1
|
Greaney MR, Wreden CC, Heckscher ES. Distinctive features of the central synaptic organization of Drosophila larval proprioceptors. Front Neural Circuits 2023; 17:1223334. [PMID: 37564629 PMCID: PMC10410283 DOI: 10.3389/fncir.2023.1223334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Proprioceptive feedback is critically needed for locomotor control, but how this information is incorporated into central proprioceptive processing circuits remains poorly understood. Circuit organization emerges from the spatial distribution of synaptic connections between neurons. This distribution is difficult to discern in model systems where only a few cells can be probed simultaneously. Therefore, we turned to a relatively simple and accessible nervous system to ask: how are proprioceptors' input and output synapses organized in space, and what principles underlie this organization? Using the Drosophila larval connectome, we generated a map of the input and output synapses of 34 proprioceptors in several adjacent body segments (5-6 left-right pairs per segment). We characterized the spatial organization of these synapses, and compared this organization to that of other somatosensory neurons' synapses. We found three distinguishing features of larval proprioceptor synapses: (1) Generally, individual proprioceptor types display segmental somatotopy. (2) Proprioceptor output synapses both converge and diverge in space; they are organized into six spatial domains, each containing a unique set of one or more proprioceptors. Proprioceptors form output synapses along the proximal axonal entry pathway into the neuropil. (3) Proprioceptors receive few inhibitory input synapses. Further, we find that these three features do not apply to other larval somatosensory neurons. Thus, we have generated the most comprehensive map to date of how proprioceptor synapses are centrally organized. This map documents previously undescribed features of proprioceptors, raises questions about underlying developmental mechanisms, and has implications for downstream proprioceptive processing circuits.
Collapse
Affiliation(s)
- Marie R. Greaney
- Committee on Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Chris C. Wreden
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Ellie S. Heckscher
- Committee on Neurobiology, The University of Chicago, Chicago, IL, United States
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
- Institute for Neuroscience, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Falgairolle M, O'Donovan MJ. Motoneuronal Spinal Circuits in Degenerative Motoneuron Disease. Front Mol Neurosci 2020; 13:74. [PMID: 32523513 PMCID: PMC7261878 DOI: 10.3389/fnmol.2020.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The most evident phenotype of degenerative motoneuron disease is the loss of motor function which accompanies motoneuron death. In both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), it is now clear that dysfunction is not restricted to motoneurons but is manifest in the spinal circuits in which motoneurons are embedded. As mounting evidence shows that motoneurons possess more elaborate and extensive connections within the spinal cord than previously realized, it is necessary to consider the role of this circuitry and its dysfunction in the disease process. In this review article, we ask if the selective vulnerability of the different motoneuron types and the relative disease resistance of distinct motoneuron groups can be understood in terms of their intraspinal connections.
Collapse
Affiliation(s)
- Mélanie Falgairolle
- Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Michael J O'Donovan
- Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Tabor KM, Smith TS, Brown M, Bergeron SA, Briggman KL, Burgess HA. Presynaptic Inhibition Selectively Gates Auditory Transmission to the Brainstem Startle Circuit. Curr Biol 2018; 28:2527-2535.e8. [PMID: 30078569 DOI: 10.1016/j.cub.2018.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/25/2022]
Abstract
Filtering mechanisms prevent a continuous stream of sensory information from swamping perception, leading to diminished focal attention and cognitive processing. Mechanisms for sensory gating are commonly studied using prepulse inhibition, a paradigm that measures the regulated transmission of auditory information to the startle circuit; however, the underlying neuronal pathways are unresolved. Using large-scale calcium imaging, optogenetics, and laser ablations, we reveal a cluster of 30 morphologically identified neurons in zebrafish that suppress the transmission of auditory signals during prepulse inhibition. These neurons project to a key sensorimotor interface in the startle circuit-the termination zone of auditory afferents on the dendrite of a startle command neuron. Direct measurement of auditory nerve neurotransmitter release revealed selective presynaptic inhibition of sensory transmission to the startle circuit, sparing signaling to other brain regions. Our results provide the first cellular resolution circuit for prepulse inhibition in a vertebrate, revealing a central role for presynaptic gating of sensory information to a brainstem motor circuit.
Collapse
Affiliation(s)
- Kathryn M Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Trevor S Smith
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Mary Brown
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sadie A Bergeron
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, Champion A, Midgley FM, Fetter RD, Saalfeld S, Cardona A. Quantitative neuroanatomy for connectomics in Drosophila. eLife 2016; 5. [PMID: 26990779 PMCID: PMC4811773 DOI: 10.7554/elife.12059] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/31/2016] [Indexed: 12/18/2022] Open
Abstract
Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity. DOI:http://dx.doi.org/10.7554/eLife.12059.001 The nervous system contains cells called neurons, which connect to each other to form circuits that send and process information. Each neuron receives and transmits signals to other neurons via very small junctions called synapses. Neurons are shaped a bit like trees, and most input synapses are located in the tiniest branches. Understanding the architecture of a neuron’s branches is important to understand the role that a particular neuron plays in processing information. Therefore, neuroscientists strive to reconstruct the architecture of these branches and how they connect to one another using imaging techniques. One imaging technique known as serial electron microscopy generates highly detailed images of neural circuits. However, reconstructing neural circuits from such images is notoriously time consuming and error prone. These errors could result in the reconstructed circuit being very different than the real-life circuit. For example, an error that leads to missing out a large branch could result in researchers failing to notice many important connections in the circuit. On the other hand, some errors may not matter much because the neurons share other synapses that are included in the reconstruction. To understand what effect errors have on the reconstructed circuits, neuroscientists need to have a more detailed understanding of the relationship between the shape of a neuron, its synaptic connections to other neurons, and where errors commonly occur. Here, Schneider-Mizell, Gerhard et al. study this relationship in detail and then devise a faster reconstruction method that uses the shape and other properties of neurons without sacrificing accuracy. The method includes a way to include data from the shape of neurons in the circuit wiring diagrams, revealing circuit patterns that would otherwise go unnoticed. The experiments use serial electron microscopy images of neurons from fruit flies and show that, from the tiniest larva to the adult fly, neurons form synapses with each other in a similar way. Most errors in the reconstruction only affect the tips of the smallest branches, which generally only host a single synapse. Such omissions do not have a big effect on the reconstructed circuit because strongly connected neurons make multiple synapses onto each other. Schneider-Mizell, Gerhard et al.'s approach will help researchers to reconstruct neural circuits and analyze them more effectively than was possible before. The algorithms and tools developed in this study are available in an open source software package so that they can be used by other researchers in the future. DOI:http://dx.doi.org/10.7554/eLife.12059.002
Collapse
Affiliation(s)
| | - Stephan Gerhard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Institute of Neuroinformatics, University of Zurich, Zürich, Switzerland.,Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Mark Longair
- Institute of Neuroinformatics, University of Zurich, Zürich, Switzerland.,Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Tom Kazimiers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Maarten F Zwart
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrew Champion
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Frank M Midgley
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
5
|
Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract. Brain Struct Funct 2014; 221:1125-37. [PMID: 25503820 DOI: 10.1007/s00429-014-0959-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
|
6
|
Deardorff AS, Romer SH, Sonner PM, Fyffe REW. Swimming against the tide: investigations of the C-bouton synapse. Front Neural Circuits 2014; 8:106. [PMID: 25278842 PMCID: PMC4167003 DOI: 10.3389/fncir.2014.00106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
C-boutons are important cholinergic modulatory loci for state-dependent alterations in motoneuron firing rate. m2 receptors are concentrated postsynaptic to C-boutons, and m2 receptor activation increases motoneuron excitability by reducing the action potential afterhyperpolarization. Here, using an intensive review of the current literature as well as data from our laboratory, we illustrate that C-bouton postsynaptic sites comprise a unique structural/functional domain containing appropriate cellular machinery (a “signaling ensemble”) for cholinergic regulation of outward K+ currents. Moreover, synaptic reorganization at these critical sites has been observed in a variety of pathologic states. Yet despite recent advances, there are still great challenges for understanding the role of C-bouton regulation and dysregulation in human health and disease. The development of new therapeutic interventions for devastating neurological conditions will rely on a complete understanding of the molecular mechanisms that underlie these complex synapses. Therefore, to close this review, we propose a comprehensive hypothetical mechanism for the cholinergic modification of α-MN excitability at C-bouton synapses, based on findings in several well-characterized neuronal systems.
Collapse
Affiliation(s)
- Adam S Deardorff
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Shannon H Romer
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Patrick M Sonner
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Robert E W Fyffe
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| |
Collapse
|
7
|
Goulding M, Bourane S, Garcia-Campmany L, Dalet A, Koch S. Inhibition downunder: an update from the spinal cord. Curr Opin Neurobiol 2014; 26:161-6. [PMID: 24743058 DOI: 10.1016/j.conb.2014.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 12/11/2022]
Abstract
Inhibitory neurons in the spinal cord perform dedicated roles in processing somatosensory information and shaping motor behaviors that range from simple protective reflexes to more complex motor tasks such as locomotion, reaching and grasping. Recent efforts examining inhibition in the spinal cord have been directed toward determining how inhibitory cell types are specified and incorporated into the sensorimotor circuitry, identifying and characterizing molecularly defined cohorts of inhibitory neurons and interrogating the functional contribution these cells make to sensory processing and motor behaviors. Rapid progress is being made on all these fronts, driven in large part by molecular genetic and optogenetic approaches that are being creatively combined with neuroanatomical, electrophysiological and behavioral techniques.
Collapse
Affiliation(s)
- Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lidia Garcia-Campmany
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Antoine Dalet
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephanie Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Csaba Z, Krejci E, Bernard V. Postsynaptic muscarinic m2 receptors at cholinergic and glutamatergic synapses of mouse brainstem motoneurons. J Comp Neurol 2013. [PMID: 23184757 DOI: 10.1002/cne.23268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In many brain areas, few cholinergic synapses are identified. Acetylcholine is released into the extracellular space and acts through diffuse transmission. Motoneurons, however, are contacted by numerous cholinergic terminals, indicating synaptic cholinergic transmission on them. The muscarinic m2 receptor is the major acetylcholine receptor subtype of motoneurons; therefore, we analyzed the localization of the m2 receptor in correlation with synapses by electron microscopic immunohistochemistry in the mouse trigeminal, facial, and hypoglossal motor nuclei. In all nuclei, m2 receptors were localized at the membrane of motoneuronal perikarya and dendrites. The m2 receptors were concentrated at cholinergic synapses located on the perikarya and most proximal dendrites. However, m2 receptors at cholinergic synapses represented only a minority (<10%) of surface m2 receptors. The m2 receptors were also enriched at glutamatergic synapses in both motoneuronal perikarya and dendrites. A relatively large proportion (20-30%) of plasma membrane-associated m2 receptors were located at glutamatergic synapses. In conclusion, the effect of acetylcholine on motoneuron populations might be mediated through a synaptic as well as diffuse type of transmission.
Collapse
Affiliation(s)
- Zsolt Csaba
- Université Paris Descartes, 75006 Paris, France.
| | | | | |
Collapse
|
9
|
Yeo EJ, Cho YS, Paik SK, Yoshida A, Park MJ, Ahn DK, Moon C, Kim YS, Bae YC. Ultrastructural analysis of the synaptic connectivity of TRPV1-expressing primary afferent terminals in the rat trigeminal caudal nucleus. J Comp Neurol 2011; 518:4134-46. [PMID: 20878780 DOI: 10.1002/cne.22369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Trigeminal primary afferents that express the transient receptor potential vanilloid 1 (TRPV1) are important for the transmission of orofacial nociception. However, little is known about how the TRPV1-mediated nociceptive information is processed at the first relay nucleus in the central nervous system (CNS). To address this issue, we studied the synaptic connectivity of TRPV1-positive (+) terminals in the rat trigeminal caudal nucleus (Vc) by using electron microscopic immunohistochemistry and analysis of serial thin sections. Whereas the large majority of TRPV1+ terminals made synaptic contacts of an asymmetric type with one or two postsynaptic dendrites, a considerable fraction also participated in complex glomerular synaptic arrangements. A few TRPV1+ terminals received axoaxonic contacts from synaptic endings that contained pleomorphic synaptic vesicles and were immunolabeled for glutamic acid decarboxylase, the synthesizing enzyme for the inhibitory neurotransmitter γ-aminobutyric acid (GABA). We classified the TRPV1+ terminals into an S-type, containing less than five dense-core vesicles (DCVs), and a DCV-type, containing five or more DCVs. The number of postsynaptic dendrites was similar between the two types of terminals; however, whereas axoaxonic contacts were frequent on the S-type, the DCV-type did not receive axoaxonic contacts. In the sensory root of the trigeminal ganglion, TRPV1+ axons were mostly unmyelinated, and a small fraction was small myelinated. These results suggest that the TRPV1-mediated nociceptive information from the orofacial region is processed in a specific manner by two distinct types of synaptic arrangements in the Vc, and that the central input of a few TRPV1+ afferents is presynaptically modulated via a GABA-mediated mechanism.
Collapse
Affiliation(s)
- Eun Jin Yeo
- Department of Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ultrastructural Basis for Craniofacial Sensory Processing in The Brainstem. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011. [DOI: 10.1016/b978-0-12-385198-7.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
11
|
|
12
|
Marsala J, Lukácová N, Kolesár D, Sulla I, Gálik J, Marsala M. The distribution of primary nitric oxide synthase- and parvalbumin- immunoreactive afferents in the dorsal funiculus of the lumbosacral spinal cord in a dog. Cell Mol Neurobiol 2007; 27:475-504. [PMID: 17387607 DOI: 10.1007/s10571-007-9140-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
1. The aim of the present study was to examine the distribution of unmyelinated, small-diameter myelinated neuronal nitric oxide synthase immunoreactive (nNOS-IR) axons and large-diameter myelinated neuronal nitric oxide synthase and parvalbumin-immunoreactive (PV-IR) axons in the dorsal funiculus (DF) of sacral (S1-S3) and lumbar (L1-L7) segments of the dog.2. nNOS and PV immunohistochemical methods were used to demonstrate the presence of nNOS-IR and PV-IR in the large-diameter myelinated, presumed to be proprioceptive, axons in the DF along the lumbosacral segments.3. Fiber size and density of nNOS-IR and PV-IR axons were used to compartmentalize the DF into five compartments (CI-CV). The first compartment (CI) localized in the lateralmost part of the DF, containing both unmyelinated and small-diameter myelinated nNOS-IR axons, is homologous with the dorsolateral fasciculus, or Lissauer tract. The second compartment (CII) having similar fiber organization as CI is situated more medially in sacral segments. Rostrally, in lower lumbar segments, CII moves more medially, and at upper lumbar level, CII reaches the dorsomedial angle of the DF and fuses with axons of CIV. CIII is the largest in the DF and the only one containing large-diameter myelinated nNOS-IR and PV-IR axons. The largest nNOS-IR and PV-IR axons of CIII (8.0-9.2 mum in diameter), presumed to be stem Ia proprioceptive afferents, are located in the deep portion of the DF close to the dorsal and dorsomedial border of the dorsal horn. The CIV compartment varies in shape, appearing first as a small triangular area in S3 and S2 segments, homologous with the Philippe-Gombault triangle. Beginning at S1 level, CIV acquires a more elongated shape and is seen throughout the lumbar segments as a narrow band of fibers extending just below the dorsal median septum in approximately upper two-thirds of the DF. The CV is located in the basal part of the DF. In general, CV is poor in nNOS-IR fibers; among them solitary PV-IR fibers are seen.4. The analysis of the control material and the degeneration of the large- and medium-caliber nNOS-IR fibers after unilateral L7 and S1 dorsal rhizotomy confirmed that large-caliber nNOS-IR and and PV-IR axons, presumed to be proprioceptive Ia axons, and their ascending and descending collaterals are present in large number in the DF of the lumbosacral intumescence. However, in the DF of the upper lumbar segments, the decrease in the number of nNOS-IR and PV-IR fibers is quite evident.
Collapse
Affiliation(s)
- Jozef Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01 Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Mentis GZ, Siembab VC, Zerda R, O'Donovan MJ, Alvarez FJ. Primary afferent synapses on developing and adult Renshaw cells. J Neurosci 2007; 26:13297-310. [PMID: 17182780 PMCID: PMC3008340 DOI: 10.1523/jneurosci.2945-06.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanisms that diversify adult interneurons from a few pools of embryonic neurons are unknown. Renshaw cells, Ia inhibitory interneurons (IaINs), and possibly other types of mammalian spinal interneurons have common embryonic origins within the V1 group. However, in contrast to IaINs and other V1-derived interneurons, adult Renshaw cells receive motor axon synapses and lack proprioceptive inputs. Here, we investigated how this specific pattern of connectivity emerges during the development of Renshaw cells. Tract tracing and immunocytochemical markers [parvalbumin and vesicular glutamate transporter 1 (VGLUT1)] showed that most embryonic (embryonic day 18) Renshaw cells lack dorsal root inputs, but more than half received dorsal root synapses by postnatal day 0 (P0) and this input spread to all Renshaw cells by P10-P15. Electrophysiological recordings in neonates indicated that this input is functional and evokes Renshaw cell firing. VGLUT1-IR bouton density on Renshaw cells increased until P15 but thereafter decreased because of limited synapse proliferation coupled with the enlargement of Renshaw cell dendrites. In parallel, Renshaw cell postsynaptic densities apposed to VGLUT1-IR synapses became smaller in adult compared with P15. In contrast, vesicular acetylcholine transporter-IR motor axon synapses contact embryonic Renshaw cells and proliferate postnatally matching Renshaw cell growth. Like other V1 neurons, Renshaw cells are thus competent to receive sensory synapses. However, after P15, these sensory inputs appear deselected through arrested proliferation and synapse weakening. Thus, Renshaw cells shift from integrating sensory and motor inputs in neonates to predominantly motor inputs in adult. Similar synaptic weight shifts on interneurons may be involved in the maturation of motor reflexes and locomotor circuitry.
Collapse
Affiliation(s)
- George Z. Mentis
- Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Valerie C. Siembab
- Department of Neurosciences, Cell Biology, and Physiology, Wright State University, Dayton, Ohio 45435, and
| | - Ricardo Zerda
- Department of Neurosciences, Cell Biology, and Physiology, Wright State University, Dayton, Ohio 45435, and
| | - Michael J. O'Donovan
- Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Francisco J. Alvarez
- Department of Neurosciences, Cell Biology, and Physiology, Wright State University, Dayton, Ohio 45435, and
| |
Collapse
|
14
|
Abstract
Presynaptic inhibition is one of many areas of neurophysiology in which Sir John Eccles did pioneering work. Frank and Fuortes first described presynaptic inhibition in 1957. Subsequently, Eccles and his colleagues characterized the process more fully and showed its relationship to primary afferent depolarization. Eccles' studies emphasized presynaptic inhibition of the group Ia monosynaptic reflex pathway but also included group Ib, II and cutaneous afferent pathways, and the dorsal column nuclei. Presynaptic inhibition of the group Ia afferent pathway was demonstrated by depression of monosynaptic excitatory postsynaptic potentials and inhibition of monosynaptic reflex discharges. Primary afferent depolarization was investigated by recordings of dorsal root potentials, dorsal root reflexes, cord dorsum and spinal cord field potentials, and tests of the excitability of primary afferent terminals. Primary afferent depolarization was proposed to result in presynaptic inhibition by reducing the amplitude of the action potential as it invades presynaptic terminals. This resulted in less calcium influx and, therefore, less transmitter release. Presynaptic inhibition and primary afferent depolarization could be blocked by antagonists of GABA(A) receptors, implying a role of interneurons that release gamma aminobutyric acid in the inhibitory circuit. The reason why afferent terminals were depolarized was later explained by a high intracellular concentration of Cl(-) ions in primary sensory neurons. Activation of GABA(A) receptors opens Cl(-) channels, and Cl(-) efflux results in depolarization. Another proposed mechanism of depolarization was an increase in extracellular concentration of K(+) following neural activity. Eccles' work on presynaptic inhibition has since been extended in a variety of ways.
Collapse
Affiliation(s)
- William D Willis
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, 77555-1069, USA.
| |
Collapse
|
15
|
Marsala J, Lukácová N, Sulla I, Wohlfahrt P, Marsala M. The evidence for nitric oxide synthase immunopositivity in the monosynaptic Ia-motoneuron pathway of the dog. Exp Neurol 2005; 195:161-78. [PMID: 15979072 DOI: 10.1016/j.expneurol.2005.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 04/11/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
In this study, nitric oxide synthase immunohistochemistry supported by nicotinamide adenine dinucleotide phosphate diaphorase histochemistry was used to demonstrate the nitric oxide synthase immunoreactivity in the monosynaptic Ia-motoneuron pathway exemplified by structural components of the afferent limb of the soleus H-reflex in the dog. A noticeable number of medium-sized intensely nitric oxide synthase immunoreactive somata (1000-2000 microm(2) square area) and large intraganglionic nitric oxide synthase immunoreactive fibers, presumed to be Ia axons, was found in the L7 and S1 dorsal root ganglia. The existence of nitric oxide synthase immunoreactive fibers (6-8 microm in diameter, not counting the myelin sheath) was confirmed in L7 and S1 dorsal roots and in the medial bundle of both dorsal roots before entering the dorsal root entry zone. By virtue of the funicular organization of nitric oxide synthase immunoreactive fibers in the dorsal funiculus, the largest nitric oxide synthase immunoreactive fibers represent stem Ia axons located in the deep portion of the dorsal funiculus close to the dorsomedial margin of the dorsal horn. Upon entering the gray matter of L7 and S1 segments and passing through the medial half of the dorsal horn, tapered nitric oxide synthase immunoreactive collaterals of the stem Ia fibers pass through the deep layers of the dorsal horn and intermediate zone, and terminate in the group of homonymous motoneurons in L7 and S1 segments innervating the gastrocnemius-soleus muscles. Terminal fibers issued in the ventral horn intensely nitric oxide synthase immunoreactive terminals with long axis ranging from 0.7 to >or=15.1 microm presumed to be Ia bNOS-IR boutons. This finding is unique in that it focuses directly on nitric oxide synthase immunopositivity in the signalling transmitted by proprioceptive Ia fibers. Nitric oxide synthase immunoreactive boutons were found in the neuropil of Clarke's column of L4 segment, varying greatly in size from 0.7 to >or=15.1 microm in length x 0.7 to 4.8 microm wide. Subsequent to identification of the afferent nitric oxide synthase immunoreactive limb of the monosynaptic Ia-motoneuron pathway on control sections, intramuscular injections of the retrograde tracer Fluorogold into the gastrocnemius-soleus muscles, combined with nitric oxide synthase immunohistochemistry of L7 and S1 dorsal root ganglia, confirmed the existence of a number of medium-sized nitric oxide synthase immunoreactive somata (1000-2000 microm(2) square area) in the dorsolateral part of both dorsal root ganglia, presumed to be proprioceptive Ia neurons. Concurrently, large nitric oxide synthase immunoreactive fibers were detected at the input and output side of both dorsal root ganglia. S1 and S2 dorsal rhizotomy caused a marked depletion of nitric oxide synthase immunoreactivity in the medial bundle of S1 and S2 dorsal roots and in the dorsal funiculus of S1, S2 and lower lumbar segments. In addition, anterograde degeneration of large nitric oxide synthase immunoreactive Ia fibers in the dorsal funiculus of L7-S2 segments produces direct evidence that the afferent limb of the soleus H-reflex is nitric oxide synthase immunoreactive and presents new immunohistochemical characteristics of the monosynaptic Ia-motoneuron pathway, unseparably coupled with the performance of the stretch reflex.
Collapse
Affiliation(s)
- Jozef Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
16
|
Hughes DI, Mackie M, Nagy GG, Riddell JS, Maxwell DJ, Szabó G, Erdélyi F, Veress G, Szucs P, Antal M, Todd AJ. P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn. Proc Natl Acad Sci U S A 2005; 102:9038-43. [PMID: 15947074 PMCID: PMC1157050 DOI: 10.1073/pnas.0503646102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Indexed: 12/28/2022] Open
Abstract
Presynaptic inhibition of primary muscle spindle (group Ia) afferent terminals in motor nuclei of the spinal cord plays an important role in regulating motor output and is produced by a population of GABAergic axon terminals known as P boutons. Despite extensive investigation, the cells that mediate this control have not yet been identified. In this work, we use immunocytochemistry with confocal microscopy and EM to demonstrate that P boutons can be distinguished from other GABAergic terminals in the ventral horn of rat and mouse spinal cord by their high level of the glutamic acid decarboxylase (GAD) 65 isoform of GAD. By carrying out retrograde labeling from lamina IX in mice that express green fluorescent protein under the control of the GAD65 promoter, we provide evidence that the cells of origin of the P boutons are located in the medial part of laminae V and VI. Our results suggest that P boutons represent the major output of these cells within the ventral horn and are consistent with the view that presynaptic inhibition of proprioceptive afferents is mediated by specific populations of interneurons. They also provide a means of identifying P boutons that will be important in studies of the organization of presynaptic control of Ia afferents.
Collapse
Affiliation(s)
- D I Hughes
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Deng Z, Fyffe REW. Expression of P2X7 receptor immunoreactivity in distinct subsets of synaptic terminals in the ventral horn of rat lumbar spinal cord. Brain Res 2004; 1020:53-61. [PMID: 15312787 DOI: 10.1016/j.brainres.2004.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
Adenosine 5'-triphosphate (ATP) may regulate neurotransmission in the CNS by activating presynaptic and/or postsynaptic P2X (P2X1-P2X7) ionotropic receptors. P2X7 purinergic receptors have been shown to modulate transmitter release at excitatory synapses in the hippocampus and have been localized in glutamatergic terminals in several CNS regions. Here, we analyze P2X7-immunoreactivity (IR) in a variety of immunohistochemically identified excitatory and inhibitory presynaptic terminals in the spinal cord ventral horn, including cholinergic C-terminals and motor axon collaterals and glutamatergic terminals that express VGLUT1- or VGLUT2-IR. Whereas there is widespread colocalization of P2X7-IR and VGLUT2-IR ( approximately 94%), there is little colocalization (< or =15%) with VGLUT1, monoaminergic or inhibitory terminals. Furthermore, although P2X7-IR is present in motor axon terminals at the neuromuscular junction (NMJ), only about 32% of the presumed motor axon terminals in the ventral horn exhibit P2X7-IR; in contrast, almost all large cholinergic C-terminals contacting motoneurons (91%) express P2X7-IR. The results suggest that distinct populations of synapses involved in spinal cord motor control circuits may be differentially regulated by the activation of P2X7 receptors.
Collapse
Affiliation(s)
- Zhihui Deng
- Office of Research Affairs, Department of Anatomy and Physiology, Wright State University School of Medicine, 002A Mathematics and Microbiology Building, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | |
Collapse
|
18
|
Alvarez FJ, Villalba RM, Zerda R, Schneider SP. Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol 2004; 472:257-80. [PMID: 15065123 DOI: 10.1002/cne.20012] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate-containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88-95% (depending on the antibody used) of C(II) dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense-core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA-IB4) binding and in 83-90% of C(I) glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV-containing afferents and in 50-60% of C(II) terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Anatomy and Physiology, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | |
Collapse
|
19
|
Oliveira ALR, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hökfelt T, Cullheim S, Meister B. Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 2003; 50:117-29. [PMID: 12923814 DOI: 10.1002/syn.10249] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate is transported into synaptic vesicles by vesicular glutamate transporter (VGLUT) proteins. Three different VGLUTs, VGLUT1, VGLUT2, and VGLUT3, have recently been characterized, and they are considered to represent the most specific marker so far for neurons using glutamate as transmitter. We analyzed the cellular localization of VGLUT1-3 in the rat spinal cord and dorsal root ganglia (DRGs) in control rats and after dorsal rhizotomy. Using in situ hybridization, VGLUT1 mRNA containing neurons were shown in the dorsomedial part of the intermediate zone, whereas VGLUT2 mRNA-expressing neurons were present in the entire intermediate zone, both populations most likely representing interneurons. VGLUT3 mRNA could not be detected in the spinal cord. In the ventral horn, a dense plexus of VGLUT1-immunoreactive (ir) nerve terminals was present, with large varicosities abutting on presumed motoneurons. In the dorsal horn a similarly dense plexus was seen, except in laminae I and II. A very dense plexus of VGLUT2-ir fibers was distributed in the entire gray matter of the spinal cord, with many fibers lying close to presumed motoneurons. Few VGLUT3-ir fibers were distributed in the white and gray matter, including lamina IX. However, a dense VGLUT3-ir plexus was seen in the sympathetic intermedio-lateral column (IML). Multiple-labeling immunohistochemistry revealed that the VGLUT1-, VGLUT2-, and VAChT-containing varicosities in lamina IX all represent separate entities. There was no colocalization of VGLUT3 with VAChT or 5-HT in varicose fibers of the ventral horn, but some VGLUT3-ir fibers in the IML were 5-HT-positive. Lesioning of the dorsal roots resulted in an almost complete disappearance of VGLUT1-ir fibers around motoneurons and a less pronounced decrease in the remaining gray matter, whereas the density of VGLUT2- and VAChT-ir fibers appeared unaltered after lesion. Many VGLUT1-ir neurons were observed in DRGs; they were almost all large and did not colocalize calcitonin gene-related peptide (CGRP), and there was no overlap between these markers in fibers in the superficial dorsal horn. VGLUT2 was, at most, seen in a few DRG neurons. Taken together, these results suggest that the VGLUTs mRNAs are present in distinct subsets of neuronal populations at the spinal level. VGLUT1 is mainly present in primary afferents from large, CGRP-negative DRG neurons, VGLUT2 has mainly a local origin, and VGLUT3 fibers probably have a supraspinal origin.
Collapse
Affiliation(s)
- Alexandre L R Oliveira
- Department of Neuroscience, The Retzius Laboratory, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Watson AHD. GABA- and glycine-like immunoreactivity in axons and dendrites contacting the central terminals of rapidly adapting glabrous skin afferents in rat spinal cord. J Comp Neurol 2003; 464:497-510. [PMID: 12900920 DOI: 10.1002/cne.10812] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The object of the present study was to determine the nature and distribution of synaptic contacts on the terminals of rapidly adapting mechanosensory afferents innervating the glabrous skin of the rat foot. Afferents were physiologically characterized by intracellular recording, before injection with neurobiotin and preparation for electron microscopy. Axon terminals were serially sectioned and immunolabeled with antibodies against GABA and glycine using a postembedding immunogold method. Afferent boutons in lamina III were often surrounded by several presynaptic axons and postsynaptic dendrites (thus forming type II glomeruli), while boutons in laminae IV-V had only simple, nonglomerular interactions. In both regions triadic synaptic arrangements where presynaptic interneurons contact both afferent boutons and their postsynaptic dendrites were present in 50-75% of boutons. Approximately three-quarters of presynaptic axons were immunoreactive for both GABA and glycine and most of the remainder for GABA alone. Most postsynaptic dendrites were not immunoreactive. Comparisons are made with information from similar studies of other rat and cat afferents conducting in the Aalphabeta range. This demonstrates that although the principles of control may be similar for cutaneous afferents of this type there are significant differences between cutaneous and 1a muscle afferents in the rat. There are also differences in detail between the interactions of afferents of the same modality in rat and cat; in the rat there are greater numbers of presynaptic axons per bouton and a greater proportion of boutons receive axo-axonic contacts and are involved in synaptic triads.
Collapse
Affiliation(s)
- Alan H D Watson
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom.
| |
Collapse
|
21
|
Bae YC, Kim JP, Choi BJ, Park KP, Choi MK, Moritani M, Yoshida A, Shigenaga Y. Synaptic organization of tooth pulp afferent terminals in the rat trigeminal sensory nuclei. J Comp Neurol 2003; 463:13-24. [PMID: 12811799 DOI: 10.1002/cne.10741] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies provide evidence that a structure/function correlation exists in the distinct zones of the trigeminal sensory nuclei. To evaluate this relationship, we examined the ultrastructure of afferent terminals from the tooth pulp in the rat trigeminal sensory nuclei: the principalis (Vp), the dorsomedial part of oral nucleus (Vdm), and the superficial layers of caudalis (Vc), by using transganglionic transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). A total of 93 labeled boutons were serially sectioned, in which some sections were incubated with gamma-aminobutyric acid (GABA) antiserum. Almost all labeled boutons formed asymmetric contact with nonprimary dendrites, in which more than half of labeled boutons in the Vc made synapses with their spines. The labeled boutons could be divided into two types on the basis of numbers of dense-cored vesicles (DCVs) in a boutons: S-type and DCV-type. Almost all labeled boutons in the Vp and Vdm were S-type, whereas two types were distributed evenly in the Vc. In contrast to DCV-type boutons, the S-type was frequently postsynaptic to unlabeled axon terminals containing a mixture of round, oval, and flattened vesicles (p-endings) and forming symmetrical synapses. Most p-endings examined were immunoreactive to GABA. The frequency of axoaxonic contacts was higher for labeled boutons in the Vp than in the Vdm and Vc. These results suggest that the three structures of trigeminal sensory nuclei serve distinct functions in nociceptive processing.
Collapse
Affiliation(s)
- Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-422, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vesselkin NP, Adanina VO, Rio JP, Repérant J. Axo-axonic GABA-immunopositive synapses on the primary afferent fibers in frogs. J Chem Neuroanat 2001; 22:209-17. [PMID: 11719020 DOI: 10.1016/s0891-0618(01)00132-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In three frog species Rana esculenta, Rana temporaria and Xenopus laevis, the contacts established by gamma-aminobutyric acid and glutamate decarboxylase immunoreactive (-ir) terminals upon primary afferent fibers were studied using confocal and electron microscopy. For confocal microscopy, the primary afferent fibers were labeled through the dorsal root with Dextran-Texas Red, whereas gamma-aminobutyric acid and glutamate decarboxylase immunoreactivity were revealed with fluorescein isothiocyanate. Appositions of gamma-aminobutyric acid and glutamate decarboxylase immunoreactive profiles onto primary afferent fibers were observed and were considered as putative axo-axonic contacts of GABAergic terminals upon primary afferents. The latter was confirmed by the ultrastructural finding of axo-axonic synapses from gamma-aminobutyric acid immunopositive boutons upon the HRP-labeled primary afferent fibers in postembedding immunoelectron microscopic study. Such synapses may represent the morphological basis of GABAergic presynaptic inhibition of primary afferent fibers.
Collapse
Affiliation(s)
- N P Vesselkin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St.-Petersburg, Russia
| | | | | | | |
Collapse
|
23
|
Abstract
Our intent in this review was to consider the relationship between the biophysical properties of motoneurons and the mechanisms by which they transduce the synaptic inputs they receive into changes in their firing rates. Our emphasis has been on experimental results obtained over the past twenty years, which have shown that motoneurons are just as complex and interesting as other central neurons. This work has shown that motoneurons are endowed with a rich complement of active dendritic conductances, and flexible control of both somatic and dendritic channels by endogenous neuromodulators. Although this new information requires some revision of the simple view of motoneuron input-output properties that was prevalent in the early 1980's (see sections 2.3 and 2.10), the basic aspects of synaptic transduction by motoneurons can still be captured by a relatively simple input-output model (see section 2.3, equations 1-3). It remains valid to describe motoneuron recruitment as a product of the total synaptic current delivered to the soma, the effective input resistance of the motoneuron and the somatic voltage threshold for spike initiation (equations 1 and 2). However, because of the presence of active channels activated in the subthreshold range, both the delivery of synaptic current and the effective input resistance depend upon membrane potential. In addition, activation of metabotropic receptors by achetylcholine, glutamate, noradrenaline, serotonin, substance P and thyrotropin releasing factor (TRH) can alter the properties of various voltage- and calcium-sensitive channels and thereby affect synaptic current delivery and input resistance. Once motoneurons are activated, their steady-state rate of repetitive discharge is linearly related to the amount of injected or synaptic current reaching the soma (equation 3). However, the slope of this relation, the minimum discharge rate and the threshold current for repetitive discharge are all subject to neuromodulatory control. There are still a number of unresolved issues concerning the control of motoneuron discharge by synaptic inputs. Under dynamic conditions, when synaptic input is rapidly changing, time- and activity-dependent changes in the state of ionic channels will alter both synaptic current delivery to the spike-generating conductances and the relation between synaptic current and discharge rate. There is at present no general quantitative expression for motoneuron input-output properties under dynamic conditions. Even under steady-state conditions, the biophysical mechanisms underlying the transfer of synaptic current from the dendrites to the soma are not well understood, due to the paucity of direct recordings from motoneuron dendrites. It seems likely that resolving these important issues will keep motoneuron afficiandoes well occupied during the next twenty years.
Collapse
Affiliation(s)
- R K Powers
- Department of Physiology & Biophysics, University of Washington School of Medicine, Box 357290, Seattle, Washington 98195-7290, USA
| | | |
Collapse
|
24
|
Watson AH, Bazzaz AA. GABA and glycine-like immunoreactivity at axoaxonic synapses on 1a muscle afferent terminals in the spinal cord of the rat. J Comp Neurol 2001; 433:335-48. [PMID: 11298359 DOI: 10.1002/cne.1143] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The object of this study was to analyze the synaptic interactions of identified muscle spindle afferent axon terminals in the spinal cord of the rat. Group 1a muscle afferents supplying the gastrocnemius muscle were impaled with microelectrodes in the dorsal white matter of the spinal cord and stained by intracellular injection with Neurobiotin. Postembedding immunogold techniques were used to reveal GABA- and glycine-like immunoreactivity in boutons presynaptic to afferent terminals in the ventral horn and the deep layers of the dorsal horn. Serial-section reconstruction was used to reveal the distribution of synaptic contacts of different types on the afferent terminals. The majority of afferent boutons received axoaxonic and made axodendritic or axosomatic synaptic contacts. In the ventral horn, 91% of boutons presynaptic to the afferent terminals were immunoreactive for GABA alone and 9% were immunoreactive for both GABA and glycine. The mean number of axo-axonic contacts received per terminal was 2.7, and the mean number of synaptic contacts at which the terminal was the presynaptic element was 1.4. In the deep layers of the dorsal horn, 58% of boutons presynaptic to afferent terminals were immunoreactive for GABA alone, 31% were immunoreactive for GABA and glycine, and 11% for glycine alone. The mean number of axoaxonic contacts received per afferent terminal in this region was 1.6 and the mean number of synaptic contacts at which the terminal was the presynaptic element was 0.86. This clearly establishes the principle that activity in 1a afferents is modulated by several neurochemically distinct populations of presynaptic neuron.
Collapse
Affiliation(s)
- A H Watson
- School of Biosciences, University of Wales Cardiff, Cardiff CF10 3US, United Kingdom.
| | | |
Collapse
|
25
|
Lindå H, Shupliakov O, Örnung G, Ottersen OP, Storm‐Mathisen J, Risling M, Cullheim S. Ultrastructural evidence for a preferential elimination of glutamate‐immunoreactive synaptic terminals from spinal motoneurons after intramedullary axotomy. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000911)425:1<10::aid-cne2>3.0.co;2-#] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hans Lindå
- Department of Neuroscience, Karolinska Institutet, S‐171 77 Stockholm, Sweden
| | - Oleg Shupliakov
- Department of Neuroscience, Karolinska Institutet, S‐171 77 Stockholm, Sweden
| | - Göran Örnung
- Department of Neuroscience, Karolinska Institutet, S‐171 77 Stockholm, Sweden
| | | | | | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, S‐171 77 Stockholm, Sweden
| | - Staffan Cullheim
- Department of Neuroscience, Karolinska Institutet, S‐171 77 Stockholm, Sweden
| |
Collapse
|
26
|
Bae YC, Ihn HJ, Park MJ, Ottersen OP, Moritani M, Yoshida A, Shigenaga Y. Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000313)418:3<299::aid-cne5>3.0.co;2-i] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Rudomin P. Selectivity of presynaptic inhibition: a mechanism for independent control of information flow through individual collaterals of single muscle spindle afferents. PROGRESS IN BRAIN RESEARCH 2000; 123:109-17. [PMID: 10635708 DOI: 10.1016/s0079-6123(08)62848-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- P Rudomin
- Department of Physiology and Biophysics, Instituto Politécnico Nacional, México D.F., Mexico.
| |
Collapse
|
28
|
Shigenaga Y, Hirose Y, Yoshida A, Fukami H, Honma S, Bae YC. Quantitative ultrastructure of physiologically identified premotoneuron terminals in the trigeminal motor nucleus in the cat. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001009)426:1<13::aid-cne2>3.0.co;2-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Abstract
The synaptic effectiveness of sensory fibers ending in the spinal cord of vertebrates can be centrally controlled by means of specific sets of GABAergic interneurons that make axo-axonic synapses with the terminal arborizations of the afferent fibers. In the steady state, the intracellular concentration of chloride ions in these terminals is higher than that predicted from a passive distribution, because of an active transport mechanism. Following the release of GABA by spinal interneurons and activation of GABA(A) receptors in the afferent terminals, there is an outwardly directed efflux of chloride ions that produces primary afferent depolarization (PAD) and reduces transmitter release (presynaptic inhibition). Studies made by intrafiber recording of PAD, or by measuring changes in the intraspinal threshold of single afferent terminals (which is reduced during PAD), have further indicated that muscle and cutaneous afferents have distinctive, but modifiable PAD patterns in response to segmental and descending stimuli. This has suggested that PAD and presynaptic inhibition in the various types of afferents is mediated by separate sets of last-order GABAergic interneurons. Direct activation, by means of intraspinal microstimulation, of single or small groups of last-order PAD-mediating interneurons shows that the monosynaptic PAD elicited in Ia and Ib afferents can remain confined to some sets of the intraspinal collaterals and not spread to nearby collaterals. The local character of PAD allows cutaneous and descending inputs to selectively inhibit the PAD of segmental and ascending intraspinal collaterals of individual muscle spindle afferents. It thus seems that the intraspinal branches of the sensory fibers are not hard wired routes that diverge excitation to spinal neurons, but are instead dynamic pathways that can be centrally controlled to address information to selected neuronal targets. This feature appears to play an important role in the selection of information flow in muscle spindles that occurs at the onset of voluntary contractions in humans.
Collapse
Affiliation(s)
- P Rudomin
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Fisiologia, Biofisica y Neurosciencias, Mexico DF, Mexico
| |
Collapse
|
30
|
Cattaert D, El Manira A, Bévengut M. Presynaptic inhibition and antidromic discharges in crayfish primary afferents. JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:349-58. [PMID: 10574123 DOI: 10.1016/s0928-4257(00)80062-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms of presynaptic inhibition have been studied in sensory afferents of a stretch receptor in an in vitro preparation of the crayfish. Axon terminals of these sensory afferents display primary afferent depolarisations (PADs) mediated by the activation of GABA receptors that open chloride channels. Intracellular labeling of sensory axons by Lucifer yellow combined with GABA immunohistochemistry revealed the presence of close appositions between GABA-immunoreactive boutons and sensory axons close to their first branching point within the ganglion. Electrophysiological studies showed that GABA inputs mediating PADs appear to occur around the first axonal branching point, which corresponds to the area of transition between active and passive propagation of spikes. Moreover, this study demonstrated that whilst shunting appeared to be the sole mechanism involved during small amplitude PADs, sodium channel inactivation occurred with larger amplitude PADs. However, when the largest PADs (>25 mV) are produced, the threshold for spike generation is reached and antidromic action potentials are elicited. The mechanisms involved in the initiation of antidromic discharges were analyzed by combining electrophysiological and simulation studies. Three mechanisms act together to ensure that PAD-mediated spikes are not conveyed distally: 1) the lack of active propagation in distal regions of the sensory axons; 2) the inactivation of the sodium channels around the site where PADs are produced; and 3) a massive shunting through the opening of chloride channels associated with the activation of GABA receptors. The centrally generated spikes are, however, conveyed antidromically in the sensory nerve up to the proprioceptive organ, where they inhibit the activity of the sensory neurons for several hundreds of milliseconds.
Collapse
Affiliation(s)
- D Cattaert
- Laboratoire de Neurobiologie et Mouvements UPR 9011 du CNRS, Institut Fédératif de Recherche Sciences du Cerveau, Marseille, France
| | | | | |
Collapse
|
31
|
Lamotte d'Incamps B, Meunier C, Zytnicki D, Jami L. Flexible processing of sensory information induced by axo-axonic synapses on afferent fibers. JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:369-77. [PMID: 10574125 DOI: 10.1016/s0928-4257(00)80064-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent experiments indicate that afferent information is processed in the intraspinal arborisation of mammalian group I fibres. During muscle contraction, Ib inputs arising from tendon organs are filtered out by presynaptic inhibition after their entry in the spinal cord. This paper reviews the mechanisms by which GABAergic axo-axonic synapses, i.e., the morphological substrate of presynaptic inhibition, exert this filtering effect. Using confocal microscopy, axo-axonic synapses were demonstrated on segmental Ib collaterals. Most synapses were located on short preterminal and terminal branches. Using a simple compartmental model of myelinated axon, the primary afferent depolarisation (PAD), generated by such synapses, was predicted to reduce the amplitude of incoming action potentials by inactivating the sodium current, and this prediction was experimentally verified. A further theoretical work, relying on cable theory, suggests that the electrotonic structure of collaterals and the distribution of axo-axonic synapses allow large PADs (about 10 mV) to develop on some distal branches, which is likely to result in a substantial presynaptic inhibition. In addition, the electrotonic structure of group I collaterals is likely to prevent PAD from spreading to the whole arborisation. Such a non-uniform diffusion of the PAD accounts for differential presynaptic inhibition in intraspinal branches of the same fibre. Altogether, our experimental and theoretical works suggest that axo-axonic synapses can control the selective funnelling of sensory information toward relevant targets specified according to the motor task.
Collapse
|
32
|
Rose PK, Ely S, Norkum V, Neuber-Hess M. Projections from the lateral vestibular nucleus to the upper cervical spinal cord of the cat: A correlative light and electron microscopic study of axon terminals stained with PHA-L. J Comp Neurol 1999; 410:571-85. [PMID: 10398049 DOI: 10.1002/(sici)1096-9861(19990809)410:4<571::aid-cne5>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vestibulospinal axon collaterals in C1 and C2 were stained following injections of Phaseolus vulgaris leucoagglutinin (PHA-L) into the lateral vestibular nucleus (LVN). The distribution and geometry of collaterals within three regions of the ventral horn were determined at the light microscopic level. These processes were subsequently examined at the electron microscopic level to define the relationship between their ultrastructural characteristics and their geometry and location. All round or elliptical varicosities, whose diameters exceeded the diameter of the adjacent axon shaft by a factor of two, as measured at the light microscopic level, contained synaptic vesicles and contacted dendrites or somata. These varicosities accounted for 82% of labelled axon terminals found at the electron microscopic level. Thus, axon terminals stained with PHA-L can be identified reliably at the light microscopic level, but synaptic density will be slightly underestimated. One-hundred and thirty-eight axon terminals were classified as excitatory or inhibitory on the basis of well-established morphological criteria (e.g., vesicle shape). Placed in the context of previous physiological observations describing the excitatory or inhibitory actions of medial and lateral vestibulospinal tract (MVST and LVST) neurons, our results suggest that projections from the LVN to the ipsilateral ventral horn originate primarily from the LVST. These connections are excitatory. Ipsilateral connections via the MVST are inhibitory and are largely confined to a region near the border of laminae VII and VIII. Most axon terminals in the contralateral ventral horn were inhibitory. This result indicates that the LVN is the source of a specific subset of crossed MVST axons with inputs from the posterior semicircular canal.
Collapse
Affiliation(s)
- P K Rose
- MRC Group in Sensory-Motor Neuroscience, Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | | | |
Collapse
|
33
|
Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish. J Neurosci 1999. [PMID: 10407044 DOI: 10.1523/jneurosci.19-14-06079.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Primary afferent depolarizations (PADs) are associated with presynaptic inhibition in both vertebrates and invertebrates. In the present study, we have used both anatomical and electrophysiological techniques to analyze the relative importance of shunting mechanisms versus sodium channel inactivation in mediating the decrease of action potential amplitude, and thereby presynaptic inhibition. Experiments were performed in sensory afferents of a stretch receptor in an in vitro preparation of the crayfish. Lucifer yellow intracellular labeling of sensory axons combined with GABA immunohistochemistry revealed close appositions between GABA-immunoreactive (ir) fibers and sensory axons. Most contacts were located on the main axon at the entry zone of the ganglion, close to the first branching point within the ganglion. By comparison, the output synapses of sensory afferents to target neurons were located on distal branches. The location of synaptic inputs mediating spontaneous PADs was also determined electrophysiologically by making dual intracellular recordings from single sensory axons. Inputs generating PADs appear to occur around the first axonal branching point, in agreement with the anatomical data. In this region, small PADs (3-15 mV) produced a marked reduction of action potential amplitude, whereas depolarization of the membrane potential by current injection up to 15 mV had no effect. These results suggest that the decrease of the amplitude of action potentials by single PADs results from a shunting mechanism but does not seem to involve inactivation of sodium channels. Our results also suggest that GABAergic presynaptic inhibition may act as a global control mechanism to block transmission through certain reflex pathways.
Collapse
|
34
|
Maxwell DJ, Riddell JS. Axoaxonic synapses on terminals of group II muscle spindle afferent axons in the spinal cord of the cat. Eur J Neurosci 1999; 11:2151-9. [PMID: 10336683 DOI: 10.1046/j.1460-9568.1999.00632.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the present study was to determine if terminals of identified group II muscle spindle afferents participate in axoaxonic synaptic arrangements and, if so, to investigate the transmitter content of presynaptic terminals in these arrangements. Group II muscle afferents supplying the gastrocnemius-soleus or semitendinosus muscles were identified in adult cats and stained intra-axonally with horseradish peroxidase. In total, three group II axons were labelled and processed for combined light and electron microscopy. Group II axons gave rise to collaterals which characteristically descended through the superficial dorsal horn and formed relatively sparse terminal arborizations in the dorsal horn (laminae IV and V) and more profuse arbors in the intermediate grey matter (laminae VI-VII). Forty boutons were examined through series of ultrathin sections and all but four were postsynaptic to other axon terminals. Occasionally, more than one axon was presynaptic to a single group II terminal. Immunogold studies showed that all axons in presynaptic apposition to group II boutons contained gamma-aminobutyric acid (GABA) and also that glycine was colocalized in the majority of these axons. This evidence suggests that transmission from group II muscle afferents is under strong presynaptic inhibitory control and that it is mainly the subgroup of GABAergic interneurons with colocalized glycine which mediate this inhibition. Seventeen group II boutons were components of synaptic triads where the presynaptic axoaxonic bouton formed a synapse with the same dendrite as the group II axon. Therefore, a proportion of the interneurons which form axoaxonic synapses with group II axons are also likely to have postsynaptic inhibitory actions on target neurons of group II afferents.
Collapse
Affiliation(s)
- D J Maxwell
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, UK.
| | | |
Collapse
|
35
|
Luo P, Dessem D. Ultrastructural anatomy of physiologically identified jaw-muscle spindle afferent terminations onto retrogradely labeled jaw-elevator motoneurons in the rat. J Comp Neurol 1999; 406:384-401. [PMID: 10102503 DOI: 10.1002/(sici)1096-9861(19990412)406:3<384::aid-cne7>3.0.co;2-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuronal microcircuits involving jaw-muscle spindle afferents and jaw-elevator motoneurons were studied via retrograde and intracellular labeling in rats. Initially, trigeminal motoneurons were retrogradely labeled from horseradish peroxidase (HRP) injections into the temporalis and masseter muscles. The intracellular response of jaw-muscle spindle afferent neurons was then characterized during palpation, ramp and hold, and sinusoidal stretching of the jaw-closing muscles. Biotinamide was injected into these neurons, and the tissue was processed for the visualization of HRP and biotinamide. The ultrastructure of 243 intracellularly stained jaw-muscle spindle afferent boutons located within the trigeminal motor nucleus (Vmo) was examined. Eighty-five of these boutons synapsed with motoneurons retrogradely labeled with HRP, and 158 boutons synapsed with unlabeled structures within the Vmo. All spindle afferent boutons contained clear, spherical synaptic vesicles. Although the majority of boutons were S type, a few labeled jaw-muscle spindle afferent boutons possessed a long, narrow cleft, with a subsynaptic cistern comparable to previous descriptions of C-type boutons. Sixty-eight percent of spindle afferent boutons synapsed with large or medium-sized, retrogradely labeled motoneuron dendrites, and 32% synapsed with retrogradely labeled somata. In numerous instances, spindle afferent boutons synapsed with trigeminal motoneuron dendritic or somatic spines. Most of the synapses between spindle afferent boutons and trigeminal motoneuron dendrites were asymmetric, and the greatest percentage of axosomatic synapses between spindle afferents and trigeminal motoneurons were symmetric. Approximately 24% of spindle afferent boutons constituted the intermediate element of a axoaxodendritic or axoaxosomatic assemblage, implying that some jaw-muscle spindle afferent synapses with trigeminal motoneurons are presynaptically modulated.
Collapse
Affiliation(s)
- P Luo
- Department of Physiology, University of Maryland Dental School, Baltimore, Maryland 21201-1586, USA
| | | |
Collapse
|
36
|
Indications for GABA-immunoreactive axo-axonic contacts on the intraspinal arborization of a Ib fiber in cat: a confocal microscope study. J Neurosci 1998. [PMID: 9822757 DOI: 10.1523/jneurosci.18-23-10030.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Confocal microscopy was used to detect GABA-immunoreactive axo-axonic appositions, indicating possible synaptic contacts, on Ib fiber terminals in the lumbosacral spinal cord. A Ib fiber from posterior biceps-semitendinosus muscles was labeled by intra-axonal ejection of tetramethylrhodamine dextran (red), and serial sections of S1-L7 spinal cord segments were processed for GABA immunocytochemistry revealed by fluorescein isothiocynate (green). Appositions between GABA-immunoreactive structures and the labeled fiber appeared as yellow spots because of the presence of both fluorochromes in small volumes (0.3 * 0.3 * 0.5 micrometer(3)) of tissue. These spots were identified as probable axo-axonic contacts when: (1) they were observed in two to four serial confocal planes, indicating that they did not occur by chance; and (2) their sizes, shapes, and locations were similar to those of axo-axonic contacts found on Ia terminals, known to bear presynaptic boutons, and resembled the axo-axonic synapses described in electron microscope studies of Ib boutons in Clarke's column. A total of 59 presumed axo-axonic contacts was observed on two Ib collaterals, representing an estimated 20% of the total complement. In a three-dimensional reconstruction of one collateral, they were mostly located in terminal positions, and some branches bore more contacts than others. Such differential distribution could not result from chance appositions between GABAergic structures and Ib arborization and further supported the identification of axo-axonic contacts. Segmental Ib collaterals bear axo-axonic synapses that might ensure differential funneling of information toward different targets.
Collapse
|
37
|
Nakagawa S, Kurata S, Yoshida A, Nagase Y, Moritani M, Takemura M, Bae YC, Shigenaga Y. Ultrastructural observations of synaptic connections of vibrissa afferent terminals in cat principal sensory nucleus and morphometry of related synaptic elements. J Comp Neurol 1997; 389:12-33. [PMID: 9390757 DOI: 10.1002/(sici)1096-9861(19971208)389:1<12::aid-cne2>3.0.co;2-h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous work suggests that slowly adapting (SA) periodontal afferents have different synaptic arrangements in the principal (Vp) and oral trigeminal nuclei and that the synaptic structure associated with transmitter release may be related directly to bouton size. The present study examined the ultrastructures of SA and fast adapting (FA) vibrissa afferents and their associated unlabeled axonal endings in the cat Vp by using intra-axonal labeling with horseradish peroxidase and a morphometric analysis. All SA and FA afferent boutons contained clear, round, synaptic vesicles. All the FA and most SA boutons were presynaptic to dendrites, but a few SA boutons were axosomatic. Both types of bouton were frequently postsynaptic to unlabeled axonal ending(s) containing pleomorphic, synaptic vesicles (P-ending). The size of labeled boutons was larger in FA than SA afferents, but the size of dendrites postsynaptic to labeled boutons was larger for SA than FA afferents. Large-sized FA and SA boutons made synaptic contacts with small-diameter dendrites. The size of FA and SA boutons was larger than that of their associated P-endings. A morphometric analysis made on the pooled data of SA and FA boutons indicated that apposed surface area, active zone number, total active zone area, vesicle number, and mitochondrial volume were highly correlated in a positive linear manner with labeled bouton volume. These relationships were also applicable to unlabeled P-endings, but the range of each parameter was smaller than that of the labeled boutons. These observations provide evidence that the two functionally distinct types of vibrissa afferent manifest unique differences but share certain structural features in the synaptic organization and that the ultrastructural "size principle" proposed by Pierce and Mendell ([1993] J. Neurosci. 13:4748-4763) for Ia-motoneuron synapses is applicable to the somatosensory system.
Collapse
Affiliation(s)
- S Nakagawa
- Department of Oral Anatomy, Osaka University Faculty of Dentistry, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dessem D, Donga R, Luo P. Primary- and secondary-like jaw-muscle spindle afferents have characteristic topographic distributions. J Neurophysiol 1997; 77:2925-44. [PMID: 9212247 DOI: 10.1152/jn.1997.77.6.2925] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Single jaw-muscle spindle afferent axons were characterized physiologically and intracellularly stained to determine whether particular physiological types of spindle afferent show distinctive morphologies. Microelectrodes filled with either horseradish peroxidase (HRP) or biotinamide (Neurobiotin) were advanced into the mesencephalic trigeminal nucleus (Vme) in anesthetized rats. Intracellular recordings then were characterized by their response: to palpation of the jaw muscles; when pressure was applied to the teeth and during passive ramp and hold and sinusoidal jaw movement. Seventy-one afferents were characterized physiologically and injected with HRP; an additional 61 afferents were typed and injected with biotinamide. The response of 43 stained neurons was recorded in the presence of suxamethonium. The major projection areas of these afferents were the: trigeminal motor nucleus (Vmo); region dorsal to Vmo; reticular formation, spinal trigeminal nucleus, superior cerebellar peduncle and Vme. One afferent type was modulated strongly during stretching of the jaw-elevator muscles. Based on their high sensitivity during stretching of the jaw muscles and/or their silencing during the release phase of muscle stretch, these afferents were classified as primary-like spindle afferents. These afferents projected most strongly to Vmo. A second type of afferent was modulated only modestly during stretching of the jaw-elevator muscles. These tonic afferents were classified as secondary-like spindle afferents because of their low dynamic sensitivity during ramp muscle stretch and their continued discharge during the release phase of muscle stretch. Secondary-like afferents projected most strongly to the region dorsal to Vmo. Boutons (n = 3,834) from 11 afferents were studied in detail. Secondary-like afferents had statistically larger boutons within Vmo. In both secondary- and primary-like spindle afferents, only a small number of boutons were associated closely with the somata and proximal dendrites of trigeminal motoneurons. In these cases, however, two to five boutons appeared to contact individual motoneurons, implying multiple monosynaptic inputs to a selective subset of jaw-elevator motoneurons. Some "giant" boutons were present dorsal to Vmo and in Vme. These results demonstrate that dynamically sensitive and nondynamically sensitive jaw-elevator muscle spindle afferents project preferentially to different regions. Primary-like spindle afferents are capable of providing feedback related to the dynamic phases of muscle stretch and project most heavily to Vmo. Secondary-like spindle afferents can transmit a feedback signal associated with muscle length and project most strongly to the supratrigeminal region. Both types of afferent have projections caudal to Vmo that may serve longer latency jaw-muscle stretch reflexes and/or the projection of proprioceptive information to the thalamus and cerebellum.
Collapse
Affiliation(s)
- D Dessem
- Department of Physiology, University of Maryland Dental School, Baltimore 21201-1586, USA
| | | | | |
Collapse
|
39
|
Maxwell D, Kerr R, Jankowska E, Riddell J. Synaptic connections of dorsal horn group II spinal interneurons: Synapses formed with the interneurons and by their axon collaterals. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970331)380:1<51::aid-cne4>3.0.co;2-s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Bae YC, Nakagawa S, Yasuda K, Yabuta NH, Yoshida A, Pil PK, Moritani M, Chen K, Nagase Y, Takemura M, Shigenaga Y. Electron microscopic observation of synaptic connections of jaw-muscle spindle and periodontal afferent terminals in the trigeminal motor and supratrigeminal nuclei in the cat. J Comp Neurol 1996; 374:421-35. [PMID: 8906508 DOI: 10.1002/(sici)1096-9861(19961021)374:3<421::aid-cne7>3.0.co;2-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies indicate that the trigeminal motor nucleus (Vmo) and supratrigeminal nucleus (Vsup) receive direct projections from muscle spindle (MS) and periodontal ligament (PL) afferents. The aim of the present study is to examine the ultrastructural characteristics of the two kinds of afferent in both nuclei using the intracellular horseradish peroxidase (HRP) injection technique in the cat. Our observations are based on complete or near-complete reconstructions of 288 MS (six fibers) and 69 PL (eight fibers) afferent boutons in Vmo, and of 93 MS (four fibers) and 188 PL (four fibers) afferent boutons in Vsup. All the labeled boutons contained spherical synaptic vesicles and were presynaptic to neuronal elements, and some were postsynaptic to axon terminals containing pleomorphic, synaptic vesicles (P-endings). In Vmo neuropil, MS afferent boutons were distributed widely from soma to distal dendrites, but PL afferent boutons predominated on distal dendrites. Most MS afferent boutons (87%) formed synaptic specialization(s) with one postsynaptic target while some (13%) contacting two or three dendritic profiles; PL afferents had a higher number of boutons (43%) contacting two or more dendritic profiles. A small but significant number of MS afferent boutons (12%) received contacts from P-endings, but PL afferent boutons (36%) received three times as many contacts from P-endings as MS afferents. In Vsup neuropil, most MS (72%) and PL (87%) afferent boutons formed two contacts presynaptic to one dendrite and postsynaptic to one P-ending, and their participation in synaptic triads was much more frequent than in Vmo neuropil. The present study indicates that MS and PL afferent terminals have a distinct characteristic in synaptic arrangements in Vmo and Vsup and provides evidence that the synaptic organization of primary afferents differs between the neuropils containing motoneurons and their interneurons.
Collapse
Affiliation(s)
- Y C Bae
- Department of Oral Anatomy, Kyungpook National University School of Dentistry, Taegu, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Holmberg P, Kellerth JO. Physiological adjustments in a reflex pathway following partial loss of target neurons. Brain Res 1996; 731:155-60. [PMID: 8883865 DOI: 10.1016/0006-8993(96)00513-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This investigation was undertaken to study plasticity in a reflex pathway following partial elimination of target neurons. Adult cats were subjected to unilateral avulsion of the L7 spinal ventral root, which induces retrograde cell death among the motoneurons of the L7 segment. At 1, 3, 6 and 12 weeks after the lesion, the monosynaptic reflexes were recorded in the L6 and S1 ventral roots during stimulation of the L6, L7 and S1 dorsal roots. Since the group Ia muscle spindle afferents passing through these dorsal roots were deprived of their target motoneurons in the L7 segment, compensatory reflex changes were searched for in the remaining monosynaptic contacts with the intact target motoneurons of the L6 and S1 segments. The results indicate that a partial loss of target motoneurons triggers changes leading to increased monosynaptic reflexes of the remaining intact target motoneurons. On average, the reflexes had more than doubled their size at 12 weeks postoperatively. Possible mechanisms for this reflex potentiation are discussed.
Collapse
Affiliation(s)
- P Holmberg
- Department of Anatomy, University of Umeå, Sweden
| | | |
Collapse
|
42
|
Burke RE, Glenn LL. Horseradish peroxidase study of the spatial and electrotonic distribution of group Ia synapses on type-identified ankle extensor motoneurons in the cat. J Comp Neurol 1996; 372:465-85. [PMID: 8873872 DOI: 10.1002/(sici)1096-9861(19960826)372:3<465::aid-cne9>3.0.co;2-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eight functionally identified group Ia muscle afferents from triceps surae or plantaris muscles were labeled intraaxonally with horseradish peroxidase (HRP) in seven adult cats. Subsequently, HRP was injected into two to six homonymous or heteronymous alpha-motoneurons per animal (total = 22), each identified by motor unit type and located near the site of afferent injection. The complete trajectories of labeled afferents were reconstructed, and putative synaptic contacts on HRP-labeled motoneurons were identified at high magnification. Dendritic paths from each contact were also mapped and measured. A total of 24 contact systems (the combination of a group Ia afferent and a postsynaptic motoneuron) were reconstructed, of which 17 were homonymous, and seven were heteronymous. Overall, homonymous contact systems had an average of 9.6 boutons, whereas heteronymous contact systems had an average of 5.9 boutons. The average number of boutons found on type S motoneurons in homonymous contact systems was smaller (6.4, range 3-17) than in systems involving types FF or FR motoneurons (FF: 10.4, range 4-18; FR: 11.3, range 4-32). Neither of these differences were statistically significant. In contrast to earlier reports, a majority (15/24) of contact systems included more than one collateral from the same Ia afferent. The complexity (number of branch points) in the arborization pathway leading to each contact (overall mean 8.4 +/- 3.3) was virtually identical in all contact systems, irrespective of the type of postsynaptic motoneuron. The three-dimensional distribution of group Ia contacts was not coextensive with the radially organized dendrites of motoneurons: Dendrites oriented in the ventromedial to dorsolateral axis had the fewest (8%) contacts, whereas rostrocaudal dendrites had the most (63%) contacts. Nevertheless, contacts were widely distributed on the motoneuron surface, with few on and near the soma (< or = 200 microns radial distance from the soma) or on the most distal parts of the tree (> or = 1,000 microns). The boutons in individual contact systems also showed wide spatial and estimated electrotonic distributions; only 3/24 systems had all contact located within a restricted spatial/electrotonic region. The relations between these anatomical results and existing electrophysiological data on group Ia synaptic potentials are discussed.
Collapse
Affiliation(s)
- R E Burke
- Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814-4455, USA.
| | | |
Collapse
|
43
|
Luo P, Dessem D. Morphological evidence for recurrent jaw-muscle spindle afferent feedback within the mesencephalic trigeminal nucleus. Brain Res 1996; 710:260-4. [PMID: 8963667 DOI: 10.1016/0006-8993(95)01439-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Horseradish peroxidase was injected into the jaw-elevator muscles of rats. Jaw-muscle spindle afferent axons were then intracellularly stained with biotinamide. Eleven intracellularly stained somata were closely apposed by intracellularly labeled spindle afferent boutons. Spindle afferent boutons closely apposed another 10 mesencephalic trigeminal nucleus (Vme) perikarya labeled from the jaw muscles. These results indicate that an anatomical substrate exists for recurrent feedback between jaw-muscle spindle afferents within Vme.
Collapse
Affiliation(s)
- P Luo
- Department of Physiology, University of Maryland Dental School, Baltimore 21201-1586, USA
| | | |
Collapse
|
44
|
Moschovakis AK. Neural network simulations of the primate oculomotor system. II. Frames of reference. Brain Res Bull 1996; 40:337-43; discussion 344-5. [PMID: 8886356 DOI: 10.1016/0361-9230(96)00124-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Theories of motor control often assume that the location of visual stimuli is expressed in non retinotopic frames of reference. The saccadic system is known in enough detail for us to examine the evidential basis of this assumption. The organization of the neural circuit that controls saccades is first summarized. It is shown to consist of at least two interconnected modules. The first one is the burst generator, which resides in the reticular formation, and is entrusted with the tasks of impedance matching, synergist coactivation and reciprocal inhibition between antagonists. The second is a metric computer, which resides in the superior colliculus and the cerebral cortex, and computes the size and direction of the desired movement. Alternative models of the burst generator are presented and their "verisimilitude" is assessed in the light of evidence concerning saccadic trajectories, neuronal discharge patterns, interneuronal connections, as well as the results of lesion and stimulation experiments. Several models of the "metric computer" in the superior colliculus are then examined; their performance is again evaluated in the light of psychophysical, anatomical, physiological, and clinical evidence. It is demonstrated that the location of visual stimuli need not be expressed in nonretinotopic frames of reference for either the burst generator or the metric computer to issue appropriate commands to move the eyes. Instead, using information concerning intervening movements of the eyes to update the location of visual stimuli in a retinotopic frame of reference suffices for the planning and execution of correct saccades. More generally, it is proposed that the location of sensory stimuli need not be expressed in higher order frames of reference (e.g., centered in the body or even in extrapersonal space) provided that their location in a sensorium specific map is updated on the basis of effector movements.
Collapse
Affiliation(s)
- A K Moschovakis
- Department of Basic Sciences, Faculty of Medicine, School of Health Sciences, University of Crete, Greece
| |
Collapse
|
45
|
Luo P, Wong R, Dessem D. Ultrastructural basis for synaptic transmission between jaw-muscle spindle afferents and trigeminothalamic neurons in the rostral trigeminal sensory nuclei of the rat. J Comp Neurol 1995; 363:109-28. [PMID: 8682931 DOI: 10.1002/cne.903630110] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Trigeminothalamic neurons were retrogradely labeled by injection of horseradish peroxidase into the ventroposteromedial nucleus of the thalamus in rats. Jaw-muscle spindle afferent axons were then physiologically identified and intracellularly stained with biotinamide. The ultrastructure of labeled spindle afferent boutons was then studied in the caudolateral supratrigeminal region (Vsup) and dorsomedial trigeminal principal sensory nucleus (Vpdm). A total of 418 stained spindle afferent boutons were identified in Vsup and Vpdm; approximately 75% of these synapsed with dendrites, 10% synapsed with somata, and 15% synapsed with axons. Most jaw-muscle spindle afferent boutons were postsynaptic to unlabeled P-type boutons. Reciprocal synapses between spindle afferent boutons and unlabeled boutons were occasionally observed. A few dendrites in Vsup and Vpdm received synapses from multiple spindle afferent boutons. Conversely, some large (from 3 x 6 to 4 x 8 microns) and giant (from > 4 x 8 to 5 x 10 microns) spindle afferent boutons simultaneously contacted two to five dendrites and/or somata. Jaw-muscle spindle afferent boutons also formed synapses with retrogradely labeled trigeminothalamic neurons in Vsup and Vpdm. Numerous unlabeled S-and F-type boutons converged onto the same trigeminothalamic dendrite or soma contacted by a spindle afferent bouton. A small number of synaptic triads consisting of an unlabeled P-type bouton, a spindle afferent bouton, and either a dendrite or soma were also encountered. These data indicate that sensory feedback from the masticatory muscles is subject to presynaptic inhibition and integration prior to reaching the thalamus. This pathway is likely to be important in the relay of proprioceptive and kinesthetic information from the muscles of mastication to the thalamus.
Collapse
Affiliation(s)
- P Luo
- Department of Physiology, University of Maryland Dental School, Baltimore 21201-1586, USA
| | | | | |
Collapse
|
46
|
Luo P, Wong R, Dessem D. Projection of jaw-muscle spindle afferents to the caudal brainstem in rats demonstrated using intracellular biotinamide. J Comp Neurol 1995; 358:63-78. [PMID: 7560277 DOI: 10.1002/cne.903580104] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Intracellular staining with biotinamide was used to study the axonal projection and synaptic morphology of rat jaw-muscle spindle afferents. Intracellular recordings in the mesencephalic trigeminal nucleus (Vme) were identified as spindle afferent responses by their increased firing during stretching of the jaw-elevator muscles. Biotinamide-stained axon collaterals with boutons were found in the trigeminal motor nucleus (Vmo), Vme, the region dorsal to Vmo including the supratrigeminal region, the dorsomedial portion of the trigeminal principal sensory nucleus, and the dorsomedial part of the rostral spinal trigeminal subnucleus oralis. Additional, previously undescribed projections of jaw-muscle spindle afferents were found to the dorsomedial portion of the caudal spinal trigeminal subnucleus oralis (Vodm), the dorsomedial part of the spinal trigeminal subnucleus interpolaris (Vidm), the caudal parvicellular reticular formation, laminae IV and V of the spinal trigeminal subnucleus caudalis (Vc), and the dorsal division of the medullary reticular field. Labeled spindle boutons in Vodm formed predominately axodendritic synapses. Some of these boutons received presynaptic inputs from unlabeled P-type boutons containing clear, spherical, or flattened vesicles. In Vidm, labeled collaterals and boutons were densely clustered into glomerular-like structures. Labeled boutons in Vidm made axodendritic, axosomatic, and axoaxonic synapses and received synaptic contacts from unlabeled boutons containing clear, spherical, or flat and pleomorphic vesicles. Unlabeled presynaptic boutons in Vidm occasionally contained dense core vesicles. Labeled boutons in Vc mainly formed synaptic contacts with large diameter dendrites. This projection of jaw-muscle spindle afferents to caudal brainstem regions may play a significant role in masticatory-muscle stretch reflexes and in the integration of trigeminal proprioceptive information and its transmission to higher centers.
Collapse
Affiliation(s)
- P Luo
- Department of Physiology, University of Maryland Dental School, Baltimore 21201-1586, USA
| | | | | |
Collapse
|
47
|
Sur C, McKernan R, Triller A. Subcellular localization of the GABAA receptor gamma 2 subunit in the rat spinal cord. Eur J Neurosci 1995; 7:1323-32. [PMID: 7582106 DOI: 10.1111/j.1460-9568.1995.tb01123.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The fine subcellular organization of the GABAA receptor complex in the adult rat spinal ventral horn was analysed by immunocytochemistry using a specific polyclonal antiserum raised against the gamma 2 subunit. This subunit confers benzodiazepine sensitivity on the chloride channel of the GABAA receptor. With both fluorescent and peroxidase staining, the immunoreactivity was mainly observed in the grey matter and more specifically in the dorsal and ventral horns on medium and large neurons. A high number of immunostained somata were clustered in regions corresponding to motor nuclei. On the neuronal surface, labelling appeared as fluorescent dots over the more diffuse staining that was present on the soma and proximal part of dendrites. At the ultrastructural level, peroxidase end product was in most cases associated with the internal side of postsynaptic differentiations facing terminal boutons enriched with pleiomorphic small clear vesicles. The positively stained synapses were encountered on proximal dendrites of neurons and throughout the neuropil of the ventral horn (layers VII-IX). An immunoreactivity on the postsynaptic membrane was occasionally found to decorate large pieces of membrane not directly apposed to presynaptic active zones. In addition, presynaptic labelling was observed at axoaxonic contacts and at extrasynaptic sites on membranes within boutons, sometimes themselves apposed to gamma 2 immunoreactivity. Finally, we also observed gamma 2 immunoreactivity at the cytosolic face of the plasma membrane of some glial elements. These results give morphological evidence for the involvement of GABAA receptors in both post- and presynaptic inhibition in the rat spinal ventral horn. The presence of gamma 2 subunit immunoreactivity at these different synaptic contacts suggests that the two types of inhibition can be modulated by benzodiazepine drugs. The findings also provide anatomical evidence for the possible regulation of GABA release through an autoreceptor, and for GABAergic communication between neuronal and glial components.
Collapse
Affiliation(s)
- C Sur
- Ecole Normale Supérieure, Laboratoire de Biologie Cellulaire de la Synapse (INSERM, CJF 94-10), Paris, France
| | | | | |
Collapse
|
48
|
Cheng J, Brooke JD, Misiaszek JE, Staines WR. The relationship between the kinematics of passive movement, the stretch of extensor muscles of the leg and the change induced in the gain of the soleus H reflex in humans. Brain Res 1995; 672:89-96. [PMID: 7749757 DOI: 10.1016/0006-8993(94)01321-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gain of the H reflex attenuates during passive stepping and pedalling movements of the leg. We hypothesized that the kinematics of the movement indirectly reflect the receptor origin of this attenuation. In the first experiment, H reflexes were evoked in soleus at 26 points in the cycle of slow, passive pedalling movement of the leg and at 13 points with the leg static (the ankle was always immobilized). Maximum inhibition occurred as the leg moved through its most flexed position (P < 0.05). Inhibition observed in the static leg was also strongest at this position (P < 0.05). The increase in inhibition was gradual during flexion movement, with rapid reversal of this increase during extension. In the second experiment, the length of stretch of the vasti muscles was modelled. Variable pedal crank lengths and revolutions per minute (rpm) altered leg joint displacements and angular velocities. Equivalent rates of stretch of the vasti, achieved through different combinations of joint displacements and velocities, elicited equivalent attenuations of mean reflex magnitudes in the flexed leg. Reflex gain exponentially related to rate of stretch (R2 = 0.98 P < 0.01). The results imply that gain attenuation of this spinal sensorimotor path arises from spindle discharge in heteronymous extensor muscles of knee and/or hip, concomitant with movement.
Collapse
Affiliation(s)
- J Cheng
- Human Neurophysiology Laboratory, School of Human Biology, University of Guelph, Ont., Canada
| | | | | | | |
Collapse
|
49
|
Abstract
This study examined the synaptic terminal coverage of primate triceps surae (TS) motoneurons at the electron microscopic level. In three male pigtail macaques, motoneurons were labeled by retrograde transport of cholera toxin-horseradish peroxidase that was injected into TS muscles bilaterally and visualized with tetramethylbenzidine stabilized with diaminobenzidine. Somatic, proximal dendritic, and distal dendritic synaptic terminals were classified by standard criteria and measured. Overall and type-specific synaptic terminal coverages and frequencies were determined. Labeled cells were located in caudal L5 to rostral S1 ventral horn and ranged from 40 to 74 microns in diameter (average, 54 microns). The range and unimodal distribution of diameters, the label used, and the presence of C terminals on almost all cells indicated that the 15 cell bodies and associated proximal dendrites analyzed here probably belonged to alpha-motoneurons. Synaptic terminals covered 39% of the cell body membrane, 60% of the proximal dendritic membrane, and 40% of the distal dendritic membrane. At each of these three sites, F terminals (flattened or pleomorphic vesicles, usually symmetric active zones, average contact length 1.6 microns) were most common, averaging 52%, 56%, and 58% of total coverage and 56%, 57%, and 58% of total number of cell bodies, proximal dendrites, and distal dendrites respectively. S terminals (round vesicles, usually asymmetric active zones, average contact length 1.3 microns) averaged 24%, 29%, and 33% of coverage and 33%, 35%, and 36% of number at these three sites, respectively. Thus, S terminals were slightly more prominent relative to F terminals on distal dendrites than on cell bodies. C terminals (spherical vesicles, subsynaptic cisterns associated with rough endoplasmic reticulum, average contact length 3.5 microns) constituted 24% and 11% of total terminal coverage on cell bodies and proximal dendrites, respectively, and averaged 11% and 6% of terminal number at these two locations. M terminals (spherical vesicles, postsynaptic Taxi bodies, some with presynaptic terminals, average contact length 2.7 microns) were absent on cell bodies and averaged 3% and 7% of total coverage and 2% and 5% of terminals on proximal and distal dendrites, respectively. Except for M terminals, which tended to be smaller distally, terminal contact length was not correlated with location. Total and type-specific coverages and frequencies were not correlated with cell body diameter. Primate TS motoneurons are similar to cat TS motoneurons in synaptic terminal morphology, frequency, and distribution. However, primate terminals appear to be smaller, so that the fraction of membrane covered by them is lower.
Collapse
Affiliation(s)
- K A Starr
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201
| | | |
Collapse
|
50
|
Rudomin P. Segmental and descending control of the synaptic effectiveness of muscle afferents. PROGRESS IN BRAIN RESEARCH 1994; 100:97-104. [PMID: 7938540 DOI: 10.1016/s0079-6123(08)60774-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P Rudomin
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados, México D.F
| |
Collapse
|