1
|
Coelho GC, Crespo LGSC, Sampaio MDFDS, Silva RCB, Samuels RI, Carey RJ, Carrera MP. Opioid-environment interaction: Contrasting effects of morphine administered in a novel versus familiar environment on acute and repeated morphine induced behavioral effects and on acute morphine ERK activation in reward associated brain areas. Behav Brain Res 2025; 476:115221. [PMID: 39209119 DOI: 10.1016/j.bbr.2024.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
We report that environmental context can have a major impact on morphine locomotor behavior and ERK effects. We manipulated environmental context in terms of an environmental novelty/ familiarity dimension and measured morphine behavioral effects in both acute and chronic morphine treatment protocols. Wistar rats (n=7 per group) were injected with morphine 10 mg/kg or vehicle (s.c.), and immediately placed into an arena for 5 min, and locomotor activity was measured after one or 5 days. The morphine treatments were initiated either when the environment was novel or began after the rats had been familiarized with the arena by being given 5 daily nondrug tests in the arena. The results showed that acute and chronic morphine effects were strongly modified by whether the environment was novel or familiar. Acute morphine administered in a novel environment increased ERK activity more substantially in several brain areas, particularly in reward-associated areas such as the VTA in comparison to when morphine was given in a familiar environment. Repeated morphine treatments initiated in a novel environment induced a strong locomotor sensitization, whereas repeated morphine treatments initiated in a familiar environment did not induce a locomotor stimulant effect but rather a drug discriminative stimulus dis-habituation effect. The marked differential effects of environmental novelty/familiarity and ongoing dopamine activity on acute and chronic morphine treatments may be of potential clinical relevance for opioid drug addiction.
Collapse
Affiliation(s)
- Gabriela Corrêa Coelho
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Luiz Gustavo Soares Carvalho Crespo
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Maria de Fátima Dos Santos Sampaio
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Regina Claudia Barbosa Silva
- Laboratory of Psychobiology of Schizophrenia, Department of Biosciences, Federal University of Sao Paulo (UNIFESP), Silva Jardim Street 136, Santos, SP 11015-020, Brazil
| | - Richard Ian Samuels
- Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Robert J Carey
- Department of Psychiatry, SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil.
| |
Collapse
|
2
|
Monari PK, Hammond ER, Zhao X, Maksimoski AN, Petric R, Malone CL, Riters LV, Marler CA. Conditioned preferences: Gated by experience, context, and endocrine systems. Horm Behav 2024; 161:105529. [PMID: 38492501 DOI: 10.1016/j.yhbeh.2024.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Central to the navigation of an ever-changing environment is the ability to form positive associations with places and conspecifics. The functions of location and social conditioned preferences are often studied independently, limiting our understanding of their interplay. Furthermore, a de-emphasis on natural functions of conditioned preferences has led to neurobiological interpretations separated from ecological context. By adopting a naturalistic and ethological perspective, we uncover complexities underlying the expression of conditioned preferences. Development of conditioned preferences is a combination of motivation, reward, associative learning, and context, including for social and spatial environments. Both social- and location-dependent reward-responsive behaviors and their conditioning rely on internal state-gating mechanisms that include neuroendocrine and hormone systems such as opioids, dopamine, testosterone, estradiol, and oxytocin. Such reinforced behavior emerges from mechanisms integrating past experience and current social and environmental conditions. Moreover, social context, environmental stimuli, and internal state gate and modulate motivation and learning via associative reward, shaping the conditioning process. We highlight research incorporating these concepts, focusing on the integration of social neuroendocrine mechanisms and behavioral conditioning. We explore three paradigms: 1) conditioned place preference, 2) conditioned social preference, and 3) social conditioned place preference. We highlight nonclassical species to emphasize the naturalistic applications of these conditioned preferences. To fully appreciate the complex integration of spatial and social information, future research must identify neural networks where endocrine systems exert influence on such behaviors. Such research promises to provide valuable insights into conditioned preferences within a broader naturalistic context.
Collapse
Affiliation(s)
- Patrick K Monari
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Emma R Hammond
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Xin Zhao
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Alyse N Maksimoski
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Radmila Petric
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; Institute for the Environment, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Candice L Malone
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lauren V Riters
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Catherine A Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA.
| |
Collapse
|
3
|
McDevitt DS, Wade QW, McKendrick GE, Nelsen J, Starostina M, Tran N, Blendy JA, Graziane NM. The Paraventricular Thalamic Nucleus and Its Projections in Regulating Reward and Context Associations. eNeuro 2024; 11:ENEURO.0524-23.2024. [PMID: 38351131 PMCID: PMC10883411 DOI: 10.1523/eneuro.0524-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a brain region that mediates aversive and reward-related behaviors as shown in animals exposed to fear conditioning, natural rewards, or drugs of abuse. However, it is unknown whether manipulations of the PVT, in the absence of external factors or stimuli (e.g., fear, natural rewards, or drugs of abuse), are sufficient to drive reward-related behaviors. Additionally, it is unknown whether drugs of abuse administered directly into the PVT are sufficient to drive reward-related behaviors. Here, using behavioral as well as pathway and cell-type specific approaches, we manipulate PVT activity as well as the PVT-to-nucleus accumbens shell (NAcSh) neurocircuit to explore reward phenotypes. First, we show that bath perfusion of morphine (10 µM) caused hyperpolarization of the resting membrane potential, increased rheobase, and decreased intrinsic membrane excitability in PVT neurons that project to the NAcSh. Additionally, we found that direct injections of morphine (50 ng) in the PVT of mice were sufficient to generate conditioned place preference (CPP) for the morphine-paired chamber. Mimicking the inhibitory effect of morphine, we employed a chemogenetic approach to inhibit PVT neurons that projected to the NAcSh and found that pairing the inhibition of these PVT neurons with a specific context evoked the acquisition of CPP. Lastly, using brain slice electrophysiology, we found that bath-perfused morphine (10 µM) significantly reduced PVT excitatory synaptic transmission on both dopamine D1 and D2 receptor-expressing medium spiny neurons in the NAcSh, but that inhibiting PVT afferents in the NAcSh was not sufficient to evoke CPP.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Quinn W Wade
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Greer E McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Jacob Nelsen
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Mariya Starostina
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Nam Tran
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
4
|
Júnior JBL, Carvalho Crespo LGS, Samuels RI, Coimbra NC, Carey RJ, Carrera MP. Morphine and dopamine: Low dose apomorphine can prevent both the induction and expression of morphine locomotor sensitization and conditioning. Behav Brain Res 2023; 448:114434. [PMID: 37100351 DOI: 10.1016/j.bbr.2023.114434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
The disinhibition of dopamine neurons in the VTA by morphine is considered an important contributor to the reward potency of morphine. In this report, three experiments were conducted in which a low dose of apomorphine (0.05mg/kg) was used as a pretreatment to reduce dopamine activity. Locomotor hyperactivity was used as the behavioral response to morphine (10.0mg/kg). In the first experiment, five treatments with morphine induced the development of locomotor and conditioned hyperactivity that were prevented by apomorphine given 10min prior to morphine. Apomorphine before either vehicle or morphine induced equivalent reductions in locomotion. In the second experiment, the apomorphine pretreatment was initiated after induction of a conditioned hyperactivity and the apomorphine prevented the expression of the conditioning. To assess the effects of the apomorphine on VTA and the nucleus accumbens, ERK measurements were carried out after the induction of locomotor and conditioned hyperactivity. Increased ERK activation was found and these effects were prevented by the apomorphine in both experiments. A third experiment was conducted to assess the effects of acute morphine on ERK before locomotor stimulation was induced by morphine. Acute morphine did not increase locomotion, but a robust ERK response was produced indicating that the morphine induced ERK activation was not secondary to locomotor stimulation. The ERK activation was again prevented by the apomorphine pretreatment. We suggest that contiguity between the ongoing behavioral activity and the morphine activation of the dopamine reward system incentivizes and potentiates the ongoing behavior generating equivalent behavioral sensitization and conditioned effects.
Collapse
Affiliation(s)
- Joaquim Barbosa Leite Júnior
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Luiz Gustavo Soares Carvalho Crespo
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Richard Ian Samuels
- Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, SP, Brazil
| | - Robert J Carey
- Department of Psychiatry, SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, RJ, Brazil.
| |
Collapse
|
5
|
Kourosh-Arami M, Gholami M, Alavi-Kakhki SS, Komaki A. Neural correlates and potential targets for the contribution of orexin to addiction in cortical and subcortical areas. Neuropeptides 2022; 95:102259. [PMID: 35714437 DOI: 10.1016/j.npep.2022.102259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023]
Abstract
The orexin (hypocretin) is one of the hypothalamic neuropeptides that plays a critical role in some behaviors including feeding, sleep, arousal, reward processing, and drug addiction. This variety of functions can be described by a united function for orexins in translating states of heightened motivation, for example during physiological requirement states or following exposure to reward opportunities, into planned goal-directed behaviors. An addicted state is characterized by robust activation of orexin neurons from the environment, which triggers downstream circuits to facilitate behavior directed towards obtaining the drug. Two orexin receptors 1 (OX1R) and 2 (OX2R) are widely distributed in the brain. Here, we will introduce and describe the cortical and subcortical brain areas involved in addictive-like behaviors and the impact of orexin on addiction.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Sajjad Alavi-Kakhki
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Polzin BJ, Maksimoski AN, Stevenson SA, Zhao C, Riters LV. Mu opioid receptor stimulation in the medial preoptic area or nucleus accumbens facilitates song and reward in flocking European starlings. Front Physiol 2022; 13:970920. [PMID: 36171974 PMCID: PMC9510710 DOI: 10.3389/fphys.2022.970920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
It has been proposed that social cohesion in gregarious animals is reinforced both by a positive affective state induced by social interactions and by the prevention of a negative state that would be caused by social separation. Opioids that bind to mu opioid receptors (MORs) act in numerous brain regions to induce positive and to reduce negative affective states. Here we explored a potential role for MORs in affective states that may impact flocking behavior in mixed-sex flocks of nonbreeding European starlings, Sturnus vulgaris. Singing behavior, which is considered central to flock cohesion, and other social behaviors were quantified after infusions of the MOR agonist D-Ala2, N-Me-Phe4, glycinol5-ENK (DAMGO) into either the medial preoptic area (POM) or the nucleus accumbens (NAC), regions previously implicated in affective state and flock cohesion. We focused on beak wiping, a potential sign of stress or redirected aggression in this species, to provide insight into a presumed negative state. We also used conditioned place preference (CPP) tests to provide insight into the extent to which infusions of DAMGO into POM or NAC that stimulated song might be rewarding. We found that MOR stimulation in either POM or NAC dose-dependently promoted singing behavior, reduced beak wiping, and induced a CPP. Subtle differences in responses to MOR stimulation between NAC and POM also suggest potential functional differences in the roles of these two regions. Finally, because the location of NAC has only recently been identified in songbirds, we additionally performed a tract tracing study that confirmed the presence of dopaminergic projections from the ventral tegmental area to NAC, suggesting homology with mammalian NAC. These findings support the possibility that MORs in POM and NAC play a dual role in reinforcing social cohesion in flocks by facilitating positive and reducing negative affective states.
Collapse
|
7
|
Li S, Zhang XQ, Liu CC, Wang ZY, Lu GY, Shen HW, Wu N, Li J, Li F. IRAS/Nischarin modulates morphine reward by glutamate receptor activation in the nucleus accumbens of mouse brain. Biomed Pharmacother 2022; 153:113346. [DOI: 10.1016/j.biopha.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022] Open
|
8
|
Context evoked morphine conditioned effects can be equivalent to morphine induced drug effects in terms of behavioral response and ERK activation in reward associated subcortical brain structures. Pharmacol Biochem Behav 2022; 214:173356. [PMID: 35181379 DOI: 10.1016/j.pbb.2022.173356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022]
Abstract
Conditioned drug cues can evoke brief drug-like responses. In this report we show that using brief test sessions, contextual cues can induce conditioned hyperlocomotion and ERK responses equivalent to morphine induced responses. To assess acute unconditioned effects, rats that received morphine (MOR-1) or vehicle (VEH-1), were immediately placed onto an arena for a 5-min locomotion recording session after which ERK was measured in the ventral tegmental area (VTA) and nucleus accumbens (NAc). There were no differences in locomotion between the groups. However, the MOR-1 group had strong ERK activation in VTA and NAc. To assess MOR-conditioned effects, a chronic phase was carried out according to a Pavlovian conditioning protocol. There were two MOR paired groups (MORP), one MOR unpaired (MOR-UP) group and two VEH groups. The treatments were administered over 5 daily five minute test sessions. The final conditioning test was on day 6, in which one of the MOR-P groups and one of the VEH groups received VEH (MOR-P/VEH-6 and VEH/VEH-6, respectively). The other MOR-P group and VEH group received MOR (MOR-P/MOR; VEH/MOR-6, respectively). The MOR-UP group received VEH (MOR-UP/VEH-6). Rats received the treatments immediately prior to a 5-min arena test, and after the session ERK was measured. No morphine induced locomotor stimulation was observed on day 1 but on days 2 to 5, hyperlocomotion in both MOR-P groups occurred. On test day 6, the MOR-P/VEH-6 and the MOR-P/MOR-6 groups had comparable locomotor stimulant responses and similar ERK activity in the VTA and NAc. The MOR-UP group did not differ from the VEH group. We suggest that ERK activation evoked by acute morphine served as a Pavlovian unconditioned stimulus to enable the contextual cues to acquire morphine conditioned stimulus properties and increase the incentive value of the contextual cues.
Collapse
|
9
|
Reakkamnuan C, Cheaha D, Samerphob N, Sa-Ih N, Kumarnsit E. Adaptive changes in local field potential oscillation associated with morphine conditioned place preference in mice. Physiol Behav 2021; 235:113396. [PMID: 33757777 DOI: 10.1016/j.physbeh.2021.113396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/07/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Neural adaptation associated with formation of morphine conditioned place preference remained largely unexplored. This study monitored longitudinal changes in neural signaling during pre-conditioning, conditioning and post-conditioning periods of morphine conditioned place preference (CPP) paradigm for investigation of adaptive mechanisms of opiate addiction. Male Swiss albino mice implanted with intracranial electrodes into the nucleus accumbens (NAc), striatum (STr) and hippocampus (HC) were used for recording of local field potentials (LFPs). Animals received a 10-day schedule for associative learning to pair the specific compartment of the chamber with morphine effects. Exploratory behavior and LFP signals were recorded during pre-conditioning (baseline level), conditioning (day 1, 5 and 10) and post-conditioning (day 1, 4 and 7) periods. Repeated measures one-way ANOVA followed by Tukey test revealed significant increases in number of visit and time spent in morphine compartment during post-conditioning days. Frequency analysis of LFP highlighted the increases in alpha activity (12 - 18 Hz) in the NAc from post-conditioning day 1 until day 7. Moreover, significantly increased coherent activities between the pair of NAc-HC were developed within gamma frequency range (35 - 42 Hz) on morphine conditioning day 10 and disappeared during post-conditioning days. Taken together, these findings emphasized NAc LFP signaling and neural connectivities between the NAc and HC associated with morphine CPP. These adaptive changes might underlie the formation of morphine conditioned place preference and behavioral consequences such as craving and relapse.
Collapse
Affiliation(s)
- Chayaporn Reakkamnuan
- Department of Physiology, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkhla, 90112, Thailand
| | - Dania Cheaha
- Department of Biology, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkhla, 90112, Thailand; Biosignal Research Center for Health, Prince of Songkla University (PSU), Hat Yai, Songkhla, 90112, Thailand
| | - Nifareeda Samerphob
- Department of Physiology, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkhla, 90112, Thailand; Biosignal Research Center for Health, Prince of Songkla University (PSU), Hat Yai, Songkhla, 90112, Thailand
| | - Nusaib Sa-Ih
- Department of Physiology, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkhla, 90112, Thailand; Biosignal Research Center for Health, Prince of Songkla University (PSU), Hat Yai, Songkhla, 90112, Thailand
| | - Ekkasit Kumarnsit
- Department of Physiology, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkhla, 90112, Thailand; Biosignal Research Center for Health, Prince of Songkla University (PSU), Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
10
|
Thompson BL, Oscar-Berman M, Kaplan GB. Opioid-induced structural and functional plasticity of medium-spiny neurons in the nucleus accumbens. Neurosci Biobehav Rev 2021; 120:417-430. [PMID: 33152423 PMCID: PMC7855607 DOI: 10.1016/j.neubiorev.2020.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Opioid Use Disorder (OUD) is a chronic relapsing clinical condition with tremendous morbidity and mortality that frequently persists, despite treatment, due to an individual's underlying psychological, neurobiological, and genetic vulnerabilities. Evidence suggests that these vulnerabilities may have neurochemical, cellular, and molecular bases. Key neuroplastic events within the mesocorticolimbic system that emerge through chronic exposure to opioids may have a determinative influence on behavioral symptoms associated with OUD. In particular, structural and functional alterations in the dendritic spines of medium spiny neurons (MSNs) within the nucleus accumbens (NAc) and its dopaminergic projections from the ventral tegmental area (VTA) are believed to facilitate these behavioral sequelae. Additionally, glutamatergic neurons from the prefrontal cortex, the basolateral amygdala, the hippocampus, and the thalamus project to these same MSNs, providing an enriched target for synaptic plasticity. Here, we review literature related to neuroadaptations in NAc MSNs from dopaminergic and glutamatergic pathways in OUD. We also describe new findings related to transcriptional, epigenetic, and molecular mechanisms in MSN plasticity in the different stages of OUD.
Collapse
Affiliation(s)
- Benjamin L Thompson
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA; Research Service, VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA.
| | - Marlene Oscar-Berman
- Research Service, VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA; Department of Psychiatry, Boston University School of Medicine, 720 Harrison Avenue, Boston, MA, 02118, USA; Department of Neurology, Boston University School of Medicine, Boston University Medical Center, 80 East Concord Street, Boston, MA 02118, USA.
| | - Gary B Kaplan
- Department of Psychiatry, Boston University School of Medicine, 720 Harrison Avenue, Boston, MA, 02118, USA; Mental Health Service, VA Boston Healthcare System, 940 Belmont Street, Brockton, MA, 02301, USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
| |
Collapse
|
11
|
Kupnicka P, Kojder K, Metryka E, Kapczuk P, Jeżewski D, Gutowska I, Goschorska M, Chlubek D, Baranowska-Bosiacka I. Morphine-element interactions - The influence of selected chemical elements on neural pathways associated with addiction. J Trace Elem Med Biol 2020; 60:126495. [PMID: 32179426 DOI: 10.1016/j.jtemb.2020.126495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a pressing social problem worldwide and opioid dependence can be considered the strongest and most difficult addiction to treat. Mesolimbic and mesocortical dopaminergic pathways play an important role in modulation of cognitive processes and decision making and, therefore, changes in dopamine metabolism are considered the central basis for the development of dependence. Disturbances caused by excesses or deficiency of certain elements have a significant impact on the functioning of the central nervous system (CNS) both in physiological conditions and in pathology and can affect the cerebral reward system and therefore, may modulate processes associated with the development of addiction. In this paper we review the mechanisms of interactions between morphine and zinc, manganese, chromium, cadmium, lead, fluoride, their impact on neural pathways associated with addiction, and on antinociception and morphine tolerance and dependence.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252, Szczecin, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitive Science, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| |
Collapse
|
12
|
Place preferences induced by electrical stimulation of the external lateral parabrachial subnucleus in a sequential learning task: Place preferences induced by NLPBe stimulation. Behav Brain Res 2020; 381:112442. [PMID: 31862469 DOI: 10.1016/j.bbr.2019.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
It is known that electrical stimulation of the external lateral parabrachial nucleus (NLPBe) can sustain concurrent taste and place learning. Place preferences can be learned through different procedures. Previous studies demonstrated that electrical stimulation of the PBNLe can generate aversive and preference place learning using concurrent procedures. In the concurrent procedure, the animals can move freely in the maze, and intracranial electrical stimulation is associated with their voluntary stay in one of the two maze compartments. However, the rewarding properties of most stimuli, whether natural or drugs of abuse, have usually been investigated using the sequential procedure, in which animals are confined while receiving the unconditioned stimulus and then undergo a choice test without stimulation in a later phase. This study examined whether this stimulation can sustain place preference learning in sequential tasks. Results demonstrated that place preferences can also be induced by the electrical stimulation of the NLBe using sequential procedures. These findings suggest that the NLPBe may form part of a brain reward axis that shares certain characteristics with those observed in the processing of natural rewarding agents and especially of drugs of abuse.
Collapse
|
13
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
14
|
Ciubotariu D, Nechifor M, Dimitriu G. Chromium picolinate reduces morphine-dependence in rats, while increasing brain serotonin levels. J Trace Elem Med Biol 2018; 50:676-683. [PMID: 30269760 DOI: 10.1016/j.jtemb.2018.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
UNLABELLED Chromium is an essential trace element with anti-diabetic and anti-depressant effect; the latter is considered related to chromium properties of increasing brain serotonin. Cr3+ salts were shown to improve some forced swimming-parameters and to induce rewarding effects, which are additive to those of morphine, but Cr effect on addictive processes has not been tested. AIM The present study aimed to assess chromium picolinate (CrPi) influence on morphine-dependence in rats. MATHERIAL AND METHODS We used five groups of 10 rats. Groups 1 and 2 (controls) received saline, respectively CrPi, 0.01 mg/kg/day, for 10 days. In groups 3, 4 and 5 dependence was induced with progressively-increased morphine doses (from 5 - day 1-90 mg/kg/day - day 10, s.c.). Group 3 received only morphine, while groups 4 and 5 received CrPi, i.p., 10 and respectively 5 μg/kg/day, during the 10 days of dependence induction. On day 11, groups 3, 4, and 5 were administered 90 mg/kg morphine, and, 2 h later, all rats received naloxone, 2 mg/kg s.c., to precipitate withdrawal. We compared withdrawal intensity in group 3 vs. groups 4 and 5, assessing both individual symptoms and Gellert-Holtzman global withdrawal score. Upon rats sacrifice at the end of the experiments, brain serotonin (5HT) in certain areas and serum Cr were assessed. RESULTS Some withdrawal signs were unequally influenced by CrPi: compulsive mastication was reduced by both CrPi doses (p < 0.05), while teeth chattering and grooming were significantly reduced only by the higher dose (p < 0.05). Withdrawal score was reduced by both CrPi doses: from 132.4 ± 9.87 - group 3 to 122.2 ± 6.47 - group 4 (p < 0.01 vs. group 3) and 124.1 ± 8.41 - group 5 (p < 0.05 vs. group 3). CrPi reduction of withdrawal is accompanied by increased brain 5 H T, mainly in the prefrontal cortex (646.3 ± 8.51 - group 3 vs. 661.5 ± 14.63 - group 4, p < 0.01 and 660.7 ± 14.01 pg/mg tissue - group 5, p < 0.05 vs. group 3). CrPi also increases brain 5 H T in non-dependent rats (prefrontal cortex: 541.6 ± 31.80, group 1 and 565.5 ± 16. 46 pg/mg tissue, group 2, p < 0.05). Administration of CrPi determined a dose-dependent increase of serum Cr. CONCLUSIONS Our study evidenced a slight, but significant reduction of morphine dependence in rats induced by chromium picolinate, accompanied by increased brain serotonin. This might be considered a supplementary evidence for chromium anti-depressant effect and its serotonin-mediated mechanisms.
Collapse
Affiliation(s)
- Diana Ciubotariu
- Pharmacology and Clinical Pharmacology Department, University of Medicine and Pharmacy "Gr. T. Popa", Iaşi, Romania.
| | - Mihai Nechifor
- Pharmacology and Clinical Pharmacology Department, University of Medicine and Pharmacy "Gr. T. Popa", Iaşi, Romania
| | - Gabriel Dimitriu
- Mathematics and Informatics Department, University of Medicine and Pharmacy "Gr. T. Popa", Iaşi, Romania
| |
Collapse
|
15
|
Hearing M. Prefrontal-accumbens opioid plasticity: Implications for relapse and dependence. Pharmacol Res 2018; 139:158-165. [PMID: 30465850 DOI: 10.1016/j.phrs.2018.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023]
Abstract
In addiction, an individual's ability to inhibit drug seeking and drug taking is thought to reflect a pathological strengthening of drug-seeking behaviors or impairments in the capacity to control maladaptive behavior. These processes are not mutually exclusive and reflect drug-induced modifications within prefrontal cortical and nucleus accumbens circuits, however unlike psychostimulants such as cocaine, far less is known about the temporal, anatomical, and cellular dynamics of these changes. We discuss what is known regarding opioid-induced adaptations in intrinsic membrane physiology and pre-/postsynaptic neurotransmission in principle pyramidal and medium spiny neurons in the medial prefrontal cortex and nucleus accumbens from electrophysiological studies and explore how circuit specific adaptations may contribute to unique facets of opioid addiction.
Collapse
Affiliation(s)
- Matthew Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| |
Collapse
|
16
|
Demin KA, Meshalkina DA, Kysil EV, Antonova KA, Volgin AD, Yakovlev OA, Alekseeva PA, Firuleva MM, Lakstygal AM, de Abreu MS, Barcellos LJG, Bao W, Friend AJ, Amstislavskaya TG, Rosemberg DB, Musienko PE, Song C, Kalueff AV. Zebrafish models relevant to studying central opioid and endocannabinoid systems. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:301-312. [PMID: 29604314 DOI: 10.1016/j.pnpbp.2018.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Elana V Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Kristina A Antonova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Oleg A Yakovlev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Polina A Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Maria M Firuleva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Leonardo J G Barcellos
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Programs in Environmental Sciences, and Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Wandong Bao
- School of Pharmacy, Southwest University, Chongqing, China
| | - Ashton J Friend
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Motor Physiology, Pavlov Institute of Physiology RAS, St. Petersburg, Russia; Laboratory of Neurophysiology and Experimental Neurorehabilitation, St. Petersburg State Research Institute of Phthysiopulmonology, Ministry of Health, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Research and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Aquatic Laboratory, Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.
| |
Collapse
|
17
|
Alshehri FS, Hakami AY, Althobaiti YS, Sari Y. Effects of ceftriaxone on hydrocodone seeking behavior and glial glutamate transporters in P rats. Behav Brain Res 2018; 347:368-376. [PMID: 29604365 PMCID: PMC5988953 DOI: 10.1016/j.bbr.2018.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/23/2023]
Abstract
Hydrocodone (HYD) is one of the most widely prescribed opioid analgesic drugs. Several neurotransmitters are involved in opioids relapse. Among these neurotransmitters, glutamate is suggested to be involved in opioid dependence and relapse. Glutamate is regulated by several glutamate transporters, including glutamate transporter 1 (GLT-1) and cystine/glutamate transporter (xCT). In this study, we investigated the effects of ceftriaxone (CEF) (200 mg/kg, i.p.), known to upregulate GLT-1 and xCT, on reinstatement to HYD (5 mg/kg, i.p.) using the conditioned place preference (CPP) paradigm in alcohol-preferring (P) rats. Animals were divided into three groups: 1) saline-saline group (SAL-SAL); 2) HYD-SAL group; and 3) HYD-CEF group. The CPP was conducted as follows: habituation phase, conditioning phase with HYD (i.p.) injections every other day for four sessions, extinction phase with CEF (i.p.) injections every other day for four sessions, and reinstatement phase with one priming dose of HYD. Time spent in the HYD-paired chamber after conditioning training was increased as compared to pre-conditioning. There was an increase in time spent in the HYD-paired chamber with one priming dose of HYD in the reinstatement test. HYD exposure downregulated xCT expression in the nucleus accumbens and hippocampus, but no effects were observed in the dorsomedial prefrontal cortex and amygdala. Importantly, CEF treatment attenuated the reinstatement effect of HYD and normalized xCT expression in the affected brain regions. These findings demonstrate that the attenuating effect of HYD reinstatement with CEF might be mediated through xCT.
Collapse
Affiliation(s)
- Fahad S Alshehri
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Alqassem Y Hakami
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Yusuf S Althobaiti
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Youssef Sari
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| |
Collapse
|
18
|
Ciubotariu D, Lupușoru RV, Luca E, Mititelu-Tarțău L, Lupușoru CE. Experimental Research Showing the Reduction of Naloxone-Place Aversion by Oral Zinc Administration in Rats. Biol Trace Elem Res 2017; 180:127-134. [PMID: 28337700 DOI: 10.1007/s12011-017-0995-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023]
Abstract
Previous studies showed the attenuation of both morphine-dependence and morphine-place preference by zinc. Conditioned place preference and aversion are experimental models frequently used to test the reward-stimulating, respectively the aversive effects induced by different stimuli or substances. Addictive substances usually induce place preference (exhibit reward-stimulating properties), while their antagonists determine place-avoidance (aversion). The present study aimed to assess the effect determined by zinc sulphate oral administration (2 and 4 mg/kg/day, 14 days, prior to habituation) on the place aversion induced by two naloxone doses (1.5 and 2.5 mg/kg/administration). The results show a robust, dose-dependent reduction of the aversion determined by both naloxone doses (the aversion induced by 1.5 mg/kg naloxone was reduced with 15%-the lower zinc dose and with 24%-the higher zinc dose; the aversion induced by 2.5 mg/kg naloxone was reduced with 16%-the lower zinc dose and with 29%-the higher zinc dose). This represents a new proof of the interactions between zinc and opioidergic system and a further argument for dietary zinc supplementation in patients on opioids for cancer-related chronic pain.
Collapse
Affiliation(s)
- Diana Ciubotariu
- Faculty of Medicine, Department of Pharmacology, University of Medicine and Pharmacy "Grigore T. Popa", School of Medicine, 16 Universităţii Street, 700115, Iaşi, Romania.
| | - Raoul Vasile Lupușoru
- Faculty of Medicine, Department of Pathophysiology, University of Medicine and Pharmacy "Grigore T. Popa", School of Medicine, 16 Universităţii Street, 700115, Iaşi, Romania
| | - Elena Luca
- Faculty of Dental Medicine Faculty, Fixed Prosthetics, Gnatology, Dental-Stomato-Facial Aesthetics Department, University of Medicine and Pharmacy "Grigore T. Popa", School of Medicine, 16 Universităţii Street, 700115, Iaşi, Romania
| | - Liliana Mititelu-Tarțău
- Faculty of Medicine, Department of Pharmacology, University of Medicine and Pharmacy "Grigore T. Popa", School of Medicine, 16 Universităţii Street, 700115, Iaşi, Romania
| | - Cătălina Elena Lupușoru
- Faculty of Medicine, Department of Pharmacology, University of Medicine and Pharmacy "Grigore T. Popa", School of Medicine, 16 Universităţii Street, 700115, Iaşi, Romania
| |
Collapse
|
19
|
Motta SC, Carobrez AP, Canteras NS. The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev 2017; 76:39-47. [DOI: 10.1016/j.neubiorev.2016.10.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
|
20
|
Reakkamnuan C, Cheaha D, Kumarnsit E. Nucleus accumbens local field potential power spectrums, phase-amplitude couplings and coherences following morphine treatment. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Kobrin KL, Moody O, Arena DT, Moore CF, Heinrichs SC, Kaplan GB. Acquisition of morphine conditioned place preference increases the dendritic complexity of nucleus accumbens core neurons. Addict Biol 2016; 21:1086-1096. [PMID: 26096355 DOI: 10.1111/adb.12273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Contexts associated with opioid reward trigger craving and relapse in opioid addiction. Effects of reward-context associative learning on nucleus accumbens (NAc) dendritic morphology were studied using morphine conditioned place preference (CPP). Morphine-conditioned mice received saline and morphine 10 mg/kg subcutaneous (s.c.) on alternate days. Saline-conditioned mice received saline s.c. each day. Morphine-conditioned and saline-conditioned groups received injections immediately before each of eight daily conditioning sessions. Morphine homecage controls had no CPP training, but received saline and morphine in the homecage concomitantly with the morphine-conditioned group. Morphine conditioning produced greater place preference than saline conditioning. Mice were sacrificed 1 day after CPP expression. Dendritic changes were studied using Golgi-Cox staining and digital tracing of NAc core and shell neurons. In the NAc core, morphine homecage administration increased spine density, while morphine conditioning increased dendritic complexity, as defined by increased dendritic count, length and intersections. Place preference positively correlated with dendritic length and intersections in the NAc core. The core may mediate reward consolidation and determine how context-related signals from the shell lead to motor behavior. The combination of drug and conditioning in the morphine-conditioned group produced unique morphological effects different from the effects of drug or conditioning procedures by themselves. An additional study found no differences in neuron morphology between saline-conditioned mice, trained as described earlier, and mice that were not conditioned, but received saline in the homecage. The unique effect of morphine reward learning on NAc core dendrites reflects a brain substrate that could be targeted for therapeutic intervention in addiction.
Collapse
Affiliation(s)
- Kendra L. Kobrin
- Research Service VA Boston Healthcare System; Boston MA USA
- Department of Pharmacology and Experimental Therapeutics; Boston University School of Medicine; Boston MA USA
| | - Olivia Moody
- Research Service VA Boston Healthcare System; Boston MA USA
| | | | - Catherine F. Moore
- Research Service VA Boston Healthcare System; Boston MA USA
- Department of Pharmacology and Experimental Therapeutics; Boston University School of Medicine; Boston MA USA
| | | | - Gary B. Kaplan
- Department of Pharmacology and Experimental Therapeutics; Boston University School of Medicine; Boston MA USA
- Mental Health Service; VA Boston Healthcare System; Boston MA USA
| |
Collapse
|
22
|
Vassoler FM, Wright SJ, Byrnes EM. Exposure to opiates in female adolescents alters mu opiate receptor expression and increases the rewarding effects of morphine in future offspring. Neuropharmacology 2015; 103:112-21. [PMID: 26700246 DOI: 10.1016/j.neuropharm.2015.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
Abstract
Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30-39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA.
Collapse
Affiliation(s)
- Fair M Vassoler
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA.
| | - Siobhan J Wright
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA
| | - Elizabeth M Byrnes
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA
| |
Collapse
|
23
|
Banghart MR, Neufeld SQ, Wong NC, Sabatini BL. Enkephalin Disinhibits Mu Opioid Receptor-Rich Striatal Patches via Delta Opioid Receptors. Neuron 2015; 88:1227-1239. [PMID: 26671460 DOI: 10.1016/j.neuron.2015.11.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
Opioid neuropeptides and their receptors are evolutionarily conserved neuromodulatory systems that profoundly influence behavior. In dorsal striatum, which expresses the endogenous opioid enkephalin, patches (or striosomes) are limbic-associated subcompartments enriched in mu opioid receptors. The functional implications of opioid signaling in dorsal striatum and the circuit elements in patches regulated by enkephalin are unclear. Here, we examined how patch output is modulated by enkephalin and identified the underlying circuit mechanisms. We found that patches are relatively devoid of parvalbumin-expressing interneurons and exist as self-contained inhibitory microcircuits. Enkephalin suppresses inhibition onto striatal projection neurons selectively in patches, thereby disinhibiting their firing in response to cortical input. The majority of this neuromodulation is mediated by delta, not mu-opioid, receptors, acting specifically on intra-striatal collateral axons of striatopallidal neurons. These results suggest that enkephalin gates limbic information flow in dorsal striatum, acting via a patch-specific function for delta opioid receptors.
Collapse
Affiliation(s)
- Matthew Ryan Banghart
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Shay Quentin Neufeld
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Nicole Christine Wong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bernardo Luis Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Hipólito L, Wilson-Poe A, Campos-Jurado Y, Zhong E, Gonzalez-Romero J, Virag L, Whittington R, Comer SD, Carlton SM, Walker BM, Bruchas MR, Morón JA. Inflammatory Pain Promotes Increased Opioid Self-Administration: Role of Dysregulated Ventral Tegmental Area μ Opioid Receptors. J Neurosci 2015; 35:12217-31. [PMID: 26338332 PMCID: PMC4556787 DOI: 10.1523/jneurosci.1053-15.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023] Open
Abstract
Pain management in opioid abusers engenders ethical and practical difficulties for clinicians, often resulting in pain mismanagement. Although chronic opioid administration may alter pain states, the presence of pain itself may alter the propensity to self-administer opioids, and previous history of drug abuse comorbid with chronic pain promotes higher rates of opioid misuse. Here, we tested the hypothesis that inflammatory pain leads to increased heroin self-administration resulting from altered mu opioid receptor (MOR) regulation of mesolimbic dopamine (DA) transmission. To this end, the complete Freund's adjuvant (CFA) model of inflammation was used to assess the neurochemical and functional changes induced by inflammatory pain on MOR-mediated mesolimbic DA transmission and on rat intravenous heroin self-administration under fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. In the presence of inflammatory pain, heroin intake under an FR schedule was increased for high, but attenuated for low, heroin doses with concomitant alterations in mesolimbic MOR function suggested by DA microdialysis. Consistent with the reduction in low dose FR heroin self-administration, inflammatory pain reduced motivation for a low dose of heroin, as measured by responding under a PR schedule of reinforcement, an effect dissociable from high heroin dose PR responding. Together, these results identify a connection between inflammatory pain and loss of MOR function in the mesolimbic dopaminergic pathway that increases intake of high doses of heroin. These findings suggest that pain-induced loss of MOR function in the mesolimbic pathway may promote opioid dose escalation and contribute to opioid abuse-associated phenotypes. SIGNIFICANCE STATEMENT This study provides critical new insights that show that inflammatory pain alters heroin intake through a desensitization of MORs located within the VTA. These findings expand our knowledge of the interactions between inflammatory pain and opioid abuse liability, and should help to facilitate the development of novel and safer opioid-based strategies for treating chronic pain.
Collapse
Affiliation(s)
- Lucia Hipólito
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | | | - Yolanda Campos-Jurado
- Departament de Farmàcia i Tecnología Farmacèutica, Facultat de Farmàcia, Universitat de Farmàcia, 46100 Burjassot, València, Spain
| | - Elaine Zhong
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | | | - Laszlo Virag
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | - Robert Whittington
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | - Sandra D Comer
- Department of Psychiatry, Division on Substance Abuse, New York State Psychiatric Institute, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Susan M Carlton
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch Galveston, Galveston, Texas 77555
| | - Brendan M Walker
- Department of Psychology and Graduate Program in Neuroscience, Washington State University, Pullman, Washington 99164, and
| | - Michael R Bruchas
- Department of Anesthesiology and Department of Anatomy and Neurobiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jose A Morón
- Department of Anesthesiology, Columbia University, New York, New York 10032,
| |
Collapse
|
25
|
Bates MLS, Emery MA, Wellman PJ, Eitan S. Social housing conditions influence morphine dependence and the extinction of morphine place preference in adolescent mice. Drug Alcohol Depend 2014; 142:283-9. [PMID: 25048393 DOI: 10.1016/j.drugalcdep.2014.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/25/2014] [Accepted: 06/27/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Adolescent opioid abuse is on the rise, and current treatments are not effective in reducing rates of relapse. Our previous studies demonstrated that social housing conditions alter the acquisition rate of morphine conditioned place preference (CPP) in adolescent mice. Specifically, the acquisition rate of morphine CPP is slower in morphine-treated animals housed with drug-naïve animals. Thus, here we tested the effect of social housing conditions on the development of morphine dependence and the extinction rate of an acquired morphine CPP. METHODS Adolescent male mice were group-housed in one of two housing conditions. They were injected for 6 days (PND 28-33) with 20 mg/kg morphine. Morphine only mice are animals where all four mice in the cage received morphine. Morphine cage-mate mice are morphine-injected animals housed with drug-naïve animals. Mice were individually tested for spontaneous withdrawal signs by quantifying jumping behavior 4, 8, 24, and 48 h after the final morphine injection. Then, mice were conditioned to acquire morphine CPP and were tested for the rate of extinction. RESULTS Morphine cage-mates express less jumping behavior during morphine withdrawal as compared to morphine only mice. As expected, morphine cage-mate animals acquired morphine CPP more slowly than the morphine only animals. Additionally, morphine cage-mates extinguished morphine CPP more readily than morphine only mice. CONCLUSIONS Social housing conditions modulate morphine dependence and the extinction rate of morphine CPP. Extinction testing is relevant to human addiction because rehabilitations like extinction therapy may be used to aid human addicts in maintaining abstinence from drug use.
Collapse
Affiliation(s)
- M L Shawn Bates
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Paul J Wellman
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA.
| |
Collapse
|
26
|
Mousavi Y, Azizi H, Mirnajafi-Zadeh J, Javan M, Semnanian S. Blockade of orexin type-1 receptors in locus coeruleus nucleus attenuates the development of morphine dependency in rats. Neurosci Lett 2014; 578:90-4. [DOI: 10.1016/j.neulet.2014.06.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/29/2022]
|
27
|
McDonald RJ, Zelinski EL, Keeley RJ, Sutherland D, Fehr L, Hong NS. Multiple effects of circadian dysfunction induced by photoperiod shifts: Alterations in context memory and food metabolism in the same subjects. Physiol Behav 2013; 118:14-24. [DOI: 10.1016/j.physbeh.2013.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 12/17/2022]
|
28
|
Desai SJ, Upadhya MA, Subhedar NK, Kokare DM. NPY mediates reward activity of morphine, via NPY Y1 receptors, in the nucleus accumbens shell. Behav Brain Res 2013; 247:79-91. [DOI: 10.1016/j.bbr.2013.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/05/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
|
29
|
Erami E, Azhdari-Zarmehri H, Rahmani A, Ghasemi-Dashkhasan E, Semnanian S, Haghparast A. Blockade of orexin receptor 1 attenuates the development of morphine tolerance and physical dependence in rats. Pharmacol Biochem Behav 2012; 103:212-9. [DOI: 10.1016/j.pbb.2012.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/12/2012] [Accepted: 08/15/2012] [Indexed: 11/30/2022]
|
30
|
Mota-Ortiz SR, Sukikara MH, Bittencourt JC, Baldo MV, Elias CF, Felicio LF, Canteras NS. The periaqueductal gray as a critical site to mediate reward seeking during predatory hunting. Behav Brain Res 2012; 226:32-40. [DOI: 10.1016/j.bbr.2011.08.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/20/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
31
|
Achat-Mendes C, Lynch LJ, Sullivan KA, Vallender EJ, Miller GM. Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1. Pharmacol Biochem Behav 2011; 101:201-7. [PMID: 22079347 DOI: 10.1016/j.pbb.2011.10.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/13/2011] [Accepted: 10/31/2011] [Indexed: 11/17/2022]
Abstract
The trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that is functionally activated by amphetamine-based psychostimulants, including amphetamine, methamphetamine and MDMA. Previous studies have shown that in transgenic mice lacking the TAAR1 gene (TAAR1 knockout; KO) a single injection of amphetamine can produce enhanced behavioral responses compared to responses evoked in wild-type (WT) mice. Further, the psychostimulant effects of cocaine can be diminished by selective activation of TAAR1. These findings suggest that TAAR1 might be implicated in the rewarding properties of psychostimulants. To investigate the role of TAAR1 in the rewarding effects of drugs of abuse, the psychomotor stimulating effects of amphetamine and methamphetamine and the conditioned rewarding effects of methamphetamine and morphine were compared between WT and TAAR1 KO mice. In locomotor activity studies, both single and repeated exposure to d-amphetamine or methamphetamine generated significantly higher levels of total distance traveled in TAAR1 KO mice compared to WT mice. In conditioned place preference (CPP) studies, TAAR1 KO mice acquired methamphetamine-induced CPP earlier than WT mice and retained CPP longer during extinction training. In morphine-induced CPP, both WT and KO genotypes displayed similar levels of CPP. Results from locomotor activity studies suggest that TAAR1 may have a modulatory role in the behavioral sensitization to amphetamine-based psychostimulants. That methamphetamine-but not morphine-induced CPP was augmented in TAAR1 KO mice suggests a selective role of TAAR1 in the conditioned reinforcing effects of methamphetamine. Collectively, these findings provide support for a regulatory role of TAAR1 in methamphetamine signaling.
Collapse
Affiliation(s)
- Cindy Achat-Mendes
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772, United States.
| | | | | | | | | |
Collapse
|
32
|
Badiani A, Belin D, Epstein D, Calu D, Shaham Y. Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 2011; 12:685-700. [PMID: 21971065 DOI: 10.1038/nrn3104] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The publication of the psychomotor stimulant theory of addiction in 1987 and the finding that addictive drugs increase dopamine concentrations in the rat mesolimbic system in 1988 have led to a predominance of psychobiological theories that consider addiction to opiates and addiction to psychostimulants as essentially identical phenomena. Indeed, current theories of addiction - hedonic allostasis, incentive sensitization, aberrant learning and frontostriatal dysfunction - all argue for a unitary account of drug addiction. This view is challenged by behavioural, cognitive and neurobiological findings in laboratory animals and humans. Here, we argue that opiate addiction and psychostimulant addiction are behaviourally and neurobiologically distinct and that the differences have important implications for addiction treatment, addiction theories and future research.
Collapse
Affiliation(s)
- Aldo Badiani
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
33
|
Parallel associative processing in the dorsal striatum: segregation of stimulus-response and cognitive control subregions. Neurobiol Learn Mem 2011; 96:95-120. [PMID: 21704718 DOI: 10.1016/j.nlm.2011.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 11/21/2022]
Abstract
Although evidence suggests that the dorsal striatum contributes to multiple learning and memory functions, there nevertheless remains considerable disagreement on the specific associative roles of different neuroanatomical subregions. We review evidence indicating that the dorsolateral striatum (DLS) is a substrate for stimulus-response habit formation - incremental strengthening of simple S-R bonds - via input from sensorimotor neocortex while the dorsomedial striatum (DMS) contributes to behavioral flexibility - the cognitive control of behavior - via prefrontal and limbic circuits engaged in relational and spatial information processing. The parallel circuits through dorsal striatum interact with incentive/affective motivational processing in the ventral striatum and portions of the prefrontal cortex leading to overt responding under specific testing conditions. Converging evidence obtained through a detailed task analysis and neurobehavioral assessment is beginning to illuminate striatal subregional interactions and relations to the rest of the mammalian brain.
Collapse
|
34
|
Involvement of p38/NF-κB signaling pathway in the nucleus accumbens in the rewarding effects of morphine in rats. Behav Brain Res 2011; 218:184-9. [DOI: 10.1016/j.bbr.2010.11.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/15/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
|
35
|
Fibiger HC, Phillips AG. Reward, Motivation, Cognition: Psychobiology of Mesotelencephalic Dopamine Systems. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Azizi H, Mirnajafi-Zadeh J, Rohampour K, Semnanian S. Antagonism of orexin type 1 receptors in the locus coeruleus attenuates signs of naloxone-precipitated morphine withdrawal in rats. Neurosci Lett 2010; 482:255-9. [DOI: 10.1016/j.neulet.2010.07.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 11/26/2022]
|
37
|
McDonald RJ, Yim TT, Lehmann H, Sparks FT, Zelinski EL, Sutherland RJ, Hong NS. Expression of a conditioned place preference or spatial navigation task following muscimol-induced inactivations of the amygdala or dorsal hippocampus: A double dissociation in the retrograde direction. Brain Res Bull 2010; 83:29-37. [DOI: 10.1016/j.brainresbull.2010.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/17/2010] [Accepted: 06/02/2010] [Indexed: 11/26/2022]
|
38
|
Omelchenko N, Sesack SR. Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area. J Neurosci Res 2010; 88:981-91. [PMID: 19885830 DOI: 10.1002/jnr.22265] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The midbrain central gray (periaqueductal gray; PAG) mediates defensive behaviors and is implicated in the rewarding effects of opiate drugs. Projections from the PAG to the ventral tegmental area (VTA) suggest that this region might also regulate behaviors involving motivation and cognition. However, studies have not yet examined the morphological features of PAG axons in the VTA or whether they synapse onto dopamine (DA) or GABA neurons. In this study, we injected anterograde tracers into the rat PAG and used immunoperoxidase to visualize the projections to the VTA. Immunogold-silver labeling for tyrosine hydroxylase (TH) or GABA was then used to identify the phenotype of innervated cells. Electron microscopic examination of the VTA revealed axons labeled anterogradely from the PAG, including myelinated and unmyelinated fibers and axon varicosities, some of which formed identifiable synapses. Approximately 55% of these synaptic contacts were of the symmetric (presumably inhibitory) type; the rest were asymmetric (presumably excitatory). These findings are consistent with the presence of both GABA and glutamate projection neurons in the PAG. Some PAG axons contained dense-cored vesicles indicating the presence of neuropeptides in addition to classical neurotransmitters. PAG projections synapsed onto both DA and GABA cells with no obvious selectivity, providing the first anatomical evidence for these direct connections. The results suggest a diverse nature of PAG physiological actions on midbrain neurons. Moreover, as both the VTA and PAG are implicated in the reinforcing actions of opiates, our findings provide a potential substrate for some of the rewarding effects of these drugs.
Collapse
Affiliation(s)
- Natalia Omelchenko
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
39
|
Liang J, Ping XJ, Li YJ, Ma YY, Wu LZ, Han JS, Cui CL. Morphine-induced conditioned place preference in rats is inhibited by electroacupuncture at 2 Hz: Role of enkephalin in the nucleus accumbens. Neuropharmacology 2010; 58:233-40. [DOI: 10.1016/j.neuropharm.2009.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 11/30/2022]
|
40
|
Soderman AR, Unterwald EM. Cocaine-induced mu opioid receptor occupancy within the striatum is mediated by dopamine D2 receptors. Brain Res 2009; 1296:63-71. [PMID: 19699185 DOI: 10.1016/j.brainres.2009.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 11/29/2022]
Abstract
Previous studies by our laboratory have demonstrated that the mu opioid receptor antagonist, CTAP, blocks the rewarding effects of cocaine when it is injected directly into the nucleus accumbens or ventral tegmental area (VTA). This finding suggests that cocaine is causing the release of endogenous opioid peptides which activate mu opioid receptors within the nucleus accumbens and VTA. The purpose of the present study was to characterize the dose-response and time-course of mu receptor occupancy following systemic cocaine administration and to determine if release of endogenous opioids by cocaine is mediated by activation of D1 or D2 dopamine receptors. Quantitative in vitro receptor autoradiography was used to measure the regional displacement of (3)H-DAMGO binding following cocaine administration. Adult male Sprague-Dawley rats were given intraperitoneal (i.p.) injections of cocaine and their brains were removed at various times and prepared for mu opioid receptor quantitation. To determine the role of dopamine D1 and D2 receptors in the effect of cocaine on mu receptor occupancy, rats were injected with the selective D1 or D2 receptor antagonists SCH23390 or eticlopride prior to cocaine. For all studies, (3)H-DAMGO binding to mu opioid receptors was measured in the nucleus accumbens, caudate putamen, frontal cortex, olfactory tubercle and VTA. Results demonstrate that cocaine administration caused a time- and dose-dependent reduction in (3)H-DAMGO binding within the nucleus accumbens core and shell. The reduction in mu receptor binding was attenuated by pretreatment with eticlopride. These results suggest that cocaine, acting via D2 dopamine receptors, can cause the release of an endogenous opioid peptide that binds to mu opioid receptors within the nucleus accumbens.
Collapse
Affiliation(s)
- Avery R Soderman
- Department of Pharmacology, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
41
|
Abstract
Earlier studies suggest that opioid receptors in the ventral tegmental area, but not the nucleus accumbens (NAc), play a role in relapse to drug-seeking behavior. However, environmental stimuli that elicit relapse also release the endogenous opioid beta-endorphin in the NAc. Using a within-session extinction/reinstatement paradigm in rats that self-administer cocaine, we found that NAc infusions of the mu-opioid receptor (MOR) agonist DAMGO moderately reinstated responding on the cocaine-paired lever at low doses (1.0-3.0 ng/side), whereas the delta-opioid receptor (DOR) agonist DPDPE induced greater responding at higher doses (300-3000 ng/side) that also enhanced inactive lever responding. Using doses of either agonist that induced responding on only the cocaine-paired lever, we found that DAMGO-induced responding was blocked selectively by pretreatment with the MOR antagonist, CTAP, whereas DPDPE-induced responding was selectively blocked by the DOR antagonist, naltrindole. Cocaine-primed reinstatement was blocked by intra-NAc CTAP but not naltrindole, indicating a role for endogenous MOR-acting peptides in cocaine-induced reinstatement of cocaine-seeking behavior. In this regard, intra-NAc infusions of beta-endorphin (100-1000 ng/side) induced marked cocaine-seeking behavior, an effect blocked by intra-NAc pretreatment with the MOR but not DOR antagonist. Conversely, cocaine seeking elicited by the enkephalinase inhibitor thiorphan (1-10 microg/side) was blocked by naltrindole but not CTAP. MOR stimulation in more dorsal caudate-putamen sites was ineffective, whereas DPDPE infusions induced cocaine seeking. Together, these findings establish distinct roles for MOR and DOR in cocaine relapse and suggest that NAc MOR could be an important therapeutic target to neutralize the effects of endogenous beta-endorphin release on cocaine relapse.
Collapse
|
42
|
Childs E, de Wit H. Amphetamine-induced place preference in humans. Biol Psychiatry 2009; 65:900-4. [PMID: 19111278 PMCID: PMC2693956 DOI: 10.1016/j.biopsych.2008.11.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 01/24/2023]
Abstract
BACKGROUND The conditioned place preference procedure is a widely used animal model of rewarding drug effects that, to date, has not been tested in humans. In this study, we sought to demonstrate that humans, like nonhumans, would exhibit a preference for a place previously associated with amphetamine. Further, we investigated the relationship between conditioned place preference and the mood-altering effects of the drug. METHODS Thirty-one healthy individuals participated in a five-session procedure during which they experienced the effects of d-amphetamine (20 mg) or placebo on two occasions in two distinctive environments (sessions 1-4). One group of subjects (paired group, n = 19) received amphetamine consistently in one room and placebo in another room, whereas a second group (unpaired group, n = 12) received amphetamine and placebo without regard to room. During the sessions, participants completed questionnaires to rate their mood. On the fifth session, they rated their preference for the two rooms. RESULTS Individuals in the paired group rated their liking of the amphetamine-paired room significantly higher than the placebo-associated room, whereas there was no difference between ratings of the two rooms for individuals in the unpaired group. In the paired group, drug-liking ratings during the conditioning sessions positively predicted preference for the drug-associated room, whereas reports of amphetamine-induced anxiety and dysphoria negatively predicted room-liking scores. CONCLUSIONS This study demonstrates that humans, like nonhumans, prefer a place associated with amphetamine administration. These findings support the idea that subjective responses to a drug contribute to its ability to establish place conditioning.
Collapse
Affiliation(s)
- Emma Childs
- Department of Psychiatry and Behavioural Neuroscience, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
43
|
Spanagel R. Alcoholism: A Systems Approach From Molecular Physiology to Addictive Behavior. Physiol Rev 2009; 89:649-705. [DOI: 10.1152/physrev.00013.2008] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alcohol consumption is an integral part of daily life in many societies. The benefits associated with the production, sale, and use of alcoholic beverages come at an enormous cost to these societies. The World Health Organization ranks alcohol as one of the primary causes of the global burden of disease in industrialized countries. Alcohol-related diseases, especially alcoholism, are the result of cumulative responses to alcohol exposure, the genetic make-up of an individual, and the environmental perturbations over time. This complex gene × environment interaction, which has to be seen in a life-span perspective, leads to a large heterogeneity among alcohol-dependent patients, in terms of both the symptom dimensions and the severity of this disorder. Therefore, a reductionistic approach is not very practical if a better understanding of the pathological processes leading to an addictive behavior is to be achieved. Instead, a systems-oriented perspective in which the interactions and dynamics of all endogenous and environmental factors involved are centrally integrated, will lead to further progress in alcohol research. This review adheres to a systems biology perspective such that the interaction of alcohol with primary and secondary targets within the brain is described in relation to the behavioral consequences. As a result of the interaction of alcohol with these targets, alterations in gene expression and synaptic plasticity take place that lead to long-lasting alteration in neuronal network activity. As a subsequent consequence, alcohol-seeking responses ensue that can finally lead via complex environmental interactions to an addictive behavior.
Collapse
|
44
|
Sharf R, Sarhan M, DiLeone RJ. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol Psychiatry 2008; 64:175-83. [PMID: 18423425 PMCID: PMC2529153 DOI: 10.1016/j.biopsych.2008.03.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 12/26/2022]
Abstract
BACKGROUND The lateral hypothalamic neuropeptide orexin (or hypocretin) is implicated in drug addiction. Although a role for orexin has been shown in reward and dependence, the molecular and neural mechanisms are unclear. We investigated the mechanism and neuroanatomic basis of orexin's role in morphine withdrawal. METHODS C57BL/6J mice received chronic morphine followed by naloxone (0 or 1 mg/kg, subcutaneous) to precipitate withdrawal. Before naloxone, mice received SB-334867 (0 or 20 mg/kg, intraperitoneal), an orexin 1 receptor (Ox1r) antagonist. Using immunohistochemistry, c-Fos, a marker of cell activation, was quantified in the nucleus accumbens (Acb), lateral hypothalamus (LH), ventral tegmental area (VTA), and locus coeruleus (LC). Retrograde tracing with fluorogold (FG) was performed to determine whether orexin neurons project directly to the Acb. RESULTS SB-334867 before naloxone significantly attenuated withdrawal symptoms. Withdrawal was accompanied by an increase in c-Fos expression in the Acb shell (AcbSh), which was reduced by SB-334867 but had no effect on the VTA or the LC. Morphine withdrawal increased c-Fos expression in the dorsomedial (DMH) and perifornical (PFA) regions but not in the lateral region of the LH (LLH). Orexin neurons do not appear to form direct connections with Acb neurons. CONCLUSIONS Altogether, these data demonstrate that orexin, acting via Ox1r, is critical for the expression of morphine withdrawal. AcbSh activation during withdrawal is dependent on Ox1r function and is likely mediated by indirect action of LH orexin neurons.
Collapse
Affiliation(s)
- Ruth Sharf
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Maysa Sarhan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ralph J. DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
45
|
Liu HY, Jin J, Tang JS, Sun WX, Jia H, Yang XP, Cui JM, Wang CG. Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict Biol 2008; 13:40-6. [PMID: 18269379 DOI: 10.1111/j.1369-1600.2007.00088.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In order to explore a novel method for the treatment of drug abuse, we evaluated the effect of chronic deep brain stimulation (DBS) of the rat nucleus accumbens (NAc) on morphine reinforcement, using a DBS apparatus and an implant method we developed. Thirty-two adult rats weighing 240-260 g were divided into three groups, which included a DBS group (n = 10, administration of surgery, morphine and DBS), a sham DBS group (n = 12, administration of surgery and morphine) and a control group (n = 10, administration of physiological saline). The DBS electrode was stereotaxically implanted into the core of unilateral NAc and connected to an implantable pulse generator. Then, they were fixed to the rat skull. One week later, the rats in each group were intraperitoneally injected with morphine at an increasing dose (10-60 mg/kg) once daily. The rats in the DBS group were administered a 130-Hz high-frequency stimulation (HFS) once daily. A 900-second conditioned place preference (CPP) paradigm was used for determining the effect of electrical stimulation on morphine reinforcement in rats. The data showed that 7-10 days later, the preference score of the DBS group was significantly lower than that of the sham DBS group. The results suggest that chronic HFS of the rat NAc can block CPP induced by morphine and attenuate morphine reinforcement.
Collapse
Affiliation(s)
- Hong-Yu Liu
- Institute of Medical Electronics in Medical School, Key Laboratory of Biomedical Information Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Trinko R, Sears RM, Guarnieri DJ, DiLeone RJ. Neural mechanisms underlying obesity and drug addiction. Physiol Behav 2007; 91:499-505. [PMID: 17292426 DOI: 10.1016/j.physbeh.2007.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 11/29/2022]
Abstract
Increasing rates of obesity have alarmed health officials and prompted much public dialogue. While the factors leading to obesity are numerous, an inability to control intake of freely available food is central to the problem. In order to understand this, we need to better define the mechanisms by which the brain regulates food intake, and why it is often difficult to control consumption. From this point of view, it seems valuable to consider the commonalities between food intake and drug abuse. While research in the two fields has historically emphasized different neural substrates, recent data have increased interest in better defining elements that may underlie both drug addiction and obesity. Here we discuss some of these shared elements with an emphasis on emerging areas of research that better define common mechanisms leading to overconsumption.
Collapse
Affiliation(s)
- Richard Trinko
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | |
Collapse
|
47
|
Vargas-Perez H, Ting-A-Kee RA, Heinmiller A, Sturgess JE, van der Kooy D. A test of the opponent-process theory of motivation using lesions that selectively block morphine reward. Eur J Neurosci 2007; 25:3713-8. [PMID: 17610590 DOI: 10.1111/j.1460-9568.2007.05599.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opponent-process theory of motivation postulates that motivational stimuli activate a rewarding process that is followed by an opposed aversive process in a homeostatic control mechanism. Thus, an acute injection of morphine in nondependent animals should evoke an acute rewarding response, followed by a later aversive response. Indeed, the tegmental pedunculopontine nucleus (TPP) mediates the rewarding effects of opiates in previously morphine-naive animals, but not other unconditioned effects of opiates, or learning ability. The aversive opponent process for acute morphine reward was revealed using a place-conditioning paradigm. The conditioned place aversion induced by 16-h spontaneous morphine withdrawal from an acute morphine injection in nondependent rats was abolished by TPP lesions performed prior to drug experience. However, TPP-lesioned rats did show conditioned aversions for an environment paired with the acute administration of the opioid antagonist naloxone, which blocks endogenous opioids. The results show that blocking the rewarding effects of morphine with TPP lesions also blocked the opponent aversive effects of acute morphine withdrawal in nondependent animals. Thus, this spontaneous withdrawal aversion (the opponent process) is induced by the acute rewarding effects of morphine and not by other unconditioned effects of morphine, the pharmacological effects of morphine or endogenous opioids being displaced from opiate receptors.
Collapse
Affiliation(s)
- Hector Vargas-Perez
- Department of Medical Genetics and Microbiology, University of Toronto, Canada.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Beta-endorphin is an endogenous opioid peptide, implicated in the behavioral effects of drugs of abuse. It is synthesized in the arcuate nucleus and secreted into the nucleus accumbens. In the present study, we examined the interaction between arcuate nucleus dopaminergic cells and accumbal beta-endorphin, during cocaine exposure. Using microdialysis, we found that blockade of arcuate dopamine-2 receptors with a selective antagonist significantly attenuated cocaine-induced increases of beta-endorphin levels in the nucleus accumbens. Moreover, rats chronically exposed to cocaine using the self-administration paradigm displayed extinction-like behavior following blockade of dopamine-2 receptors. These findings indicate that dopaminergic neurons in the arcuate nucleus may induce the secretion of beta-endorphin in the nucleus accumbens, and that they are implicated in the cocaine reward pathway.
Collapse
Affiliation(s)
- Ravid Doron
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
49
|
Olson VG, Green TA, Neve RL, Nestler EJ. Regulation of morphine reward and feeding by CREB in the lateral hypothalamus. Synapse 2007; 61:110-3. [PMID: 17117424 DOI: 10.1002/syn.20344] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Valerie G Olson
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | | | |
Collapse
|
50
|
Liang J, Li Y, Ping X, Yu P, Zuo Y, Wu L, Han JS, Cui C. The possible involvement of endogenous ligands for mu-, delta- and kappa-opioid receptors in modulating morphine-induced CPP expression in rats. Peptides 2006; 27:3307-14. [PMID: 17097192 DOI: 10.1016/j.peptides.2006.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/13/2006] [Accepted: 08/14/2006] [Indexed: 11/26/2022]
Abstract
Previous studies suggested that electroacupuncture (EA) can suppress opioid dependence by the release of endogenous opioid peptides. To explore the site of action and the receptors involved, we tried to inject highly specific agonists for mu-, delta- and kappa-opioid receptors into the CNS to test whether it can suppress morphine-induced conditioned place preference (CPP) in the rat. Male Sprague-Dawley rats were trained with 4 mg/kg morphine, i.p. for 4 days to establish the CPP model. This CPP can be prevented by (a) i.p. injection of 3 mg/kg dose of morphine, (b) intracerebroventricular (i.c.v.) injection of micrograms doses of the selective mu-opioid receptor agonist DAMGO, delta-agonist DPDPE or kappa-agonist U-50,488H or (c) microinjection of DAMGO, DPDPE or U50488H into the shell of the nucleus accumbens (NAc). The results suggest that the release of endogenous mu-, delta- and kappa-opioid agonists in the NAc shell may play a role for EA suppression of opiate addiction.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/physiology
- Enkephalin, D-Penicillamine (2,5)-/physiology
- Male
- Morphine/pharmacology
- Rats
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Jing Liang
- Neuroscience Research Institute and Department of Neurobiology, Peking University Health Science Center, Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, 38 Xueyuan Road, Beijing 100083, PR China
| | | | | | | | | | | | | | | |
Collapse
|