1
|
Jahn KN, Polley DB. Asymmetric hearing thresholds are associated with hyperacusis in a large clinical population. Hear Res 2023; 437:108854. [PMID: 37487430 PMCID: PMC11075140 DOI: 10.1016/j.heares.2023.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Hyperacusis is a debilitating auditory condition whose characterization is largely qualitative and is typically based on small participant cohorts. Here, we characterize the hearing and demographic profiles of adults who reported hyperacusis upon audiological evaluation at a large medical center. Audiometric data from 626 adults (age 18-80 years) with documented hyperacusis were retrospectively extracted from medical records and compared to an age- and sex-matched reference group of patients from the same clinic who did not report hyperacusis. Patients with hyperacusis had lower (i.e., better) high-frequency hearing thresholds (2000-8000 Hz), but significantly larger interaural threshold asymmetries (250-8000 Hz) relative to the reference group. The probability of reporting hyperacusis was highest for normal, asymmetric, and notched audiometric configurations. Many patients reported unilateral hyperacusis symptoms, a history of noise exposure, and co-morbid tinnitus. The high prevalence of both overt and subclinical hearing asymmetries in the hyperacusis population suggests a central compensatory mechanism that is dominated by input from an intact or minimally damaged ear, and which may lead to perceptual hypersensitivity by overshooting baseline neural activity levels.
Collapse
Affiliation(s)
- Kelly N Jahn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 1966 Inwood Road, Dallas, TX 75235, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| |
Collapse
|
2
|
Middlebrooks JC. A Search for a Cortical Map of Auditory Space. J Neurosci 2021; 41:5772-5778. [PMID: 34011526 PMCID: PMC8265804 DOI: 10.1523/jneurosci.0501-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
This is the story of a search for a cortical map of auditory space. The search began with a study that was reported in the first issue of The Journal of Neuroscience (Middlebrooks and Pettigrew, 1981). That paper described some unexpected features of spatial sensitivity in the auditory cortex while failing to demonstrate the expected map. In the ensuing 40 years, we have encountered the following: panoramic spatial coding by single neurons; a rich variety of response patterns that are unmasked in the absence of general anesthesia; sharpening of spatial sensitivity when an animal is engaged in a listening task; and reorganization of spatial sensitivity in the presence of competing sounds. We have not encountered a map, but not through lack of trying. On the basis of years of negative results by our group and others, and positive results that are inconsistent with static point-to-point topography, we are confident in concluding that there just ain't no map. Instead, we have come to appreciate the highly dynamic spatial properties of cortical neurons, which serve the needs of listeners in a changing sonic environment.
Collapse
Affiliation(s)
- John C Middlebrooks
- Department of Otolaryngology
- Department of Neurobiology and Behavior
- Department of Cognitive Sciences
- Department of Biomedical Engineering, University of California at Irvine, Irvine, California 92697-5310
| |
Collapse
|
3
|
Yang Y, Chen QC, Shen JX, Jen PHS. Binaural Response Properties and Sensitivity to Interaural Difference of Neurons in the Auditory Cortex of the Big Brown Bat, Eptesicus fuscus. Neuroscience 2020; 424:72-85. [PMID: 31785358 DOI: 10.1016/j.neuroscience.2019.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022]
Abstract
This study examines binaural response properties and sensitivity to interaural level difference of single neurons in the primary auditory cortex (AC) of the big brown bat, Eptesicus fuscus under earphone stimulation conditions. Contralateral sound stimulation always evoked response from all 306 AC neurons recorded but ipsilateral sound stimulation either excited, inhibited or did not affect their responses. High best frequency (BF) neurons typically had high minimum threshold (MT) and low BF neurons had low MT. However, both BF and MT did not correlate with their recording depth. The BF of these AC neurons progressively changed from high to low along the anteromedial-posterolateral axis of the AC. Their number of impulses and response latency varied with sound level and inter-aural level differences (ILD). Their number of impulses typically increased either monotonically or non-monotonically to a maximum and the latency shortened to a minimum at a specific sound level. Among 205 AC neurons studied at varied ILD, 178 (87%) and 127 (62%) neurons discharged maximally and responded with the shortest response latency at a specific ILD, respectively. Neurons sequentially isolated within an orthogonal electrode puncture shared similar BF, MT, binaurality and ILD curves. However, the response latency of these AC neurons progressively shortened with recording depth. Species-specific difference among this bat, the mustached bat and the pallid bat is discussed in terms of frequency and binaurality representation in the AC.
Collapse
Affiliation(s)
- Ying Yang
- College of Special Education, Binzhou Medical University, Yantai, Shandong, China.
| | - Qi Cai Chen
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jun Xian Shen
- Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Philip H-S Jen
- Division of Biological Sciences, University of Missouri-Columbia, MO, USA.
| |
Collapse
|
4
|
Macias S, Bakshi K, Smotherman M. Laminar Organization of FM Direction Selectivity in the Primary Auditory Cortex of the Free-Tailed Bat. Front Neural Circuits 2019; 13:76. [PMID: 31827425 PMCID: PMC6890848 DOI: 10.3389/fncir.2019.00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/13/2019] [Indexed: 01/18/2023] Open
Abstract
We studied the columnar and layer-specific response properties of neurons in the primary auditory cortex (A1) of six (four females, two males) anesthetized free-tailed bats, Tadarida brasiliensis, in response to pure tones and down and upward frequency modulated (FM; 50 kHz bandwidth) sweeps. In addition, we calculated current source density (CSD) to test whether lateral intracortical projections facilitate neuronal activation in response to FM echoes containing spectrally distant frequencies from the excitatory frequency response area (FRA). Auditory responses to a set of stimuli changing in frequency and level were recorded along 64 penetrations in the left A1 of six free-tailed bats. FRA shapes were consistent across the cortical depth within a column and there were no obvious differences in tuning properties. Generally, response latencies were shorter (<10 ms) for cortical depths between 500 and 600 μm, which might correspond to thalamocortical input layers IIIb-IV. Most units showed a stronger response to downward FM sweeps, and direction selectivity did not vary across cortical depth. CSD profiles calculated in response to the CF showed a current sink located at depths between 500 and 600 μm. Frequencies lower than the frequency range eliciting a spike response failed to evoke any visible current sink. Frequencies higher than the frequency range producing a spike response evoked layer IV sinks at longer latencies that increased with spectral distance. These data support the hypothesis that a progressive downward relay of spectral information spreads along the tonotopic axis of A1 via lateral connections, contributing to the neural processing of FM down sweeps used in biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Chakrabarty D, Elhilali M. A Gestalt inference model for auditory scene segregation. PLoS Comput Biol 2019; 15:e1006711. [PMID: 30668568 PMCID: PMC6358108 DOI: 10.1371/journal.pcbi.1006711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/01/2019] [Accepted: 12/12/2018] [Indexed: 11/18/2022] Open
Abstract
Our current understanding of how the brain segregates auditory scenes into meaningful objects is in line with a Gestaltism framework. These Gestalt principles suggest a theory of how different attributes of the soundscape are extracted then bound together into separate groups that reflect different objects or streams present in the scene. These cues are thought to reflect the underlying statistical structure of natural sounds in a similar way that statistics of natural images are closely linked to the principles that guide figure-ground segregation and object segmentation in vision. In the present study, we leverage inference in stochastic neural networks to learn emergent grouping cues directly from natural soundscapes including speech, music and sounds in nature. The model learns a hierarchy of local and global spectro-temporal attributes reminiscent of simultaneous and sequential Gestalt cues that underlie the organization of auditory scenes. These mappings operate at multiple time scales to analyze an incoming complex scene and are then fused using a Hebbian network that binds together coherent features into perceptually-segregated auditory objects. The proposed architecture successfully emulates a wide range of well established auditory scene segregation phenomena and quantifies the complimentary role of segregation and binding cues in driving auditory scene segregation.
Collapse
Affiliation(s)
- Debmalya Chakrabarty
- Laboratory for Computational Audio Processing, Center for Speech and Language Processing, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mounya Elhilali
- Laboratory for Computational Audio Processing, Center for Speech and Language Processing, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- * E-mail:
| |
Collapse
|
6
|
Specialization of the auditory system for the processing of bio-sonar information in the frequency domain: Mustached bats. Hear Res 2018; 361:1-22. [DOI: 10.1016/j.heares.2018.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/20/2022]
|
7
|
Panniello M, King AJ, Dahmen JC, Walker KMM. Local and Global Spatial Organization of Interaural Level Difference and Frequency Preferences in Auditory Cortex. Cereb Cortex 2018; 28:350-369. [PMID: 29136122 PMCID: PMC5991210 DOI: 10.1093/cercor/bhx295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
Despite decades of microelectrode recordings, fundamental questions remain about how auditory cortex represents sound-source location. Here, we used in vivo 2-photon calcium imaging to measure the sensitivity of layer II/III neurons in mouse primary auditory cortex (A1) to interaural level differences (ILDs), the principal spatial cue in this species. Although most ILD-sensitive neurons preferred ILDs favoring the contralateral ear, neurons with either midline or ipsilateral preferences were also present. An opponent-channel decoder accurately classified ILDs using the difference in responses between populations of neurons that preferred contralateral-ear-greater and ipsilateral-ear-greater stimuli. We also examined the spatial organization of binaural tuning properties across the imaged neurons with unprecedented resolution. Neurons driven exclusively by contralateral ear stimuli or by binaural stimulation occasionally formed local clusters, but their binaural categories and ILD preferences were not spatially organized on a more global scale. In contrast, the sound frequency preferences of most neurons within local cortical regions fell within a restricted frequency range, and a tonotopic gradient was observed across the cortical surface of individual mice. These results indicate that the representation of ILDs in mouse A1 is comparable to that of most other mammalian species, and appears to lack systematic or consistent spatial order.
Collapse
Affiliation(s)
- Mariangela Panniello
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kerry M M Walker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Pallas SL. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry. Front Neurosci 2017; 11:344. [PMID: 28701910 PMCID: PMC5487431 DOI: 10.3389/fnins.2017.00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022] Open
Abstract
Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways.
Collapse
Affiliation(s)
- Sarah L. Pallas
- Neuroscience Institute, Georgia State UniversityAtlanta, GA, United States
| |
Collapse
|
9
|
Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference. Ear Hear 2017; 38:94-102. [DOI: 10.1097/aud.0000000000000357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Johnson LA, Della Santina CC, Wang X. Selective Neuronal Activation by Cochlear Implant Stimulation in Auditory Cortex of Awake Primate. J Neurosci 2016; 36:12468-12484. [PMID: 27927962 PMCID: PMC5148231 DOI: 10.1523/jneurosci.1699-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 11/21/2022] Open
Abstract
Despite the success of cochlear implants (CIs) in human populations, most users perform poorly in noisy environments and music and tonal language perception. How CI devices engage the brain at the single neuron level has remained largely unknown, in particular in the primate brain. By comparing neuronal responses with acoustic and CI stimulation in marmoset monkeys unilaterally implanted with a CI electrode array, we discovered that CI stimulation was surprisingly ineffective at activating many neurons in auditory cortex, particularly in the hemisphere ipsilateral to the CI. Further analyses revealed that the CI-nonresponsive neurons were narrowly tuned to frequency and sound level when probed with acoustic stimuli; such neurons likely play a role in perceptual behaviors requiring fine frequency and level discrimination, tasks that CI users find especially challenging. These findings suggest potential deficits in central auditory processing of CI stimulation and provide important insights into factors responsible for poor CI user performance in a wide range of perceptual tasks. SIGNIFICANCE STATEMENT The cochlear implant (CI) is the most successful neural prosthetic device to date and has restored hearing in hundreds of thousands of deaf individuals worldwide. However, despite its huge successes, CI users still face many perceptual limitations, and the brain mechanisms involved in hearing through CI devices remain poorly understood. By directly comparing single-neuron responses to acoustic and CI stimulation in auditory cortex of awake marmoset monkeys, we discovered that neurons unresponsive to CI stimulation were sharply tuned to frequency and sound level. Our results point out a major deficit in central auditory processing of CI stimulation and provide important insights into mechanisms underlying the poor CI user performance in a wide range of perceptual tasks.
Collapse
Affiliation(s)
| | - Charles C Della Santina
- Departments of Biomedical Engineering and
- Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21025
| | | |
Collapse
|
11
|
Razak KA. Functional segregation of monaural and binaural selectivity in the pallid bat auditory cortex. Hear Res 2016; 337:35-45. [PMID: 27233917 DOI: 10.1016/j.heares.2016.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022]
Abstract
Different fields of the auditory cortex can be distinguished by the extent and level tolerance of spatial selectivity. The mechanisms underlying the range of spatial tuning properties observed across cortical fields are unclear. Here, this issue was addressed in the pallid bat because its auditory cortex contains two segregated regions of response selectivity that serve two different behaviors: echolocation for obstacle avoidance and localization of prey-generated noise. This provides the unique opportunity to examine mechanisms of spatial properties in two functionally distinct regions. Previous studies have shown that spatial selectivity of neurons in the region selective for noise (noise-selective region, NSR) is level tolerant and shaped by interaural level difference (ILD) selectivity. In contrast, spatial selectivity of neurons in the echolocation region ('FM sweep-selective region' or FMSR) is strongly level dependent with many neurons responding to multiple distinct spatial locations for louder sounds. To determine the mechanisms underlying such level dependence, frequency, azimuth, rate-level responses and ILD selectivity were measured from the same FMSR neurons. The majority (∼75%) of FMSR neurons were monaural (ILD insensitive). Azimuth tuning curves expanded or split into multiple peaks with increasing sound level in a manner that was predicted by the rate-level response of neurons. These data suggest that azimuth selectivity of FMSR neurons depends more on monaural ear directionality and rate-level responses. The pallid bat cortex utilizes segregated monaural and binaural regions to process echoes and prey-generated noise. Together the pallid bat FMSR/NSR data provide mechanistic explanations for a broad range of spatial tuning properties seen across species.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and the Graduate Neuroscience Program, University of California, 900 University Avenue, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Xu X, Yu X, He J, Nelken I. Across-ear stimulus-specific adaptation in the auditory cortex. Front Neural Circuits 2014; 8:89. [PMID: 25126058 PMCID: PMC4115630 DOI: 10.3389/fncir.2014.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/08/2014] [Indexed: 11/13/2022] Open
Abstract
The ability to detect unexpected or deviant events in natural scenes is critical for survival. In the auditory system, neurons from the midbrain to cortex adapt quickly to repeated stimuli but this adaptation does not fully generalize to other rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). Most studies of SSA were conducted with pure tones of different frequencies, and it is by now well-established that SSA to tone frequency is strong and robust in auditory cortex. Here we tested SSA in the auditory cortex to the ear of stimulation using broadband noise. We show that cortical neurons adapt specifically to the ear of stimulation, and that the contrast between the responses to stimulation of the same ear when rare and when common depends on the binaural interaction class of the neurons.
Collapse
Affiliation(s)
- Xinxiu Xu
- Institute of Biophysics, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Xiongjie Yu
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| | - Jufang He
- Institute of Biophysics, Chinese Academy of Sciences Beijing, China ; Department of Biomedical Sciences, City University of Hong Kong Hong Kong, China
| | - Israel Nelken
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, The Alexander Silberman Institute of Life Sciences, Hebrew University Jerusalem, Israel
| |
Collapse
|
13
|
Saldeitis K, Happel MF, Ohl FW, Scheich H, Budinger E. Anatomy of the auditory thalamocortical system in the mongolian gerbil: Nuclear origins and cortical field-, layer-, and frequency-specificities. J Comp Neurol 2014; 522:2397-430. [DOI: 10.1002/cne.23540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Katja Saldeitis
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
| | - Max F.K. Happel
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Institute of Biology, Otto-von-Guericke University; D-39120 Magdeburg Germany
| | - Frank W. Ohl
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Institute of Biology, Otto-von-Guericke University; D-39120 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| | - Henning Scheich
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| | - Eike Budinger
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Clinic of Neurology; Otto-von-Guericke-University Magdeburg; D-39120 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| |
Collapse
|
14
|
Schreiner CE, Polley DB. Auditory map plasticity: diversity in causes and consequences. Curr Opin Neurobiol 2013; 24:143-56. [PMID: 24492090 DOI: 10.1016/j.conb.2013.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 01/11/2023]
Abstract
Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remain a key aspect in studying and interpreting the role of plasticity in hearing.
Collapse
Affiliation(s)
- Christoph E Schreiner
- Coleman Memorial Laboratory, UCSF Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Yao JD, Bremen P, Middlebrooks JC. Rat primary auditory cortex is tuned exclusively to the contralateral hemifield. J Neurophysiol 2013; 110:2140-51. [PMID: 23945782 DOI: 10.1152/jn.00219.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat is a widely used species for study of the auditory system. Psychophysical results from rats have shown an inability to discriminate sound source locations within a lateral hemifield, despite showing fairly sharp near-midline acuity. We tested the hypothesis that those characteristics of the rat's sound localization psychophysics are evident in the characteristics of spatial sensitivity of its cortical neurons. In addition, we sought quantitative descriptions of in vivo spatial sensitivity of cortical neurons that would support development of an in vitro experimental model to study cortical mechanisms of spatial hearing. We assessed the spatial sensitivity of single- and multiple-neuron responses in the primary auditory cortex (A1) of urethane-anesthetized rats. Free-field noise bursts were varied throughout 360° of azimuth in the horizontal plane at sound levels from 10 to 40 dB above neural thresholds. All neurons encountered in A1 displayed contralateral-hemifield spatial tuning in that they responded strongly to contralateral sound source locations, their responses cut off sharply for locations near the frontal midline, and they showed weak or no responses to ipsilateral sources. Spatial tuning was quite stable across a 30-dB range of sound levels. Consistent with rat psychophysical results, a linear discriminator analysis of spike counts exhibited high spatial acuity for near-midline sounds and poor discrimination for off-midline locations. Hemifield spatial tuning is the most common pattern across all mammals tested previously. The homogeneous population of neurons in rat area A1 will make an excellent system for study of the mechanisms underlying that pattern.
Collapse
Affiliation(s)
- Justin D Yao
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California
| | | | | |
Collapse
|
16
|
Kral A, Hubka P, Heid S, Tillein J. Single-sided deafness leads to unilateral aural preference within an early sensitive period. ACTA ACUST UNITED AC 2012; 136:180-93. [PMID: 23233722 DOI: 10.1093/brain/aws305] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Unilateral deafness has a high incidence in children. In addition to children who are born without hearing in one ear, children with bilateral deafness are frequently equipped only with one cochlear implant, leaving the other ear deaf. The present study investigates the effects of such single-sided deafness during development in the congenitally deaf cat. The investigated animals were either born with unilateral deafness or received a cochlear implant in one ear and were subjected to chronic monaural stimulation. In chronically stimulated animals, implantation ages were at the following three critical developmental points: 'early' during the peak of functional cortical synaptogenesis in deaf animals; 'intermediate' at the age when synaptic activity in the deaf cats dropped to the level of hearing control cats and finally, 'late' at the age when the evoked synaptic activity fell below the level of hearing control cats. After periods of unilateral hearing, local field potentials were recorded from the cortical surface using a microelectrode at ∼100 recording positions. Stimulation was with cochlear implants at both ears. The measures evaluated were dependent only on the symmetry of aural input: paired differences of onset latencies and paired relations of peak amplitudes of local field potentials. A massive reorganization of aural preference in favour of the hearing ear was found in these measures if the onset of unilateral hearing was early (before or around the peak of functional synaptogenesis). The effect was reduced if onset of unilateral hearing was in the intermediate period, and it disappeared if the onset was late. In early onset of unilateral deafness, the used ear became functionally dominant with respect to local field potential onset latency and amplitude. This explains the inferior outcome of implantations at the second-implanted ear compared with first-implanted ear in children. However, despite a central disadvantage for the deaf ear, it still remained capable of activating the auditory cortex. Appropriate training may thus help to improve the performance at the second-implanted ear. In conclusion, periods of monaural stimulation should be kept as short as possible, and training focused on the deaf ear should be introduced after delayed second implantation in children.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of Audioneurotechnology, Feodor-Lynen-Strasse 35, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
17
|
Razak KA. Mechanisms underlying azimuth selectivity in the auditory cortex of the pallid bat. Hear Res 2012; 290:1-12. [PMID: 22641192 DOI: 10.1016/j.heares.2012.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/25/2022]
Abstract
This study focused on mechanisms underlying azimuth selectivity in the primary auditory cortex (A1) of pallid bats. The pallid bat listens to prey-generated noise (5-35 kHz) to localize and hunt terrestrial prey. The region of A1 tuned between 5 and 35 kHz consists of two clusters of neurons distinguished by interaural intensity difference (IID) selectivity: binaurally inhibited (EI) and peaked. The first aim of this study was to use sequential dichotic/free-field stimulation to test the hypothesis that IID is the primary cue underlying azimuth selectivity in neurons tuned in the prey-generated noise frequency band. IID selectivity and ear directionality at the neuron's characteristic frequency (CF) were used to predict azimuth selectivity functions. The predicted azimuth selectivity was compared with the actual azimuth selectivity from the same neurons. Prediction accuracy was similarly high for EI neurons and peaked neurons with low CF, whereas predictions were increasingly inaccurate with increasing CF among the peaked neurons. The second aim of this study was to compare azimuth selectivity obtained with noise and CF tones to determine the extent to which stimulus bandwidth influences azimuth selectivity in neurons with different binaural properties. The azimuth selectivity functions were similar for the two stimuli in the majority of EI neurons. A greater percentage of peaked neurons showed differences in their azimuth selectivity for noise and tones. This included neurons with multiple peaks when tested with tones and a single peak when tested with noise. Taken together, data from the two aims suggest that azimuth tuning of EI neurons is primarily dictated by IID sensitivity at CF. Peaked neurons, particularly those with high CF, may integrate IID sensitivity across frequency to generate azimuth selectivity for broadband sound. The data are consistent with those found in cat and ferret A1 in that binaurally facilitated neurons depend to a greater extent (compared to EI neurons) on spectral integration of binaural properties to generate azimuth selectivity for broadband stimuli.
Collapse
Affiliation(s)
- K A Razak
- Department of Psychology, Graduate Neuroscience Program, 900 University Avenue, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
18
|
Atencio CA, Schreiner CE. Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex. PLoS One 2012; 7:e31537. [PMID: 22384036 PMCID: PMC3288040 DOI: 10.1371/journal.pone.0031537] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/09/2012] [Indexed: 12/02/2022] Open
Abstract
Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed.
Collapse
Affiliation(s)
- Craig A Atencio
- Coleman Memorial Laboratory, Department of Otolaryngology-HNS, The UCSF Center for Integrative Neuroscience, University of California San Francisco, San Francisco, California, United States of America.
| | | |
Collapse
|
19
|
Abstract
The primary auditory cortex (A1) is involved in sound localization. A consistent observation in A1 is a clustered representation of binaural properties, but how spatial tuning varies within binaural clusters is unknown. Here, this issue was addressed in A1 of the pallid bat, a species that relies on passive hearing (as opposed to echolocation) to localize prey. Evidence is presented for systematic representations of sound azimuth within two binaural clusters in the pallid bat A1: the binaural inhibition (EI) and peaked (P) binaural interaction clusters. The representation is not a "point-to-point" space map as seen in the superior colliculus, but is in the form of a systematic increase in the area of activated cortex as azimuth changes from ipsilateral to contralateral locations. The underlying substrate in the EI cluster is a systematic representation of the medial boundary of azimuth receptive fields. The P cluster is activated mostly for sounds near the midline, providing a spatial acoustic fovea. Activity in the P cluster falls off systematically as the sound is moved to more lateral locations. Sensitivity to interaural intensity differences predicts azimuth tuning in the vast majority of neurons. Azimuth receptive field properties are relatively stable across intensity over a moderate range (20-40 dB above threshold) of intensities. This suggests that the maps will be similar across the intensities tested. These results challenge the current view that no systematic representation of azimuth is present in A1 and show that such representations are present locally within individual binaural clusters.
Collapse
|
20
|
Meredith MA, Lomber SG. Somatosensory and visual crossmodal plasticity in the anterior auditory field of early-deaf cats. Hear Res 2011; 280:38-47. [PMID: 21354286 PMCID: PMC3134631 DOI: 10.1016/j.heares.2011.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 02/08/2011] [Accepted: 02/10/2011] [Indexed: 01/28/2023]
Abstract
It is well known that the post-natal loss of sensory input in one modality can result in crossmodal reorganization of the deprived cortical areas, but deafness fails to induce crossmodal effects in cat primary auditory cortex (A1). Because the core auditory regions (A1, and anterior auditory field AAF) are arranged as separate, parallel processors, it cannot be assumed that early-deafness affects one in the same manner as the other. The present experiments were conducted to determine if crossmodal effects occur in the anterior auditory field (AAF). Using mature cats (n = 3), ototoxically deafened postnatally, single-unit recordings were made in the gyral and sulcal portions of the AAF. In contrast to the auditory responsivity found in the hearing controls, none of the neurons in early-deafened AAF were activated by auditory stimulation. Instead, the majority (78%) were activated by somatosensory cues, while fewer were driven by visual stimulation (44%; values include unisensory and bimodal neurons). Somatosensory responses could be activated from all locations on the body surface but most often occurred on the head, were often bilateral (e.g., occupied portions of both sides of the body), and were primarily excited by low-threshold hair receptors. Visual receptive fields were large, collectively represented the contralateral visual field, and exhibited conventional response properties such as movement direction and velocity preferences. These results indicate that, following post-natal deafness, both somatosensory and visual modalities participate in crossmodal reinnervation of the AAF, consistent with the growing literature that documents deafness-induced crossmodal plasticity outside A1.
Collapse
Affiliation(s)
- M Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond VA 23298-0709, USA.
| | | |
Collapse
|
21
|
Columnar and layer-specific representation of spatial sensitivity in mouse primary auditory cortex. Neuroreport 2011; 22:530-4. [PMID: 21666517 DOI: 10.1097/wnr.0b013e328348aae5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The primary auditory cortex (AI) is implicated in coding sound location, as revealed by behavior-lesion experiments, but our knowledge about the functional organization and laminar specificity of neural spatial sensitivity is still very limited. Using single-unit recordings in mouse AI, we show that (i) an inverse relationship between onset latency and spike count is consistently observed when all the azimuthal points are taken; (ii) a substantial proportion of penetrations perpendicular to the AI surface showed columnar organization of best azimuths; (iii) the preferred azimuth range of AI neurons demonstrated layer-specific distribution pattern. Our findings suggest that similar to other response properties, the manner of sound space information processing in the auditory cortex is also layer dependent.
Collapse
|
22
|
Abstract
The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography by aligning ultra-dense receptive field maps from the auditory cortex and thalamus of the mouse in vivo with the neural circuitry contained in the auditory thalamocortical slice in vitro. We observed precisely organized tonotopic maps of best frequency (BF) in the middle layers of AI and the anterior auditory field as well as in the ventral and medial divisions of the medial geniculate body (MGBv and MGBm, respectively). Tracer injections into distinct zones of the BF map in AI retrogradely labeled topographically organized MGBv projections and weaker, mixed projections from MGBm. Stimulating MGBv along the tonotopic axis in the slice produced an orderly shift of voltage-sensitive dye (VSD) signals along the AI tonotopic axis, demonstrating topography in the mouse thalamocortical circuit that is preserved in the slice. However, compared with BF maps of neuronal spiking activity, the topographic order of subthreshold VSD maps was reduced in layer IV and even further degraded in layer II/III. Therefore, the precision of AI topography varies according to the source and layer of the mapping signal. Our findings further bridge the gap between in vivo and in vitro approaches for the detailed cellular study of auditory thalamocortical circuit organization and plasticity in the genetically tractable mouse model.
Collapse
|
23
|
O'Connell MN, Falchier A, McGinnis T, Schroeder CE, Lakatos P. Dual mechanism of neuronal ensemble inhibition in primary auditory cortex. Neuron 2011; 69:805-17. [PMID: 21338888 DOI: 10.1016/j.neuron.2011.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 11/18/2022]
Abstract
Inhibition plays an essential role in shaping and refining the brain's representation of sensory stimulus attributes. In primary auditory cortex (A1), so-called "sideband" inhibition helps to sharpen the tuning of local neuronal responses. Several distinct types of anatomical circuitry could underlie sideband inhibition, including direct thalamocortical (TC) afferents, as well as indirect intracortical mechanisms. The goal of the present study was to characterize sideband inhibition in A1 and to determine its mechanism by analyzing laminar profiles of neuronal ensemble activity. Our results indicate that both lemniscal and nonlemniscal TC afferents play a role in inhibitory responses via feedforward inhibition and oscillatory phase reset, respectively. We propose that the dynamic modulation of excitability in A1 due to the phase reset of ongoing oscillations may alter the tuning of local neuronal ensembles and can be regarded as a flexible overlay on the more obligatory system of lemniscal feedforward type responses.
Collapse
Affiliation(s)
- Monica N O'Connell
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Temporal coherence and attention in auditory scene analysis. Trends Neurosci 2010; 34:114-23. [PMID: 21196054 DOI: 10.1016/j.tins.2010.11.002] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/23/2022]
Abstract
Humans and other animals can attend to one of multiple sounds and follow it selectively over time. The neural underpinnings of this perceptual feat remain mysterious. Some studies have concluded that sounds are heard as separate streams when they activate well-separated populations of central auditory neurons, and that this process is largely pre-attentive. Here, we argue instead that stream formation depends primarily on temporal coherence between responses that encode various features of a sound source. Furthermore, we postulate that only when attention is directed towards a particular feature (e.g. pitch) do all other temporally coherent features of that source (e.g. timbre and location) become bound together as a stream that is segregated from the incoherent features of other sources.
Collapse
|
26
|
Ojima H. Interplay of excitation and inhibition elicited by tonal stimulation in pyramidal neurons of primary auditory cortex. Neurosci Biobehav Rev 2010; 35:2084-93. [PMID: 21144861 DOI: 10.1016/j.neubiorev.2010.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/19/2010] [Accepted: 11/12/2010] [Indexed: 11/15/2022]
Abstract
Tonal responses of neurons in the primary auditory cortex are a function of frequency, intensity and ear of stimulation. These responses occasionally display suppression. This review discusses how excitatory and inhibitory synaptic inputs interact to form suppressive responses and how changes in stimulus attributes affect the magnitude and timing of those responses. Stimulation at the characteristic frequency evokes a stereotyped sequence of depolarization (excitatory) and then hyperpolarization (inhibitory), as predicted from the canonical circuitry. Some neurons stimulated at higher sound intensities display a prominent increase in the magnitude of hyperpolarization or a decrease in its latency, both enabling counteraction with the preceding excitation. These interactions, in part, underlie the non-monotonic suppression. Furthermore, monaural non-dominant ear stimulation elicits such a powerful hyperpolarization as to cancel out the depolarization elicited at dominant ear stimulation, suggesting a linear mechanism for the binaural suppression. Alternatively, it elicits a depolarization almost equal in magnitude and time course to that elicited at binaural stimulation, suggesting a nonlinear interaction responsible for the suppression. Laminar differences are also noted for these inhibitory interactions.
Collapse
Affiliation(s)
- Hisayuki Ojima
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
27
|
Abstract
Accurate orientation to sound under challenging conditions requires auditory cortex, but it is unclear how spatial attributes of the auditory scene are represented at this level. Current organization schemes follow a functional division whereby dorsal and ventral auditory cortices specialize to encode spatial and object features of sound source, respectively. However, few studies have examined spatial cue sensitivities in ventral cortices to support or reject such schemes. Here Fourier optical imaging was used to quantify best frequency responses and corresponding gradient organization in primary (A1), anterior, posterior, ventral (VAF), and suprarhinal (SRAF) auditory fields of the rat. Spike rate sensitivities to binaural interaural level difference (ILD) and average binaural level cues were probed in A1 and two ventral cortices, VAF and SRAF. Continuous distributions of best ILDs and ILD tuning metrics were observed in all cortices, suggesting this horizontal position cue is well covered. VAF and caudal SRAF in the right cerebral hemisphere responded maximally to midline horizontal position cues, whereas A1 and rostral SRAF responded maximally to ILD cues favoring more eccentric positions in the contralateral sound hemifield. SRAF had the highest incidence of binaural facilitation for ILD cues corresponding to midline positions, supporting current theories that auditory cortices have specialized and hierarchical functional organization.
Collapse
|
28
|
Stecker GC. Trading of interaural differences in high-rate Gabor click trains. Hear Res 2010; 268:202-12. [PMID: 20547218 DOI: 10.1016/j.heares.2010.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/28/2010] [Accepted: 06/07/2010] [Indexed: 11/17/2022]
Abstract
In this study, combinations of interaural time differences (ITD) and interaural level differences (ILD) were applied to trains of 4000 Hz Gabor clicks (Gaussian-filtered impulses) and presented to listeners over headphones. ITD/ILD equivalence functions, or "trading ratios" (TR) were estimated using two different procedures: a "closed-loop" procedure in which subjects adjusted (via head-turn) the ILD of a target click train to counteract the effects of an imposed ITD, and an "open-loop" procedure in which subjects indicated (also via head-turn) the lateral position of click trains containing independent combinations of ITD and ILD. For both tasks, TR values increasingly favored ILD over ITD as inter-click interval (ICI) decreased from 10 to 2 ms. Subsequent analysis confirmed that this change reflected a loss of sensitivity to envelope ITD at short ICI rather than a gain in sensitivity to ILD, consistent with prior studies demonstrating rate-limited processing of ongoing envelope ITD. Significant intersubject differences in the data included two subjects whose TR values obtained under both procedures were consistently lower (greater influence of ITD) than other subjects', and did not vary with ICI. Such differences suggest that multiple mechanisms of ITD/ILD combination may be utilized to varying degrees by individual listeners. By at least one of those mechanisms, ITD sensitivity (but not ILD sensitivity) is limited to low modulation rates.
Collapse
Affiliation(s)
- G Christopher Stecker
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA 98105, USA.
| |
Collapse
|
29
|
Lee CC, Winer JA. Convergence of thalamic and cortical pathways in cat auditory cortex. Hear Res 2010; 274:85-94. [PMID: 20576491 DOI: 10.1016/j.heares.2010.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/05/2010] [Accepted: 05/17/2010] [Indexed: 11/25/2022]
Abstract
Cat auditory cortex (AC) receives input from many thalamic nuclei and cortical areas. Previous connectional studies often focused on one connectional system in isolation, limiting perspectives on AC computational processes. Here we review the convergent thalamic, commissural, and corticocortical projections to thirteen AC areas in the cat. Each input differs in strength and may thus serve unique roles. We compared the convergent intrinsic and extrinsic input to each area quantitatively. The intrinsic input was almost half the total. Among extrinsic projections, ipsilateral cortical sources contributed 75%, thalamic input contributed 15%, and contralateral sources contributed 10%. The patterns of distribution support the division of AC areas into families of tonotopic, non-tonotopic, multisensory, and limbic-related areas, each with convergent input arising primarily from within its group. The connections within these areal families suggest a form of processing in which convergence of input to an area could enable new forms of integration. In contrast, the lateral connections between families could subserve integration between categorical representations, allowing otherwise independent streams to communicate and thereby coordinating operations over wide spatial and functional scales. These patterns of serial and interfamilial cooperation challenge more classical models of organization that underestimate the diversity and complexity of AC connectivity.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, United States.
| | | |
Collapse
|
30
|
Razak KA, Fuzessery ZM. GABA shapes a systematic map of binaural sensitivity in the auditory cortex. J Neurophysiol 2010; 104:517-28. [PMID: 20484524 DOI: 10.1152/jn.00294.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A consistent organizational feature of auditory cortex is a clustered representation of binaural properties. Here we address two questions. What is the intrinsic organization of binaural clusters and to what extent does intracortical processing contribute to binaural representation. We address these issues in the auditory cortex of the pallid bat. The pallid bat listens to prey-generated noise transients to localize and hunt terrestrial prey. As in other species studied, binaural clusters are present in the auditory cortex of the pallid bat. One cluster contains neurons that require binaural stimulation to be maximally excited, and are commonly termed predominantly binaural (PB) neurons. These neurons do not respond to monaural stimulation of either ear but show a peaked sensitivity to interaural intensity differences (IID) centered near 0 dB IID. We show that the peak IID varies systematically within this cluster. The peak IID is also correlated with the best frequency (BF) of neurons within this cluster. In addition, the IID selectivity of PB neurons is shaped by intracortical GABAergic input. Iontophoresis of GABA(A) receptor antagonists on PB neurons converts a majority of them to binaurally inhibited (EI) neurons that respond best to sounds favoring the contralateral ear. These data indicate that the cortex does not simply inherit binaural properties from lower levels but instead sharpens them locally through intracortical inhibition. The IID selectivity of the PB cluster indicates that the pallid bat cortex contains an increased representation of the frontal space that may underlie increased localization accuracy in this region.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
31
|
Dingle RN, Hall SE, Phillips DP. A midline azimuthal channel in human spatial hearing. Hear Res 2010; 268:67-74. [PMID: 20457238 DOI: 10.1016/j.heares.2010.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/14/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
Neurophysiological and psychophysical evidence has driven the formulation of a hemifield model of mammalian sound localization in which the perceived location of a stimulus is based on the relative activity of two hemifield-tuned azimuthal channels that are broadly responsive to contralateral auditory space and have overlapping medial borders. However, neurophysiological work in mammals has consistently found neurons selective for sound sources at the midline, which may indicate the existence of a third, 'midline', perceptual channel. In three experiments, the existence of three (left, right, midline) perceptual channels for azimuth in man was examined using auditory selective adaptation paradigms. If no midline channel exists, exposure to highly lateralized, symmetrical adaptor frequencies should not result in a shift in the perceived intracranial location of subsequent test tones away from the adaptors because the relative activation of the two hemifield channels will remain the same. Rather, our results indicate a shift in perceived test tones towards the azimuthal midline. This result can best be explained by a perceptual/neural channel tuned to sounds located along the midline. The present study gives the first psychophysical evidence of a midline channel serving human auditory localization, adding to the earlier evidence on the same point from animal neurophysiological studies.
Collapse
Affiliation(s)
- Rachel N Dingle
- Hearing Research Laboratory, Department of Psychology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada.
| | | | | |
Collapse
|
32
|
Bieszczad KM, Weinberger NM. Remodeling the cortex in memory: Increased use of a learning strategy increases the representational area of relevant acoustic cues. Neurobiol Learn Mem 2010; 94:127-44. [PMID: 20434577 DOI: 10.1016/j.nlm.2010.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 04/20/2010] [Accepted: 04/24/2010] [Indexed: 11/28/2022]
Abstract
Associative learning induces plasticity in the representation of sensory information in sensory cortices. Such high-order associative representational plasticity (HARP) in the primary auditory cortex (A1) is a likely substrate of auditory memory: it is specific, rapidly acquired, long-lasting and consolidates. Because HARP is likely to support the detailed content of memory, it is important to identify the necessary behavioral factors that dictate its induction. Learning strategy is a critical factor for the induction of plasticity (Bieszczad & Weinberger, 2010b). Specifically, use of a strategy that relies on tone onsets induces HARP in A1 in the form of signal-specific decreased threshold and bandwidth. The present study tested the hypothesis that the form and degree of HARP in A1 reflects the amount of use of an "onset strategy". Adult male rats (n=7) were trained in a protocol that increased the use of this strategy from approximately 20% in prior studies to approximately 80%. They developed signal-specific gains in representational area, transcending plasticity in the form of local changes in threshold and bandwidth. Furthermore, the degree of area gain was proportional to the amount of use of the onset strategy. A second complementary experiment demonstrated that use of a learning strategy that specifically did not rely on tone onsets did not produce gains in representational area; but rather produced area loss. Together, the findings indicate that the amount of strategy use is a dominant factor for the induction of learning-induced cortical plasticity along a continuum of both form and degree.
Collapse
Affiliation(s)
- Kasia M Bieszczad
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California Irvine, CA 92697-3800, United States
| | | |
Collapse
|
33
|
Atencio CA, Schreiner CE. Laminar diversity of dynamic sound processing in cat primary auditory cortex. J Neurophysiol 2010; 103:192-205. [PMID: 19864440 PMCID: PMC2807218 DOI: 10.1152/jn.00624.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/24/2009] [Indexed: 11/22/2022] Open
Abstract
For primary auditory cortex (AI) laminae, there is little evidence of functional specificity despite clearly expressed cellular and connectional differences. Natural sounds are dominated by dynamic temporal and spectral modulations and we used these properties to evaluate local functional differences or constancies across laminae. To examine the layer-specific processing of acoustic modulation information, we simultaneously recorded from multiple AI laminae in the anesthetized cat. Neurons were challenged with dynamic moving ripple stimuli and we subsequently computed spectrotemporal receptive fields (STRFs). From the STRFs, temporal and spectral modulation transfer functions (tMTFs, sMTFs) were calculated and compared across layers. Temporal and spectral modulation properties often differed between layers. On average, layer II/III and VI neurons responded to lower temporal modulations than those in layer IV. tMTFs were mainly band-pass in granular layer IV and became more low-pass in infragranular layers. Compared with layer IV, spectral MTFs were broader and their upper cutoff frequencies higher in layers V and VI. In individual penetrations, temporal modulation preference was similar across layers for roughly 70% of the penetrations, suggesting a common, columnar functional characteristic. By contrast, only about 30% of penetrations showed consistent spectral modulation preferences across layers, indicative of functional laminar diversity or specialization. Since local laminar differences in stimulus preference do not always parallel the main flow of information in the columnar cortical microcircuit, this indicates the influence of additional horizontal or thalamocortical inputs. AI layers that express differing modulation properties may serve distinct roles in the extraction of dynamic sound information, with the differing information specific to the targeted stations of each layer.
Collapse
Affiliation(s)
- Craig A Atencio
- University of California-Berkeley and San Francisco Joint Graduate Group in Bioengineering, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0732, USA.
| | | |
Collapse
|
34
|
Hierarchical computation in the canonical auditory cortical circuit. Proc Natl Acad Sci U S A 2009; 106:21894-9. [PMID: 19918079 DOI: 10.1073/pnas.0908383106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory cortical anatomy has identified a canonical microcircuit underlying computations between and within layers. This feed-forward circuit processes information serially from granular to supragranular and to infragranular layers. How this substrate correlates with an auditory cortical processing hierarchy is unclear. We recorded simultaneously from all layers in cat primary auditory cortex (AI) and estimated spectrotemporal receptive fields (STRFs) and associated nonlinearities. Spike-triggered averaged STRFs revealed that temporal precision, spectrotemporal separability, and feature selectivity varied with layer according to a hierarchical processing model. STRFs from maximally informative dimension (MID) analysis confirmed hierarchical processing. Of two cooperative MIDs identified for each neuron, the first comprised the majority of stimulus information in granular layers. Second MID contributions and nonlinear cooperativity increased in supragranular and infragranular layers. The AI microcircuit provides a valid template for three independent hierarchical computation principles. Increases in processing complexity, STRF cooperativity, and nonlinearity correlate with the synaptic distance from granular layers.
Collapse
|
35
|
Bieszczad KM, Weinberger NM. Learning strategy trumps motivational level in determining learning-induced auditory cortical plasticity. Neurobiol Learn Mem 2009; 93:229-39. [PMID: 19853056 DOI: 10.1016/j.nlm.2009.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 11/19/2022]
Abstract
Associative memory for auditory-cued events involves specific plasticity in the primary auditory cortex (A1) that facilitates responses to tones which gain behavioral significance, by modifying representational parameters of sensory coding. Learning strategy, rather than the amount or content of learning, can determine this learning-induced cortical (high order) associative representational plasticity (HARP). Thus, tone-contingent learning with signaled errors can be accomplished either by (1) responding only during tone duration ("tone-duration" strategy, T-Dur), or (2) responding from tone onset until receiving an error signal for responses made immediately after tone offset ("tone-onset-to-error", TOTE). While rats using both strategies achieve the same high level of performance, only those using the TOTE strategy develop HARP, viz., frequency-specific decreased threshold (increased sensitivity) and decreased bandwidth (increased selectivity) (Berlau & Weinberger, 2008). The present study challenged the generality of learning strategy by determining if high motivation dominates in the formation of HARP. Two groups of adult male rats were trained to bar-press during a 5.0kHz (10s, 70dB) tone for a water reward under either high (HiMot) or moderate (ModMot) levels of motivation. The HiMot group achieved a higher level of correct performance. However, terminal mapping of A1 showed that only the ModMot group developed HARP, i.e., increased sensitivity and selectivity in the signal-frequency band. Behavioral analysis revealed that the ModMot group used the TOTE strategy while HiMot subjects used the T-Dur strategy. Thus, type of learning strategy, not level of learning or motivation, is dominant for the formation of cortical plasticity.
Collapse
Affiliation(s)
- Kasia M Bieszczad
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States
| | | |
Collapse
|
36
|
Polley DB, Hillock AR, Spankovich C, Popescu MV, Royal DW, Wallace MT. Development and plasticity of intra- and intersensory information processing. J Am Acad Audiol 2009; 19:780-98. [PMID: 19358458 DOI: 10.3766/jaaa.19.10.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The functional architecture of sensory brain regions reflects an ingenious biological solution to the competing demands of a continually changing sensory environment. While they are malleable, they have the constancy necessary to support a stable sensory percept. How does the functional organization of sensory brain regions contend with these antithetical demands? Here we describe the functional organization of auditory and multisensory (i.e., auditory-visual) information processing in three sensory brain structures: (1) a low-level unisensory cortical region, the primary auditory cortex (A1); (2) a higher-order multisensory cortical region, the anterior ectosylvian sulcus (AES); and (3) a multisensory subcortical structure, the superior colliculus (SC). We then present a body of work that characterizes the ontogenic expression of experience-dependent influences on the operations performed by the functional circuits contained within these regions. We will present data to support the hypothesis that the competing demands for plasticity and stability are addressed through a developmental transition in operational properties of functional circuits from an initially labile mode in the early stages of postnatal development to a more stable mode in the mature brain that retains the capacity for plasticity under specific experiential conditions. Finally, we discuss parallels between the central tenets of functional organization and plasticity of sensory brain structures drawn from animal studies and a growing literature on human brain plasticity and the potential applicability of these principles to the audiology clinic.
Collapse
Affiliation(s)
- Daniel B Polley
- Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences, Department of Hearing and Speech Sciences, Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical School, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Bizley JK, Walker KMM, Silverman BW, King AJ, Schnupp JWH. Interdependent encoding of pitch, timbre, and spatial location in auditory cortex. J Neurosci 2009; 29:2064-75. [PMID: 19228960 PMCID: PMC2663390 DOI: 10.1523/jneurosci.4755-08.2009] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/09/2008] [Accepted: 01/13/2009] [Indexed: 11/21/2022] Open
Abstract
Because we can perceive the pitch, timbre, and spatial location of a sound source independently, it seems natural to suppose that cortical processing of sounds might separate out spatial from nonspatial attributes. Indeed, recent studies support the existence of anatomically segregated "what" and "where" cortical processing streams. However, few attempts have been made to measure the responses of individual neurons in different cortical fields to sounds that vary simultaneously across spatial and nonspatial dimensions. We recorded responses to artificial vowels presented in virtual acoustic space to investigate the representations of pitch, timbre, and sound source azimuth in both core and belt areas of ferret auditory cortex. A variance decomposition technique was used to quantify the way in which altering each parameter changed neural responses. Most units were sensitive to two or more of these stimulus attributes. Although indicating that neural encoding of pitch, location, and timbre cues is distributed across auditory cortex, significant differences in average neuronal sensitivity were observed across cortical areas and depths, which could form the basis for the segregation of spatial and nonspatial cues at higher cortical levels. Some units exhibited significant nonlinear interactions between particular combinations of pitch, timbre, and azimuth. These interactions were most pronounced for pitch and timbre and were less commonly observed between spatial and nonspatial attributes. Such nonlinearities were most prevalent in primary auditory cortex, although they tended to be small compared with stimulus main effects.
Collapse
Affiliation(s)
- Jennifer K Bizley
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Odors are inhaled through the nostrils into two segregated nasal passages and detected by sensory neurons in the bilateral olfactory epithelia. Airflow through the two nasal passages is usually asymmetrical because of alternating changes in nasal mucosal congestion. Here we show that neurons in the anterior olfactory nucleus (AON) of the adult rat olfactory cortex are ordinarily dominated by ipsi-nasal inputs and that binasal neurons in the AON respond to ipsilateral and contralateral nasal inputs with nearly equivalent odorant category selectivity. Deprivation of ipsilateral nasal inputs by unilateral nostril obstruction greatly enhanced the response to contralateral odor stimulation, in a reversible manner, in approximately 33% of AON neurons within only several minutes. In 27% of AON neurons that showed spike responses induced by the inspiration of room air, ipsilateral nasal obstruction initially suppressed respiration phase-locked spike discharges and, several minutes later, induced respiration phase-locked discharges with longer delays between inspiration and response. Recordings from AON neurons in rats with anterior commissure (AC) transection indicated that the resumed respiration phase-locked discharges with longer delays were mediated by the contralateral pathway via the AC. The ipsi-nasal occlusion-induced switching of nasal inputs to individual AON neurons shows that a subset of AON neurons in the adult rat has neuronal mechanisms for rapid nostril dominance plasticity, which may enable both right and left olfactory cortices to preserve their responsiveness to the external odor world, despite reciprocal changes in nasal airflow.
Collapse
|
39
|
Elhilali M, Shamma SA. A cocktail party with a cortical twist: how cortical mechanisms contribute to sound segregation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:3751-71. [PMID: 19206802 PMCID: PMC2676630 DOI: 10.1121/1.3001672] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/16/2008] [Accepted: 09/24/2008] [Indexed: 05/11/2023]
Abstract
Sound systems and speech technologies can benefit greatly from a deeper understanding of how the auditory system, and particularly the auditory cortex, is able to parse complex acoustic scenes into meaningful auditory objects and streams under adverse conditions. In the current work, a biologically plausible model of this process is presented, where the role of cortical mechanisms in organizing complex auditory scenes is explored. The model consists of two stages: (i) a feature analysis stage that maps the acoustic input into a multidimensional cortical representation and (ii) an integrative stage that recursively builds up expectations of how streams evolve over time and reconciles its predictions with the incoming sensory input by sorting it into different clusters. This approach yields a robust computational scheme for speaker separation under conditions of speech or music interference. The model can also emulate the archetypal streaming percepts of tonal stimuli that have long been tested in human subjects. The implications of this model are discussed with respect to the physiological correlates of streaming in the cortex as well as the role of attention and other top-down influences in guiding sound organization.
Collapse
Affiliation(s)
- Mounya Elhilali
- Department of Electrical and Computer Engineering, Johns Hopkins University, Barton, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
40
|
Walsh WE, Dougherty B, Reisberg DJ, Applebaum EL, Shah C, O'Donnell P, Richter CP. The importance of auricular prostheses for speech recognition. ACTA ACUST UNITED AC 2008; 10:321-8. [PMID: 18794410 DOI: 10.1001/archfaci.10.5.321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To examine the effects of an auricular prosthesis on sound levels at the entrance of the ear canal by measuring the auricular prosthesis transfer function (APTF) and to determine the effect of the prosthesis on speech recognition in noisy hearing conditions. METHODS Eight prostheses were used to measure the APTF. A microphone at the entrance of the ear canal measured sound pressure levels with the prosthesis present or absent while the head was rotated 360 degrees at 30 degrees increments. The Hearing in Noise Test was modified by the APTF to simulate the absence of an auricular prosthesis. Speech recognition was measured by testing 11 subjects with the unmodified Hearing in Noise Test and the modified Hearing in Noise Test. RESULTS The APTF changed with the head's position relative to the speaker. The mean (SD) maximal gain provided by an auricular prosthesis was 8.1 (2.7) dB at 4.6 (1.0) kHz and 9.7 (1.7) dB at 11.5 (0.9) kHz at 0 degrees rotation. During speech testing, the auricular prosthesis improved the mean (SD) signal to noise ratio by 1.7 (1.7) dB at 0 degrees (P< .001), 0.9 (2.2) dB at 90 degrees (P=.04), and 0.5 (2.3) dB at 180 degrees (P=.52). CONCLUSIONS The acoustic gain provided by an auricular prosthesis increases speech recognition in noisy environments. Auricular prostheses not only restore aesthetics but also improve hearing.
Collapse
Affiliation(s)
- William E Walsh
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Searle Bldg, Room 12-569, 303 E Chicago Ave, Chicago, IL 60611-3008, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Clemo HR, Sharma GK, Allman BL, Meredith MA. Auditory projections to extrastriate visual cortex: connectional basis for multisensory processing in 'unimodal' visual neurons. Exp Brain Res 2008; 191:37-47. [PMID: 18648784 PMCID: PMC2827203 DOI: 10.1007/s00221-008-1493-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 07/07/2008] [Indexed: 02/02/2023]
Abstract
Neurophysiological studies have recently documented multisensory properties in 'unimodal' visual neurons of the cat posterolateral lateral suprasylvian (PLLS) cortex, a retinotopically organized area involved in visual motion processing. In this extrastriate visual area, a region has been identified where both visual and auditory stimuli were independently effective in activating neurons (bimodal zone), as well as a second region where visually-evoked activity was significantly facilitated by concurrent auditory stimulation but was unaffected by auditory stimulation alone (subthreshold multisensory region). Given their different distributions, the possible corticocortical connectivity underlying these distinct forms of crossmodal convergence was examined using biotinylated dextran amine (BDA) tracer methods in 21 adult cats. The auditory cortical areas examined included the anterior auditory field (AAF), primary auditory cortex (AI), dorsal zone (DZ), secondary auditory cortex (AII), field of the rostral suprasylvian sulcus (FRS), field anterior ectosylvian sulcus (FAES) and the posterior auditory field (PAF). Of these regions, the DZ, AI, AII, and FAES were found to project to the both the bimodal zone and the subthreshold region of the PLLS. This convergence of crossmodal inputs to the PLLS suggests not only that complex auditory information has access to this region but also that these connections provide the substrate for the different forms (bimodal versus subthreshold) of multisensory processing which may facilitate its functional role in visual motion processing.
Collapse
Affiliation(s)
- H Ruth Clemo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0709, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
The commissural projections between 13 areas of cat auditory cortex (AC) were studied using retrograde tracers. Areal and laminar origins were characterized as part of a larger study of thalamic input and cortical origins of projections to each area. Cholera toxin beta subunit (CTbeta) and cholera toxin beta subunit gold-conjugate (CTbetaG) were injected separately within an area or in different areas in an experiment. The areas were identified independently with SMI-32, which revealed differences in neurofilament immunoreactivity in layers III, V, and VI. Each area received convergent AC input from 3 to 6 (mean, 5) contralateral areas. Most of the projections (>75%) were homotopic and from topographically organized loci in the corresponding area. Heterotopic projections (>1 mm beyond the main homotopic projection) constituted approximately 25% of the input. Layers III and V contained >95% of the commissural neurons. Commissural projection neurons were clustered in all areas. Commissural divergence, assessed by double labeling, was less than 3% in each area. This sparse axonal branching is consistent with the essentially homotopic connectivity of the commissural system. The many heterotopic origins represent unexpected commissural influences converging on an area. Areas more dorsal on the cortical convexity have commissural projections originating in layers III and V; more ventral areas favor layer III at the expense of layer V, to its near-total exclusion in some instances. Some areas have almost entirely layer III origins (temporal cortex and area AII), whereas others have a predominantly layer V input (anterior auditory field) or dual contributions from layers III and V (the dorsal auditory zone). A topographic distribution of commissural cells of origin is consistent with the order observed in thalamocortical and corticocortical projections, and which characterizes all extrinsic projection systems (commissural, corticocortical, and thalamocortical) in all AC areas. Thus, laminar as well as areal differences in projection origin distinguish the auditory cortical commissural system.
Collapse
Affiliation(s)
- Charles C Lee
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|
43
|
Allman BL, Keniston LP, Meredith MA. Subthreshold auditory inputs to extrastriate visual neurons are responsive to parametric changes in stimulus quality: sensory-specific versus non-specific coding. Brain Res 2008; 1242:95-101. [PMID: 18479671 DOI: 10.1016/j.brainres.2008.03.086] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/10/2008] [Accepted: 03/29/2008] [Indexed: 02/04/2023]
Abstract
A new subthreshold form of multisensory processing has been recently identified that results from the convergence of suprathreshold excitatory inputs from one modality with subthreshold inputs from another. Because of the subthreshold nature of the second modality, descriptive measures of sensory features such as receptive field properties or location are not directly apparent as they are for traditional bimodal neurons. This raises the question of whether or not subthreshold signals actually convey sensory-specific receptive field information as seen in their bimodal counterparts, or if they represent non-specific effects such as arousal. The present experiment addressed this issue in visually-responsive neurons from the cat posterolateral lateral suprasylvian cortex (PLLS). Single-unit electrophysiological techniques were used to record neuronal responses to visual, auditory and combined visual-auditory stimuli while the intensity of stimulation in the subthreshold auditory modality was systematically altered. The results showed that subthreshold multisensory neurons were sensitive to changes in auditory stimulus intensity. These receptive field sensitivities are similar to those observed in bimodal neurons and thereby represent sensory-specific, not arousal-related responses. In addition, these results provide further support for the notion that multisensory processing occurs along a dynamic continuum of neuronal convergence patterns from bimodal to purely sensory-specific.
Collapse
Affiliation(s)
- Brian L Allman
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, 1101 E. Marshall St., Richmond, VA 23298-0709, USA.
| | | | | |
Collapse
|
44
|
Nelken I, Bizley JK, Nodal FR, Ahmed B, King AJ, Schnupp JWH. Responses of auditory cortex to complex stimuli: functional organization revealed using intrinsic optical signals. J Neurophysiol 2008; 99:1928-41. [PMID: 18272880 DOI: 10.1152/jn.00469.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used optical imaging of intrinsic signals to study the large-scale organization of ferret auditory cortex in response to complex sounds. Cortical responses were collected during continuous stimulation by sequences of sounds with varying frequency, period, or interaural level differences. We used a set of stimuli that differ in spectral structure, but have the same periodicity and therefore evoke the same pitch percept (click trains, sinusoidally amplitude modulated tones, and iterated ripple noise). These stimuli failed to reveal a consistent periodotopic map across the auditory fields imaged. Rather, gradients of period sensitivity differed for the different types of periodic stimuli. Binaural interactions were studied both with single contralateral, ipsilateral, and diotic broadband noise bursts and with sequences of broadband noise bursts with varying level presented contralaterally, ipsilaterally, or in opposite phase to both ears. Contralateral responses were generally largest and ipsilateral responses were smallest when using single noise bursts, but the extent of the activated area was large and comparable in all three aural configurations. Modulating the amplitude in counter phase to the two ears generally produced weaker modulation of the optical signals than the modulation produced by the monaural stimuli. These results suggest that binaural interactions seen in cortex are most likely predominantly due to subcortical processing. Thus our optical imaging data do not support the theory that the primary or nonprimary cortical fields imaged are topographically organized to form consistent maps of systematically varying sensitivity either to stimulus pitch or to simple binaural properties of the acoustic stimuli.
Collapse
Affiliation(s)
- Israel Nelken
- Department of Neurobiology, Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
45
|
Malhotra S, Stecker GC, Middlebrooks JC, Lomber SG. Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. J Neurophysiol 2008; 99:1628-42. [PMID: 18199813 DOI: 10.1152/jn.01228.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the contributions of primary auditory cortex (A1) and the dorsal zone of auditory cortex (DZ) to sound localization behavior during separate and combined unilateral and bilateral deactivation. From a central visual fixation point, cats learned to make an orienting response (head movement and approach) to a 100-ms broadband noise burst emitted from a central speaker or one of 12 peripheral sites (located in front of the animal, from left 90 degrees to right 90 degrees, at 15 degrees intervals) along the horizontal plane. Following training, each cat was implanted with separate cryoloops over A1 and DZ bilaterally. Unilateral deactivation of A1 or DZ or simultaneous unilateral deactivation of A1 and DZ (A1/DZ) resulted in spatial localization deficits confined to the contralateral hemifield, whereas sound localization to positions in the ipsilateral hemifield remained unaffected. Simultaneous bilateral deactivation of both A1 and DZ resulted in sound localization performance dropping from near-perfect to chance (7.7% correct) across the entire field. Errors made during bilateral deactivation of A1/DZ tended to be confined to the same hemifield as the target. However, unlike the profound sound localization deficit that occurs when A1 and DZ are deactivated together, deactivation of either A1 or DZ alone produced partial and field-specific deficits. For A1, bilateral deactivation resulted in higher error rates (performance dropping to approximately 45%) but relatively small errors (mostly within 30 degrees of the target). In contrast, bilateral deactivation of DZ produced somewhat fewer errors (performance dropping to only approximately 60% correct), but the errors tended to be larger, often into the incorrect hemifield. Therefore individual deactivation of either A1 or DZ produced specific and unique sound localization deficits. The results of the present study reveal that DZ plays a role in sound localization. Along with previous anatomical and physiological data, these behavioral data support the view that A1 and DZ are distinct cortical areas. Finally, the findings that deactivation of either A1 or DZ alone produces partial sound localization deficits, whereas deactivation of either posterior auditory field (PAF) or anterior ectosylvian sulcus (AES) produces profound sound localization deficits, suggests that PAF and AES make more significant contributions to sound localization than either A1 or DZ.
Collapse
Affiliation(s)
- Shveta Malhotra
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
46
|
Kishan AU, Lee CC, Winer JA. Branched projections in the auditory thalamocortical and corticocortical systems. Neuroscience 2008; 154:283-93. [PMID: 18294776 DOI: 10.1016/j.neuroscience.2008.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 01/05/2008] [Accepted: 01/07/2008] [Indexed: 11/30/2022]
Abstract
Branched axons (BAs) projecting to different areas of the brain can create multiple feature-specific maps or synchronize processing in remote targets. We examined the organization of BAs in the cat auditory forebrain using two sensitive retrograde tracers. In one set of experiments (n=4), the tracers were injected into different frequency-matched loci in the primary auditory area (AI) and the anterior auditory field (AAF). In the other set (n=4), we injected primary, non-primary, or limbic cortical areas. After mapped injections, percentages of double-labeled cells (PDLs) in the medial geniculate body (MGB) ranged from 1.4% (ventral division) to 2.8% (rostral pole). In both ipsilateral and contralateral areas AI and AAF, the average PDLs were <1%. In the unmapped cases, the MGB PDLs ranged from 0.6% (ventral division) after insular cortex injections to 6.7% (dorsal division) after temporal cortex injections. Cortical PDLs ranged from 0.1% (ipsilateral AI injections) to 3.7% in the second auditory cortical area (AII) (contralateral AII injections). PDLs within the smaller (minority) projection population were significantly higher than those in the overall population. About 2% of auditory forebrain projection cells have BAs and such cells are organized differently than those in the subcortical auditory system, where BAs can be far more numerous. Forebrain branched projections follow different organizational rules than their unbranched counterparts. Finally, the relatively larger proportion of visual and somatic sensory forebrain BAs suggests modality specific rules for BA organization.
Collapse
Affiliation(s)
- A U Kishan
- Division of Neurobiology, Department of Molecular and Cell Biology, Room 289 Life Sciences Addition, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | | | | |
Collapse
|
47
|
Biedermann F, Bungert P, Dörrscheidt GJ, von Cramon DY, Rübsamen R. Central Auditory Impairment in Unilateral Diencephalic and Telencephalic Lesions. Audiol Neurootol 2007; 13:123-44. [DOI: 10.1159/000111784] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 07/27/2007] [Indexed: 01/19/2023] Open
|
48
|
Abstract
Maps of sensory receptor epithelia and computed features of the sensory environment are common elements of auditory, visual, and somatic sensory representations from the periphery to the cerebral cortex. Maps enhance the understanding of normal neural organization and its modification by pathology and experience. They underlie the derivation of the computational principles that govern sensory processing and the generation of perception. Despite their intuitive explanatory power, the functions of and rules for organizing maps and their plasticity are not well understood. Some puzzles of auditory cortical map organization are that few complete receptor maps are available and that even fewer computational maps are known beyond primary cortical areas. Neuroanatomical evidence suggests equally organized connectional patterns throughout the cortical hierarchy that might underlie map stability. Here, we consider the implications of auditory cortical map organization and its plasticity and evaluate the complementary role of maps in representation and computation from an auditory perspective.
Collapse
Affiliation(s)
- Christoph E Schreiner
- Coleman Memorial Laboratory, W.M. Keck Center for Integrative Neuroscience, and Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, CA 94143-0732, USA.
| | | |
Collapse
|
49
|
Allman BL, Meredith MA. Multisensory Processing in “Unimodal” Neurons: Cross-Modal Subthreshold Auditory Effects in Cat Extrastriate Visual Cortex. J Neurophysiol 2007; 98:545-9. [PMID: 17475717 DOI: 10.1152/jn.00173.2007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Historically, the study of multisensory processing has examined the function of the definitive neuron type, the bimodal neuron. These neurons are excited by inputs from more than one sensory modality, and when multisensory stimuli are present, they can integrate their responses in a predictable manner. However, recent studies have revealed that multisensory processing in the cortex is not restricted to bimodal neurons. The present investigation sought to examine the potential for multisensory processing in nonbimodal (unimodal) neurons in the retinotopically organized posterolateral lateral suprasylvian (PLLS) area of the cat. Standard extracellular recordings were used to measure responses of all neurons encountered to both separate- and combined-modality stimulation. Whereas bimodal neurons behaved as predicted, the surprising result was that 16% of unimodal visual neurons encountered were significantly facilitated by auditory stimuli. Because these unimodal visual neurons did not respond to an auditory stimulus presented alone but had their visual responses modulated by concurrent auditory stimulation, they represent a new form of multisensory neuron: the subthreshold multisensory neuron. These data also demonstrate that bimodal neurons can no longer be regarded as the exclusive basis for multisensory processing.
Collapse
Affiliation(s)
- Brian L Allman
- Dept of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0709, USA.
| | | |
Collapse
|
50
|
Polley DB, Read HL, Storace DA, Merzenich MM. Multiparametric Auditory Receptive Field Organization Across Five Cortical Fields in the Albino Rat. J Neurophysiol 2007; 97:3621-38. [PMID: 17376842 DOI: 10.1152/jn.01298.2006] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The auditory cortex of the rat is becoming an increasingly popular model system for studies of experience-dependent receptive field plasticity. However, the relative position of various fields within the auditory core and the receptive field organization within each field have yet to be fully described in the normative case. In this study, the macro- and micro-organizational features of the auditory cortex were studied in pentobarbital-anesthetized adult rats with a combination of physiological and anatomical methods. Dense microelectrode mapping procedures were used to identify the relative position of five tonotopically organized fields within the auditory core: primary auditory cortex (AI), the posterior auditory field (PAF), the anterior auditory field (AAF), the ventral auditory field (VAF), and the suprarhinal auditory field (SRAF). AI and AAF both featured short-latency, sharply tuned responses with predominantly monotonic intensity-response functions. SRAF and PAF were both characterized by longer-latency, broadly tuned responses. VAF directly abutted the ventral boundary of AI but was almost exclusively composed of low-threshold nonmonotonic intensity-tuned responses. Dual injection of retrograde tracers into AI and VAF was used to demonstrate that the sources of thalamic input from the medial geniculate body to each area were essentially nonoverlapping. An analysis of receptive field parameters beyond characteristic frequency revealed independent spatially ordered representations for features related to spectral tuning, intensity tuning, and onset response properties in AI, AAF, VAF, and SRAF. These data demonstrate that despite its greatly reduced physical scale, the rat auditory cortex features a surprising degree of organizational complexity and detail.
Collapse
Affiliation(s)
- Daniel B Polley
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232-8548, USA.
| | | | | | | |
Collapse
|