1
|
Aghajani N, Pourhamzeh M, Azizi H, Semnanian S. Central blockade of orexin type 1 receptors reduces naloxone induced activation of locus coeruleus neurons in morphine dependent rats. Neurosci Lett 2021; 755:135909. [PMID: 33892002 DOI: 10.1016/j.neulet.2021.135909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Orexin neuropeptides are implicated in the expression of morphine dependence. Locus coeruleus (LC) nucleus is an important brain area involving in the development of withdrawal signs of morphine and contains high expression of orexin type 1 receptors (OX1Rs). Despite extensive considerations, effects of immediate inhibition of OX1Rs by a single dose administration of SB-334867 prior to the naloxone-induced activation of LC neurons remains unknown. Therefore, we examined the direct effects of OX1Rs acute blockade on the neuronal activity of the morphine-dependent rats which underwent naloxone administration. Adult male rats underwent subcutaneous administration of 10 mg/kg morphine (two times/day) for a ten-day period. On the last day of experiment, intra-cerebroventricular administration of 10 μg/μl antagonist of OX1Rs, SB-334867, was performed just before intra-peritoneal injection of 2 mg/kg naloxone. Thereafter, in vivo extracellular single unit recording was employed to evaluate the electrical activity of LC neuronal cells. The outcomes demonstrated that morphine tolerance developed following ten-day of injection. Then, naloxone administration causes hyperactivity of LC neuronal cells, whereas a single dose administration of SB-334867 prior to naloxone prevented the enhanced activity of neurons upon morphine withdrawal. Our findings indicate that increased response of LC neuronal cells to applied naloxone could be prevented by the acute inhibition of the OX1Rs just before the naloxone treatment.
Collapse
Affiliation(s)
- Niloofar Aghajani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Sugama S, Kakinuma Y. Noradrenaline as a key neurotransmitter in modulating microglial activation in stress response. Neurochem Int 2020; 143:104943. [PMID: 33340593 DOI: 10.1016/j.neuint.2020.104943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
State of mind can influence susceptibility and progression of diseases and disorders not only in peripheral organs, but also in the central nervous system (CNS). However, the underlying mechanism how state of mind can affect susceptibility to various illnesses in the CNS is not fully understood. Among a number of candidates responsible for stress-induced neuroimmunomodulation, noradrenaline has recently been shown to play crucial roles in the major immune cells of the brain, microglia. In particular, recent studies have demonstrated that noradrenaline may be a key neurotransmitter in modulating microglial cells, thereby determining different cell conditions and responses ranging from resting to activation state depending on host stress level or whether the host is awake or asleep. For instance, microglia under resting conditions may have constructive roles in surveillance, such as debris clearance, synaptic monitoring, pruning, and remodeling. In contrast, once activated, microglia may become less efficient in surveillance activities, and instead implicated in detrimental roles such as cytokine or superoxide release. It is also likely that glial activation, both astrocytes and microglia, are negatively associated with the clearance of brain waste via the glymphatic system. In this review, we discuss the possible underlying mechanism as well as the roles of stress-induced microglial activation.
Collapse
Affiliation(s)
- Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
3
|
Orexin type-1 receptor inhibition in the rat lateral paragigantocellularis nucleus attenuates development of morphine dependence. Neurosci Lett 2020; 724:134875. [DOI: 10.1016/j.neulet.2020.134875] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 11/18/2022]
|
4
|
Purvis EM, Klein AK, Ettenberg A. Lateral habenular norepinephrine contributes to states of arousal and anxiety in male rats. Behav Brain Res 2018; 347:108-115. [PMID: 29526789 PMCID: PMC5988948 DOI: 10.1016/j.bbr.2018.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 01/16/2023]
Abstract
Recent research has identified the lateral habenula (LHb) as a brain region playing an important role in the production of stressful and anxiogenic states. Additionally, norepinephrine (NE) has long been known to be involved in arousal, stress and anxiety, and NE projections to the LHb have been identified emanating from the locus coeruleus (LC). The current research was devised to test the hypothesis that NE release within the LHb contributes to the occurrence of anxiogenic behaviors. Male rats were implanted with bilateral guide cannula aimed at the LHb and subsequently treated with intracranial (IC) infusions of the selective α2 adrenergic autoreceptor agonist, dexmedetomidine (DEX) (0, 0.5, 1.0 μg/side), prior to assessment of ambulatory and anxiogenic behavior in tests of spontaneous locomotion, open field behavior, and acoustic startle-response. Results demonstrated that DEX administration significantly reduced the overall locomotor behavior of subjects at both doses indicating that infusion of even small doses of this α2 agonist into the LHb can have profound effects on the subjects' general levels of alertness and activity. DEX was also found to attenuate anxiety as evidenced by a reduction in the magnitude of a startle-response to an acoustic 110 dB stimulus. Taken together, these results identify a role for NE release within the LHb in both arousal and anxiety.
Collapse
Affiliation(s)
- Erin M Purvis
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA
| | - Adam K Klein
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA
| | - Aaron Ettenberg
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA.
| |
Collapse
|
5
|
Fakhari M, Azizi H, Semnanian S. Central antagonism of orexin type-1 receptors attenuates the development of morphine dependence in rat locus coeruleus neurons. Neuroscience 2017; 363:1-10. [DOI: 10.1016/j.neuroscience.2017.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/19/2017] [Accepted: 08/29/2017] [Indexed: 11/28/2022]
|
6
|
Hooshmand B, Azizi H, Javan M, Semnanian S. Intra-LC microinjection of orexin type-1 receptor antagonist SB-334867 attenuates the expression of glutamate-induced opiate withdrawal like signs during the active phase in rats. Neurosci Lett 2017; 636:276-281. [DOI: 10.1016/j.neulet.2016.10.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022]
|
7
|
Safety Needs Mediate Stressful Events Induced Mental Disorders. Neural Plast 2016; 2016:8058093. [PMID: 27738527 PMCID: PMC5050353 DOI: 10.1155/2016/8058093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/09/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
“Safety first,” we say these words almost every day, but we all take this for granted for what Maslow proposed in his famous theory of Hierarchy of Needs: safety needs come second to physiological needs. Here we propose that safety needs come before physiological needs. Safety needs are personal security, financial security, and health and well-being, which are more fundamental than physiological needs. Safety worrying is the major reason for mental disorders, such as anxiety, phobia, depression, and PTSD. The neural basis for safety is amygdala, LC/NE system, and corticotrophin-releasing hormone system, which can be regarded as a “safety circuitry,” whose major behavior function is “fight or flight” and “fear and anger” emotions. This is similar to the Appraisal theory for emotions: fear is due to the primary appraisal, which is related to safety of individual, while anger is due to secondary appraisal, which is related to coping with the unsafe situations. If coping is good, the individual will be happy; if coping failed, the individual will be sad or depressed.
Collapse
|
8
|
Carvalho-Costa PG, Branco LGS, Leite-Panissi CRA. Activation of locus coeruleus heme oxygenase-carbon monoxide pathway promoted an anxiolytic-like effect in rats. ACTA ACUST UNITED AC 2016; 49:e5135. [PMID: 27074170 PMCID: PMC4830028 DOI: 10.1590/1414-431x20165135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/27/2016] [Indexed: 11/22/2022]
Abstract
The heme oxygenase-carbon monoxide pathway has been shown to play an important role
in many physiological processes and is capable of altering nociception modulation in
the nervous system by stimulating soluble guanylate cyclase (sGC). In the central
nervous system, the locus coeruleus (LC) is known to be a region that expresses the
heme oxygenase enzyme (HO), which catalyzes the metabolism of heme to carbon monoxide
(CO). Additionally, several lines of evidence have suggested that the LC can be
involved in the modulation of emotional states such as fear and anxiety. The purpose
of this investigation was to evaluate the activation of the heme oxygenase-carbon
monoxide pathway in the LC in the modulation of anxiety by using the elevated plus
maze test (EPM) and light-dark box test (LDB) in rats. Experiments were performed on
adult male Wistar rats weighing 250-300 g (n=182). The results showed that the
intra-LC microinjection of heme-lysinate (600 nmol), a substrate for the enzyme HO,
increased the number of entries into the open arms and the percentage of time spent
in open arms in the elevated plus maze test, indicating a decrease in anxiety.
Additionally, in the LDB test, intra-LC administration of heme-lysinate promoted an
increase on time spent in the light compartment of the box. The
intracerebroventricular microinjection of guanylate cyclase, an sGC inhibitor
followed by the intra-LC microinjection of the heme-lysinate blocked the
anxiolytic-like reaction on the EPM test and LDB test. It can therefore be concluded
that CO in the LC produced by the HO pathway and acting via cGMP plays an
anxiolytic-like role in the LC of rats.
Collapse
Affiliation(s)
- P G Carvalho-Costa
- Programa de Pós-Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - L G S Branco
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - C R A Leite-Panissi
- Programa de Pós-Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
9
|
Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders. Neural Plast 2016; 2016:2609128. [PMID: 27051536 PMCID: PMC4808661 DOI: 10.1155/2016/2609128] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Affective disorders are a leading cause of disabilities worldwide, and the etiology of these many affective disorders such as depression and posttraumatic stress disorder is due to hormone changes, which includes hypothalamus-pituitary-adrenal axis in the peripheral nervous system and neuromodulators in the central nervous system. Consistent with pharmacological studies indicating that medical treatment acts by increasing the concentration of catecholamine, the locus coeruleus (LC)/norepinephrine (NE) system is regarded as a critical part of the central "stress circuitry," whose major function is to induce "fight or flight" behavior and fear and anger emotion. Despite the intensive studies, there is still controversy about NE with fear and anger. For example, the rats with LC ablation were more reluctant to leave a familiar place and took longer to consume the food pellets in an unfamiliar place (neophobia, i.e., fear in response to novelty). The reason for this discrepancy might be that NE is not only for flight (fear), but also for fight (anger). Here, we try to review recent literatures about NE with stress induced emotions and their relations with mental disorders. We propose that stress induced NE release can induce both fear and anger. "Adrenaline rush or norepinephrine rush" and fear and anger emotion might act as biomarkers for mental disorders.
Collapse
|
10
|
West CHK, Boss-Williams KA, Ritchie JC, Weiss JM. Reprint of: Locus coeruleus neuronal activity determines proclivity to consume alcohol in a selectively-bred line of rats that readily consumes alcohol. Alcohol 2016; 50:91-105. [PMID: 26873226 DOI: 10.1016/j.alcohol.2016.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022]
Abstract
Sprague-Dawley rats selectively-bred for susceptibility to stress in our laboratory (Susceptible, or SUS rats) voluntarily consume large amounts of alcohol, and amounts that have, as shown here, pharmacological effects, which normal rats will not do. In this paper, we explore neural events in the brain that underlie this propensity to readily consume alcohol. Activity of locus coeruleus neurons (LC), the major noradrenergic cell body concentration in the brain, influences firing of ventral tegmentum dopaminergic cell bodies of the mesocorticolimbic system (VTA-DA neurons), which mediate rewarding aspects of alcohol. We tested the hypothesis that in SUS rats alcohol potently suppresses LC activity to markedly diminish LC-mediated inhibition of VTA-DA neurons, which permits alcohol to greatly increase VTA-DA activity and rewarding aspects of alcohol. Electrophysiological single-unit recording of LC and VTA-DA activity showed that in SUS rats alcohol decreased LC burst firing much more than in normal rats and as a result markedly increased VTA-DA activity in SUS rats while having no such effect in normal rats. Consistent with this, in a behavioral test for reward using conditioned place preference (CPP), SUS rats showed alcohol, given by intraperitoneal (i.p.) injection, to be rewarding. Next, manipulation of LC activity by microinfusion of drugs into the LC region of SUS rats showed that (a) decreasing LC activity increased alcohol intake and increasing LC activity decreased alcohol intake in accord with the formulation described above, and (b) increasing LC activity blocked both the rewarding effect of alcohol in the CPP test and the usual alcohol-induced increase in VTA-DA single-unit activity seen in SUS rats. An important ancillary finding in the CPP test was that an increase in LC activity was rewarding by itself, while a decrease in LC activity was aversive; consequently, effects of LC manipulations on alcohol-related reward in the CPP test were perhaps even larger than evident in the test. Finally, when increased LC activity was associated with (i.e., conditioned to) i.p. alcohol, subsequent alcohol consumption by SUS rats was markedly reduced, indicating that SUS rats consume large amounts of alcohol because of rewarding physiological consequences requiring increased VTA-DA activity. The findings reported here are consistent with the view that the influence of alcohol on LC activity leading to changes in VTA-DA activity strongly affects alcohol-mediated reward, and may well be the basis of the proclivity of SUS rats to avidly consume alcohol.
Collapse
Affiliation(s)
- Charles H K West
- Department of Psychiatry and Behavioral Sciences, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Katherine A Boss-Williams
- Department of Psychiatry and Behavioral Sciences, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - James C Ritchie
- Department of Pathology, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
West CHK, Boss-Williams KA, Ritchie JC, Weiss JM. Locus coeruleus neuronal activity determines proclivity to consume alcohol in a selectively-bred line of rats that readily consumes alcohol. Alcohol 2015; 49:691-705. [PMID: 26496795 DOI: 10.1016/j.alcohol.2015.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 08/18/2015] [Indexed: 02/02/2023]
Abstract
Sprague-Dawley rats selectively-bred for susceptibility to stress in our laboratory (Susceptible, or SUS rats) voluntarily consume large amounts of alcohol, and amounts that have, as shown here, pharmacological effects, which normal rats will not do. In this paper, we explore neural events in the brain that underlie this propensity to readily consume alcohol. Activity of locus coeruleus neurons (LC), the major noradrenergic cell body concentration in the brain, influences firing of ventral tegmentum dopaminergic cell bodies of the mesocorticolimbic system (VTA-DA neurons), which mediate rewarding aspects of alcohol. We tested the hypothesis that in SUS rats alcohol potently suppresses LC activity to markedly diminish LC-mediated inhibition of VTA-DA neurons, which permits alcohol to greatly increase VTA-DA activity and rewarding aspects of alcohol. Electrophysiological single-unit recording of LC and VTA-DA activity showed that in SUS rats alcohol decreased LC burst firing much more than in normal rats and as a result markedly increased VTA-DA activity in SUS rats while having no such effect in normal rats. Consistent with this, in a behavioral test for reward using conditioned place preference (CPP), SUS rats showed alcohol, given by intraperitoneal (i.p.) injection, to be rewarding. Next, manipulation of LC activity by microinfusion of drugs into the LC region of SUS rats showed that (a) decreasing LC activity increased alcohol intake and increasing LC activity decreased alcohol intake in accord with the formulation described above, and (b) increasing LC activity blocked both the rewarding effect of alcohol in the CPP test and the usual alcohol-induced increase in VTA-DA single-unit activity seen in SUS rats. An important ancillary finding in the CPP test was that an increase in LC activity was rewarding by itself, while a decrease in LC activity was aversive; consequently, effects of LC manipulations on alcohol-related reward in the CPP test were perhaps even larger than evident in the test. Finally, when increased LC activity was associated with (i.e., conditioned to) i.p. alcohol, subsequent alcohol consumption by SUS rats was markedly reduced, indicating that SUS rats consume large amounts of alcohol because of rewarding physiological consequences requiring increased VTA-DA activity. The findings reported here are consistent with the view that the influence of alcohol on LC activity leading to changes in VTA-DA activity strongly affects alcohol-mediated reward, and may well be the basis of the proclivity of SUS rats to avidly consume alcohol.
Collapse
Affiliation(s)
- Charles H K West
- Department of Psychiatry and Behavioral Sciences, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Katherine A Boss-Williams
- Department of Psychiatry and Behavioral Sciences, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - James C Ritchie
- Department of Pathology, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| |
Collapse
|
12
|
Anticevic A, Tang Y, Cho YT, Repovs G, Cole MW, Savic A, Wang F, Krystal JH, Xu K. Amygdala connectivity differs among chronic, early course, and individuals at risk for developing schizophrenia. Schizophr Bull 2014; 40:1105-16. [PMID: 24366718 PMCID: PMC4133672 DOI: 10.1093/schbul/sbt165] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alterations in circuits involving the amygdala have been repeatedly implicated in schizophrenia neuropathology, given their role in stress, affective salience processing, and psychosis onset. Disturbances in amygdala whole-brain functional connectivity associated with schizophrenia have yet to be fully characterized despite their importance in psychosis. Moreover, it remains unknown if there are functional alterations in amygdala circuits across illness phases. To evaluate this possibility, we compared whole-brain amygdala connectivity in healthy comparison subjects (HCS), individuals at high risk (HR) for schizophrenia, individuals in the early course of schizophrenia (EC-SCZ), and patients with chronic schizophrenia (C-SCZ). We computed whole-brain resting-state connectivity using functional magnetic resonance imaging at 3T via anatomically defined individual-specific amygdala seeds. We identified significant alterations in amygdala connectivity with orbitofrontal cortex (OFC), driven by reductions in EC-SCZ and C-SCZ (effect sizes of 1.0 and 0.97, respectively), but not in HR for schizophrenia, relative to HCS. Reduced amygdala-OFC coupling was associated with schizophrenia symptom severity (r = .32, P < .015). Conversely, we identified a robust increase in amygdala connectivity with a brainstem region around noradrenergic arousal nuclei, particularly for HR individuals relative to HCS (effect size = 1.54), but not as prominently for other clinical groups. These results suggest that deficits in amygdala-OFC coupling could emerge during the initial episode of schizophrenia (EC-SCZ) and may present as an enduring feature of the illness (C-SCZ) in association with symptom severity but are not present in individuals with elevated risk for developing schizophrenia. Instead, in HR individuals, there appears to be increased connectivity in a circuit implicated in stress response.
Collapse
Affiliation(s)
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang , Liaoning, PR China
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Grega Repovs
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - Michael W Cole
- Department of Psychology, Washington University in St Louis, St Louis, MO
| | - Aleksandar Savic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT; University Psychiatric Hospital Vrapce, University of Zagreb, Zagreb, Croatia
| | - Fei Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT; Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang , Liaoning, PR China
| | | | - Ke Xu
- Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang , Liaoning, PR China
| |
Collapse
|
13
|
Mousavi Y, Azizi H, Mirnajafi-Zadeh J, Javan M, Semnanian S. Blockade of orexin type-1 receptors in locus coeruleus nucleus attenuates the development of morphine dependency in rats. Neurosci Lett 2014; 578:90-4. [DOI: 10.1016/j.neulet.2014.06.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/29/2022]
|
14
|
Impact of stress on prefrontal glutamatergic, monoaminergic and cannabinoid systems. Curr Top Behav Neurosci 2014; 18:45-66. [PMID: 25048388 DOI: 10.1007/7854_2014_331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stress has been shown to have marked and divergent effects on learning and memory which involves specific brain regions, such as spatial and declarative memory involving the hippocampus, memory of emotional arousing experiences and fear involving the amygdala, and executive functions and fear extinction involving the prefrontal cortex or the PFC. Response to stress involves a coordinated activation of a constellation of physiological systems including the activation of the hypothalamic-pituitary-adrenal (HPA) axis and other modulatory neurotransmitters and signaling systems. This paper presents a concise review of the effects of stress and glucocorticoids on the glutamatergic and monoaminergic (including noradrenergic, dopaminergic, and serotonergic systems) neurotransmitter systems as well as endocannabinoid signaling. Because of the breadth of the scope of this topic, the review is limited to the effects of stress on these brain systems on the prefrontal cortex, and where relevant, the hippocampus and the amygdala.
Collapse
|
15
|
N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride (DSP4), a new selective noradrenaline neurotoxin, and taste neophobia in the rat. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03332923] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Vedantham K, Brunet A, Neylan TC, Weiss DS, Mannar CR. Neurobiological findings in posttraumatic stress disorder: a review. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033551 PMCID: PMC3181587 DOI: 10.31887/dcns.2000.2.1/kvedantham] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since posttraumatic stress disorder (PTSD) was first recognized as a psychiatric disorder, it has generated a great deal of scientific interest. Recent studies on the neurobiology of PTSD provide evidence that PTSD is biologically distinct from other types of traumatic and nontraumatic stress responses. This paper reviews three important directions of neurobiological research in PTSD: noradrenergic axis changes and associated alterations in autonomic responsivity neuroendocrine changes involving the hypothalamic-pituitary-adrenocortical (HPA) axis, and neuroanatomy changes involving the hippocampus. Each section reviews the salient aspects of preclinical research on the biology of stress and their bearing on the understanding of PTSD, and summarizes prominent findings from clinical biological studies of PTSD, Tentative models that integrate current findings from the clinical study of PTSD are reviewed. To conclude, the important methodological and empirical issues that need to be addressed by future studies are indicated.
Collapse
Affiliation(s)
- K Vedantham
- Department of Psychiatry, University of California, San Francisco; and Department of Veterans Affairs, Medical Center, San Francisco, Calif, USA; Acknowledges fellowship support from the Program for Minority Research Training in Psychiatry (PMRTP), which is funded by the National Institute of Mental Health and administered by the American Psychiatric Association
| | | | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
|
20
|
|
21
|
|
22
|
|
23
|
|
24
|
Abstract
AbstractTo study animal welfare empirically we need an objective basis for deciding when an animal is suffering. Suffering includes a wide range ofunpleasant emotional states such as fear, boredom, pain, and hunger. Suffering has evolved as a mechanism for avoiding sources ofdanger and threats to fitness. Captive animals often suffer in situations in which they are prevented from doing something that they are highly motivated to do. The “price” an animal is prepared to pay to attain or to escape a situation is an index ofhow the animal “feels” about that situation. Withholding conditions or commodities for which an animal shows “inelastic demand” (i.e., for which it continues to work despite increasing costs) is very likely to cause suffering. In designing environments for animals in zoos, farms, and laboratories, priority should be given to features for which animals show inelastic demand. The care ofanimals can thereby be based on an objective, animal-centered assessment of their needs.
Collapse
|
25
|
|
26
|
|
27
|
Development experience and the potential for suffering: Does “out of experience” mean “out of mind”? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00077335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
|
29
|
|
30
|
|
31
|
|
32
|
|
33
|
|
34
|
|
35
|
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
Hurlemann R, Walter H, Rehme AK, Kukolja J, Santoro SC, Schmidt C, Schnell K, Musshoff F, Keysers C, Maier W, Kendrick KM, Onur OA. Human amygdala reactivity is diminished by the β-noradrenergic antagonist propranolol. Psychol Med 2010; 40:1839-1848. [PMID: 20102667 DOI: 10.1017/s0033291709992376] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Animal models of anxiety disorders emphasize the crucial role of locus ceruleus-noradrenergic (norepinephrine, NE) signaling, the basolateral amygdala (BLA) and their interactions in the expression of anxiety-like behavioral responses to stress. Despite clinical evidence for the efficacy of a β-noradrenergic receptor blockade with propranolol in the alleviation of anxiety symptoms and the secondary prevention of post traumatic stress disorder, preclinical evidence for a β-noradrenergic modulation of BLA activity in humans is missing. METHOD We combined functional magnetic resonance imaging in healthy volunteers with probabilistic mapping of intra-amygdalar responses to fearful, neutral and happy facial expressions to test the hypothesis that a β-noradrenergic receptor blockade with propranolol would inactivate the BLA. RESULTS Consistent with our a priori hypothesis, propranolol diminished BLA responses to facial expressions, independent of their emotional valence. The absence of activity changes in probabilistically defined visual control regions underscores the specific action of propranolol in the BLA. CONCLUSIONS Our findings provide the missing link between the anxiolytic potential of propranolol and the biological basis of β-noradrenergic activation in the human BLA as a key target for the pharmacological inhibition of anxiety neurocircuitry. Moreover, our findings add to emerging evidence that NE modulates both the reactivity (sensitivity) and the operating characteristics (specificity) of the BLA via β-noradrenergic receptors.
Collapse
Affiliation(s)
- R Hurlemann
- Department of Psychiatry, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Azizi H, Mirnajafi-Zadeh J, Rohampour K, Semnanian S. Antagonism of orexin type 1 receptors in the locus coeruleus attenuates signs of naloxone-precipitated morphine withdrawal in rats. Neurosci Lett 2010; 482:255-9. [DOI: 10.1016/j.neulet.2010.07.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 11/26/2022]
|
43
|
Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 2010; 6:235-53. [PMID: 19506723 PMCID: PMC2687936 DOI: 10.2174/157015908785777229] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/25/2008] [Accepted: 06/06/2008] [Indexed: 01/09/2023] Open
Abstract
The locus coeruleus (LC) is the major noradrenergic nucleus of the brain, giving rise to fibres innervating extensive areas throughout the neuraxis. Recent advances in neuroscience have resulted in the unravelling of the neuronal circuits controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. The LC is a major wakefulness-promoting nucleus, resulting from dense excitatory projections to the majority of the cerebral cortex, cholinergic neurones of the basal forebrain, cortically-projecting neurones of the thalamus, serotoninergic neurones of the dorsal raphe and cholinergic neurones of the pedunculopontine and laterodorsal tegmental nucleus, and substantial inhibitory projections to sleep-promoting GABAergic neurones of the basal forebrain and ventrolateral preoptic area. Activation of the LC thus results in the enhancement of alertness through the innervation of these varied nuclei. The importance of the LC in controlling autonomic function results from both direct projections to the spinal cord and projections to autonomic nuclei including the dorsal motor nucleus of the vagus, the nucleus ambiguus, the rostroventrolateral medulla, the Edinger-Westphal nucleus, the caudal raphe, the salivatory nuclei, the paraventricular nucleus, and the amygdala. LC activation produces an increase in sympathetic activity and a decrease in parasympathetic activity via these projections. Alterations in LC activity therefore result in complex patterns of neuronal activity throughout the brain, observed as changes in measures of arousal and autonomic function.
Collapse
Affiliation(s)
- E R Samuels
- Psychopharmacology Section, University of Nottingham, Division of Psychiatry, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
44
|
Abstract
The locus coeruleus (LC) is regarded as a part of the central 'stress circuitry' because robust activation of the LC has been reported after stressful stimuli in experimental animals. A considerable amount of clinical evidence also suggests the relationship between the central noradrenergic (NAergic) system and fear/anxiety states or depression. However, previous animal studies have not been able to demonstrate unequivocally the involvement of the NAergic system in mediating fear or anxiety. The forebrain structures, including the hypothalamus, receive massive inputs from the medullary NAergic nuclei via the ventral NAergic bundle (VNAB). The VNAB has been implicated in the neuroendocrine stress axis mainly through its action on the corticotrophin-releasing factor neurones in the paraventricular nucleus of the hypothalamus. Novel tools were introduced that are capable of disrupting the NAergic system more selectively and/or thoroughly than the neurotoxins employed in previous studies: the anti-dopamine-beta hydroxylase (DBH)-saporin is an immunotoxin that is taken up from nerve endings and disrupt the NAergic neurones in a retrograde manner. The genetically DBH-depleted mice were also introduced, which lack endogenous noradrenaline. Owing to the rapid development of functional imaging technique, visualisation of the emotional phenomena has become possible in human subjects. Along with the advent of these technologies, endeavors have been continued to unravel the functional relevance of the central NAergic system to stress, anxiety and depression.
Collapse
Affiliation(s)
- K Itoi
- Division of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8579, Japan.
| | | |
Collapse
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
Précis ofThe neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00013066] [Citation(s) in RCA: 722] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA model of the neuropsychology of anxiety is proposed. The model is based in the first instance upon an analysis of the behavioural effects of the antianxiety drugs (benzodiazepines, barbiturates, and alcohol) in animals. From such psychopharmacologi-cal experiments the concept of a “behavioural inhibition system” (BIS) has been developed. This system responds to novel stimuli or to those associated with punishment or nonreward by inhibiting ongoing behaviour and increasing arousal and attention to the environment. It is activity in the BIS that constitutes anxiety and that is reduced by antianxiety drugs. The effects of the antianxiety drugs in the brain also suggest hypotheses concerning the neural substrate of anxiety. Although the benzodiazepines and barbiturates facilitate the effects of γ-aminobutyrate, this is insufficient to explain their highly specific behavioural effects. Because of similarities between the behavioural effects of certain lesions and those of the antianxiety drugs, it is proposed that these drugs reduce anxiety by impairing the functioning of a widespread neural system including the septo-hippocampal system (SHS), the Papez circuit, the prefrontal cortex, and ascending monoaminergic and cholinergic pathways which innervate these forebrain structures. Analysis of the functions of this system (based on anatomical, physiological, and behavioural data) suggests that it acts as a comparator: it compares predicted to actual sensory events and activates the outputs of the BIS when there is a mismatch or when the predicted event is aversive. Suggestions are made as to the functions of particular pathways within this overall brain system. The resulting theory is applied to the symptoms and treatment of anxiety in man, its relations to depression, and the personality of individuals who are susceptible to anxiety or depression.
Collapse
|
50
|
|