correlates with the regrowth potential and branching of the proximal fragment and with the retraction length and degeneration of the separated segment. Finally, we identify discrete axonal domains that vary in their propensity to regrow through fusion and show that the level of axonal fusion can be genetically modulated. Taken together, our results reveal that axonal fusion restores full function to injured neurons, is dependent on exposure of phospholipid signals, and is achieved through the balance between regenerative potential and level of degeneration.
Collapse
|
10
|
Soulavie F, Sundaram MV. Auto-fusion and the shaping of neurons and tubes. Semin Cell Dev Biol 2016; 60:136-145. [PMID: 27436685 DOI: 10.1016/j.semcdb.2016.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
Abstract
Cells adopt specific shapes that are necessary for specific functions. For example, some neurons extend elaborate arborized dendrites that can contact multiple targets. Epithelial and endothelial cells can form tiny seamless unicellular tubes with an intracellular lumen. Recent advances showed that cells can auto-fuse to acquire those specific shapes. During auto-fusion, a cell merges two parts of its own plasma membrane. In contrast to cell-cell fusion or macropinocytic fission, which result in the merging or formation of two separate membrane bound compartments, auto-fusion preserves one compartment, but changes its shape. The discovery of auto-fusion in C. elegans was enabled by identification of specific protein fusogens, EFF-1 and AFF-1, that mediate cell-cell fusion. Phenotypic characterization of eff-1 and aff-1 mutants revealed that fusogen-mediated fusion of two parts of the same cell can be used to sculpt dendritic arbors, reconnect two parts of an axon after injury, or form a hollow unicellular tube. Similar auto-fusion events recently were detected in vertebrate cells, suggesting that auto-fusion could be a widely used mechanism for shaping neurons and tubes.
Collapse
Affiliation(s)
- Fabien Soulavie
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104,United States
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104,United States.
| |
Collapse
|
11
|
Cell-cell fusion in the nervous system: Alternative mechanisms of development, injury, and repair. Semin Cell Dev Biol 2016; 60:146-154. [PMID: 27375226 DOI: 10.1016/j.semcdb.2016.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Over a century ago, the seminal work of Ramón y Cajal revealed that the nervous system is made of individual units, the neurons, which are related to each other by contiguity rather than continuity. This view overturned the idea that the nervous system was a reticulum of fibers, a rete diffusa nervosa, as proposed and defined by Camillo Golgi. Although the neuron theory has been widely confirmed in every model system studied and constitutes the basis of modern neuroscience, evidence accumulated over the years suggests that neurons, similar to other types of cells, have the potential to fuse their membranes and undergo cell-cell fusion under certain conditions. This concept adds a substantial layer to our view of the nervous system and how it functions. Here, we bring together past and more recent discoveries on multiple aspects of neuronal fusion, discussing how this cellular event is generated, and what consequences it has for our understanding of nervous system development, disease, injury, and repair.
Collapse
|
12
|
EFF-1-mediated regenerative axonal fusion requires components of the apoptotic pathway. Nature 2015; 517:219-22. [DOI: 10.1038/nature14102] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 11/19/2014] [Indexed: 02/03/2023]
|
13
|
Chiu H, Alqadah A, Chuang CF, Chang C. C. elegans as a genetic model to identify novel cellular and molecular mechanisms underlying nervous system regeneration. Cell Adh Migr 2012; 5:387-94. [PMID: 21975547 DOI: 10.4161/cam.5.5.17985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Research into conditions that improve axon regeneration has the potential to open a new door for treatment of brain injury caused by stroke and neurodegenerative diseases of aging, such as Alzheimer, by harnessing intrinsic neuronal ability to reorganize itself. Elucidating the molecular mechanisms of axon regeneration should shed light on how this process becomes restricted in the postnatal stage and in CNS and therefore could provide therapeutic targets for developing strategy to improve axon regeneration in adult CNS. In this review, we first discuss the general view about nerve regeneration and the advantages of using C. elegans as a model system to study axon regeneration. We then compare the conserved regeneration patterns and molecular mechanisms between C. elegans and vertebrates. Lastly, we discuss the power of femtosecond laser technology and its application in axon regeneration research.
Collapse
Affiliation(s)
- Hui Chiu
- Division of Developmental Biology; Cincinnati Children's Hospital Research Foundation; Cincinnati, OH, USA
| | | | | | | |
Collapse
|
14
|
Neumann B, Nguyen KCQ, Hall DH, Ben-Yakar A, Hilliard MA. Axonal regeneration proceeds through specific axonal fusion in transected C. elegans neurons. Dev Dyn 2011; 240:1365-72. [PMID: 21416556 DOI: 10.1002/dvdy.22606] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
Functional neuronal recovery following injury arises when severed axons reconnect with their targets. In Caenorhabditis elegans following laser-induced axotomy, the axon still attached to the cell body is able to regrow and reconnect with its separated distal fragment. Here we show that reconnection of separated axon fragments during regeneration of C. elegans mechanosensory neurons occurs through a mechanism of axonal fusion, which prevents Wallerian degeneration of the distal fragment. Through electron microscopy analysis and imaging with the photoconvertible fluorescent protein Kaede, we show that the fusion process re-establishes membrane continuity and repristinates anterograde and retrograde cytoplasmic diffusion. We also provide evidence that axonal fusion occurs with a remarkable level of accuracy, with the proximal re-growing axon recognizing its own separated distal fragment. Thus, efficient axonal regeneration can occur by selective reconnection and fusion of separated axonal fragments beyond an injury site, with restoration of the damaged neuronal tract.
Collapse
Affiliation(s)
- Brent Neumann
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
15
|
Pearce J, Govind CK. Remodeling of the proximal segment of crayfish motor nerves following transection. J Comp Neurol 2002; 450:61-72. [PMID: 12124767 DOI: 10.1002/cne.10299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transected crustacean motor axons consist of a soma-endowed proximal segment that regenerates and a soma-less distal segment that survives for up to a year. We report on the anatomical remodeling of the proximal segment of phasic motor nerves innervating the deep flexor muscles in the abdomen of adult crayfish following transection. The intact nerve with 10 phasic axons and its two branches with subsets of 6 and 7 of these 10 axons undergo several remodeling changes. First, the transected nerve displays many more and smaller axon profiles than the 6 and 7 axons of the intact nerve, approximately 100 and 300 profiles in the two branches of a preparation transected 8 weeks previously. Serial images of the transected nerve denote that the proliferation of profiles is due to several orders of axon sprouting primary, secondary, and tertiary branches. The greater proliferation of axon sprouts, their smaller size, and the absence of intervening glia in the one nerve branch compared with the other branch denote that sprouting is more advanced in this branch. Second, the axon sprouts are regionally differentiated; thus, although in most regions the sprouts are basically axon-like, with a cytoskeleton of microtubules and peripheral mitochondria, in some regions they appear nerve terminal-like and are characterized by numerous clear synaptic vesicles, a few dense-core vesicles, and dispersed mitochondria. Both regions possess active zone dense bars with clustered synaptic vesicles found opposite other sprouts, glia, hemocytes, and connective tissue, but because the opposing membranes are not differentiated into a synaptic contact, the active zones are extrasynaptic. Third, some of the transected axons display a glial cell nucleus denoting assimilation of an adaxonal glial cell by the transected axons. Fourth, within the nerve trunk are a few myocytes and muscle fibers. These most likely originate from adjoining and intimately connected hemocytes, because such transformation occurs during muscle repair. In a crustacean nerve, however, where muscle is clearly misplaced, its presence implies an instructive role for motor nerves in muscle formation.
Collapse
Affiliation(s)
- Joanne Pearce
- Life Sciences Division, University of Toronto at Scarborough, Scarborough, M1C 1A4 Ontario, Canada
| | | |
Collapse
|
16
|
Larimer JL. The interneurons of the abdominal positioning system of the crayfish. How these neurons were established and their use as identified cells and command elements. BRAIN, BEHAVIOR AND EVOLUTION 2000; 55:241-7. [PMID: 10971010 DOI: 10.1159/000006658] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arthropods with segmented abdomens show similar abdominal positioning behaviors. It has been possible to gain some understanding of the neural basis of these behaviors in lobsters and crayfish using standard intracellular and dye-filling techniques. Typically crayfish and lobsters have six abdominal segments each controlled by a set of flexor and extensor tonic muscles. Each segment has a dozen tonic motor neurons controlled in turn by a large number of interneurons. A similar set of phasic muscles, motor neurons and interneurons control a fast system. The fast components underlie such behaviors as escape and swimming. Lucifier-filled microelectrodes were used to stimulate, record and dye-fill the motor neurons and interneurons of the tonic systems. It was soon apparent that all of these neurons are identifiable. These data allowed us to determine how many interneurons served in a circuit generating a behavior, while the use of pairs of electrodes permitted the study of synaptic interactions between interneurons. Interneurons involved in abdominal positioning produced either flexion (flexion producing interneurons or FPI), extension (EPI) or inhibition (I). Significantly, FPIs tended to synaptically excite other FPIs and inhibit EPIs. In turn EPIs excited other EPIs and inhibited FPIs. As a result, impaling and stimulating an FPI, for example, tended to recruit others and their combined activity evoked a natural-looking behavior. The inhibition between FPI and EPI and vice versa tended to account for the reciprocity seen between the two behaviors in all experiments. Finally the synaptic connections between EPI-EPI on FPI-FPI were found to be essentially invariable. Thus repeated stimulation of an FPI or the stimulation of this same FPI in another preparation, at another time, gave essentially the same overall behavior such that the stimulation of one FPI or EPI could evoke a wide spread output resembling a normal behavior.
Collapse
Affiliation(s)
- J L Larimer
- Section of Neurobiology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Benbassat D, Spira ME. The survival of transected axonal segments of cultured Aplysia neurons is prolonged by contact with intact nerve cells. Eur J Neurosci 1994; 6:1605-14. [PMID: 7850024 DOI: 10.1111/j.1460-9568.1994.tb00551.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Axonal segments transected from their cell body in vivo commonly undergo degeneration within 3-4 days (Wallerian degeneration). In lower vertebrates and invertebrates, however, some transected axonal segments survive for long periods ranging between 30 and 200 days. To circumvent the technical complications of studying the mechanisms underlying long-term survival of transected axons in vivo, we developed an in vitro system. We found previously that isolated axonal segments of cultured Aplysia neurons preserved their morphological integrity for an average duration of 7.6 days (range 2-14 days) and maintain their passive and excitable membrane properties. This survival occurred in the absence of de novo protein synthesis. In the present study we examined the influence of homologous neurons on the survival of transected axonal segments. We found that the average survival time of transected axons was doubled when co-cultured in physical contact with intact homologous neurons (average 15.3 days, range 2-27 days). During this period, the transected axons extended neurites, maintained normal passive and excitable membrane properties, formed electrotonic junctions with the intact neurons and maintained normal free intracellular Ca2+ levels. Consistent with these observations, electron micrographs of the transected axon revealed that the cytoskeletal elements of the axon appeared normal even 20 days after transection. In contrast, the mitochondria and smooth endoplasmic reticulum appeared damaged. As the prolonged survival was conditional on physical contact between the transected axon and the surrounding intact neurons, we suggest that the prolongation of survival time is promoted by the direct transfer of material from the intact neurons to the transected axon. However, co-culture of transected axons with homologous neurons did not fully mimic in vivo conditions, in which transected axons can survive for several months.
Collapse
Affiliation(s)
- D Benbassat
- Department of Neurobiology, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
18
|
Hall SM. Observations on the progress of Wallerian degeneration in transected peripheral nerves of C57BL/Wld mice in the presence of recruited macrophages. JOURNAL OF NEUROCYTOLOGY 1993; 22:480-90. [PMID: 8345367 DOI: 10.1007/bf01181567] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The first part of this study is a description of the effect of the intraneural injection of lysophosphatidyl choline into the sciatic nerves of C57BL/Wld mice. This mouse is unusual because its peripheral nerve fibres degenerate very slowly after transection, and few myelomonocytic cells are recruited into the endoneurium after traumatic injury. However, intraneural injection of lysophosphatidyl choline produced a typical demyelinating lesion in which recruited macrophages were active in removal of myelin. In the second part of the study, nerves were transected either before, at the same time as, or some days after, the intraneural injection of lysophosphatidyl choline into the distal stump; the changes within the endoneurium were compared with those seen in distal stumps which had not been injected with lysophosphatidyl choline. Immunohistochemical and ultrastructural examination during the period 1-4 weeks after transection showed that degeneration occurred in the portion of each nerve which had been injected with LPC (and which therefore contained exogenous macrophages) but failed to occur in the portion of nerve which was not penetrated by the injected bolus of lysophosphatidyl choline. It is suggested that the unusual property of sealing off of the tips of the transected axons within the distal stumps may be a significant factor in maintaining 'normal' Schwann cell-axon relationships along transected axons, even though the axons are separated from their cell bodies. Lysophosphatidyl choline destabilises the Schwann cell-axon relationship by initiating myelin breakdown within the Schwann cell. It is suggested that while the Schwann cells remain closely associated with the axons in the distal stumps, they do not behave as denervated cells and consequently may be incapable of signalling their damaged status.
Collapse
Affiliation(s)
- S M Hall
- Division of Anatomy and Cell Biology, UMDS, London
| |
Collapse
|
19
|
Lyckman AW, Bittner GD. Axonal conduction and electrical coupling in regenerating earthworm giant axons. Exp Neurol 1992; 117:299-306. [PMID: 1397166 DOI: 10.1016/0014-4886(92)90139-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Severed halves of medial giant axons (MGAs) and lateral giant axons (LGAs) in earthworms survive and are functionally reconnected as early as the first postoperative week. During the first 150 postoperative days, there is an increase in conduction velocity of action potentials and strength of electrotonic coupling between the severed axonal stumps across the lesion site. Electrophysiological analyses suggest that this functional reconnection occurs by transmission of action potentials through the lesion site by active propagation along neurites which make electrotonic connections rather than chemical synapses. The regenerated connections restore the original connectivity pattern for conduction of action potentials or spread of electrotonic potentials; i.e., MGA stumps reconnect with MGA stumps, and LGA stumps with LGA stumps. These and other data suggest that the mechanisms responsible for establishing appropriate functional reconnection of severed earthworm giant axons requires cell-specific matching of axons and neurites, rather than a competition between appropriate and inappropriate functional connections.
Collapse
Affiliation(s)
- A W Lyckman
- Department of Zoology, University of Texas, Austin 78712
| | | |
Collapse
|
20
|
Lyckman AW, Heidelbaugh SM, Bittner GD. Analysis of neuritic outgrowth from severed giant axons in Lumbricus terrestris. J Comp Neurol 1992; 318:426-38. [PMID: 1578010 DOI: 10.1002/cne.903180407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study analyzes the detailed morphometric pattern at various postoperative times of neuritic outgrowths from the proximal and distal stumps of two uniquely identifiable axons. Morphological patterns of neuritic outgrowths from stumps of severed axons were compared for medial and lateral giant axons in the central nervous system of the earthworm Lumbricus terrestris. Outgrowths from proximal and distal stumps were labeled by injection of fluorescent dye into axonal stumps and assessed according to morphometric parameters. Outgrowths from axonal stumps of severed giant axons were statistically indistinguishable for most morphometric measures of neuritic quantity, shape, direction, and location. There were two exceptions to this general rule: 1) proximal stumps of medial giant axons produced significantly more neurites than distal stumps of medial giant axons, and 2) proximal stumps of lateral giant axons produced significantly longer neurites than proximal stumps of medial giant axons. No measure of neuritic outgrowth showed a significant change from the second through seventh postoperative week, suggesting that most outgrowth occurred in the first two postoperative weeks and that neuritic morphology remained stable through the seventh postoperative week. Neurites grew across the lesion site in relatively straight trajectories parallel to the longitudinal axis of the ventral nerve cord and often grew alongside the appropriate axonal stump across the lesion site. The length of neurites growing in close apposition to appropriate axonal stumps or giant axons was much greater than expected, had outgrowth been randomly directed. These data provide a basis for future investigations of the mechanisms that regulate neuritic outgrowth.
Collapse
Affiliation(s)
- A W Lyckman
- Department of Zoology, University of Texas, Austin 78712
| | | | | |
Collapse
|
21
|
Krause TL, Marquis RE, Lyckman AW, Ballinger ML, Bittner GD. Rapid artificial restoration of electrical continuity across a crush lesion of a giant axon. Brain Res 1991; 561:350-3. [PMID: 1802349 DOI: 10.1016/0006-8993(91)91615-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Action potentials never conducted through a crush lesion to the medial giant axon in the earthworm (Lumbricus terrestris) if the axon was exposed to normal or hypotonic salines that did not contain polyethylene glycol. However, action potentials, as well as electrotonic potentials, often conducted through a crush lesion exposed for 1 min to polyethylene glycol in hypotonic saline.
Collapse
Affiliation(s)
- T L Krause
- Department of Zoology, College of Pharmacy, University of Texas, Austin 78712
| | | | | | | | | |
Collapse
|
22
|
Fredman SM. Recovery of escape locomotion following a CNS lesion in Aplysia. BEHAVIORAL AND NEURAL BIOLOGY 1988; 49:261-79. [PMID: 3408439 DOI: 10.1016/s0163-1047(88)90242-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The recovery of escape locomotion in Aplysia following a CNS lesion was investigated. The connectives between the cerebral and pleural ganglia were crushed in anesthetized animals, producing a specific behavioral deficit. Animals with lesions failed to initiate escape locomotion in response to tail shock. Tail withdrawal and inking which were also evoked by tail shock were still present. Other behaviors such as normal locomotion and feeding were not impaired. There was gradual recovery from the effects of the lesion. Animals with lesions began to respond to tail shock with weak pedal waves at long latencies after 7-13 days. The responses grew more vigorous and the latencies decreased over subsequent days. Full escape locomotor responses were observed as early as 15 days postlesion. By Postlesion Day 27, all of the animals had completely recovered and gave full escape responses. The mean latency of the escape locomotor response in recovered animals was not significantly different from prelesion control values. In behaviorally recovered animals, retrograde tracing from a point distal to the lesion site stained neurons in the cerebral ganglion. Intracellular dye injections of individual neurons revealed sprouting of new processes. Stimulation of the tail nerve and individual neurons demonstrated synaptic connections between cerebral and pleural ganglia neurons. These results suggest that the observed behavioral recovery was due to pleural ganglia neurons regenerating and forming appropriate synaptic connections in the cerebral ganglion.
Collapse
Affiliation(s)
- S M Fredman
- Department of Physiology, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
23
|
Vining EP, Drewes CD. Donor-recipient interconnections between giant nerve fibers in transplanted ventral nerve cords of earthworms. JOURNAL OF NEUROBIOLOGY 1985; 16:283-99. [PMID: 4031849 DOI: 10.1002/neu.480160404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Twelve segments of ventral nerve cord (VNC) from donor earthworms, Eisenia foetida, were transplanted into recipient worms from which a comparable length of VNC had been removed. Within the first few days after transplantation, bud-like formations, containing outgrowths of the giant nerve fibers, were evident at the ends of transplanted and recipient VNC. Morphological and electrophysiological evidence indicated that by 4-10 days after transplantation, medial (MGF) and lateral (LGF) giant fibers within the transplanted VNC formed cell-specific connections with their counterparts in the recipient VNC. Although the diameters of the giant fiber connections in the transplant-recipient junctions were often larger than normal, spike conduction across the junction was initially slow (approximately 1.0 m/s) but gradually increased over the next 2-3 weeks. Within the transplant, giant fibers were initially normal in appearance, but spike conduction was slow (1-2 m/s). During the next few weeks velocities increased by as much as fourfold and then stabilized for the next several months. However, by 4-5 weeks after transplantation, giant fiber morphology within the transplant was altered significantly, as indicated by the formation of numerous branch-like extensions along the length of each giant fiber. By 9-10 months there were further morphological changes in the transplant, as indicated by decreased branching of the giant fibers and altered neuropile. Despite these morphological changes, through-conduction of giant fiber spikes remained reliable.
Collapse
|
24
|
Moffett S, Snyder K. Behavioral recovery associated with central nervous system regeneration in the snail Melampus. JOURNAL OF NEUROBIOLOGY 1985; 16:193-209. [PMID: 2989424 DOI: 10.1002/neu.480160305] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pulmonate snail Melampus bidentatus regenerates central nervous tracts following commissurotomy, connective transection, and cerebral ganglion ablation. Our goal was to determine whether or not neural regrowth within the central nervous system restored behaviors disrupted by lesions. One behavior that is disrupted by commissurotomy is retraction of facial structures that are contralateral to a stimulated facial region, a response that normally accompanies the ipsilateral retraction. Tentacle withdrawal on the side contralateral to stimulation reappeared on a timescale that was correlated with growth of a commissural link (8-19 days post-lesion). Electrophysiological recordings from a labial nerve pathway that has a contralateral component similar to the contralateral tentacle response showed that development or strengthening of an alternative pathway could also mediate contralateral responses. Thus, a major conclusion of this study was that both tract regeneration and changes in existing CNS pathways can underlie recovery. The percentage (approx. 75%) of snails that regenerate the cerebral commissure and show behavioral recovery is established early in the period following commissure transection. Behavioral recovery and anatomical evidence of regeneration were also correlated in the other two operations: single cerebral ganglion removal and unilateral cerebropleural and cerebropedal connective transection. We conclude that Melampus is able to regenerate neuronal connectivity that can restore normal behavior.
Collapse
|
25
|
Meiri H, Dormann A, Spira ME. Comparison of ultrastructural changes in proximal and distal segments of transected giant fibers of the cockroach Periplaneta americana. Brain Res 1983; 263:1-14. [PMID: 6839162 DOI: 10.1016/0006-8993(83)91195-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
When the giant axons of the cockroach Periplaneta americana are transected the proximal segment (the part connected to the soma) regenerates by tip sprouting and the distal segment degenerates. The initial ultrastructural response (24-48 h post-transection) occurring in the cut ends of the proximal and distal segments are similar. This response includes the disappearance of neurotubules; appearance of amorphous material in the axoplasm and a gradual accumulation of large numbers of small mitochondria, vesicles of various sizes and smooth endoplasmic reticulum. The axolemma in the region of organelle accumulation invaginates and glial processes are present in the invagination. The similarity of the changes that occur in the cut ends of the proximal and distal segments indicates that the primary reaction to axotomy is of a local nature and does not depend on the soma. Two to four days after transection, the cut end of the distal axonal segment reveals signs of degeneration. These include the appearance of swollen mitochondria, lysosomes, myelinated bodies and shrinking of the axon. In addition there is a massive proliferation of glial processes around the degenerating axons. Sprouting from the tip of the proximal segment starts 5--7 days post axotomy. Sprouts were identified as profiles containing few neurotubules, many vesicles and abundant smooth endoplasmic reticulum. 'Growth cone-like' structures were identified. The ultrastructural reorganization of the cut end of the proximal segment is discussed in relation to changes in membrane properties of the regenerating tip, as previously described by us.
Collapse
|
26
|
Moffett S, Austin DR. Generation of new cerebral ganglion neurons in the snail Melampus: an ultrastructural study. J Comp Neurol 1982; 207:177-82. [PMID: 7096645 DOI: 10.1002/cne.902070206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Reports in the literature have established that reconnection of central neural tracts occurs following commissurotomy and cerebral ganglion excision in the primitive pulmonate snail Melampus bidentatus and have suggested the possibility that long-term regeneration might result in the appearance of new neurons in the ganglion bud. We have used electron microscopy to examine the ganglion buds that form by reconnection of cerebral nerves, commissure, and connectives following cerebral ganglion excision in adult Melampus. The buds were examined from 2.5 to 12 months postoperatively. By 2.5 months, ganglion buds consist of a mixture of axon tracts that travel through the bud region and some dendritic processes; a few synaptic contacts can be identified at this stage, scattered throughout the bud. By 5--6 months, some of the most advanced ganglia have undifferentiated cells that are distinct from glia. By 7 months, differentiated neurons with clear, small dense-core or neurosecretory vesicles are present, although these cells are not all concentrated in a rind on the ganglion surface. Another cell type, the pigment-sheath cell, is present by this stage. By 11--12 months, the most advanced regenerating ganglia have neurons which form a cell rind on the ganglion surface. The gross appearance of a regenerated ganglion at this stage is similar to that of the intact contralateral cerebral ganglion, although the regenerated ganglion is smaller. One 12-month ganglion was found to possess fairly normal intraganglionic morphology, with lobes and cell types that were recognizable. Hence, nerve cell regeneration can occur in the absence of body part regeneration in adult members of one species of pulmonate snail.
Collapse
|
27
|
|
28
|
Bittner GD, Brown MA. Long term survival of enucleated segments of glial cytoplasm in the leech Macrobdella decora. Brain Res 1981; 218:357-64. [PMID: 7272742 DOI: 10.1016/0006-8993(81)91314-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enucleated cytoplasmic segments of the giant connective glial cell (GCGC) survive morphologically intact for at least 10 weeks in the leech Macrobdella decora. Enucleated GCGC segments isolated from regenerating nerve axons show some degenerative changes after 4 weeks compared to GCGC segments which surround intact or regenerating nerve axons. Survival of GCGC cytoplasm is associated with an increase in the number of microglia. Relatively few (10-30%) nerve axons degenerate after severance from their cell body.
Collapse
|
29
|
Abstract
The neuron addition hypothesis predicts that species that add CNS neurons during a particular ontogenetic stage should regenerate ablated somata better than species that add few, if any, neurons to the CNS during that same stage. We report that CNS nerve cells do not regenerate in three species of adult (reproductively competent) leeches (Hirudo medicinalis, Haemopus grande, and Macrobdella decora), which do not increase the number of neurons in any portion of the CNS. Nereis virens, a polychaete that adds CNS neurons to newly forming ganglia in the adult stage, also does not regenerate CNS neurons. Conversely, CNS neurons, including a pair of uniquely identifiable somata, do regenerate in Clymenella torquata, a polychaete that has a constant number of neurons in the adult stage. Hence, the results of our study suggest that several versions of the neuron addition hypothesis cannot predict CNS regenerative abilities in adult annelids. Finally, we report that severed stumps of CNS axons do not degenerate rapidly in Nereis or Clymenella, and that both species can regenerate severed CNS axons presumably by morphologic fusion or physiologic activation of surviving stumps.
Collapse
|
30
|
|
31
|
Faisst J, Keenan CL, Koopowitz H. Neuronal repair and avoidance behavior in the flatworm, Notoplana acticola. JOURNAL OF NEUROBIOLOGY 1980; 11:483-96. [PMID: 7420083 DOI: 10.1002/neu.480110507] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In Notoplana avoidance behavior is lost after bisection of the brain or removal of one of its lobes. Behavioral recovery usually occurs within 3-10 days. Recovery of individuals may be gradual or abrupt. Grouped data shows gradual linear repair of turning behavior. Most animals with all connectives between the two lobes of the brain severed recovered preoperative responses, while those with one lobe of the brain removed averaged about 60% of the preoperative level of response. Some individuals in both groups recovered completely. Histological evidence of neuronal repair was found in all animals. Where the lobes of the brain were separated, connectives between them appeared to re-form. In worms with one lobe of the brain removed, the nerves disconnected by the excision joined the remaining lobe. Action potentials are conducted across repaired tissue in both split-brain and half-brain worms in both seawater and Mg2+-rich solutions. CNS repair appears to involve functional synaptic contacts. Notoplana does not replace ganglionic tissue but does compensate adequately for CNS damage.
Collapse
|
32
|
Ballinger ML, Bittner GD. Ultrastructural studies of severed medial giant and other CNS axons in crayfish. Cell Tissue Res 1980; 208:123-33. [PMID: 7388925 DOI: 10.1007/bf00234178] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distal stumps of severed medial giant axons (MGAs) and of nongiant axons (NGAs) in the CNS of the crayfish Procambarus clarkii show long-term (5--9 months) survival associated with disorientation of mitochondria and thickening of the glial sheath. However, the morphological responses of the two axonal types differ in that neither the proximal nor the distal stump of severed MGAs ever fills with mitochondria as is observed in some severed NGAs. Furthermore, the adaxonal glial layer never completely encircles portions of MGA axoplasm as occurs in many severed NGAs; in fact, ultrastructural changes in the adaxonal layer around severed MGAs are often difficult to detect. No multiple axonal profiles are ever seen within the glial sheath of the proximal or distal stumps of severed MGAs whereas these structures are easily located within severed NGAs.
Collapse
|
33
|
Balter RJ, Drewes CD, McFall JL. In vivo conduction properties of regenerating giant nerve fibers in earthworms. ACTA ACUST UNITED AC 1980. [DOI: 10.1002/jez.1402110317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Brockman WH. A simple electronic neuron model incorporating both active and passive responses. IEEE Trans Biomed Eng 1979; 26:635-9. [PMID: 511199 DOI: 10.1109/tbme.1979.326546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Muller KJ, Carbonetto S. The morphological and physiological properties of a regenerating synapse in the C.N.S. of the leech. J Comp Neurol 1979; 185:485-516. [PMID: 438368 DOI: 10.1002/cne.901850305] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regeneration of an electrical synapse between particular interneurons in the medicinal leech was traced physiologically and morphologically using intracellular recording the horseradish peroxidase (HRP) injection. The synapse between S-cell interneurons lies in the connective midway between segmental ganglia, so crushing near one ganglion severs only one S-cell's axon. The severed distal stump remains connected to the adjacent uninjured S-cell and continues for weeks to conduct impulses. The injured cell regenerates, while its uninjured "target" neuron in the next ganglion does not grow. After the sprouts of the regenerating neuron cross the crush, one or a few branches grow along the surviving distal stump toward the original synapse. After about one month when the region of original synapse has been reached, regenerating neurons form electrical junctions and stop growing. Thereafter electrical coupling improves in stages. Within two months the regenerated neuron attains full caliber, the stump degenerates and function is normal. In some instances within days or weeks of crushing, the regenerating neuron forms a basket of synapses upon its severed distal stump and then continues growing to synapse with the target. When this occurs, electrical coupling and subsequent impulse transmission between S-cells rapidly resumes. These experiments indicated that the regenerating neuron is guided to its proper synaptic target by recognizing and following its severed distal stump. Sometimes the distal stump itself becomes an intermediate synaptic target.
Collapse
|
36
|
Murphy AD, Kater SB. Specific reinnervation of a target organ by a pair of identified molluscan neurons. Brain Res 1978; 156:322-8. [PMID: 709357 DOI: 10.1016/0006-8993(78)90512-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Selzer ME. Mechanisms of functional recovery and regeneration after spinal cord transection in larval sea lamprey. J Physiol 1978; 277:395-408. [PMID: 650547 PMCID: PMC1282397 DOI: 10.1113/jphysiol.1978.sp012280] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
1. Large sea lamprey larvae, close to metamorphosis, regained swimming coordination after several weeks following complete spinal cord transection. Recovery was much faster when animals were kept at 23 than at 12 degrees C. 2. The behavioural recovery involved a regenerative mechanism in the spinal cord, since stimulation of the head resulted in tail curling, even when all tissue other than spinal cord and notocord was stripped away for several cm above and below the transection. 3. Following complete behavioural recovery, stimulation of the rostral cord evoked electrical signals recorded from the cord dorsum for only 10 mm below the transection. 4. Dorsal cells and giant interneurones, which normally project to the brain, could not be antidromically activated across the transection zone. However, giant interneurones could be activated polysynaptically by descending volleys. 5. Twelve of eighteen large reticulospinal axons followed in serial sections regenerated across the glial-ependymal scar, but branched abnormally and migrated away from their customary locations. They became smaller, and were finally lost within 4 mm of the centre of the transection zone. 6. These data suggest that behavioural recovery does not involve long axon tract regeneration. An alternate hypothesis, that short distance sprouting of axons across the transection zone may result in synapse formation with propriospinal interneurones which relay the necessary information, is discussed.
Collapse
|
38
|
Carbonetto S, Muller KJ. A regenerating neurone in the leech can form an electrical synapse on its severed axon segment. Nature 1977; 267:450-2. [PMID: 195213 DOI: 10.1038/267450a0] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|