1
|
Yu Y, Chen T, Zheng Z, Jia F, Liao Y, Ren Y, Liu X, Liu Y. The role of the autonomic nervous system in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 14:1295061. [PMID: 38313837 PMCID: PMC10834786 DOI: 10.3389/fendo.2023.1295061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
This article reviewed the relationship between the autonomic nervous system and the development of polycystic ovary syndrome (PCOS). PCOS is the most common reproductive endocrine disorder among women of reproductive age. Its primary characteristics include persistent anovulation, hyperandrogenism, and polycystic ovarian morphology, often accompanied by disturbances in glucose and lipid metabolism. The body's functions are regulated by the autonomic nervous system, which consists mainly of the sympathetic and parasympathetic nervous systems. The autonomic nervous system helps maintain homeostasis in the body. Research indicates that ovarian function in mammals is under autonomic neural control. The ovaries receive central nervous system information through the ovarian plexus nerves and the superior ovarian nerves. Neurotransmitters mediate neural function, with acetylcholine and norepinephrine being the predominant autonomic neurotransmitters. They influence the secretion of ovarian steroids and follicular development. In animal experiments, estrogen, androgens, and stress-induced rat models have been used to explore the relationship between PCOS and the autonomic nervous system. Results have shown that the activation of the autonomic nervous system contributes to the development of PCOS in rat. In clinical practice, assessments of autonomic nervous system function in PCOS patients have been gradually employed. These assessments include heart rate variability testing, measurement of muscle sympathetic nerve activity, skin sympathetic response testing, and post-exercise heart rate recovery evaluation. PCOS patients exhibit autonomic nervous system dysfunction, characterized by increased sympathetic nervous system activity and decreased vagal nerve activity. Abnormal metabolic indicators in PCOS women can also impact autonomic nervous system activity. Clinical studies have shown that various effective methods for managing PCOS regulate patients' autonomic nervous system activity during the treatment process. This suggests that improving autonomic nervous system activity may be an effective approach in treating PCOS.
Collapse
Affiliation(s)
- Yue Yu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng Zheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Jia
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yan Liao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehan Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmin Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Robeva R, Elenkova A, Kirilov G, Zacharieva S. Plasma-free metanephrines, nerve growth factor, and renalase significance in patients with PCOS. Endocrine 2023; 81:602-612. [PMID: 37248367 PMCID: PMC10226715 DOI: 10.1007/s12020-023-03404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Polycystic ovarian syndrome (PCOS) is a common heterogeneous condition with probably multifactorial genesis. Animal studies have proven the essential role of the sympathetic nervous system in the syndrome development, while human studies are still contradictory. The present study aims to investigate the possible influence of plasma-free metanephrine (MN), and normetanephrine (NMN), nerve growth factor (NGF), and renalase (RNL) on the hormonal and metabolic parameters in women with PCOS and healthy controls. METHODS Fifty patients with PCOS and 30 healthy women participated in the study. The plasma-free MN and NMN, NGF, RNL, anti-Mullerian hormone (AMH), gonadotropin, androgen levels, and metabolic parameters were investigated. RESULTS Plasma-free NMN and NGF concentrations were increased in PCOS individuals, while RNL levels were decreased compared to healthy volunteers. Increased plasma-free NMN (OR = 1.0213 [95%CI 1.0064-1.0364], p = 0.005) and NGF (OR = 1.0078 [95%CI 1.0001-1.0155], p = 0.046) but not MN or RNL levels were associated with a higher risk of PCOS after adjustment for age. Plasma-free NMN levels were positively associated with the LH (r = +0.253; p = 0.039). androstenedione (r = +0.265; p = 0.029), 17-OH progesterone (r = +0.285; p = 0.024), NGF (r = +0.320; p = 0.008), and AMH (r = +0.417; p < 0.001) concentrations of the investigated women. RNL levels were inversely related to the BMI (r = -0.245; p = 0.029), HOMA-IR (r = -0.250; p = 0.030), free testosterone (r = -0.303; p = 0.006) levels. systolic (r = -0.294; p = 0.008) and diastolic (r = -0.342; p = 0.002) blood pressure. CONCLUSIONS Increased sympathetic noradrenergic activity and NGF synthesis might be related to the increased AMH and delta-4 androgen levels in a subgroup of PCOS patients. RNL levels might influence the metabolic status of PCOS patients. Further studies are needed to explore the significance of adrenal medullar and autonomic dysfunction for developing different PCOS phenotypes and their subsequent cardiovascular complications.
Collapse
Affiliation(s)
- Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria.
| | - Atanaska Elenkova
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Georgi Kirilov
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Sabina Zacharieva
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria
| |
Collapse
|
3
|
A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable. Cells 2022; 11:cells11111835. [PMID: 35681529 PMCID: PMC9180430 DOI: 10.3390/cells11111835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Microglia are the only immune cell population present in the brain parenchyma. Their vantage position in the central nervous system (CNS) enables these myeloid cells to perform the most disparate of tasks: from the classical immune functions of fighting infections and surveilling the extracellular space for pathogens and damage, to sculpting the neuronal circuitry by pruning unnecessary synapses and assisting neurons in spine formation, aiding in the maintenance of brain homeostasis. The neurotrophin field has always been dominated by the neurocentric view that the primary target of these molecules must be neurons: this holds true even for the Nerve Growth Factor (NGF), which owes its popularity in the neuroscience community to its trophic and tropic activity towards sensory and sympathetic neurons in the peripheral nervous system, and cholinergic neurons in the CNS. The increasing evidence that microglia are an integral part of neuronal computation calls for a closer look as to whether these glial cells are capable of responding directly to NGF. In this review, we will first outline evidence in support of a role for NGF as a molecule mediating neuroimmune communication. Then, we will illustrate some of those non-immune features that have made microglial cells one of the hottest topics of this last decade. In conclusion, we will discuss evidence in support of a microglial function for NGF.
Collapse
|
4
|
Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail 2021; 8:974-987. [PMID: 33465292 PMCID: PMC8006610 DOI: 10.1002/ehf2.13138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiac innervation density generally reflects the levels of nerve growth factor (NGF) produced by the heart—changes in NGF expression within the heart and vasculature contribute to neuronal remodelling (e.g. sympathetic hyperinnervation or denervation). Its synthesis and release are altered under different pathological conditions. Although NGF is well known for its survival effects on neurons, it is clear that these effects are more wide ranging. Recent studies reported both in vitro and in vivo evidence for beneficial actions of NGF on cardiomyocytes in normal and pathological hearts, including prosurvival and antiapoptotic effects. NGF also plays an important role in the crosstalk between the nervous and cardiovascular systems. It was the first neurotrophin to be implicated in postnatal angiogenesis and vasculogenesis by autocrine and paracrine mechanisms. In connection with these unique cardiovascular properties of NGF, we have provided comprehensive insight into its function and potential effect of NGF underlying heart sustainable/failure conditions. This review aims to summarize the recent data on the effects of NGF on various cardiovascular neuronal and non‐neuronal functions. Understanding these mechanisms with respect to the diversity of NGF functions may be crucial for developing novel therapeutic strategies, including NGF action mechanism‐guided therapies.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| |
Collapse
|
5
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Kazemi A, Rahmati M, Eslami R, Sheibani V. Activation of neurotrophins in lumbar dorsal root probably contributes to neuropathic pain after spinal nerve ligation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:29-35. [PMID: 28133521 PMCID: PMC5243971 DOI: 10.22038/ijbms.2017.8089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Neurotrophins (NTs) exert various effects on neuronal system. Growing evidence indicates that NTs are involved in the pathophysiology of neuropathic pain. However, the exact role of these proteins in modulating nociceptive signaling requires being defined. Thus, the aim of this study was to evaluate the effects of spinal nerve ligation (SNL) on NTs activation in the lumbar dorsal root. MATERIALS AND METHODS Ten male Wistar rats were randomly assigned to two groups: tight ligation of the L5 spinal nerve (SNL: n=5) and Sham (n=5). In order to produce neuropathic pain, the L5 spinal nerve was tightly ligated (SNL). Then, allodynia and hyperalgesia tests were conducted weekly. After 4 weeks, tissue samples were taken from the two groups for laboratory evaluations. Here, Real-Time PCR quantity method was used for measuring NTs gene expression levels. RESULTS SNL resulted in a significant weight loss in the soleus muscle (P<0.05), mechanical allodynia and thermal hyperalgesia thresholds (respectively, P<0.05; P<0.05). Also, NGF, NT-4, NT-3, TrkA, TrkB and TrkC expression were up-regulated following spinal nerve ligation group (respectively, P=0.025, P=0.013, P=0.001, P=0.002, P<0.001, P=001) (respectively, 4.7, 5.2, 7.5, 5.1, 7.2, 6.2 folds). CONCLUSION The present study provides new evidence that neuropathic pain induced by spinal nerve ligation probably activates NTs and Trk receptors expression in DRG. However, further studies are needed to better elucidate the role of NTs in a neuropathic pain.
Collapse
Affiliation(s)
- Abdolreza Kazemi
- Department of Physical Education and Sports Sciences, Faculty of Humanity and Literature, Vali E Asr University of Rafsanjan, Rafsanjan, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Corresponding author: Abdolreza Kazemi. Department of Physical Education and Sports Sciences, Faculty of Humanity and Literature, Vali E ASR University, Rafsanjan, Iran. Tel/Fax: +98-31-312335;
| | - Masoud Rahmati
- Departments of Physical Education and Sports Sciences, Lorestan University, Khoram Abad, Iran
| | - Rasoul Eslami
- Department of corrective exercise and Sports injury, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve Growth Factor: A Focus on Neuroscience and Therapy. Curr Neuropharmacol 2016; 13:294-303. [PMID: 26411962 PMCID: PMC4812798 DOI: 10.2174/1570159x13666150403231920] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Nerve growth factor (NGF) is the firstly discovered and best characterized neurotrophic factor, known to play a critical protective role in the development and survival of sympathetic, sensory and forebrain cholinergic neurons. NGF promotes neuritis outgrowth both in vivo and in vitro and nerve cell recovery after ischemic, surgical or chemical injuries. Recently, the therapeutic property of NGF has been demonstrated on human cutaneous and corneal ulcers, pressure ulcer, glaucoma, maculopathy and retinitis pigmentosa. NGF eye drops administration is well tolerated, with no detectable clinical evidence of systemic or local adverse effects. The aim of this review is to summarize these biological properties and the potential clinical development of NGF.
Collapse
Affiliation(s)
- Luigi Aloe
- Institute of Cell Biology and Neurobiology, National Research Council (CNR); NGF Section, Via Fosso di Fiorano, 64/65 - 00143 Rome, Italy.
| | | | | | | |
Collapse
|
8
|
Abstract
Neurotrophins (NTs) belong to a family of trophic factors that regulate the survival, growth and programmed cell death of neurons. In mammals, there are four structurally and functionally related NT proteins, viz. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 and neurotrophin 4. Most research on NTs to date has focussed on the effects of NGF and BDNF signalling via their respective cognate high affinity neurotrophic tyrosine kinase viz TrkA and TrkB receptors. Apart from the key physiologic roles of NGF and BDNF in peripheral and central nervous system function, NGF and BDNF signalling via TrkA and TrkB receptors respectively have been implicated in mechanisms underpinning neuropathic pain. Additionally, NGF and BDNF signalling via the low-affinity pan neurotrophin receptor at 75 kDa (p75NTR) may also contribute to the pathobiology of neuropathic pain. In this review, we critically assess the role of neurotrophins signalling via their cognate high affinity receptors as well as the low affinity p75NTR in the pathophysiology of peripheral neuropathic and central neuropathic pain. We also identify knowledge gaps to guide future research aimed at generating novel insight on how to optimally modulate NT signalling for discovery of novel therapeutics to improve neuropathic pain relief.
Collapse
|
9
|
Simultaneous inferior alveolar nerve regeneration and osseointegration with a nerve growth factor-supplying implant: a preliminary study. J Oral Maxillofac Surg 2014; 73:410-23. [PMID: 25266595 DOI: 10.1016/j.joms.2014.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE Although nerve growth factor (NGF) has been proved to enhance inferior alveolar nerve (IAN) regeneration, its clinical application remains a challenging issue. This study investigated the functional regeneration of IAN injury by supplying NGF using an NGF-supplying implant and its effect on the osseointegration. MATERIALS AND METHODS In canine IAN transection-and-repair models (n = 9), NGF-supplying implants connected to osmotic pumps were installed just above the transection site. In the right IAN, NGF 300 μg in phosphate buffered saline (PBS) 2 mL was loaded in the pump and pure PBS 2 mL was loaded in the left IAN. The gross clinical finding was evaluated by wound healing, inflammation, implant exposure, and loss of fixture. To evaluate IAN regeneration, electrophysiologic (amplitude, latency, conduction velocity, and peak voltage) and histomorphometric (axon count and density, myelin thickness, and ratio of axon diameter to fiber diameter) analyses were performed. Implant stability quotient, bone-to-implant contact ratio, and new bone area were measured to assess the osseointegration of the NGF-supplying implant. RESULTS The conduction velocity (2.675 m/second) and peak voltage (1.940 μV) of the NGF group at 6 weeks were considerably higher than those of the PBS group (1.892 m/second and 1.300 μV, respectively). The same results were observed for axon count (NGF vs PBS, 4,576.107 ± 270.413 vs 3,606.972 ± 242.876), axon density (10,707.458 ± 638.835 vs 7,899.781 ± 1,063.625/mm(2)), and myelin thickness (1.670 ± 0.555 vs 1.173 ± 0.388 μm). There were no meaningful differences for the other parameters. CONCLUSIONS Supplying NGF with specially designed dental implants can be a new therapeutic approach to enable IAN regeneration and osseointegration simultaneously.
Collapse
|
10
|
Dendrite complexity of sympathetic neurons is controlled during postnatal development by BMP signaling. J Neurosci 2013; 33:15132-44. [PMID: 24048844 DOI: 10.1523/jneurosci.4748-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dendrite development is controlled by the interplay of intrinsic and extrinsic signals affecting initiation, growth, and maintenance of complex dendrites. Bone morphogenetic proteins (BMPs) stimulate dendrite growth in cultures of sympathetic, cortical, and hippocampal neurons but it was unclear whether BMPs control dendrite morphology in vivo. Using a conditional knock-out strategy to eliminate Bmpr1a and Smad4 in immature noradrenergic sympathetic neurons we now show that dendrite length, complexity, and neuron cell body size are reduced in adult mice deficient of Bmpr1a. The combined deletion of Bmpr1a and Bmpr1b causes no further decrease in dendritic features. Sympathetic neurons devoid of Bmpr1a/1b display normal Smad1/5/8 phosphorylation, which suggests that Smad-independent signaling paths are involved in dendritic growth control downstream of BMPR1A/B. Indeed, in the Smad4 conditional knock-out dendrite and cell body size are not affected and dendrite complexity and number are increased. Together, these results demonstrate an in vivo function for BMPs in the generation of mature sympathetic neuron dendrites. BMPR1 signaling controls dendrite complexity postnatally during the major dendritic growth period of sympathetic neurons.
Collapse
|
11
|
Lorentz CU, Parrish DC, Alston EN, Pellegrino MJ, Woodward WR, Hempstead BL, Habecker BA. Sympathetic denervation of peri-infarct myocardium requires the p75 neurotrophin receptor. Exp Neurol 2013; 249:111-9. [PMID: 24013014 PMCID: PMC3826885 DOI: 10.1016/j.expneurol.2013.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 12/22/2022]
Abstract
Development of cardiac sympathetic heterogeneity after myocardial infarction contributes to ventricular arrhythmias and sudden cardiac death. Regions of sympathetic hyperinnervation and denervation appear in the viable myocardium beyond the infarcted area. While elevated nerve growth factor (NGF) is implicated in sympathetic hyperinnervation, the mechanisms underlying denervation are unknown. Recent studies show that selective activation of the p75 neurotrophin receptor (p75(NTR)) in sympathetic neurons causes axon degeneration. We used mice that lack p75(NTR) to test the hypothesis that activation of p75(NTR) causes peri-infarct sympathetic denervation after cardiac ischemia-reperfusion. Wild type hearts exhibited sympathetic denervation adjacent to the infarct 24h and 3 days after ischemia-reperfusion, but no peri-infarct sympathetic denervation occurred in p75(NTR)-/- mice. Sympathetic hyperinnervation was found in the distal peri-infarct myocardium in both genotypes 3 days after MI, and hyperinnervation was increased in the p75(NTR)-/- mice. By 7 days after ischemia-reperfusion, cardiac sympathetic innervation density returned back to sham-operated levels in both genotypes, indicating that axonal pruning did not require p75(NTR). Prior studies revealed that proNGF is elevated in the damaged left ventricle after ischemia-reperfusion, as is mRNA encoding brain-derived neurotrophic factor (BDNF). ProNGF and BDNF preferentially bind p75(NTR) rather than TrkA on sympathetic neurons. Immunohistochemistry using Bdnf-HA mice confirmed the presence of BDNF or proBDNF in the infarct after ischemia-reperfusion. Thus, at least two p75(NTR) ligands are elevated in the left ventricle after ischemia-reperfusion where they may stimulate p75(NTR)-dependent denervation of peri-infarct myocardium. In contrast, NGF-induced sympathetic hyperinnervation in the distal peri-infarct ventricle is attenuated by p75(NTR).
Collapse
Affiliation(s)
- Christina U. Lorentz
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - Diana C. Parrish
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - Eric N. Alston
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - Michael J. Pellegrino
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - William R. Woodward
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - Barbara L. Hempstead
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Beth A. Habecker
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| |
Collapse
|
12
|
Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 2012. [PMID: 23190582 PMCID: PMC3543237 DOI: 10.1186/1479-5876-10-239] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The physiological role of the neurotrophin nerve growth factor (NGF) has been characterized, since its discovery in the 1950s, first in the sensory and autonomic nervous system, then in central nervous, endocrine and immune systems. NGF plays its trophic role both during development and in adulthood, ensuring the maintenance of phenotypic and functional characteristic of several populations of neurons as well as immune cells. From a translational standpoint, the action of NGF on cholinergic neurons of the basal forebrain and on sensory neurons in dorsal root ganglia first gained researcher's attention, in view of possible clinical use in Alzheimer's disease patients and in peripheral neuropathies respectively. The translational and clinical research on NGF have, since then, enlarged the spectrum of diseases that could benefit from NGF treatment, at the same time highlighting possible limitations in the use of the neurotrophin as a drug. In this review we give a comprehensive account for almost all of the clinical trials attempted until now by using NGF. A perspective on future development for translational research on NGF is also discussed, in view of recent proposals for innovative delivery strategies and/or for additional pathologies to be treated, such as ocular and skin diseases, gliomas, traumatic brain injuries, vascular and immune diseases.
Collapse
Affiliation(s)
- Luigi Aloe
- Cellular Biology and Neurobiology Institute, CNR, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | | | | | | |
Collapse
|
13
|
Cipolla MJ, Bishop N, Chan SL. Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum. Hypertension 2012; 60:705-11. [PMID: 22824983 DOI: 10.1161/hypertensionaha.112.198952] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Severe preeclampsia and eclampsia are associated with brain edema that forms preferentially in the posterior cerebral cortex possibly because of decreased sympathetic innervation of posterior cerebral arteries and less effective autoregulation during acute hypertension. In the present study, we examined the effect of pregnancy on the effectiveness of cerebral blood flow autoregulation using laser Doppler flowmetry and edema formation by wet:dry weight in acute hypertension induced by phenylephrine infusion in the anterior and posterior cerebrum from nonpregnant (n=8) and late-pregnant (n=6) Sprague-Dawley rats. In addition, we compared the effect of pregnancy on sympathetic innervation by tyrosine hydroxylase staining of posterior and middle cerebral arteries (n=5-6 per group) and endothelial and neuronal NO synthase expression using quantitative PCR (n=3 per group). In nonpregnant animals, there was no difference in autoregulation between the anterior and posterior cerebrum. However, in late-pregnant animals, the threshold of cerebral blood flow autoregulation was shifted to lower pressures in the posterior cerebrum, which was associated with increased neuronal NO synthase expression in the posterior cerebral cortex versus anterior. Compared with the nonpregnant state, pregnancy increased the threshold of autoregulation in both brain regions that was related to decreased expression of endothelial NO synthase. Lastly, acute hypertension during pregnancy caused greater edema formation in both brain cortices that was not attributed to changes in sympathetic innervation. These findings suggest that, although pregnancy shifted the cerebral blood flow autoregulatory curve to higher pressures in both the anterior and posterior cortices, it did not protect from edema during acute hypertension.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurology, University of Vermont, 149 Beaumont Ave, HSRF 416, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
14
|
Abstract
Proper vascular regulation is of paramount importance for the control of blood flow to tissues. In particular, the regulation of peripheral resistance arteries is essential for several physiological processes, including control of blood pressure, thermoregulation and increase of blood flow to central nervous system and heart under stress conditions such as hypoxia. Arterial tone is regulated by the periarterial autonomic nervous plexus, as well as by endothelium-dependent, myogenic and humoral mechanisms. Underscoring the importance of proper vascular regulation, defects in these processes can lead to diseases such as hypertension, orthostatic hypotension, Raynaud's phenomenon, defective thermoregulation, hand-foot syndrome, migraine and congestive heart failure. Here, we review the molecular mechanisms controlling the development of the periarterial nerve plexus, retrograde and localized signalling at neuro-effector junctions, the molecular and cellular mechanisms of vascular regulation and adult plasticity and maintenance of periarterial innervation. We particularly highlight a newly discovered role for vascular endothelial growth factor in the structural and functional maintenance of arterial neuro-effector junctions. Finally, we discuss how defects in neuronal vascular regulation can lead to disease.
Collapse
Affiliation(s)
- E Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany.
| | | |
Collapse
|
15
|
Luther JA, Birren SJ. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton Neurosci 2009; 151:46-60. [PMID: 19748836 DOI: 10.1016/j.autneu.2009.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electrical and synaptic properties of neurons are essential for determining the function of the nervous system. Thus, understanding the mechanisms that control the appropriate developmental acquisition and maintenance of these properties is a critical problem in neuroscience. A great deal of our understanding of these developmental mechanisms comes from studies of soluble growth factor signaling between cells in the peripheral nervous system. The sympathetic nervous system has provided a model for studying the role of these factors both in early development and in the establishment of mature properties. In particular, neurotrophins produced by the targets of sympathetic innervation regulate the synaptic and electrophysiological properties of postnatal sympathetic neurons. In this review we examine the role of neurotrophin signaling in the regulation of synaptic strength, neurotransmitter phenotype, voltage-gated currents and repetitive firing properties of sympathetic neurons. Together, these properties determine the level of sympathetic drive to target organs such as the heart. Changes in this sympathetic drive, which may be linked to dysfunctions in neurotrophin signaling, are associated with devastating diseases such as high blood pressure, arrhythmias and heart attack. Neurotrophins appear to play similar roles in modulating the synaptic and electrical properties of other peripheral and central neuronal systems, suggesting that information provided from studies in the sympathetic nervous system will be widely applicable for understanding the neurotrophic regulation of neuronal function in other systems.
Collapse
Affiliation(s)
- Jason A Luther
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
16
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
McDonald TG, Scott SA, Kane KM, Kawaja MD. Proteomic assessment of sympathetic ganglia from adult mice that possess null mutations of ExonIII or ExonIV in the p75 neurotrophin receptor gene. Brain Res 2009; 1253:1-14. [PMID: 19046947 DOI: 10.1016/j.brainres.2008.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/24/2008] [Accepted: 11/01/2008] [Indexed: 01/02/2023]
Abstract
Neurotrophins, such as nerve growth factor (NGF), are capable of binding to the transmembrane p75 neurotrophin receptor (p75NTR), which regulates a variety of cellular responses including apoptosis and axonal elongation. While the development of mutant mouse strains that lack functional p75NTR expression has provided further insight into the importance of this neurotrophin receptor, there remains a paucity of information concerning how the loss of p75NTR expression may alter neural phenotypes. To address this issue, we assessed the proteome of the cervical sympathetic ganglia from two mutant lines of mice, which were compared to the ganglionic proteome of age-matched wild type mice. The ganglionic proteome of mice possessing two mutant alleles of either exonIII or exonIV for the p75NTR gene displayed detectable alterations in levels of Lamin A, tyrosine hydroxylase, and Annexin V, as compared to ganglionic proteome of wild type mice. Decreased expression of the basic isoform of tyrosine hydroxylase may be linked to perturbed NGF signaling in the absence of p75NTR in mutant mice. Stereological measurement showed significant increases in the number of sympathetic neurons in both lines of p75NTR-deficient mice, relative to wild type mice. This enhanced survival of sympathetic neurons coincides with shifts toward the more basic isoforms of Annexin V in mutant mice. This study, in addition to providing the first comparative proteomic assessment of sympathetic ganglia, sheds new light onto the phenotypic changes that occur as a consequence of a loss of p75NTR expression in adult mice.
Collapse
Affiliation(s)
- Todd G McDonald
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
18
|
Zweifel LS, Kuruvilla R, Ginty DD. Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci 2005; 6:615-25. [PMID: 16062170 DOI: 10.1038/nrn1727] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal connections are established and refined through a series of developmental programs that involve axon and dendrite specification, process growth, target innervation, cell death and synaptogenesis. Many of these developmental events are regulated by target-derived neurotrophins and their receptors, which signal retrogradely over long distances from distal-most axons to neuronal cell bodies. Recent work has established many of the cellular and molecular events that underlie retrograde signalling and the importance of these events for both development and maintenance of proper neural connectivity.
Collapse
Affiliation(s)
- Larry S Zweifel
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
19
|
Léon C, Grant N, Aunis D, Langley K. L1 Cell Adhesion Molecule is Expressed by Noradrenergic but not Adrenergic Chromaffin Cells: A Possible Major Role for L1 in Adrenal Medullary Design. Eur J Neurosci 2002; 4:201-209. [PMID: 12106366 DOI: 10.1111/j.1460-9568.1992.tb00868.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The adrenal medulla of higher animals is constituted of homotypic groups of chromaffin cells secreting either adrenalin or noradrenalin. Since not all chromaffin cells are individually innervated by fibres of the splanchnic nerve, this tissue characteristic is crucial to the physiological function of the gland. In an attempt to analyse differences between these chromaffin cell types which might underlie the establishment of this tissue pattern, we examined the expression of the adhesion molecule L1 in this gland by immunocytochemistry at the optical and ultrastructural levels in rats. L1, an adhesion molecule abundant in the central nervous system, was found to be present in the adrenal medulla of adults; it was strongly expressed on innervating axons and their surrounding Schwann cells and also on a subpopulation of chromaffin cells. The nature of these chromaffin cells was examined by immunocytochemistry using antibodies against the catecholamine-synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT), which are capable of distinguishing between adrenergic and noradrenergic cells. Immunofluorescence labelling of sequential frozen sections demonstrated that chromaffin cells which express L1 do not express PNMT; conversely, L1 was not detected in any chromaffin cells expressing PNMT. Ultrastructural immunocytochemistry confirmed the existence of two non-overlapping populations of chromaffin cells. It is concluded that, in the adrenal medulla, noradrenergic but not adrenergic chromaffin cells express this adhesion molecule. These data, together with our previous observations that all chromaffin cells express the neural cell adhesion molecule, NCAM, suggest that L1, in cooperation with NCAM, could be responsible for the association of noradrenergic cells in the form of homotypic aggregates segregated from groups of adrenergic cells within the adrenal medulla.
Collapse
Affiliation(s)
- Catherine Léon
- Unité INSERM U-338-Biologie de la Communication Cellulaire, Centre de Neurochimie, 5 rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
20
|
Jakada J, Furuta N, Kawahara M, Onodera S, Oishi Y, Kawada M, Matsuura T, Hasumura S, Nagamori S. Effects of nerve growth factor and glucocorticoid on cultured human pheochromocytoma cells. Med Mol Morphol 1998. [DOI: 10.1007/bf01547945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Abstract
Regulation of heart rate by the sympathetic nervous system involves the release of norepinephrine (NE) from nerve terminals onto heart tissue, resulting in an elevation in beat rate. Nerve growth factor (NGF) is a neurotrophin produced by the heart that supports the survival and differentiation of sympathetic neurons. Here we report that NGF also functions as a modulator of sympathetic synaptic transmission. We determined the effect of NGF on the strength of synaptic transmission in co-cultures of neonatal rat cardiac myocytes and sympathetic neurons from the superior cervical ganglion (SCG). Synaptic transmission was assayed functionally, as an increase in the beat rate of a cardiac myocyte during stimulation of a connected neuron. Application of NGF produced a pronounced, reversible enhancement of synaptic strength. We found that TrkA, the receptor tyrosine kinase that mediates many NGF responses, is expressed primarily by neurons in these cultures, suggesting a presynaptic mechanism for the effects of NGF. A presynaptic model is further supported by the finding that NGF did not alter the response of myocytes to application of NE. In addition to the acute modulatory effects of NGF, we found that the concentration of NGF in the growth medium affects the level of synaptic transmission in cultures of sympathetic neurons and cardiac myocytes. These results indicate that in addition to its role as a survival factor, NGF plays both acute and long-term roles in the regulation of developing sympathetic synapses in the cardiac system.
Collapse
|
22
|
Pan Z, Sampath D, Jackson G, Werrbach-Perez K, Perez-Polo R. Nerve growth factor and oxidative stress in the nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:173-93. [PMID: 9413574 DOI: 10.1007/978-1-4757-9551-6_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Z Pan
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch at Galveston 77555-0652, USA
| | | | | | | | | |
Collapse
|
23
|
Bourchier D, Weston PJ. Randomised trial of dopamine compared with hydrocortisone for the treatment of hypotensive very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 1997; 76:F174-8. [PMID: 9175947 PMCID: PMC1720650 DOI: 10.1136/fn.76.3.f174] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIM To compare the efficacy of hydrocortisone with dopamine for the treatment of hypotensive, very low birthweight (VLBW) infants. METHODS Forty infants were randomly allocated to receive either hydrocortisone (n = 21) or dopamine (n = 19). RESULTS All 19 infants randomised to dopamine responded; 17 of 21 (81%) did so in the hydrocortisone group. Three of the four non-responders in the hydrocortisone group had clinically significant left to right ductal shunting. The incidence of bronchopulmonary dysplasia, retinopathy of prematurity, intraventricular haemorrhage, necrotising enterocolitis, symptomatic patent ductus arteriosus, hyperglycaemia, sepsis (bacterial or fungal) or survival did not differ between groups. The adrenocorticotrophic hormone (ACTH) stimulated plasma cortisol activity, either before or after treatment, did not differ between the two groups of infants. Although a significant difference in efficacy between dopamine and hydrocortisone was not noted (P = 0.108), there were four treatment failures in the hydrocortisone group, compared with none in the dopamine group. CONCLUSION Both hydrocortisone and dopamine are effective treatments for hypotension in very low birthweight infants.
Collapse
|
24
|
Li XM, Qi J, Juorio A, Boulton A. Reciprocal regulation of the content of aromatic L-amino acid decarboxylase and tyrosine hydroxylase mRNA by NGF in PC12 cells. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970215)47:4<449::aid-jnr10>3.0.co;2-u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Abstract
The postnatal development of intraadrenal ganglion neurons was studied in rat by using indirect immunohistochemistry and in situ hybridization. The large neuropeptide tyrosine (NPY)-expressing ganglion neurons (type I ganglion neurons) matured postnatally, with marked increases in acetylcholinesterase (AChE)-, neurofilament 10 (NF10)-, and tyrosine hydroxylase (TH)-like immunoreactivities (LIs) paralleled by increasing levels of mRNAs encoding NPY, low-affinity neurotrophin receptor (LANR), and tropomyosin kinase receptor (trk). The smaller vasoactive intestinal polypeptide (VIP)-immunoreactive (IR) ganglion neurons (type II ganglion neurons) expressed increasing levels of VIP mRNA postnatally and also contained immunoreactive nitric oxide synthase (NOS) and its mRNA. These type II ganglion neurons appeared to be relatively mature already at postnatal day (P2) and did not express detectable levels of LANR or trk mRNAs. The cell size of both the type I and type II ganglion neurons increased about 2.5-fold postnatally. The type I ganglion neurons formed more densely packed clusters with increasing age, whereas the type II ganglion neurons were spread out in small groups or individually, mainly in the peripheral parts of the medulla, and appeared to fulfill their migration into the medulla and/or to the inner regions of the cortex early postnatally, possibly after establishing contact with their cortical targets. We suggest that the type I ganglion neurons represent sympathetic ganglion neurons of the same origin as the chromaffin cells and that they mature mainly postnatally. The development of the type II (VIP/NOS) ganglion neurons takes place earlier; however, their phenotype remains more uncertain.
Collapse
Affiliation(s)
- H Holgert
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Mendoza-Ramírez JL, Beltrán-Parrazal L, Verdugo-Díaz L, Morgado-Valle C, Drucker-Colín R. Delay in manifestations of aging by grafting NGF cultured chromaffin cells in adulthood. Neurobiol Aging 1995; 16:907-16. [PMID: 8622781 DOI: 10.1016/0197-4580(95)02008-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dopamine agonists or grafts compensate impaired motor functions in aged rats. However, there is no evidence showing whether grafting in adulthood retard aging manifestations. Motor performance of 13-month-old rats was tested on 2 meter-long wooden beams which had a 15 degree inclination and whose thickness varied from 3, 6, 12, 18, to 24 mm. Rats at 14 months were randomly assigned to 3 groups: sham graft (Group 1); intrastriatal graft of chromaffin cells cultured with NGF (Group 2); intrastriatal graft of chromaffin cells (Group 3). Motor performance was tested at monthly intervals up until rats were 26 months old. Two more groups were included: 26-month-old naive rats (Group 4); and 3- to 5-month-old naive rats (Group 5) both evaluated only once. At 26 months, the basal activity of ventral mesencephalic dopaminergic neurons was recorded. Results showed in Group 2 delay of motor detriments seen in aged rats, maintenance of basal firing rates of nigral cells compared to those of younger rats, and greater survival of substantia nigra cells. It is suggested that NGF cultured chromaffin cells produce a delay of motor detriments in aged rats, as a result of inducing survival and firing rates of nigral cells comparable to those seen in young rats.
Collapse
Affiliation(s)
- J L Mendoza-Ramírez
- Depto. de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, D.F. México
| | | | | | | | | |
Collapse
|
27
|
Zhu MY, Juorio AV. Aromatic L-amino acid decarboxylase: biological characterization and functional role. GENERAL PHARMACOLOGY 1995; 26:681-96. [PMID: 7635243 DOI: 10.1016/0306-3623(94)00223-a] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Aromatic L-amino acid decarboxylase is the enzyme responsible for the decarboxylation step in both the catecholamine and the indolamine synthetic pathways. Immunological and molecular biological studies suggest that it is a single enzyme with one catalytic site but with different locations for attachment of the substrates. The enzyme is widely distributed in the brain and in peripheral tissues. 2. Recent investigations have shown that the enzyme is regulated by short term mechanisms that may involve activation of adenyl cyclase or protein kinase C. In addition, a long-term mechanism of activation by altered gene expression has also been suggested.
Collapse
Affiliation(s)
- M Y Zhu
- Neuropsychiatric Research Unit, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
28
|
Garciá JC, Blanco L, McPherson M, Leiva A, Maciás R. High-performance liquid chromatographic determination of norepinephrine, epinephrine and dopamine in human foetal adrenal gland. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1994; 656:77-80. [PMID: 7952050 DOI: 10.1016/0378-4347(94)00088-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this work was to characterize the human foetal adrenal gland (HFAG) by studying norepinephrine (NE), epinephrine (E), and dopamine (DA) levels in foetuses with ages ranging from 10 to 18 weeks, as a source of chromaffin cells for basic and clinical research, in the treatment of Parkinson's disease. The HFAGs were obtained from ten abortions with foetal ages ranging from 10-12 (n = 7) to 13-18 (n = 3) weeks. For the simultaneous detection of NE, E, and DA a high-performance liquid chromatographic (HPLC) procedure with electrochemical detection was employed. The concentrations found (ng/mg wet weight) were 24.24 +/- 7.06 for NE, 3.56 +/- 2.97 for E and 0.45 +/- 0.27 for DA at 10-12 weeks and 14.91 +/- 9.94 for NE, 8.18 +/- 8.79 for E and 0.16 +/- 0.05 for DA at 13-18 weeks. The DA:E ratio present in HFAG between 10 and 12 weeks was 100 times higher than that reported by other authors in adult adrenal medulla.
Collapse
Affiliation(s)
- J C Garciá
- Centro Internacional de Restauracion Neurologica, Habana, Cuba
| | | | | | | | | |
Collapse
|
29
|
Jousselin-Hosaja M. A descriptive and quantitative morphometric study of long-term mouse adrenal medulla grafts implanted into the putamen: effect of nerve growth factor injected at grafting. Brain Res 1993; 627:275-86. [PMID: 8298972 DOI: 10.1016/0006-8993(93)90331-g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mouse adrenal medulla grafts were evaluated morphologically and quantitatively after implantation into the mouse putamen, either alone or with nerve growth factor (NGF) injected at grafting. Specific antibodies were used to determine the expression of neurofilaments, dopamine (DA) and phenylethanolamine-N-methyl transferase (PNMT). Three months after grafting, the survival rate and size volume of chromaffin cells were significantly greater in the grafts containing NGF, and increasing numbers of intermediate cell types (e.g. chromaffin cells transforming into neurons), and of neuron-like cells seemed to have formed. Chromaffin cells stained positively for DA and PNMT, but only a few chromaffin-like processes stained for neurofilaments. A neuronal network of adrenal medulla grafts was observed, consisting of non-myelinated nerve fibers, nerve terminals and chromaffin-like processes. In all grafts the synapses on chromaffin cells were mainly small, symmetrical or asymmetrical (about 1-2 microns in diameter) with round, small clear synaptic vesicles. Nerve terminals were not immunoreactive to dopamine or PNMT. These results show that a single injection of NGF at grafting influences the survival and differentiation of chromaffin cells. This study suggests that adrenal medulla grafts may integrate into the putamen.
Collapse
Affiliation(s)
- M Jousselin-Hosaja
- Université P. et M. Curie, Institut des Neurosciences, CNRS, URA 1488, Département de Neurobiologie et des Signaux Intercellulaires, Paris, France
| |
Collapse
|
30
|
Berrard S, Faucon Biguet N, Houhou L, Lamouroux A, Mallet J. Retinoic acid induces cholinergic differentiation of cultured newborn rat sympathetic neurons. J Neurosci Res 1993; 35:382-9. [PMID: 8103115 DOI: 10.1002/jnr.490350405] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Many studies provide evidence that retinoic acid (RA), an endogenous derivative of vitamin A, plays a role in the development of the nervous system. We now report that RA controls the neurotransmitter phenotype of post-mitotic rat sympathetic neurons in cell culture. RA added to the culture medium increased the specific activity of choline acetyltransferase (ChAT) and the level of acetylcholine (ACh). Concomitantly, RA reduced the specific activities of two catecholamine synthetic enzymes, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) and the level of norepinephrine (NE). After a 2 week treatment with 5 microM RA, ChAT was increased by 5-10 fold, whereas TH and DBH were decreased by 10-15 fold and 2-3 fold, respectively, as compared to sympathetic neurons grown in the absence of RA. The modulation of the activity of the three enzymes was dose-dependent and followed a similar time course. The decrease of TH expression was demonstrated to be due to a decreased number of TH molecules.
Collapse
Affiliation(s)
- S Berrard
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
31
|
Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 1992; 9:1081-8. [PMID: 1463608 DOI: 10.1016/0896-6273(92)90067-n] [Citation(s) in RCA: 431] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report that stimulation inducing long-term potentiation (LTP) in the CA1 pyramidal cell layer of the hippocampus evokes significant increases in both BDNF and NT-3 mRNAs in CA1 neurons. No changes in BDNF or NT-3 mRNA levels were seen in the nonstimulated regions of the pyramidal cell layer or the dentate. No change was seen in the levels of NGF mRNA at the time point examined. These results suggest that relatively normal levels of activity may regulate region-specific neurotrophin levels in the hippocampus. Given that known effects of NGF (and presumably of BDNF and NT-3) include elevation of neurotransmitter levels, elevation of sodium channels, and promotion of axonal terminal sprouting, activity-associated changes in neurotrophin levels may play a role in regulating neural connections in the adult as well as the developing nervous system.
Collapse
Affiliation(s)
- S L Patterson
- Department of Physiology and Biophysics, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
32
|
Grant NJ, Leon C, Aunis D, Langley K. Cellular localization of the neural cell adhesion molecule L1 in adult rat neuroendocrine and endocrine tissues: comparisons with NCAM. J Comp Neurol 1992; 325:548-58. [PMID: 1469114 DOI: 10.1002/cne.903250407] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tissue distribution and cellular localization of the neural cell adhesion molecule L1 was determined by immunocytochemistry at the optical and ultrastructural levels in adult rat neuroendocrine tissues and pancreatic endocrine cells. L1 was found to be abundant in the neurohypophysis but undetectable in the rest of the pituitary gland. It was barely detectable in the normal rat endocrine pancreas, but a rat pancreatic insulinoma cell line was found by immunofluorescence to express low levels of L1. In the adrenal medulla, it was present on a sub-population of chromaffin cells and its density appeared to be lower on surfaces exposed to the extracellular matrix. Double immunolabelling showed this sub-population to consist of noradrenergic chromaffin cells. Adrenergic chromaffin cells were found not to express L1. In addition, the tissue distribution and cellular localization of NCAM mRNAs was determined by in situ hybridization, extending our previous studies on the cellular expression of NCAM proteins in endocrine and neuroendocrine tissues. This confirmed that the NCAM message has a wider cellular distribution than L1 within the hypophysis and the adrenal gland. In addition to secretory cells, L1 immunoreactivity was detected in glial cells, in particular in the pituicytes of the neurohypophysis, which further distinguishes them from astrocytes, their counterparts in the central nervous system. These data are discussed in terms of the different embryological origins of the various endocrine tissues examined and also in terms of the specific design constraints imposed on these tissues during their development.
Collapse
Affiliation(s)
- N J Grant
- Unité INSERM U-338-Biologie de la Communication Cellulaire-Centre de Neurochimie, Strasbourg, France
| | | | | | | |
Collapse
|
33
|
Regulated expression of the tyrosine hydroxylase gene by membrane depolarization. Identification of the responsive element and possible second messengers. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42553-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
de Lonlay A, Blouquit MF, Valens M, Chami N, Edwards DA, Gripois D. Tyrosine hydroxylase and dopamine beta-hydroxylase inductions evoked by reserpine in the superior cervical ganglion of developing eu- and hypothyroid rats. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1991; 36:33-8. [PMID: 1684370 DOI: 10.1016/0165-1838(91)90127-o] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study was designed to determine the effect of neonatally-produced hypothyroidism on reserpine-elicited tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (D beta H) induction in the superior cervical ganglion (SCG) in rats. Some rats were rendered hypothyroid from birth by daily treatment with propylthiouracil (PTU). Some hypothyroid rats received replacement therapy with triiodothyronine (T3). Some rats received PTU for 20 days, beginning at 90 days of age. Some rats were not treated and served as controls. TH and D beta H activities were assayed at 30, 50 and 110 days of age. Basal TH activity in the SCG for rats made hypothyroid as neonates was significantly lower than for controls at all ages tested; basal D beta H activity for these rats was lower than for controls at 30 and 50 days of age, but by 110 days was not different from that for controls. Basal TH activity for rats made hypothyroid as adults was intermediate between that for controls and rats made hypothyroid from infancy. Injecting control rats with reserpine produces a robust TH induction in the SCG at each age tested, and a strong D beta H induction at 50 and 110 days of age. Reserpine-evoked TH and D beta H inductions in rats made hypothyroid as adults were not different from those seen in controls. In contrast, rats made hypothyroid from infancy showed virtually no evidence of a reserpine-provoked TH or D beta H induction at any age tested. TH and D beta H inductions for hypothyroid rats given T3 replacement were completely normal.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A de Lonlay
- Laboratoire d'Endocrinologie, Université Paris XI, Orsay, France
| | | | | | | | | | | |
Collapse
|
35
|
Katoh-Semba R, Semba R, Kashiwamata S, Kato K. Elevated concentrations of beta-nerve growth factor in selected tissues from senescence-accelerated mice (SAM-P/8). Mech Ageing Dev 1991; 59:163-75. [PMID: 1890880 DOI: 10.1016/0047-6374(91)90082-b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Levels of the beta-subunit of nerve growth factor (beta-NGF) were determined in various tissues from senescence-accelerated mice (SAM-P/8) and compared with those from senescence-resistant control mice (SAM-R/1) at 4 months of age. (1) In SAM-P/8, the testis was 30% larger in terms of wet weight than that from SAM-R/1, whereas the adrenal glands from males and females were smaller than those from the respective controls by 45% and 20%, respectively. (2) About 70% of SAM-P/8 individuals had high concentrations of testosterone in serum (greater than 5ng/ml). (3) In SAM-P/8, endogenous levels of beta-NGF were significantly higher in the adrenal gland (20 and 7 times higher on average in males and females, respectively), in the thymus (100 and 5 times higher in males and females, respectively) and in the testis (500 times higher) than those in the control tissues. In other tissues there were little or no differences in terms of levels of beta-NGF. (4) Morphological changes in the adrenal gland, thymus and testis of SAM-P/8 mice were not as marked as expected from the elevated levels of beta-NGF in these tissues. (5) These results show that, in SAM-P/8 mice at 4 months of age, an elevation in the endogenous level of beta-NGF has already occurred in some peripheral tissues before senescence becomes accelerated.
Collapse
Affiliation(s)
- R Katoh-Semba
- Department of Perinatology, Institute for Developmental Research, Aichi, Japan
| | | | | | | |
Collapse
|
36
|
Krieger M, Coge F, Gros F, Thibault J. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin. Proc Natl Acad Sci U S A 1991; 88:2161-5. [PMID: 2006153 PMCID: PMC51189 DOI: 10.1073/pnas.88.6.2161] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A cDNA clone for dopa decarboxylase (EC 4.1.1.28) has been isolated from a rat pheochromocytoma cDNA library and the cDNA sequence has been determined. It corresponds to an mRNA of 2094 nucleotides. The length of the mRNA was measured by primer-extension of rat pheochromocytoma RNA and the 5' end of the sequence of the mRNA was confirmed by the PCR. A probe spanning the translation initiation site of the mRNA was used to hybridize with mRNAs from various organs of the rat. S1 nuclease digestion of the mRNAs annealed with this probe revealed two classes of mRNAs. The comparison of the cDNA sequence and published sequences for rat liver, human pheochromocytoma, and Drosophila dopa decarboxylase supported the conclusion that two mRNAs are produced: one is specific for tissue of neuronal origin and the other is specific for tissues of nonneuronal (mesodermal or endodermal) origin. The neuronal mRNA contains a 5' untranslated sequence that is highly conserved between human and rat pheochromocytoma including a GA stretch. The coding sequence and the 3' untranslated sequence of mRNAs from rat liver and pheochromocytoma are identical. The rat mRNA differs only in the 5' untranslated region. Thus a unique gene codes for dopa decarboxylase and this gene gives rise to at least two transcripts presumably in response to different signals during development.
Collapse
Affiliation(s)
- M Krieger
- Laboratoire de Biochimie Cellulaire, Collège de France, Paris
| | | | | | | |
Collapse
|
37
|
Tischler AS, Ruzicka LA, DeLellis RA. Regulation of neurotensin content in adrenal medullary cells: comparison of PC12 cells to normal rat chromaffin cells in vitro. Neuroscience 1991; 43:671-8. [PMID: 1922787 DOI: 10.1016/0306-4522(91)90325-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Radioimmunoassay studies of cultures of PC12 pheochromocytoma cells have shown progressive increments in content and release of neurotensin in response to combinations of dexamethasone, nerve growth factor, activators of adenylate cyclase and lithium. We have studied the distribution of immunoreactive neurotensin by immunocytochemistry in cultures of PC12 cells and normal rat chromaffin cells, with two objectives: (i) to determine how changes measured by radioimmunoassay in extracts of PC12 cell populations are manifested at the level of individual cells and (ii) to determine whether normal chromaffin cells respond to combinations of agents similarly to PC12 cells. Staining for immunoreactive neurotensin is not identifiable in PC12 cells maintained in control medium or with any of the medium supplements alone. Approximately 3% of cells are stained after maintenance with dexamethasone plus nerve growth factor, verus 17% with dexamethasone plus nerve growth factor plus forskolin, and 33% with all four agents. This heterogeneity does not appear to result from clonal diversity, or to be cell cycle-dependent. Individual PC12 cells recruited to produce neurotensin in response to particular signals may, however, have passed a critical stage of differentiation toward a chromaffin cell, rather than neuronal phenotype before exposure to those signals. Staining for immunoreactive neurotensin is observed in up to 18% of normal chromaffin cells maintained with dexamethasone plus nerve growth factor, up to 45% with dexamethasone plus nerve growth factor plus forskolin, and up to 54% with all four agents. Proportions of cells stained under the various culture conditions are established before birth and in fetal cultures staining is confined for the most part to cells which do not undergo neuronal differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A S Tischler
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111
| | | | | |
Collapse
|
38
|
Gage FH, Tuszynski MH, Chen KS, Fagan AM, Higgins GA. Nerve growth factor function in the central nervous system. Curr Top Microbiol Immunol 1991; 165:71-93. [PMID: 2032465 DOI: 10.1007/978-3-642-75747-1_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- F H Gage
- Department of Neurosciences M-024, University of California at San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
39
|
Tischler AS, Ruzicka LA, Perlman RL. Mimicry and inhibition of nerve growth factor effects: interactions of staurosporine, forskolin, and K252a in PC12 cells and normal rat chromaffin cells in vitro. J Neurochem 1990; 55:1159-65. [PMID: 2118943 DOI: 10.1111/j.1471-4159.1990.tb03120.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structurally similar compounds staurosporine and K252a are potent inhibitors of protein kinases. K252a has previously been reported to inhibit most or all of the effects of nerve growth factor (NGF) on PC12 pheochromocytoma cells, and staurosporine has been reported both to inhibit and to mimic NGF-induced neurite outgrowth from a PC12 cell subclone in a dose-dependent manner. We have studied the interactions of these agents with each other, with NGF, and with forskolin, an activator of adenylate cyclase, on the parent PC12 cell line and on normal neonatal and adult rat chromaffin cells. Staurosporine alone or in conjunction with forskolin induces outgrowth of short neurites from PC12 cells but does not substitute for NGF in promoting cell survival. It does not abolish NGF-induced neurite outgrowth but does reverse the effects of NGF on catecholamine synthesis. K252a abolishes NGF-induced neurite outgrowth but only partially decreases outgrowth induced by NGF plus forskolin. It does not inhibit neurite outgrowth produced by staurosporine or staurosporine plus forskolin. These findings with PC12 cells suggest that staurosporine might act downstream from K252a and NGF on components of one or more signal transduction pathways by which NGF selectively affects the expression of certain traits. Both neonatal and adult rat chromaffin cells show dramatic flattening and extension of filopodia in response to staurosporine, an observation suggesting that some of the same pathways might remain active in cells that do not exhibit a typical NGF response. Only a small amount of neurite outgrowth is observed, however, and only in neonatal cultures.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A S Tischler
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | |
Collapse
|
40
|
Differential effect of membrane depolarization on levels of tyrosine hydroxylase and dopamine beta-hydroxylase mRNAs in PC12 pheochromocytoma cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1990; 8:121-7. [PMID: 1976198 DOI: 10.1016/0169-328x(90)90056-j] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Membrane depolarization has been widely used to elucidate the response of the nervous system to prolonged neuronal activity or stress. We studied the effect of treating PC12 cells with membrane depolarizing stimuli, 50 mM KCl, or 150 microM veratridine, and the subsequent changes in the mRNA levels of the catecholamine biosynthetic enzymes, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH). TH mRNA levels were found to increase 2- to 5-fold after continuous treatment for 1-12 h with 50 mM KCl. Depolarization with 150 microM veratridine had a similar effect on TH mRNA. In contrast, DBH mRNA levels were unchanged by either KCl or veratridine treatment. The role of calcium in the increase of TH mRNA levels elicited by depolarization was examined. The increase in TH mRNA was inhibited by the chelation of calcium with 3 mM EGTA. However, in contrast to their effect on phosphorylation of TH elicited by acute depolarization, the calcium channel blockers, nitrendipine and verapamil, and the calmodulin antagonists, W7 and trifluoperazine, did not prevent the increase in TH mRNA levels subsequent to several hours exposure to depolarizing stimuli. The calcium ionophore, A23187, alone was unable to induce TH mRNA levels. Thus, the increase in TH mRNA elicited by depolarization is mediated differently than the acute phosphorylation of the enzyme.
Collapse
|
41
|
Vogel KS, Weston JA. The sympathoadrenal lineage in avian embryos. II. Effects of glucocorticoids on cultured neural crest cells. Dev Biol 1990; 139:13-23. [PMID: 1970316 DOI: 10.1016/0012-1606(90)90274-m] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neural crest-derived precursors of the sympathoadrenal lineage depend on environmental cues to differentiate as sympathetic neurons and pheochromocytes. We have used the monoclonal antibody A2B5 as a marker for neuronal differentiation and antisera against catecholamine synthesis enzymes to investigate the differentiation of catecholaminergic cells in cultures of quail neural crest cells. Cells corresponding phenotypically to sympathetic neurons and pheochromocytes can be identified in neural crest cell cultures after 5-6 days in vitro. Expression of the A2B5 antigen precedes expression of immunocytochemically detectable levels of tyrosine hydroxylase in cultured neural crest cells. Glucocorticoid treatment decreases the proportion of TH+ neural crest cells that express neuronal traits. We conclude that environmental cues normally encountered by sympathoadrenal precursors in vivo can influence the differentiation of a subpopulation of cultured neural crest cells in the sympathoadrenal lineage.
Collapse
Affiliation(s)
- K S Vogel
- Institute of Neuroscience, University of Oregon, Eugene 97403
| | | |
Collapse
|
42
|
Maestripieri D, De Simone R, Aloe L, Alleva E. Social status and nerve growth factor serum levels after agonistic encounters in mice. Physiol Behav 1990; 47:161-4. [PMID: 2326332 DOI: 10.1016/0031-9384(90)90056-a] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ten repeated daily interactions (20 min each) of the same pairs of isolated male mice produced a clear distinction between attacking (dominant) and defeated (subordinate) animals. The fighting level remained fairly constant over the 10 days. One hr after the end of the 10th session, the increase in serum NGF levels described previously (2) was significantly more marked in subordinate than in dominant mice. The mean level of serum NGF was correlated with the number of fighting episodes, particularly in the case of dominant individuals. Moreover, within-pair differences in NGF values were correlated with differences in locomotor activity between dominants and subordinates; this makes it possible that stimuli other than those produced by fighting per se may be responsible for the increase in circulating NGF. As is well known, the adrenal hypertrophy produced by fighting stress is more marked in subordinate than in dominant mice, while previous work has shown that stress of a nonpsychosocial kind does not elevate serum NGF levels. Therefore, the present data support the hypothesis that NGF release contributes to the modulation of adrenal function in a situation-specific fashion.
Collapse
Affiliation(s)
- D Maestripieri
- Section of Behavioral Pathophysiology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|
43
|
Hofmann HD, Seidl K, Unsicker K. Development and plasticity of adrenal chromaffin cells: cues based on in vitro studies. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1989; 12:397-407. [PMID: 2671306 DOI: 10.1002/jemt.1060120412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neural crest derived precursors of the sympathoadrenal cell lineage give rise to two major cell types that differ in a number of morphological, ultrastructural, and biochemical characteristics: principal sympathetic neurons and chromaffin cells of the adrenal medulla. The present article reviews experimental studies performed on cultured adrenal medullary cells and designed to unravel the nature of epigenetic signals governing the developmental choice between the endocrine chromaffin and the neuronal sympathetic phenotype. Emphasis is placed on the role of glucocorticoids in initiation, development, and maintenance of the endocrine chromaffin phenotype and apparently antagonistic influences exerted by nerve growth factor (NGF) in vitro, resulting in the acquisition of neuronal properties by differentiated chromaffin cells. Experimental data from in vitro studies are compatible with the following conclusions. Glucocorticoids represent the decisive signal for the initial induction of endocrine differentiation. Moreover, high steroid hormone concentrations, as present in the adrenal medulla, are a prerequisite for the maturation of chromaffin cells. Even in a differentiated state, the endocrine phenotype is unstable in the absence of glucocorticoids, and the cells seem to reenter the neuronal developmental pathway. Under these conditions, cellular survival and differentiation into sympathetic neurons become NGF-dependent, as in normal sympathetic development. Thus, the effects of NGF survival, neurite outgrowth, and transmitter synthesis of cultured chromaffin cells probably do not reflect the induction of a specific phenotype, but they may be interpreted as a general neurotrophic support observable with other responsive cell types.
Collapse
Affiliation(s)
- H D Hofmann
- Max-Planck-Institut for Brain Research, Frankfurt, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Calamandrei G, Alleva E. Epidermal growth factor has both growth-promoting and growth-inhibiting effects on physical and neurobehavioral development of neonatal mice. Brain Res 1989; 477:1-6. [PMID: 2784706 DOI: 10.1016/0006-8993(89)91387-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The protein molecule epidermal growth factor (EGF) exerts powerful effects on mouse physical development, since repeated subcutaneous administrations of murine EGF (3.5 mg/kg, from postnatal day 2 to postnatal day 10) cause precocious eyelid opening (as early as day 8 instead of day 13 in control littermates receiving 3.5 mg/kg cytochrome c) and precocious eruption of the lower incisors (day 6 instead of day 8). By contrast, the same EGF treatment retards both the rate of body growth and the full appearance of several neurobehavioral signs of maturation, such as righting and grasping responses. Neonatal mice receiving 5 mg/kg murine nerve growth factor (NGF) under the same treatment schedule, although showing a significant retardation in body weight gain, exhibited only limited changes in neurobehavioral maturation. Specifically, the appearance of slow and swift righting, response to strong tactile stimulation, hindlimb and forelimb grasping, pole grasping, and vertical screen and screen climbing were significantly retarded by EGF and slightly advanced by NGF (the only significant NGF effect was an acceleration of swift righting maturation). Polypeptide growth factors seem to play an important role in physical and neurobehavioral development of altricial rodents, orchestrating the relative maturation of different tissutal targets on different developmental stages.
Collapse
Affiliation(s)
- G Calamandrei
- Section of Behavioral Pathophysiology, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
45
|
Bernd P. Catecholaminergic cells and support cell precursors in neural crest cultures differentially express nerve growth factor receptors. Int J Dev Neurosci 1989; 7:449-63. [PMID: 2573244 DOI: 10.1016/0736-5748(89)90005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Long-term neural crest cultures grown in the continuous absence of exogenous nerve growth factor (NGF) contain a subpopulation of cells with NGF receptors exclusively of the low affinity subtype (Kd of approximately 3.2 nM). The current studies combined immunocytochemistry, using GIN1 (a support cell marker) or tyrosine hydroxylase antibodies, with radioautography following exposure to iodinated nerve growth factor (125I-NGF). The majority of cells specifically binding 125I-NGF were found to be immunoreactive for GIN1, indicating that the primary cell phenotype expressing receptors for NGF appear to be support cell precursors, at least under these conditions. These cells are likely to be responsive to and/or dependent upon NGF; the nature of this response or dependency remains to be determined. Some cells exhibiting silver grains were not immunoreactive for GIN1, suggesting that other cell phenotypes in neural crest cultures also have NGF receptors. In addition, some neural crest cells were found that stained with GIN1 and lacked 125I-NGF binding. Tyrosine hydroxylase-like immunoreactive cells apparently did not bind 125I-NGF under these culture conditions. Catecholaminergic sympathetic and sensory neurons from embryonic ganglia, derived from the neural crest, express both the high and low affinity forms of the NGF receptor. In order to determine whether the microenvironment played a role in the type of catecholaminergic cells appearing in culture, neural crest cells were grown in the continuous presence of exogenous NGF. Under these conditions, many tyrosine hydroxylase-like immunoreactive cells were found that specifically bound 125I-NGF. In addition, silver grains were still detected on these cells following a chase with nonradioactive NGF, designed to eliminate 125I-NGF bound to low affinity sites. Therefore, the catecholaminergic cells possess both the low and high affinity forms of the receptor. NGF's ability to modulate tyrosine hydroxylase activity, as it does in mature catecholaminergic neurons, was tested in this system. Surprisingly, there was no statistically significant difference in tyrosine hydroxylase activity in cultures grown in the absence or presence of exogenous NGF. This raises the possibility that embryonic catecholaminergic cells are unable to respond to NGF in this specific way, even though the receptors for the factor are present.
Collapse
Affiliation(s)
- P Bernd
- Department of Anatomy and Cell Biology, State University of New York, Brooklyn 11203
| |
Collapse
|
46
|
Vantini G, Fusco M, Bigon E, Leon A. GM1 ganglioside potentiates the effect of nerve growth factor in preventing vinblastine-induced sympathectomy in newborn rats. Brain Res 1988; 448:252-8. [PMID: 3378149 DOI: 10.1016/0006-8993(88)91262-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of vinblastine (VNB) and nerve growth factor (NGF) administrations were assessed on sympathetic nerve terminals by measuring the noradrenaline (NA) content in the heart, spleen and kidneys of developing animals. Six-day-old rats, treated with 0.15 mg/kg VNB on postnatal day 3 (P3) showed a dramatic decrease of NA content in all these organs. This reduction was prevented by daily administrations of NGF on P3, P4 and P5. The effectiveness of NGF in inhibiting the VNB-induced sympathectomy was related to the dose administered and to the time interval between the VNB administration and the first NGF injection given on P3. Dose-response curves to NGF (ranging from 0.01 to 0.5 mg/kg) were obtained in both heart and spleen of VNB-treated animals. Thus, this experimental paradigm provides a quantitative assessment of the NGF activity in vivo. The systemic administration of GM1 (30 mg/kg) on P3, P4 and P5, was able to potentiate the NGF activity in preventing the VNB-induced sympathectomy. This GM1 effect was more evident in the heart and may be, at least in part, attributed to increased NGF prevention of neuronal cell death due to VNB. These results suggest an in vivo interaction between exogenous GM1 and NGF and are consistent with the view that neuronal cell repair related to in vivo administration of this ganglioside may rely on its capability to modulate the activity of endogenously occurring neuronotrophic factors.
Collapse
Affiliation(s)
- G Vantini
- Fidia Research Laboratories, Abano Terme, Italy
| | | | | | | |
Collapse
|
47
|
|
48
|
Liu HM, Schmid K. A method for the quantitative analysis of nerve growth in vitro. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1988; 24:205-10. [PMID: 3280543 DOI: 10.1007/bf02623548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method is described for the quantitative analysis of the nerve-growth-promoting activity of biological molecules in tissue culture. The criteria used for the evaluation of this activity is based on the neurite length as well as the total number of neurites produced by the explant of whole dorsal root ganglia from 12-d-old chick embryos. A nerve growth index (NGI) is given to each ganglion during each of a 5-d culture period. The NGI is defined as the product of average neurite length in millimeters and the total number of neurites. We report that with increasing concentrations of fetal bovine serum, there was a proportional increase in NGI due to increased neurite density while the neurite length was not greatly affected. The NGI of several proteins with known nerve growth promoting activity, namely nerve growth factor, insulin, transferrin, and fibronectin were investigated for their activity and compared with that of fetal bovine serum.
Collapse
Affiliation(s)
- H M Liu
- Department of Pathology (Neuropathology), Miriam Hospital, Providence, Rhode Island 02906
| | | |
Collapse
|
49
|
|
50
|
|