1
|
O'Neill KM, Saracino E, Barile B, Mennona NJ, Mola MG, Pathak S, Posati T, Zamboni R, Nicchia GP, Benfenati V, Losert W. Decoding Natural Astrocyte Rhythms: Dynamic Actin Waves Result from Environmental Sensing by Primary Rodent Astrocytes. Adv Biol (Weinh) 2023; 7:e2200269. [PMID: 36709481 DOI: 10.1002/adbi.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes are key regulators of brain homeostasis, equilibrating ion, water, and neurotransmitter concentrations and maintaining essential conditions for proper cognitive function. Recently, it has been shown that the excitability of the actin cytoskeleton manifests in second-scale dynamic fluctuations and acts as a sensor of chemophysical environmental cues. However, it is not known whether the cytoskeleton is excitable in astrocytes and how the homeostatic function of astrocytes is linked to the dynamics of the cytoskeleton. Here it is shown that homeostatic regulation involves the excitable dynamics of actin in certain subcellular regions of astrocytes, especially near the cell boundary. The results further indicate that actin dynamics concentrate into "hotspot" regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes the actin dynamics of astrocytes weaker. Super-resolution images demonstrate that surface topography is also associated with the predominant perpendicular alignment of actin filaments near the cell boundary, whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Additionally, coculture with neurons increases both the probability of actin dynamics and the strength of hotspots. The excitable systems character of actin thus makes astrocytes direct participants in neural cell network dynamics.
Collapse
Affiliation(s)
- Kate M O'Neill
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Barbara Barile
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Nicholas J Mennona
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| | - Maria Grazia Mola
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Spandan Pathak
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Tamara Posati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Grazia P Nicchia
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
2
|
In Vivo Neocortical [K]o Modulation by Targeted Stimulation of Astrocytes. Int J Mol Sci 2021; 22:ijms22168658. [PMID: 34445364 PMCID: PMC8395460 DOI: 10.3390/ijms22168658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
A normally functioning nervous system requires normal extracellular potassium ion concentration ([K]o). Throughout the nervous system, several processes, including those of an astrocytic nature, are involved in [K]o regulation. In this study we investigated the effect of astrocytic photostimulation on [K]o. We hypothesized that in vivo photostimulation of eNpHR-expressing astrocytes leads to a decreased [K]o. Using optogenetic and electrophysiological techniques we showed that stimulation of eNpHR-expressing astrocytes resulted in a significantly decreased resting [K]o and evoked K responses. The amplitude of the concomitant spreading depolarization-like events also decreased. Our results imply that astrocytic membrane potential modification could be a potential tool for adjusting the [K]o.
Collapse
|
3
|
Madadi A, Wolfart J, Lange F, Brehme H, Linnebacher M, Bräuer AU, Büttner A, Freiman T, Henker C, Einsle A, Rackow S, Köhling R, Kirschstein T, Müller S. Correlation between Kir4.1 expression and barium-sensitive currents in rat and human glioma cell lines. Neurosci Lett 2021; 741:135481. [PMID: 33161102 DOI: 10.1016/j.neulet.2020.135481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/29/2023]
Abstract
Gliomas are the most common primary brain tumors and often become apparent through symptomatic epileptic seizures. Glial cells express the inwardly rectifying K+ channel Kir4.1 playing a major role in K+ buffering, and are presumably involved in facilitating epileptic hyperexcitability. We therefore aimed to investigate the molecular and functional expression of Kir4.1 channels in cultured rat and human glioma cells. Quantitative PCR showed reduced expression of Kir4.1 in rat C6 and F98 cells as compared to control. In human U-87MG cells and in patient-derived low-passage glioblastoma cultures, Kir4.1 expression was also reduced as compared to autopsy controls. Testing Kir4.1 function using whole-cell patch-clamp experiments on rat C6 and two human low-passage glioblastoma cell lines (HROG38 and HROG05), we found a significantly depolarized resting membrane potential (RMP) in HROG05 (-29 ± 2 mV, n = 11) compared to C6 (-71 ± 1 mV, n = 12, P < 0.05) and HROG38 (-60 ± 2 mV, n = 12, P < 0.05). Sustained K+ inward or outward currents were sensitive to Ba2+ added to the bath solution in HROG38 and C6 cells, but not in HROG05 cells, consistent with RMP depolarization. While immunocytochemistry confirmed Kir4.1 in all three cell lines including HROG05, we found that aquaporin-4 and Kir5.1 were also significantly reduced suggesting that the Ba2+-sensitive K+ current is generally impaired in glioma tissue. In summary, we demonstrated that glioma cells differentially express functional inwardly rectifying K+ channels suggesting that impaired K+ buffering in cells lacking functional Ba2+-sensitive K+ currents may be a risk factor for increased excitability and thereby contribute to the differential epileptogenicity of gliomas.
Collapse
Affiliation(s)
- Annett Madadi
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Falko Lange
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock, (CTNR), Rostock University Medical Center, Germany
| | - Hannes Brehme
- Department of Neurology, Rostock University Medical Center, Germany
| | | | - Anja U Bräuer
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Germany
| | - Thomas Freiman
- Department of Neurosurgery, Rostock University Medical Center, Germany
| | - Christian Henker
- Department of Neurosurgery, Rostock University Medical Center, Germany
| | - Anne Einsle
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Simone Rackow
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock, (CTNR), Rostock University Medical Center, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock, (CTNR), Rostock University Medical Center, Germany
| | - Steffen Müller
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
4
|
Neocortical in vivo focal and spreading potassium responses and the influence of astrocytic gap junctional coupling. Neurobiol Dis 2020; 147:105160. [PMID: 33152505 DOI: 10.1016/j.nbd.2020.105160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/21/2022] Open
Abstract
Raised extracellular potassium ion (K+) concentration is associated with several disorders including migraine, stroke, neurotrauma and epilepsy. K+ spatial buffering is a well-known mechanism for extracellular K+ regulation/distribution. Astrocytic gap junction-mediated buffering is a controversial candidate for K+ spatial buffering. To further investigate the existence of a K+ spatial buffering and to assess the involvement of astrocytic gap junctional coupling in K+ redistribution, we hypothesized that neocortical K+ and concomitant spreading depolarization (SD)-like responses are controlled by powerful local K+ buffering mechanisms and that K+ buffering/redistribution occurs partially through gap junctional coupling. Herein, we show, in vivo, that a threshold amount of focally applied KCl is required to trigger local and/or distal K+ responses, accompanied by a SD-like response. This observation indicates the presence of powerful local K+ buffering which mediates a rapid return of extracellular K+ to the baseline. Application of gap junctional blockers, carbenoxolone and Gap27, partially modulated the amplitude and shape of the K+ response and noticeably decreased the velocity of the spreading K+ and SD-like responses. Opening of gap junctions by trimethylamine, slightly decreased the amplitude of the K+ response and markedly increased the velocity of redistribution of K+ and SD-like events. We conclude that spreading K+ responses reflect powerful local K+ buffering mechanisms which are partially modulated by gap junctional communication. Gap junctional coupling mainly affected the velocity of the K+ and SD-like responses.
Collapse
|
5
|
Zarei-Kheirabadi M, Mirsadeghi S, Vaccaro AR, Rahimi-Movaghar V, Kiani S. Protocol for purification and culture of astrocytes: useful not only in 2 days postnatal but also in adult rat brain. Mol Biol Rep 2020; 47:1783-1794. [PMID: 31989426 DOI: 10.1007/s11033-020-05272-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Abstract
Astrocytes play the key roles in the physiology and pathology of the CNS. Thereupon, in this manuscript, we aim to demonstrate that the protocol for purification and culture of astrocytes is useful not only in 2 days postnatal but also in adult rat brain. Also, the mentioned protocol is a simple and efficient primary cell culture technique. The whole-brain was isolated from the skull and the meninges were removed carefully. Afterward, the cerebral hemispheres were mechanically and enzymatically digested. Then, the cell suspension was seeded in T25 culture flask and was incubated at 37 °C in the CO2 incubator. The first shaking was performed after 7-8 days and on day 14, second shaking was done. After 2-3 passage, the culture was analyzed. By passaging, the majority of extracted cells were astrocytes presenting with a polygonal to fusiform and flat morphology that expressed GFAP, GLAST, and S100β. The expression of neural, neuronal and oligodendrocyte markers was not detected in extracted cells. The patch-clamp recording comfirmed the purity of isolated astrocytes as well. The isolated cells from adult rat brain were astrocytes that expressed specific astrocyte markers after 3 and 10 passages. This method is suggested to obtain a population of astrocytes that may provide a beneficial tool for different neurophysiological and pathophysiological studies.
Collapse
Affiliation(s)
- Masoumeh Zarei-Kheirabadi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Sara Mirsadeghi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Alexander R Vaccaro
- Department of Orthopaedics, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Kiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran.
| |
Collapse
|
6
|
Hertz L, Chen Y. Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev 2016; 71:484-505. [DOI: 10.1016/j.neubiorev.2016.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/12/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
|
7
|
Multifactorial Effects on Different Types of Brain Cells Contribute to Ammonia Toxicity. Neurochem Res 2016; 42:721-736. [PMID: 27286679 DOI: 10.1007/s11064-016-1966-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Effects of ammonia on astrocytes play a major role in hepatic encephalopathy, acute liver failure and other diseases caused by increased arterial ammonia concentrations (e.g., inborn errors of metabolism, drug or mushroom poisoning). There is a direct correlation between arterial ammonia concentration, brain ammonia level and disease severity. However, the pathophysiology of hyperammonemic diseases is disputed. One long recognized factor is that increased brain ammonia triggers its own detoxification by glutamine formation from glutamate. This is an astrocytic process due to the selective expression of the glutamine synthetase in astrocytes. A possible deleterious effect of the resulting increase in glutamine concentration has repeatedly been discussed and is supported by improvement of some pathologic effects by GS inhibition. However, this procedure also inhibits a large part of astrocytic energy metabolism and may prevent astrocytes from responding to pathogenic factors. A decrease of the already low glutamate concentration in astrocytes due to increased synthesis of glutamine inhibits the malate-aspartate shuttle and energy metabolism. A more recently described pathogenic factor is the resemblance between NH4+ and K+ in their effects on the Na+,K+-ATPase and the Na+,K+, 2 Cl- and water transporter NKCC1. Stimulation of the Na+,K+-ATPase driven NKCC1 in both astrocytes and endothelial cells is essential for the development of brain edema. Na+,K+-ATPase stimulation also activates production of endogenous ouabains. This leads to oxidative and nitrosative damage and sensitizes NKCC1. Administration of ouabain antagonists may accordingly have therapeutic potential in hyperammonemic diseases.
Collapse
|
8
|
Role of Intermediate Filaments in Vesicular Traffic. Cells 2016; 5:cells5020020. [PMID: 27120621 PMCID: PMC4931669 DOI: 10.3390/cells5020020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Collapse
|
9
|
Astrocyte Cultures Mimicking Brain Astrocytes in Gene Expression, Signaling, Metabolism and K + Uptake and Showing Astrocytic Gene Expression Overlooked by Immunohistochemistry and In Situ Hybridization. Neurochem Res 2016; 42:254-271. [PMID: 26818759 DOI: 10.1007/s11064-016-1828-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 01/31/2023]
Abstract
Based on differences in gene expression between cultured astrocytes and freshly isolated brain astrocytes it has been claimed that cultured astrocytes poorly reflect the characteristics of their in vivo counterparts. This paper shows that this is not the case with the cultures of mouse astrocytes we have used since 1978. The culture is prepared following guidelines provided by Drs. Monique Sensenbrenner and John Booher, with the difference that dibutyryl cyclic AMP is added to the culture medium from the beginning of the third week. This addition has only minor effects on glucose and glutamate metabolism, but it is crucial for effects by elevated K+ concentrations and for Ca2+ homeostasis, important aspects of astrocyte function. Work by Liang Peng and her colleagues has shown identity between not only gene expression but also drug-induced gene upregulations and editings in astrocytes cultured by this method and astrocytes freshly isolated from brains of drug-treated animals. Dr. Norenberg's laboratory has demonstrated identical upregulation of the cotransporter NKCC1 in ammonia-exposed astrocytes and rats with liver failure. Similarity between cultured and freshly isolated astrocytes has also been shown in metabolism, K+ uptake and several aspects of signaling. However, others have shown that the gene for the glutamate transporter GLT1 is not expressed, and rat cultures show some abnormalities in K+ effects. Nevertheless, the overall reliability of the cultured cells is important because immunohistochemistry and in situ hybridization poorly demonstrate many astrocytic genes, e.g., those of nucleoside transporters, and even microarray analysis of isolated cells can be misleading.
Collapse
|
10
|
Hertz L, Peng L, Song D. Ammonia, like K(+), stimulates the Na(+), K(+), 2 Cl(-) cotransporter NKCC1 and the Na(+),K(+)-ATPase and interacts with endogenous ouabain in astrocytes. Neurochem Res 2014; 40:241-57. [PMID: 24929663 DOI: 10.1007/s11064-014-1352-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/12/2022]
Abstract
Brain edema during hepatic encephalopathy or acute liver failure as well as following brain ischemia has a multifactorial etiology, but it is a dangerous and occasionally life-threatening complication because the brain is enclosed in the rigid skull. During ischemia the extracellular K(+) concentration increases to very high levels, which when energy becomes available during reperfusion stimulate NKCC1, a cotransporter driven by the transmembrane ion gradients established by the Na(+),K(+)-ATPase and accumulating Na(+), K(+) and 2 Cl(-) together with water. This induces pronounced astrocytic swelling under pathologic conditions, but NKCC1 is probably also activated, although to a lesser extent, during normal brain function. Redistribution of ions and water between extra- and intracellular phases does not create brain edema, which in addition requires uptake across the blood-brain barrier. During hepatic encephalopathy and acute liver failure a crucial factor is the close resemblance between K(+) and NH4(+) in their effects not only on NKCC1 and Na(+),K(+)-ATPase but also on Na(+),K(+)-ATPase-induced signaling by endogenous ouabains. These in turn activate production of ROS and nitrosactive agents which slowly sensitize NKCC1, explaining why cell swelling and brain edema generally are delayed under hyperammonemic conditions, although very high ammonia concentrations can cause immediate NKCC1 activation.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 92 Beier Road, Heping District, Shenyang, People's Republic of China
| | | | | |
Collapse
|
11
|
Li B, Dong L, Fu H, Wang B, Hertz L, Peng L. Effects of chronic treatment with fluoxetine on receptor-stimulated increase of [Ca2+]i in astrocytes mimic those of acute inhibition of TRPC1 channel activity. Cell Calcium 2011; 50:42-53. [PMID: 21640379 DOI: 10.1016/j.ceca.2011.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 12/17/2022]
Abstract
Primary cultures of mouse astrocytes were used to investigate effects by chronic treatment (3-21 days) with fluoxetine (0.5-10 μM) on capacitative Ca(2+) influx after treatment with the SERCA inhibitor thapsigargin and on receptor agonist-induced increases in free cytosolic Ca(2+) concentration [Ca(2+)](i), determined with Fura-2. The agonists were the 5-HT(2B) agonist fluoxetine, the α(2)-adrenergic agonist dexmedetomidine, and ryanodine receptor (RyR) and IP(3) receptor (IP(3)R) agonists. In untreated sister cultures each agonist distinctly increased [Ca(2+)](i), but in cultures treated for sufficient length of time or with sufficiently high doses of fluoxetine, acute administration of fluoxetine, dexmedetomidine, or RyR or IP(3)R agonists elicited reduced, in some cases abolished, effects. Capacitative Ca(2+) entry, meditated by TRPC1 channels, was sufficiently inhibited to cause a depletion of Ca(2+) stores, which could explain the reduced agonist effects. All effects of chronic fluoxetine administration could be replicated by TRPC1 channel antibody or siRNA. Since increases in astrocytic [Ca(2+)](i) regulate release of gliotransmitters, these effects may have profound effects on brain function. They may be important for therapeutic effects of all 5 conventional 'serotonin-specific reuptake inhibitors' (SSRIs), which at concentrations used therapeutically (∼1 μM) share other of fluoxetine's chronic effects (Zhang et al., Neuron Glia Biol. 16 (2010) 1-13).
Collapse
Affiliation(s)
- Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Jones SM, Novak AE, Elliott JP. Primary culture of cellular subtypes from postnatal mouse for in vitro studies of oxygen glucose deprivation. J Neurosci Methods 2011; 199:241-8. [PMID: 21620892 DOI: 10.1016/j.jneumeth.2011.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 04/25/2011] [Accepted: 05/11/2011] [Indexed: 12/12/2022]
Abstract
One of the most widely utilized in vitro models of ischemia or oxygen glucose deprivation (OGD) is the hippocampal organotypical culture (HOTC). The HOTC is used not only for the study of the mechanisms of cell death, but also has been the cornerstone of synaptic physiology. Although the intact nature of the HOTC is one of its primary advantages, some studies require a dissociated preparation in order to distinguish cell type specific responses. Typically, primary dissociated neuronal cultures are prepared from embryonic tissue. Since the HOTC is prepared from postnatal pups, we wanted to establish a primary culture of hippocampus from postnatal pups to parallel our studies in the HOTC preparation. Mixed cultures were prepared by enzymatic dissociation of hippocampus from 7-day-old mouse pups. These cultures responded to OGD with a time course of delayed cell death that was similar to that reported in HOTC. Dual label immunocytochemical staining revealed that neurons, but not astrocytes, were dying from apoptosis following OGD. To examine this vulnerability further, we also prepared neuronal enriched cultures by treating mixed cultures with cytosine-β-d-arabinofuranoside (CBA). These neuronal cultures appear to be even more sensitive to OGD. In addition, we have established primary astrocyte-enriched cultures from the same age pups to examine the vulnerability of astrocytes to OGD. These three culture preparations are useful for comparison of the responses of the two major cell types in the same culture, and the enriched cultures will allow biochemical, electrophysiological and molecular studies of homogenous cell populations.
Collapse
Affiliation(s)
- Susan M Jones
- Swedish Medical Center, 501 E. Hampden Ave., Englewood, CO 80113, USA.
| | | | | |
Collapse
|
13
|
Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 2010; 168:941-56. [DOI: 10.1016/j.neuroscience.2009.09.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/13/2009] [Accepted: 09/08/2009] [Indexed: 12/20/2022]
|
14
|
White RE, Yin FQ, Jakeman LB. TGF-alpha increases astrocyte invasion and promotes axonal growth into the lesion following spinal cord injury in mice. Exp Neurol 2008; 214:10-24. [PMID: 18647603 DOI: 10.1016/j.expneurol.2008.06.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/02/2008] [Accepted: 06/17/2008] [Indexed: 11/15/2022]
Abstract
Astrocytes respond to environmental cues and play a multifaceted role in the response to trauma in the central nervous system. As the most prevalent contributors to the glial scar, astrocytes are targeted as barriers to regeneration. However, there is also strong evidence that astrocytes are vital for neuroprotection and metabolic support after injury. In addition, consistent with their role during development, astrocytes may be capable of supporting the growth of injured axons. Therefore, we hypothesized that with appropriate stimulation, the reparative functions of endogenous astrocytes could be harnessed to promote axon growth and recovery after spinal cord injury. Transforming growth factor-alpha (TGF-alpha) is a mitogenic growth factor that is active on astrocytes and is poised to contribute to such a strategy. Recombinant TGF-alpha was administered intrathecally to adult C57BL/6 mice for two weeks following a moderate mid-thoracic spinal cord contusion. By three weeks post-injury, TGF-alpha infusion had not affected locomotor recovery, but promoted extensive axon growth and altered the composition of the lesion site. The center of the lesion in the treated mice contained greater numbers of new cells and increased astrocyte invasion. Despite the expression of inhibitory proteoglycans, there was a marked increase in axons expressing neurofilament and GAP-43 immunoreactivity, and the new axons were closely associated with increased laminin expression within and beyond the astrocyte matrix. The results demonstrate that astrocytes are dynamic players in the response to spinal cord injury, and the growth-supportive role of these cells can be enhanced by TGF-alpha infusion.
Collapse
Affiliation(s)
- Robin E White
- The Ohio State University, Neuroscience Graduate Studies Program, OH, USA
| | | | | |
Collapse
|
15
|
Chvátal A, Anderová M, Syková E. Analysis of K+ accumulation reveals privileged extracellular region in the vicinity of glial cells in situ. J Neurosci Res 2005; 78:668-82. [PMID: 15478195 DOI: 10.1002/jnr.20284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytes and oligodendrocytes in rat and mouse spinal cord slices, characterized by passive membrane currents during de- and hyperpolarizing stimulation pulses, express a high resting K+ conductance. In contrast to the case for astrocytes, a depolarizing prepulse in oligodendrocytes produces a significant shift of reversal potential (Vrev) to positive values, arising from the larger accumulation of K+ in the vicinity of the oligodendrocyte membrane. As a result, oligodendrocytes express large tail currents (Itail) after a depolarizing prepulse due to the shift of K+ into the cell. In the present study, we used a mathematical model to calculate the volume of the extracellular space (ECS) in the vicinity of astrocytes and oligodendrocytes (ESVv), defined as the volume available for K+ accumulation during membrane depolarization. A mathematical analysis of membrane currents revealed no differences between glial cells from mouse (n = 59) or rat (n = 60) spinal cord slices. We found that the Vrev of a cell after a depolarizing pulse increases with increasing Itail, expressed as the ratio of the integral inward current (Qin) after the depolarizing pulse to the total integral outward current (Qout) during the pulse. In astrocytes with small Itail and Vrev ranging from -50 to -70 mV, the Qin was only 3-19% of Qout, whereas, in oligodendrocytes with large Itail and Vrev between -20 and 0 mV, Qin/Qout was 30-75%. On the other hand, ESVv decreased with increasing values of Vrev. In astrocytes, ESVv ranged from 2 to 50 microm3, and, in oligodendrocytes, it ranged from 0.1 to 2.0 microm3. Cell swelling evoked by the application of hypotonic solution shifted Vrev to more positive values by 17.2 +/- 1.8 mV and was accompanied by a decrease in ESVv of 3.6 +/- 1.3 microm3. Our mathematical analysis reveals a 10-100 times smaller region of the extracellular space available for K+ accumulation during cell depolarization in the vicinity of oligodendrocytes than in the vicinity of astrocytes. The presence of such privileged regions around cells in the CNS may affect the accumulation and diffusion of other neuroactive substances and alter communication between cells in the CNS.
Collapse
Affiliation(s)
- Alexandr Chvátal
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
16
|
Ghiaroni V, Fieni F, Tirindelli R, Pietra P, Bigiani A. Ion conductances in supporting cells isolated from the mouse vomeronasal organ. J Neurophysiol 2003; 89:118-27. [PMID: 12522164 DOI: 10.1152/jn.00545.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The vomeronasal organ (VNO) is a chemosensory structure involved in the detection of pheromones in most mammals. The VNO sensory epithelium contains both neurons and supporting cells. Data suggest that vomeronasal neurons represent the pheromonal transduction sites, whereas scarce information is available on the functional properties of supporting cells. To begin to understand their role in VNO physiology, we have characterized with patch-clamp recording techniques the electrophysiological properties of supporting cells isolated from the neuroepithelium of the mouse VNO. Supporting cells were distinguished from neurons by their typical morphology and by the lack of immunoreactivity for Ggamma8 and OMP, two specific markers for vomeronasal neurons. Unlike glial cells in other tissues, VNO supporting cells exhibited a depolarized resting potential (about -29 mV). A Goldman-Hodgkin-Katz analysis for resting ion permeabilities revealed indeed an unique ratio of P(K):P(Na):P(Cl) = 1:0.23:1.4. Supporting cells also possessed voltage-dependent K(+) and Na(+) conductances that differed significantly in their biophysical and pharmacological properties from those expressed by VNO neurons. Thus glial membranes in the VNO can sustain significant fluxes of K(+) and Na(+), as well as Cl(-). This functional property might allow supporting cells to mop-up and redistribute the excess of KCl and NaCl that often occurs in certain pheromone-delivering fluids, like urine, and that could blunt the sensitivity of VNO neurons to pheromones. Therefore vomeronasal supporting cells could affect chemosensory transduction in the VNO by regulating the ionic strength of the pheromone-containing medium.
Collapse
Affiliation(s)
- Valeria Ghiaroni
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Italy
| | | | | | | | | |
Collapse
|
17
|
Potassium homeostasis in the brain at the organ and cell level. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Calmodulin kinase pathway mediates the K+-induced increase in Gap junctional communication between mouse spinal cord astrocytes. J Neurosci 2001. [PMID: 11517253 DOI: 10.1523/jneurosci.21-17-06635.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are coupled to one another by gap junction channels that allow the diffusion of ions and small molecules throughout the interconnected syncytium. In astrocytes, gap junctions are believed to participate in spatial buffering removing the focal excess of potassium resultant from intense neuronal activity by current loops through the syncytium and are also implicated in the propagation of astrocytic calcium waves, a form of extraneuronal signaling. Gap junctions can be modulated by several factors, including elevation of extracellular potassium concentration. Because K(+) elevation is a component of spinal cord injury, we evaluated the extent to which cultured spinal cord astrocytes is affected by K(+) levels and obtained evidence suggesting that a Ca(2+)-calmodulin (CaM) protein kinase is involved in the K(+)-induced increased coupling. Exposure of astrocytes to high K(+) solutions induced a dose-dependent increase in dye coupling; such increased coupling was greatly attenuated by reducing extracellular Ca(2+) concentration, prevented by nifedipine, and potentiated by Bay-K-8644. These results indicate that K(+)-induced increased coupling is mediated by a signaling pathway that is dependent on the influx of Ca(2+) through L-type Ca(2+) channels. Evidence supporting the participation of the CaM kinase pathway on K(+)-induced increased coupling was obtained in experiments showing that calmidazolium and KN-93 totally prevented the increase in dye and electrical coupling induced by high K(+) solutions. Because no changes in connexin43 expression levels or distribution were observed in astrocytes exposed to high K(+) solutions, we propose that the increased junctional communication is related to an increased number of active channels within gap junction plaques.
Collapse
|
19
|
Hertz L, Hansson E, Rönnbäck L. Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memoriam. Neurochem Int 2001; 39:227-52. [PMID: 11434981 DOI: 10.1016/s0197-0186(01)00017-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Holger Hydén demonstrated almost 40 years ago that learning changes the base composition of nuclear RNA, i.e. induces an alteration in gene expression. An equally revolutionary observation at that time was that a base change occurred in both neurons and glia. From these findings, Holger Hydén concluded that establishment of memory is correlated with protein synthesis, and he demonstrated de novo synthesis of several high-molecular protein species after learning. Moreover, the protein, S-100, which is mainly found in glial cells, was increased during learning, and antibodies towards this protein inhibited memory consolidation. S-100 belongs to a family of Ca(2+)-binding proteins, and Holger Hydén at an early point realized the huge importance of Ca(2+) in brain function. He established that glial cells show more marked and earlier changes in RNA composition in Parkinson's disease than neurons. Holger Hydén also had the vision and courage to suggest that "mental diseases could as well be thought to depend upon a disturbance of processes in glia cells as in the nerve cells", and he showed that antidepressant drugs cause profound changes in glial RNA. The importance of Holger Hydén's findings and visions can only now be fully appreciated. His visionary concepts of the involvement of glia in neurological and mental illness, of learning being associated with changes in gene expression, and of the functional importance of Ca(2+)-binding proteins and Ca(2+) are presently being confirmed and expanded by others. This review briefly summarizes highlights of Holger Hydén's work in these areas, followed by a discussion of recent research, confirming his findings and expanding his visions. This includes strong evidence that glial dysfunction is involved in the development of Parkinson's disease, that drugs effective in mood disorders alter gene expression and exert profound effects on astrocytes, and that neuronal-astrocytic interactions in glutamate signaling, NO synthesis, Ca(2+) signaling, beta-adrenergic activity, second messenger production, protein kinase activities, and transcription factor phosphorylation control the highly programmed events that carry the memory trace through the initial, signal-mediated short-term and intermediate memory stages to protein synthesis-dependent long-term memory.
Collapse
Affiliation(s)
- L Hertz
- Hong Kong DNA Chips Ltd., Kowloon, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
20
|
Abstract
The development of concepts describing potassium clearance mechanisms in the mammalian central nervous system in the last 35 years is reviewed. The pattern of excess potassium in the extracellular space is discussed as are the implications of these potassium levels for neuronal excitability. There is a systematic description of the available evidence for astrocytic involvement in situ. The three possible astrocytic potassium clearance mechanisms are introduced: spatial buffer mechanism; carrier-operated potassium chloride uptake as well as channel-operated potassium chloride uptake. The three mechanisms are compared and their compatibility is discussed. Evidence is now available showing that at least two of these if not all three mechanisms co-exist and complement each other. Finally, it is concluded that these potassium movements are not used as a signal system, only as a homeostatic feedback mechanisms. Such a genuine signal system involving glial elements exists--but it is based on calcium waves.
Collapse
Affiliation(s)
- W Walz
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
21
|
Zhou M, Schools GP, Kimelberg HK. GFAP mRNA positive glia acutely isolated from rat hippocampus predominantly show complex current patterns. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:121-31. [PMID: 10719222 DOI: 10.1016/s0169-328x(99)00341-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrophysiologically complex glial cells have been widely identified from different regions of the central nervous system and constitute a dominant glial type in juvenile mice or rats. As these cells express several types of ion channels and neurotransmitter channels that were thought to be only present in neurons, this glial cell type has attracted considerable attention. However, the actual classification of these electrophysiologically complex glial cells remains unclear. They have been speculated to be an immature astrocyte because, although these cells show positive staining for the predominantly astrocytic marker S 100beta, it has not been possible to show staining for the commonly accepted mature astrocytic marker, glial fibrillary acidic protein (GFAP). To address the question of whether these cells might express GFAP at the transcript level, we combined patch-clamp electrophysiological recording with single cell RT-PCR for GFAP mRNA in glial cells acutely isolated from 4 to 12 postnatal day rats. In fresh cell suspensions from the CA1 region, complex glial cells were found to be the dominant cell type (65% total cells). We found that the majority of these electrophysiologically complex cells (74%) were positive for GFAP mRNA. We also showed that the complex cells responded to AMPA and GABA application, and these were also GFAP mRNA positive. We also fixed and stained the preparations for GFAP without electrophysiological recording to better preserve GFAP immunoreactively. In agreement with other studies, only 1.5% of these presumed electrophysiologically complex cells, based on morphology, showed immunoreactivity for GFAP. The expression of GFAP at the transcript level indicates GFAP (-)/GFAP mRNA (+) glial cells have an astrocytic identity. As single cell RT-PCR is able to detect both GFAP (-)/GFAP mRNA (+) and GFAP (+)/GFAP mRNA (+) astrocytic subtypes, the present study also suggests it is a feasible approach for astrocytic lineage studies.
Collapse
Affiliation(s)
- M Zhou
- Center for Neuropharmacological Neuroscience, and Division of Neurosurgery, A-60, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
22
|
Saransaari P, Oja SS. Taurine release is enhanced in cell-damaging conditions in cultured cerebral cortical astrocytes. Neurochem Res 1999; 24:1523-9. [PMID: 10591401 DOI: 10.1023/a:1021195830773] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The release of preloaded [3H]taurine from cultured cerebral cortical astrocytes was studied under various cell-damaging conditions, including hypoxia, ischemia, aglycemia and oxidative stress, and in the presence of free radicals. Astrocytic taurine release was enhanced by K+ (50 mM), veratridine (0.1 mM) and the ionotropic glutamate receptor agonist kainate (1.0 mM). Metabotropic glutamate receptor agonists had only weak effects on taurine release. Similarly to the swelling-induced taurine release the efflux in normoxia seems to be mediated mainly by DIDS-(diisothiocyanostilbene-2,2'-disulphonate) and SITS-(4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonate) sensitive CI- channels, since these blockers were able to reduce both basal and K+ -stimulated release. The basal release of taurine was moderately enhanced in hypoxia and ischemia, whereas the potentiation in the presence of free radicals was marked. The small basal release from astrocytes signifies that taurine release from brain tissue in ischemia may originate from neurons rather than glial cells. On the other hand, the release evoked by K+ in hypoxia and ischemia was greater than in normoxia, with a very slow time-course. The enhanced release of the inhibitory amino acid taurine from astrocytes in ischemia may be beneficial to surrounding neurons, outlasting the initial stimulus and counteracting overexcitation.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Finland.
| | | |
Collapse
|
23
|
Amzica F, Neckelmann D. Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures. J Neurophysiol 1999; 82:2731-46. [PMID: 10561441 DOI: 10.1152/jn.1999.82.5.2731] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dual intracellular recordings in vivo were used to disclose relationships between cortical neurons and glia during spontaneous slow (<1 Hz) sleep oscillations and spike-wave (SW) seizures in cat. Glial cells displayed a slow membrane potential oscillation (<1 Hz), in close synchrony with cortical neurons. In glia, each cycle of this oscillation was made of a round depolarizing potential of 1.5-3 mV. The depolarizing slope corresponded to a steady depolarization and sustained synaptic activity in neurons (duration, 0.5-0.8 s). The repolarization of the glial membrane (duration, 0.5-0.8 s) coincided with neuronal hyperpolarization, associated with disfacilitation, and suppressed synaptic activity in cortical networks. SW seizures in glial cells displayed phasic events, synchronized with neuronal paroxysmal potentials, superimposed on a plateau of depolarization, that lasted for the duration of the seizure. Measurements of the neuronal membrane capacitance during slow oscillating patterns showed small fluctuations around the resting values in relation to the phases of the slow oscillation. In contrast, the glial capacitance displayed a small-amplitude oscillation of 1-2 Hz, independent of phasic sleep and seizure activity. Additionally, in both cell types, SW seizures were associated with a modulatory, slower oscillation ( approximately 0.2 Hz) and a persistent increase of capacitance, developing in parallel with the progression of the seizure. These capacitance variations were dependent on the severity of the seizure and the distance between the presumed seizure focus and the recording site. We suggest that the capacitance variations may reflect changes in the membrane surface area (swelling) and/or of the interglial communication via gap junctions, which may affect the synchronization and propagation of paroxysmal activities.
Collapse
Affiliation(s)
- F Amzica
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec G1K 7P4, Canada
| | | |
Collapse
|
24
|
Köller H, Allert N, Oel D, Stoll G, Siebler M. TNF alpha induces a protein kinase C-dependent reduction in astroglial K+ conductance. Neuroreport 1998; 9:1375-8. [PMID: 9631432 DOI: 10.1097/00001756-199805110-00023] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Incubation of cultured cortical astrocytes with tumor necrosis factor alpha (TNF alpha) led to a marked reduction of membrane potential. Here we report that this depolarization depends on activation of protein kinase C (PKC), since it could be blocked by the PKC antagonists staurosporine and H7 and it could be mimicked by direct activation of PKC using the phorbol ester phorbol 12-myristate 13 acetate (PMA). Analyses of whole cell currents revealed a reduction of inwardly rectifying K+ currents whereas K+ outward currents were not affected. We conclude that TNF alpha induces changes of basic electrophysiological properties of astrocytes which are similar to those induced by proliferation or an in vitro model of traumatic injury.
Collapse
Affiliation(s)
- H Köller
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
25
|
Abstract
Exposure of cultured rat cortical astrocytes to increased concentrations of ammonia has been shown to induce morphological and biochemical changes similar to those found in hyperammonemic (e.g., hepatic) encephalopathy in vivo. Alterations of electrophysiological properties are not well investigated. In this study, we examined the effect of ammonia on the astrocyte membrane potential by means of perforated patch recordings. Exposure to millimolar concentrations of NH4Cl induced a slow dose-dependent and reversible depolarization. At steady state, i.e., after several tens of minutes, the cells were significantly depolarized from a resting membrane potential of -96.2 +/- 0.6 mV (n = 83, S.E.M.) to -89.1 +/- 1.6 mV (n = 7, S.E.M.) at 5 mM NH4Cl, -66.3 +/- 3.6 mV (n = 9, S.E.M.) at 10 mM NH4Cl and -50.4 +/- 2.5 mV (n = 12, S.E.M.) at 20 mM NH4Cl, respectively. In order to examine the underlying depolarizing mechanisms we determined changes in the fractional ion conductances for potassium, chloride and sodium induced by 20 mM NH4Cl. No significant changes were found in the fractional sodium or chloride conductances, but the dominating fractional potassium conductance decreased slightly from a calculated 0.86 +/- 0.04 to 0.77 +/- 0.04 (n = 9, S.E.M.). Correspondingly, we found a significant fractional ammonium ion (NH4+) conductance of 0.23 +/- 0.02 (n = 10, S.E.M.) which was blocked by the potassium channel blocker barium and, hence, most likely mediated by barium-sensitive potassium channels. Our data suggest that the sustained depolarization induced by NH4Cl depended on changes in intracellular ion concentrations rather than changes in ion conductances. Driven by the high membrane potential NH4+ accumulated intracellularly via a barium-sensitive potassium conductance. The concomitant decrease in the intracellular potassium concentration was primarily responsible for the observed slow depolarization.
Collapse
Affiliation(s)
- N Allert
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | |
Collapse
|
26
|
Abstract
Membrane conductances during hypoosmotic swelling were characterized in rat astrocytes in primary tissue culture. Using whole cell patch clamp techniques, mean +/- SEM cell conductance in isoosmotic phosphate-buffered saline (PBS) was 55.6 +/- 5.8 pS/pF. Cell conductance (mean +/- SEM) increased from this initial value to 187 +/- 46%, 561 +/- 188%, and 1216 +/- 376% within 9 min of exposure to 220 mOsm, 190 mOsm, and 145 mOsm PBS, respectively. With each of these hypoosmotic exposures, no change occurred in membrane capacitance. When CsCl replaced KCl in the microelectrode solution, a similar conductance increase was obtained at each osmolality. However, when gluconate salts were used in place of chloride salts in the electrode solution, no significant conductance increase was observed with 190 mOsm PBS. With a KCl microelectrode solution, all conductance increase which occurred in 190 mOsm PBS was inhibited by 200 microM niflumic acid, but not by 5 mM BaCl(2). Both niflumic acid and BaCl(2) inhibited 60-80% of the conductance increase of cells in 145 mOsm PBS. Using a microelectrode solution containing taurine as the major anion, membrane conductance increased 5-fold when cells were placed in 250 mOsm medium. This conductance increase was completely inhibited by 200 microM niflumic acid. Thus, independent chloride and potassium conductances are activated by hypoosmotic swelling of cultured astrocytes while plasma membrane area is unaltered. The chloride conductance pathway is activated at a significantly lower degree of hypoosmotic exposure than that which activates the potassium pathway and may be permeable to anionic taurine. These conductance pathways may mediate diffusive loss of potassium, chloride, and taurine from these cells during volume regulation following hypoosmotic swelling.
Collapse
Affiliation(s)
- J E Olson
- Department of Emergency Medicine, Wright State University School of Medicine, Dayton, Ohio 45429, USA.
| | | |
Collapse
|
27
|
Abstract
Hyperpolarization-activated currents were recorded from rat brain cortical and spinal cord astrocytes maintained in culture. Spinal cord astrocytes expressed primarily an inward rectifier potassium current characterized by time-dependent inactivation, a strong dependence on extracellular Na+ and insensitivity to intracellular GTP-gamma-S (0.2 mM). In cortical astrocytes voltage clamp protocols aimed to elicit currents activated at, or negative to cell membrane potentials led to the development of two distinct ion currents. The most prominent current resembled the inward rectifier potassium current. This component was sensitive to blockade by extracellular cesium and was greatly reduced during recordings performed with GTP-gamma-S (0.2 Mm) added to the pipette solutions. The remaining current component was similar to the endothelial I ha current. I ha conductance was enhanced by extracellular potassium and the current reversal potential behaved as expected for a mixed cation, Na+/K+ current. I ha was nearly abolished after removal of extracellular Na. These results are consistent with the expression of a novel mixed cation conductance in glial cells, possibly involved in extracellular potassium buffering.
Collapse
Affiliation(s)
- E Guatteo
- Department of Neurological Surgery, University of Washington, Seattle, 98104, USA
| | | | | |
Collapse
|
28
|
Abstract
Much of our present knowledge of glial cell function stems from studies of glioma cell lines, both rodent (C6, C6 polyploid, and TR33B) and human (1321N1, 138MG, D384, R-111, T67, Tp-276MG, Tp-301MG, Tp-483MG, Tp-387MG, U-118MG, U-251MG, U-373MG, U-787MG, U-1242MG, and UC-11MG). New methods such as patch clamp and Ca2+ imaging have lead to rapid progress the last few years in our knowledge about glial cells, where an unexpected presence and diversity of receptors and ion channels have emerged. Basic mechanisms related to membrane potential and K+ transport and the presence of voltage gated ion channels (Na+, inwardly rectifying K+, Ca(2+)-activated K+, Ca2+, and Cl- channels) have been identified. Receptor function and intracellular signaling for glutamate, acetylcholine, histamine, serotonin, cathecolamines, and a large number of neuropeptides (bradykinin, cholecystokinin, endothelin, opioids, and tachykinins) have been characterized. Such studies are facilitated in cell lines which offer a more homogenous material than primary cultures. Although the expression of ion channels and receptors vary considerably between different cell lines and comparative studies are rare, a few differences (compared to astrocytes in primary culture) have been identified which may turn out to be characteristic for glioma cells. Future identification of specific markers for receptors on glial and glioma cells related to cell type and growth properties may have great potential in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- T Brismar
- Department of Clinical Neurophysiology, University Hospital, Linköping, Sweden
| |
Collapse
|
29
|
Anderson S, Brismar T, Hansson E. Effect of external K+, Ca2+, and Ba2+ on membrane potential and ionic conductance in rat astrocytes. Cell Mol Neurobiol 1995; 15:439-50. [PMID: 8565047 DOI: 10.1007/bf02071879] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. The purpose of this study was (a) to identify if astrocytes show a similar non-Nernstian depolarization in low K+ or low Ca2+ solutions as previously found in human glial and glioma cells, and (b) to analyze the influence of the K+ conductance on the membrane potential of astrocytes. 2. The membrane potential (Em) and the ionic conductance were studied with whole-cell patch-clamp technique in neonatal rat astrocytes (5-9 days in culture) and in human glioma cells (U-251MG). 3. In 3.0 mM K+ Em was -75 +/- 1.0 mV (mean +/- SEM, n = 39) in rat astrocytes and -79 +/- 0.7 mV (n = 5) in U-251MG cells. In both cell types Em changed linearly to the logarithm of [K+]0 between 3.0 and 160 mM K+ free medium caused astrocytes to hyperpolarize to -93 +/- 2.7 mV (n = 21) and U-251MG cells to depolarize to -27 +/- 2.1 mV (n = 3). 4. The I-E curve did not show inward rectification in astrocytes at this developmental stage. The slope conductance (g) exhibited only a small decrease (-19%) in K+ free solution and no significant change in 160 mM K+. 5. Ba2+ (1.0 mM) depolarized astrocytes to -45 +/- 2.9 mV (n = 11), decreasing the slope conductance (g) by 42.4 +/- 8.3% (n = 11). Ca2+ free solution depolarized astrocytes to -53 +/- 3.4 mV (n = 12) and resulted in a positive shift of the I-E curve, increasing g by 15.3 +/- 8.2% (n = 8). 6. Calculations indicated that a block of K+ channels explains the depolarizing effect of Ba2+. The effects of K+ free or Ca2+ free solutions on Em can be explained by a transformation of K+ channels to non-specific leakage channels. That astrocytes show a different reaction to low K+ than glioma cells can be related to the lack of inwardly rectifying K+ channels in astrocytes at this developmental stage.
Collapse
Affiliation(s)
- S Anderson
- Department of Clinical Neurophysiology, University Hospital, Linköping University, Sweden
| | | | | |
Collapse
|
30
|
Bonthius DJ, Lothman EW, Steward O. The role of extracellular ionic changes in upregulating the mRNA for glial fibrillary acidic protein following spreading depression. Brain Res 1995; 674:314-28. [PMID: 7796112 DOI: 10.1016/0006-8993(95)00035-o] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
While spreading depression has been shown to be a powerful stimulus in upregulating glial fibrillary acidic protein (GFAP) mRNA expression, the specific physiological signal underlying the upregulation is unknown. During spreading depression, extracellular ionic concentrations are altered markedly. The present study evaluates the role of these changes in extracellular ionic concentrations as potential signals influencing GFAP mRNA expression. Gel foam pledgets saturated with artificial cerebrospinal fluid (CSF) solutions in which [Na+], [Ca2+], [K+] and [H+] were altered one at a time to match concentrations seen in spreading depression were applied to exposed parietal cortex for one hour. Dot and in situ hybridization techniques were used to evaluate GFAP mRNA levels. We found that CSF containing 60 mM KCl produced a dramatic upregulation of GFAP mRNA levels throughout the cerebral cortex of the ipsilateral hemisphere without causing detectable tissue damage. The pattern and time course of the change were similar to those following application of 3 M KCl. Alteration of other ionic species did not affect GFAP mRNA levels. However, the upregulation of GFAP mRNA was not likely due directly to the increased [K+], but rather to the spreading depression that the elevated [K+] induced. This was demonstrated by the finding that the upregulation in GFAP mRNA induced by the potassium exposure was totally blocked by prior administration of MK-801, an NMDA antagonist that blocks spreading depression. These results demonstrate that an upregulation in GFAP mRNA can occur in the absence of degeneration debris and that the initiating events can be related to physiological changes, but that changes in extracellular ionic concentrations are not the likely molecular signals underlying the upregulation.
Collapse
Affiliation(s)
- D J Bonthius
- Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
31
|
Olson JE, Alexander C, Feller DA, Clayman ML, Ramnath EM. Hypoosmotic volume regulation of astrocytes in elevated extracellular potassium. J Neurosci Res 1995; 40:333-42. [PMID: 7745627 DOI: 10.1002/jnr.490400307] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cellular volume and potassium contents were determined in rat astrocytes from primary culture following suspension in isoosmotic (269 mOsm) and hypoosmotic (136 mOsm) phosphate-buffered saline (PBS) containing various potassium concentrations. Within 1 min of suspension in hypoosmotic PBS, cells swelled to 135% of their volume in isoosmotic PBS. This initial swelling was not altered by varying the potassium concentration of the hypoosmotic PBS. After suspension in hypoosmotic PBS containing 3.2 mM potassium, a regulatory volume decrease (RVD) was observed. Higher concentrations of potassium in hypoosmotic PBS inhibited RVD following osmotic swelling. Cells swollen in hypoosmotic PBS containing 50 mM potassium continued to swell for 7 min, reaching a volume of 141% of their initial isoosmotic volume. After 7 min, these cells demonstrated a subsequent decrease in volume. The swelling observed between 1-7 min after suspension in hypoosmotic PBS containing 50 mM potassium was not affected by 10 microM gadolinium, 1 mM quinine, 1 mM DIDS (4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid), 1 mM SITS (4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid), 1 mM furosemide, or 100 microM bumetanide. Normal RVD was obtained in hypoosmotic PBS containing 50 mM potassium, if chloride was replaced with gluconate (but not nitrate) to reduce the extracellular K.Cl product to that of hypoosmotic PBS containing 3.2 mM potassium. The volume decrease seen between 7-30 min after exposure to hypoosmotic PBS containing 50 mM potassium was blocked by 1 mM DIDS, 1 mM SITS, or 1 mM furosemide. Cellular potassium content was elevated by approximately 60% after 7 min exposure to isoosmotic or hypoosmotic PBS containing 50 mM potassium. In hypoosmotic PBS, this increase in cellular potassium was reduced with replacement of chloride by gluconate, but not by nitrate. The results indicate that astrocytes swollen in PBS containing elevated potassium concentrations continue to swell, in part, by accumulation of potassium plus chloride mediated by an approach to Donnan equilibrium. Cotransport carriers or stretch-activated channels do not play a role in the enhanced swelling observed in hypoosmotic PBS containing 50 mM potassium. We suggest that a voltage-sensitive chloride channel mediates this continuation of cell swelling. This mechanism may be important in the persistent swelling of astrocytes observed in pathologic conditions such as trauma and seizures where extracellular potassium is elevated, or when other factors are present which may cause astroglial depolarization.
Collapse
Affiliation(s)
- J E Olson
- Department of Emergency Medicine, Wright State University School of Medicine, Dayton, Ohio, USA
| | | | | | | | | |
Collapse
|
32
|
Verity MA. Cell Suspension Techniques in Neurotoxicology. Neurotoxicology 1995. [DOI: 10.1016/b978-012168055-8/50039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Brookes N, Turner RJ. K(+)-induced alkalinization in mouse cerebral astrocytes mediated by reversal of electrogenic Na(+)-HCO3- cotransport. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C1633-40. [PMID: 7810605 DOI: 10.1152/ajpcell.1994.267.6.c1633] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Raising extracellular K+ concentration ([K+]o) induces an alkaline shift of intracellular pH (pHi) in astrocytes. The mechanism of this effect was examined using the fluorescent pHi indicator 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein in primary cultures of mouse cerebral astrocytes. Raising [K+]o from 3 to 12 mM increased pHi by 0.28 pH units in 26 mM HCO(3-)-buffered solution. In nominally HCO(3-)-free solution (containing approximately 95 microM HCO3-), the alkalinization fell to 0.21 pH units and further to 0.08 pH units on removal of atmospheric CO2, suggesting a process with high affinity for HCO3-. This effect was Na+ dependent, Cl- independent, and inhibited by 0.5 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, indicating the involvement of Na(+)-HCO3- cotransport. The relationship between pHi and log[K+]o was found to be linear and to predict a stoichiometry of at least two HCO3- transported with each Na+. After removal of exogenous CO2/HCO3-, the direction of changes in pHi elicited by adding 1 mM HCO3- showed that net flux of HCO3- via the Na(+)-HCO3- cotransporter was outward at rest and was reversed by depolarization.
Collapse
Affiliation(s)
- N Brookes
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201
| | | |
Collapse
|
34
|
Köller H, Buchholz J, Siebler M. Bacterial endotoxins impair electrophysiological properties of cultured astrocytes but not of cultured neurons. J Neurol Sci 1994; 124:156-62. [PMID: 7964866 DOI: 10.1016/0022-510x(94)90321-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The endotoxins of bacteria are lipopolysaccharides which are released in the central nervous system during bacterial meningitis. Endotoxin titers in cerebrospinal fluid correspond to the appearance of severe neurological symptoms like seizures and coma. The pathogenic mechanism, however, by which endotoxins disturb neuronal function, is unclear. The functional deficit may originate either from direct alteration of neuronal excitability or from indirect effects mediated by glial cells. Therefore, we investigated the effects of lipopolysaccharides on electrophysiological properties of cortical neurons and astrocytes in separate cell cultures. Membrane potential, resistance and membrane currents of neurons were unaffected. By contrast, astrocytes depolarized markedly in a dose dependent manner (concentration range 1.0-10.0 micrograms/ml). The depolarization was Na+ dependent and amiloride sensitive (250 microM), both indicating an activation of an electrogenic sodium dependent transport system like the Na+/Ca2+ exchanger as a source of the depolarization. These results suggest that endotoxin induced neurological deficits are not caused by direct effects on neurons, but may result from an impaired glial cell function.
Collapse
Affiliation(s)
- H Köller
- Department of Neurology, Heinrich-Heine-University, Dusseldorf, Germany
| | | | | |
Collapse
|
35
|
Bonthius DJ, Stringer JL, Lothman EW, Steward O. Spreading depression and reverberatory seizures induce the upregulation of mRNA for glial fibrillary acidic protein. Brain Res 1994; 645:215-24. [PMID: 8062084 DOI: 10.1016/0006-8993(94)91654-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study evaluates the relative roles of seizure activity and spreading depression in upregulating glial fibrillary acidic protein (GFAP) mRNA expression. Stimulating electrodes were placed bilaterally in the angular bundle, and recording electrodes were placed bilaterally in the dentate gyrus of adult rats. Intense electrographic seizures were induced by delivering stimulus trains through one stimulating electrode. In some cases, spreading depression accompanied the seizures, while in other cases, the seizures occurred in the absence of spreading depression. Animals were killed 24 h following the last stimulus train, and the forebrains were prepared for quantitative in situ hybridization. Seizure activity and spreading depression led to significant increases in GFAP mRNA levels in the hippocampal formation. Seizure activity alone (without spreading depression) induced a 4-fold increase in GFAP mRNA levels in the hilus and molecular layer of the dentate gyrus and in stratum lacunosum-moleculare of the hippocampus. When seizure activity was accompanied by spreading depression, there was a 10-fold increase in GFAP mRNA levels in these same regions. Regional differences within the hippocampal formation in glial cell response were evident. While GFAP mRNA levels in stratum lacunosum-moleculare of the hippocampus were upregulated by seizure activity and spreading depression, levels in hippocampal stratum radiatum of the hippocampus remained unchanged. The results suggest that abnormal neuronal activity can influence glial cell gene expression and that spreading depression is a stronger signal than seizure activity in upregulating GFAP mRNA levels.
Collapse
Affiliation(s)
- D J Bonthius
- Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | |
Collapse
|
36
|
Abstract
Inflammatory cerebral processes, mediated by immunologically active substances or invading of macrophages are frequently associated with neuronal dysfunction. This study describes the effects of leukotriene B4 on membrane potential, membrane resistance and potassium currents of cultured cortical neurons from the embryonic rat. Leukotriene B4 (1 microM) did not depolarize cortical neurons but induced a reversible reduction of voltage-dependent potassium outward currents (IK) in a subpopulation of these cells (35%). The results suggest that, in comparison to astrocytes, cortical neurons lack receptors for LTB4 or its intracellular activation pathway. Immune mediators, such as leukotrienes, may contribute to neuronal dysfunction during inflammatory diseases by affecting neuronal membrane currents.
Collapse
Affiliation(s)
- H Köller
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany
| | | |
Collapse
|
37
|
Gommerat I, Jacquet G, Chagneux H, Gola M. Single-channel and whole-cell recordings from on-neurone glial cells in Helix pomatia ganglia. J Neurosci Methods 1993; 50:243-51. [PMID: 8107504 DOI: 10.1016/0165-0270(93)90013-h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A procedure is described for performing patch-clamp recordings on satellite glial cells kept in place within the nervous ganglia in the mollusc Helix. Glial cell properties were deduced from whole-cell and cell-attached recordings. The glial membrane was found to contain densely packed inwardly rectifying K+ channels. Activation of the neurones, under either current-clamp or voltage-clamp conditions, depolarized the glial cell layer wrapped around the neurones and induced a delayed persistent increase in the K+ channel opening probability. These results suggest that the glial channels opened in response to a signal emanating from the active neurones. This preparation provides a useful means of detecting and analysing neurone-glial interactions at the cell and unitary channel levels.
Collapse
Affiliation(s)
- I Gommerat
- Laboratoire de Neurobiologie, CNRS, Marseille, France
| | | | | | | |
Collapse
|
38
|
Mellergård P, Ouyang YB, Siesjö BK. Intracellular pH regulation in cultured rat astrocytes in CO2/HCO3(-)-containing media. Exp Brain Res 1993; 95:371-80. [PMID: 8224063 DOI: 10.1007/bf00227129] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We studied the regulation of intracellular pH (pHi) and the mechanisms of pHi regulation in cultured rat astrocytes using microspectrofluorometry and the pH-sensitive fluorophore 2',7'-bis(carboxyethyl-)-5,6-carboxyfluorescein. Control pHi was 7.00 +/- 0.02 in HCO3(-)-containing solutions at an extracellular pH of 7.35. Addition of 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) or amiloride decreased pHi, as did removal of extracellular Na+, while removal of extracellular Cl- was followed by an increase in pHi. Following exposure to an acid transient induced by increasing the CO2 content from 5 to 15%, pHi rapidly returned to base line, with an average initial rate of recovery of 0.10 pH units min-1 (corresponding to a mean acid extrusion rate of 6.3 +/- 0.36 mmolo l-1 min-1). Regulation of pHi was impaired when either amiloride or DIDS was added or Cl- was removed. This inhibition was enhanced when both DIDS and amiloride were present, and pHi regulation was completely blocked in the absence of extracellular Na+. The rapid regulation of pHi normally seen following a transient alkalinisation was not inhibited by amiloride or removal of Na+, but was partially inhibited by DIDS and by the absence of extracellular Cl-. The results are compatible with the presence of at least three different pHi-regulating mechanisms: a Na+/H+ antiporter, a Na(+)-dependent HCO3-/Cl- exchanger (both regulating pHi during a transient acidification), and a passive Cl-/HCO3- exchanger (regulating pHi during transient alkalinisation). The results fail to provide firm evidence of the presence of an electrogenic Na+/HCO3- symporter.
Collapse
Affiliation(s)
- P Mellergård
- Laboratory for Experimental Brain Research, Lund University Hospital, Sweden
| | | | | |
Collapse
|
39
|
Köller H, Siebler M, Pekel M, Müller HW. Depolarization of cultured astrocytes by leukotriene B4. Evidence for the induction of a K+ conductance inhibitor. Brain Res 1993; 612:28-34. [PMID: 8392431 DOI: 10.1016/0006-8993(93)91640-e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since astrocytes have been shown to participate in intracerebral immunological processes we investigated the effect of the immune mediators, leukotrienes (LT) B4, LTC4 and LTD4 on membrane properties of cultured astrocytes from neonatal rat brain. When LTB4 was added to the bath solution the membrane potential slowly decreased from -96 mV to -38 mV. While LTB4 at a concentration of 500 nM was ineffective, depolarization occurred when concentrations of 750 nM and above were used. The depolarizing effect was specific for LTB4, since LTC4 and LTD4, other arachidonic acid derivates, failed to depolarize astrocytes at even higher concentrations (1 microM). When the K+ conductance blocker, Ba2+ (2 mM), was added to the bath solution, astrocytes depolarized to the same degree but no further depolarization was achieved when LTB4 was added. Bath application of Co2+ (1 mM), in order to reduce putative Ca2+ inward currents or reduced internal chloride concentration, did not alter the LTB4-induced depolarization, thus arguing against additional Ca(2+)- or Cl(-)-dependent depolarizing effects. The LTB4-induced depolarization could be markedly reduced, however, by preincubation of the cells with cycloheximide (2 microM), which blocks translation and thereby protein synthesis. Cycloheximide alone had no effect on the membrane potential. These data indicate that, in astrocytes, LTB4 stimulates the synthesis of a protein, which, in turn, inhibits K+ conductances. This effect could impair glial, as well as neuronal, functions during CNS diseases accompanied by immunological processes.
Collapse
Affiliation(s)
- H Köller
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
40
|
Brismar T, Collins VP. Effect of external cation concentration and metabolic inhibitors on membrane potential of human glial cells. J Physiol 1993; 460:365-83. [PMID: 8487200 PMCID: PMC1175218 DOI: 10.1113/jphysiol.1993.sp019476] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The effect on membrane potential (Em) of low external [K+]o, [Na+]o and [Ca2+]o and of metabolic inhibitors was studied in cultured human glial cells (U-787CG) and human glioma cells (Tp-483MG and U-251MG). Whole cells were voltage or current clamped with the tight-seal recording technique. 2. Em was -76 and -80 mV in glial and glioma cells (mean values in U-787CG and U-251MG, respectively) in a reference external solution with 3.0 mM K+. K(+)-free external solution caused a rapid and reversible depolarization of these cells by about 26 and 42 mV (respectively). 3. Block of K+ channels with 1 mM Ba2+ in external solution rapidly depolarized the cells (U-251MG) by about 35 mV. 4. Na(+)-free solutions caused a delayed depolarization by 40-50 mV, which was slowly reversible (in 2 min). 5. Ouabain (1 mM) depolarized the cells by about 4 mV. It did not prevent the effect of K(+)-free solution. 6. Ca(2+)-free external solution rapidly depolarized the cells to Em about -17 mV. The combination of either Na(+)-K(+)-free or Na(+)-Ca(2+)-free solution transiently repolarized the cell, which indicated that the K+ selectivity of the membrane was decreased in both K(+)- and Ca(2+)-free solutions. 7. Metabolic inhibitors (carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP) and 2,4-dinitrophenol (DNP)) rapidly and reversibly depolarized the cells. This effect was not prevented by intracellular perfusion of a strong Ca(2+)-buffering solution. 8. Voltage clamp revealed only minor changes (< 20%) in the leak conductance (g) of cells that were depolarized by the above-mentioned solutions. 9. Positive polarizing current elicited (in some cells) a regenerative depolarization. The threshold for depolarization was less in low external [K+]o. 10. It is concluded (a) that the resting potential of these glial cells depends on ion channels that are K+ selective only in the presence of external Ca2+ and K+ and (b) that this K+ selectivity may require that Em is near the reversal potential for potassium (EK), and (c) that the action of metabolic inhibitors (DNP and FCCP) is different from that in neurones.
Collapse
Affiliation(s)
- T Brismar
- Department of Clinical Neurophysiology, Karolinska Hospital, Stockholm, Sweden
| | | |
Collapse
|
41
|
Magoski NS, Walz W, Juurlink BH. Identification of mouse type-2-like astrocytes: Demonstration of glutamate and GABA transmitter activated responses. J Neurosci Res 1992; 33:91-102. [PMID: 1360543 DOI: 10.1002/jnr.490330112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have identified mouse type-2-like astrocytes and examined some of their electrophysiological properties. Cultures were prepared from P4 mouse neopallia. We demonstrate that mouse type-2-like astrocytes can be identified using the following criteria: presence of glial fibrillary acidic protein (GFAP), presence of chondroitin sulfate polysaccharide, and presence of gamma-aminobutyric acid (GABA). A2B5-binding is not a sufficient criterion to identify O2A lineage cells in mouse neopallial glial cultures since the monoclonal antibody A2B5 binds not only to O2A lineage cells but also to a subpopulation of large, flat type-1-like astrocytes. Mouse type-2-like astrocytes have resting membrane potentials of -76.2 +/- 2.1 mV-i.e., similar to that of mouse type-1-like astrocytes. The input resistance of 44.2 +/- 0.5 M omega is an order of magnitude greater than that of type-1-like astrocytes suggesting the type-2-like astrocytes are not extensively electrically coupled either to each other or to type-1-like astrocytes. Glutamate application caused an 8.8 +/- 1.7 mV depolarization of type-2-like astrocytes. Application of glutamate to barium treated astrocytes caused a fast depolarization with a peak amplitude of 21.4 +/- 1.8 mV; the cells repolarized from this peak by about 10 mV and upon removal of glutamate returned to its pre-glutamate value. Application of GABA caused a transient depolarization of 14.0 +/- 1.7 mV. The presence of barium resulted in a steady-state GABA-induced depolarization of 10.3 +/- 2.0 mV. Neither SITS nor beta-alanine interfered with the amplitude of the glutamate and GABA responses.
Collapse
Affiliation(s)
- N S Magoski
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
42
|
Chow SY, Yen-Chow YC, Woodbury DM. Studies on pH regulatory mechanisms in cultured astrocytes of DBA and C57 mice. Epilepsia 1992; 33:775-84. [PMID: 1396416 DOI: 10.1111/j.1528-1157.1992.tb02181.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
pH regulatory mechanisms in primary cultures of astrocytes from the cerebral cortex of neonatal audiogenic-seizure-susceptible DBA/2J (DBA) and genetically controlled C57BL/6J (C57) mice were studied with [14C]dimethyloxazolidine-2-4-dione (DMO) and [3H]-methyl-D-glucose (MDG). Effects of changing the concentration of Na+, K+, HCO3- or Cl- in medium, and/or of different transport blockers and metabolite inhibitor on intracellular pH (pHi) of cultured astrocytes were also studied. In nominal HCO3(-)-free HEPES-buffered Hanks' balanced salt solution (HEPES HBSS), when the pH of medium (pHo) was maintained at 7.4, the steady-state pHi of cultured astrocytes from DBA mice was 6.98 +/- 0.03, and that from C57 mice was 7.01 +/- 0.03. When the cells were incubated in HBSS containing 25 mM HCO3- and equilibrated with 5% CO2 (HCO3- HBSS, pHo = 7.4), pHi of both DBA and C57 astrocytes was approximately 0.1-0.15 pH units higher than that in HEPES HBSS. Reducing the pH or the Na+ concentration in media (pHo, [Na+]o) of either HEPES HBSS or HCO3- HBSS, pHi of both DBA and C57 astrocytes decreased markedly (0.25-0.45 pH units lower than the controls). The decrease in pHi was greater in HEPES HBSS than in HCO3- HBSS. Reducing the Cl- concentration ([Cl-]o) in either HEPES or HCO3- HBSS, pHi of astrocytes increased by 0.05-0.1 pH units. Increasing the K+ concentration ([K+]o) of or adding Ba2+ to the media increased the pHi of both DBA and C57 astrocytes accordingly. SITS, an anion transport inhibitor, decreased the pHi of both DBA and C57 astrocytes in HCO3- HBSS but not in HEPES HBSS. It enhanced the response of pHi to reduction in pHo. Amiloride, a Na(+)-H+ exchange inhibitor, decreased the pHi of both DBA and C57 astrocytes more in HEPES HBSS than in HCO3- HBSS. It enhanced the response of pHi to reduction in pHo and [Na+]o. Ouabain, an Na+,K(+)-ATPase inhibitor, decreased the pHi of cultured astrocytes in HEPES HBSS, but not in HCO3- HBSS. It also enhanced the response of pHi to changing pHo and [Na+]o in HEPES HBSS. Acetazolamide, a carbonic anhydrase inhibitor, decreased the pHi of astrocytes in both HEPES and HCO3- HBSS. Both bumetanide, an Na+,K+/Cl- cotransport blocker, and KCN, a metabolic inhibitor, produced no significant effect on the steady-state pHi or the response of pHi to changing ionic concentration in media in both DBA and C57 astrocytes.
Collapse
Affiliation(s)
- S Y Chow
- Department of Physiology, University of Utah School of Medicine, Salt Lake City 84108
| | | | | |
Collapse
|
43
|
Chow SY, Li J, Woodbury DM. Water and electrolyte contents, cell pH, and membrane potential of primary cultures of astrocytes from DBA, C57, and SW mice. Epilepsia 1992; 33:393-401. [PMID: 1592012 DOI: 10.1111/j.1528-1157.1992.tb01683.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Some basic properties of primary cultures of astrocytes derived from the cerebral cortex of an audiogenic seizure-sensitive strain of mice, DBA/2J (DBA), were studied with different approaches. The results were compared with those of audiogenic seizure-resistant strains, C57BL/6J (C57) and Swiss Webster (SW). Contents of intracellular water, protein, and DNA of DBA astrocytes were 0.673 +/- 0.019 ml/g cells, 0.082 +/- 0.006 g/g cells, and 0.0072 +/- 0.0005 g/g cells, respectively. These results are not different from those of either C57 or SW astrocytes. Intracellular concentration of K+, Na+, and Cl- ([K+]1, [Na+]1, and [Cl-]1) derived from the flame photometric and from the radioisotope uptake data of DBA astrocytes were 120.4 +/- 8.5, 25.9 +/- 3.2, and 26.8 +/- 1.8 mM/L cell H2O, respectively. [Na+]1 and [Cl-]1 in DBA astrocytes were lower than those in C57 and SW astrocytes. In DBA astrocytes, SITS decreased the cell/medium ratio (C/M) of 36Cl- and increased the C/M of 125I-; ouabain increased the C/M of 22Na+ and decreased the C/M of 125I-; bumetanide decreased the C/M of both 36Cl- and 22Na+; and NaClO4 decreased the C/M of 125I-. Similar results were observed in both C57 and SW astrocytes. Intracellular pH (pHi) as determined with 14C-DMO of astrocytes in HEPES-buffered saline solution averaged 7.04 +/- 0.03 for DBA, 7.01 +/- 0.02 for C57, and 6.97 +/- 0.02 for SW mice when pH of medium was maintained at 7.4. Modification of ion (HCO3-, Cl-, Na+, and K+) concentration and pH of culture medium all changed the pHi of astrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Y Chow
- Department of Physiology, University of Utah School of Medicine, Salt Lake City
| | | | | |
Collapse
|
44
|
Saubermann AJ, Castiglia CM, Foster MC. Preferential uptake of rubidium from extracellular space by glial cells compared to neurons in leech ganglia. Brain Res 1992; 577:64-72. [PMID: 1521148 DOI: 10.1016/0006-8993(92)90538-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glial cells play a significant role in maintaining extracellular space (ECS) potassium (K) by temporarily buffering or accumulating excess ECS K and then returning that K to neurons. Yet, little is known about the relative affinity of neurons or glial cells for K when both cells are simultaneously exposed to the same ECS K, in situ. Also, the process by which glial cells return K to neurons remains unknown. Therefore, electron probe X-ray microanalysis was used to measure rubidium (Rb) uptake, as a K tracer, into leech packet neurons and glial cells, and to measure the distribution of cell water content, K, Na and Cl. When ECS Rb was increased from 4 mM to 20 mM, there was a clear preferential Rb uptake into glial cells compared to neurons. At 4 mM extracellular Rb there was only a small difference between uptake velocity of neurons and glial cells (maximum mean uptake velocity at 4 mM Rb was 1.09 for glia, and 0.41 mmol Rb/kg dry wt/s for neurons), whereas at 20 mM extracellular Rb, glial uptake velocity was dramatically greater than of neurons (max. mean Rb uptake velocity for glia was 4.3 compared to 1.47 mmol Rb/kg dry wt/s for neurons). Glial Rb uptake velocity was enhanced by low temperature (max. mean Rb uptake velocity at 20 mM ECS Rb at 6 degrees C was 6.04 for glia compared to 0.78 mmol Rb/kg dry wt/s for neurons) and by substitution of Cl with isethionate (max. mean Rb uptake velocity was 10.6 for glia compared to 1.33 mmol Rb/kg dry wt/s for neurons).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A J Saubermann
- Department of Anesthesiology, Medical School, SUNY, Stony Brook 11794-8480
| | | | | |
Collapse
|
45
|
Harold DE, Walz W. Metabolic inhibition and electrical properties of type-1-like cortical astrocytes. Neuroscience 1992; 47:203-11. [PMID: 1315934 DOI: 10.1016/0306-4522(92)90133-m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type-1-like cortical mouse astrocytes were studied in homogeneous cultures. Membrane input resistance and membrane potential were measured during drug-induced inhibition of glycolysis (sodium fluoride), mitochondrial respiration (antimycin-a) and Na+/K+ pump activity (ouabain). It was found that the electrical properties of the astrocytes recovered after a 60 min period with inhibited glycolysis or mitochondrial respiration, exhibiting only small reversible depolarizations. A 60 min period of high K(+)-induced depolarization, of cell swelling or of Na+/K+ pump inhibition does not lead to irreversible changes. Total block of energy metabolism, however, causes (1) a large depolarization, which is mainly mediated by external calcium, and (2) a 10-fold increase in input resistance, suggestive of an uncoupling of gap junctions. After an exposure period ranging between 45 and 60 min these conditions lead to irreversible damage. This damage appears to be independent of extracellular calcium and the degree of depolarization and to be specifically mediated by events occurring after the 60-min period of inhibited cell metabolism, that is during the recovery period.
Collapse
Affiliation(s)
- D E Harold
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
46
|
White HS, Skeen GA, Edwards JA. Pharmacological regulation of astrocytic calcium channels: implications for the treatment of seizure disorders. PROGRESS IN BRAIN RESEARCH 1992; 94:77-87. [PMID: 1337616 DOI: 10.1016/s0079-6123(08)61741-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- H S White
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City 84108
| | | | | |
Collapse
|
47
|
Walz W, Magoski NS. Short-circuiting effects of K+ currents on electrical responses of type-1-like astrocytes from mouse cerebral cortex. Brain Res 1991; 567:120-6. [PMID: 1687727 DOI: 10.1016/0006-8993(91)91443-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The membrane potential and membrane input resistance of cortical astrocytes from newborn mice were recorded with and without exposure to 1 mM barium. Barium treatment drastically decreased the membrane response to 0 and 35 mM K+. It also revealed an electrogenic component of the Na+,K(+)-ATPase as evident by a biphasic depolarization as a response to ouabain, which was monophasic without barium presence. Untreated mouse astrocytes reacted with small monophasic depolarizations to GABA and glutamate exposure. Barium-treated astrocytes exhibited additional transient responses to both transmitters, similar to those responses of rat astrocytes as found in the literature. The transmitter responses were not changed by exposure to uptake blockers for both transmitter substances. Thus, this electrophysiological study confirms earlier studies with radioactive K+ fluxes in showing that astrocytes derived from mouse brain are capable of short-circuiting electrogenic components and transmitter responses. This extreme high K+ permeability resembles the one reported for endfeet of retinal Muller cells and dissociated astrocytes from optic nerve.
Collapse
Affiliation(s)
- W Walz
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
48
|
Chow SY, Yen-Chow YC, White HS, Hertz L, Woodbury DM. Effects of potassium on the anion and cation contents of primary cultures of mouse astrocytes and neurons. Neurochem Res 1991; 16:1275-83. [PMID: 1784325 DOI: 10.1007/bf00966658] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In astrocytes, as [K+]o was increased from 1.2 to 10 mM, [K+]i and [Cl-]i were increased, whereas [Na+]i was decreased. As [K+]o was increased from 10 to 60 mM, intracellular concentration of these three ions showed no significant change. When [K+]o was increased from 60 to 122 mM, an increase in [K+]i and [Cl-]i and a decrease in [Na+]i were observed. In neurons, as [K+]o was increased from 1.2 to 2.8 mM, [Na+]i and [Cl-]i were decreased, whereas [K+]i was increased. As [K+]o was increased from 2.8 to 30 mM, [K+]i, [Na+]i and [Cl-]i showed no significant change. When [K+]o was increased from 30 to 122 mM, [K+]i and [Cl-]i were increased, whereas [Na+]i was decreased. In astrocytes, pHi increased when [K+]o was increased. In neurons, there was a biphasic change in pHi. In lower [K+]o (1.2-2.8 mM) pHi decreased as [K+]o increased, whereas in higher [K+]o (2.8-122 mM) pHi was directly related to [K+]o. In both astrocytes and neurons, changes in [K+]o did not affect the extracellular water content, whereas the intracellular water content increased as the [K+]o increased. Transmembrane potential (Em) as measured with Tl-204 was inversely related to [K+]o between 1.2 and 90 mM, a ten-fold increase in [K+]o depolarized the astrocytes by about 56 mV and the neurons about 52 mV. The Em values measured with Tl-204 were close to the potassium equilibrium potential (Ek) except those in neurons at lower [K+]o. However, they were not equal to the chloride equilibrium potential (ECl) at [K+]o lower than 30 mM in both astrocytes and neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Y Chow
- Department of Physiology, University of Utah, Salt Lake City 84108
| | | | | | | | | |
Collapse
|
49
|
LoPachin RM, Castiglia CM, Saubermann AJ. Elemental composition and water content of myelinated axons and glial cells in rat central nervous system. Brain Res 1991; 549:253-9. [PMID: 1715801 DOI: 10.1016/0006-8993(91)90465-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of elements (e.g. Na, Cl, K) and water in CNS cells is unknown. Therefore, electron probe X-ray microanalysis (EPMA) was used to measure water content and concentrations (mmol/kg dry or wet weight) of Na, Mg, P, S, Cl, K and Ca in morphological compartments of myelinated axons and glial cells from rat optic nerve and cervical spinal cord white matter. Axons in both CNS regions exhibited similar water content (approximately 90%), and relatively high concentrations (wet and dry weight) of K with low Na and Ca levels. The K content of axons was related to diameter, i.e. small axons in spinal cord and optic nerve had significantly less (25-50%) K than larger diameter axons from the same CNS region. The elemental composition of spinal cord mitochondria was similar to corresponding axoplasm, whereas the water content (75%) of these organelles was substantially lower than that of axoplasm. In glial cell cytoplasm of both CNS areas, P and K (wet and dry weight) were the most abundant elements and water content was approximately 75%. CNS myelin had predominantly high P levels and the lowest water content (33-55%) of any compartment measured. The results of this study demonstrate that each morphological compartment of CNS axons and glia exhibits a characteristic elemental composition and water content which might be related to the structure and function of that neuronal region.
Collapse
Affiliation(s)
- R M LoPachin
- Department of Anesthesiology, Medical School, SUNY, Stony Brook 11794-8480
| | | | | |
Collapse
|
50
|
Backus KH, Berger T, Kettenmann H. Activation of neurokinin receptors modulates K+ and Cl- channel activity in cultured astrocytes from rat cortex. Brain Res 1991; 541:103-9. [PMID: 1709385 DOI: 10.1016/0006-8993(91)91081-b] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Short application of the neurokinin receptor agonist substance P (SP) leads to a biphasic depolarization of astrocytes cultured from rat cortex. The rapid and transient depolarizing event lasted few seconds, the slow one several minutes. In some cells, only the slow depolarizing component was observed. During the slow depolarizing event, the sensitivity of the membrane potential for a change in the K+ gradient decreased, indicating a decrease in the relative K+ permeability of the membrane. The rapid SP-induced depolarization could be reversed, when the membrane potential was depolarized to about 0 mV by elevation of the extracellular K+ concentration, indicating a reversal potential close to the Cl- equilibrium potential. When the membrane was clamped close to the resting membrane potential using the whole-cell patch-clamp technique, SP induced a biphasic inward current with a similar time course as the SP-induced membrane depolarization. Evaluating current-to-voltage curves indicated a conductance decrease during the slow inward current with a reversal potential of the SP-dependent current close to the K+ equilibrium potential. The mean open time of single K+ channels, measured in the cell-attached configuration of the patch-clamp technique, decreased after application of SP. In contrast, the mean open time of single Cl- channels increased. We conclude that activation of neurokinin receptors in astrocytes modulates the activity of K+ and Cl- channels, leading to a complex depolarization of the membrane potential.
Collapse
Affiliation(s)
- K H Backus
- Department of Neurobiology, University of Heidelberg, F.R.G
| | | | | |
Collapse
|