1
|
Bakulski KM, Dou JF, Thompson RC, Lee C, Middleton LY, Perera BPU, Ferris SP, Jones TR, Neier K, Zhou X, Sartor MA, Hammoud SS, Dolinoy DC, Colacino JA. Single-Cell Analysis of the Gene Expression Effects of Developmental Lead (Pb) Exposure on the Mouse Hippocampus. Toxicol Sci 2020; 176:396-409. [PMID: 32458983 PMCID: PMC7416319 DOI: 10.1093/toxsci/kfaa069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lead (Pb) exposure is ubiquitous with permanent neurodevelopmental effects. The hippocampus brain region is involved in learning and memory with heterogeneous cellular composition. The hippocampus cell type-specific responses to Pb are unknown. The objective of this study is to examine perinatal Pb treatment effects on adult hippocampus gene expression, at the level of individual cells. In mice perinatally exposed to control water or a human physiologically relevant level (32 ppm in maternal drinking water) of Pb, 2 weeks prior to mating through weaning, we tested for hippocampus gene expression and cellular differences at 5 months of age. We sequenced RNA from 5258 hippocampal cells to (1) test for treatment gene expression differences averaged across all cells, (2) compare cell cluster composition by treatment, and (3) test for treatment gene expression and pathway differences within cell clusters. Gene expression patterns revealed 12 hippocampus cell clusters, mapping to major expected cell types (eg, microglia, astrocytes, neurons, and oligodendrocytes). Perinatal Pb treatment was associated with 12.4% more oligodendrocytes (p = 4.4 × 10-21) in adult mice. Across all cells, Pb treatment was associated with expression of cell cluster marker genes. Within cell clusters, Pb treatment (q < 0.05) caused differential gene expression in endothelial, microglial, pericyte, and astrocyte cells. Pb treatment upregulated protein folding pathways in microglia (p = 3.4 × 10-9) and stress response in oligodendrocytes (p = 3.2 × 10-5). Bulk tissue analysis may be influenced by changes in cell type composition, obscuring effects within vulnerable cell types. This study serves as a biological reference for future single-cell toxicant studies, to ultimately characterize molecular effects on cognition and behavior.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sean P Ferris
- Medical School, University of Michigan, Ann Arbor, Michigan 48109
| | | | | | | | - Maureen A Sartor
- School of Public Health
- Medical School, University of Michigan, Ann Arbor, Michigan 48109
| | - Saher S Hammoud
- Medical School, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
2
|
Neurobehavioral effects of acute and chronic lead exposure in a desert rodent Meriones shawi: Involvement of serotonin and dopamine. J Chem Neuroanat 2019; 102:101689. [PMID: 31580902 DOI: 10.1016/j.jchemneu.2019.101689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
Lead (Pb) is a non physiological metal that has been implicated in toxic processes affecting several organs and biological systems, including the central nervous system. Several studies have focused on changes in lead-associated neurobehavioral and neurochemical alterations that occur due to Pb exposure. The present study evaluates the effects of acute and chronic Pb acetate exposure on serotoninergic and dopaminergic systems within the dorsal raphe nucleus, regarding motor activity and anxiety behaviours. Experiments were carried out on adult male Meriones shawi exposed to acute lead acetate intoxication (25 mg/kg b.w., 3 i.p. injections) or to a chronic lead exposure (0,5%) in drinking water from intrauterine age to adult age. Immunohistochemical staining demonstrated that both acute and chronic lead exposure increased anti-serotonin (anti-5HT) and tyrosine hydroxylase (anti-TH) immuno-reactivities in the dorsal raphe nucleus. In parallel, our results demonstrated that a long term Pb-exposure, but not an acute lead intoxication, induced behavioural alterations including, hyperactivity (open field test), and anxiogenic like-effects. Such neurobehavioral impairments induced by Pb-exposure in Meriones shawi may be related to dopaminergic and serotoninergic injuries identified in the dorsal raphe nucleus.
Collapse
|
3
|
Nam SM, Seo JS, Go TH, Nahm SS, Chang BJ. Ascorbic Acid Supplementation Prevents the Detrimental Effects of Prenatal and Postnatal Lead Exposure on the Purkinje Cell and Related Proteins in the Cerebellum of Developing Rats. Biol Trace Elem Res 2019; 190:446-456. [PMID: 30488169 DOI: 10.1007/s12011-018-1572-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
We investigated the effects of lead (Pb) and ascorbic acid co-administration on rat cerebellar development. Prior to mating, rats were randomly divided into control, Pb, and Pb plus ascorbic acid (PA) groups. Pregnant rats were administered Pb in drinking water (0.3% Pb acetate), and ascorbic acid (100 mg/kg) via oral intubation until the end of the experiment. Offspring were sacrificed at postnatal day 21, the age at which the morphology of the cerebellar cortex in developing pups is similar to that of the adult brain. In the cerebellum, Pb exposure significantly reduced Purkinje cells and ascorbic acid prevented their reduction. Along with the change of the Purkinje cells, long-term Pb exposure significantly reduced the expression of the synaptic marker (synaptophysin), γ-aminobutyric acid (GABA)-synthesizing enzyme (glutamic acid decarboxylase 67), and axonal myelin basic protein while ascorbic acid co-treatment attenuated Pb-mediated reduction of these proteins in the cerebellum of pups. However, glutamatergic N-methyl-D-aspartate receptor subtype 1 (NMDAR1), anchoring postsynaptic density protein 95 (PSD95), and antioxidant superoxide dismutases (SODs) were adversely changed; Pb exposure increased the expression of NMDAR1, PSD95, and SODs while ascorbic acid co-administration attenuated Pb-mediated induction. Although further studies are required about the neurotoxicity of the Pb exposure, the results presented here suggest that developmental Pb exposure disrupted normal development of Purkinje cells by increasing glutamatergic and oxidative stress in the cerebellum. Additionally, ascorbic acid co-treatment is beneficial in attenuating prenatal and postnatal Pb exposure-induced maldevelopment of Purkinje cells in the developing cerebellum.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
- College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, Republic of Korea
| | - Jin Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Tae-Hun Go
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
- College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, Republic of Korea
| | - Byung-Joon Chang
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
- College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, Republic of Korea.
| |
Collapse
|
4
|
Barthélémy A, Mouchard A, Bouji M, Blazy K, Puigsegur R, Villégier AS. Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25343-25355. [PMID: 27696165 DOI: 10.1007/s11356-016-7758-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The widespread mobile phone use raises concerns on the possible cerebral effects of radiofrequency electromagnetic fields (RF EMF). Reactive astrogliosis was reported in neuroanatomical structures of adaptive behaviors after a single RF EMF exposure at high specific absorption rate (SAR, 6 W/kg). Here, we aimed to assess if neuronal injury and functional impairments were related to high SAR-induced astrogliosis. In addition, the level of beta amyloid 1-40 (Aβ 1-40) peptide was explored as a possible toxicity marker. Sprague Dawley male rats were exposed for 15 min at 0, 1.5, or 6 W/kg or for 45 min at 6 W/kg. Memory, emotionality, and locomotion were tested in the fear conditioning, the elevated plus maze, and the open field. Glial fibrillary acidic protein (GFAP, total and cytosolic fractions), myelin basic protein (MBP), and Aβ1-40 were quantified in six brain areas using enzyme-linked immunosorbent assay. According to our data, total GFAP was increased in the striatum (+114 %) at 1.5 W/kg. Long-term memory was reduced, and cytosolic GFAP was increased in the hippocampus (+119 %) and in the olfactory bulb (+46 %) at 6 W/kg (15 min). No MBP or Aβ1-40 expression modification was shown. Our data corroborates previous studies indicating RF EMF-induced astrogliosis. This study suggests that RF EMF-induced astrogliosis had functional consequences on memory but did not demonstrate that it was secondary to neuronal damage.
Collapse
Affiliation(s)
- Amélie Barthélémy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Amandine Mouchard
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Maladies Neurodégénératives CNRS UMR5293 Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Bouji
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Campus des sciences et technologies, Université Saint-Joseph, Dekwaneh, Mar Roukos, Lebanon
| | - Kelly Blazy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France
| | - Renaud Puigsegur
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Sous-direction de la police technique et scientifique, 31 Avenue Franklin Roosevelt, 69130, Ecully, France
| | - Anne-Sophie Villégier
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France.
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France.
| |
Collapse
|
5
|
Ma T, Wu X, Cai Q, Wang Y, Xiao L, Tian Y, Li H. Lead Poisoning Disturbs Oligodendrocytes Differentiation Involved in Decreased Expression of NCX3 Inducing Intracellular Calcium Overload. Int J Mol Sci 2015; 16:19096-110. [PMID: 26287169 PMCID: PMC4581288 DOI: 10.3390/ijms160819096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 01/03/2023] Open
Abstract
Lead (Pb) poisoning has always been a serious health concern, as it permanently damages the central nervous system. Chronic Pb accumulation in the human body disturbs oligodendrocytes (OLs) differentiation, resulting in dysmyelination, but the molecular mechanism remains unknown. In this study, Pb at 1 μM inhibits OLs precursor cells (OPCs) differentiation via decreasing the expression of Olig 2, CNPase proteins in vitro. Moreover, Pb treatment inhibits the sodium/calcium exchanger 3 (NCX3) mRNA expression, one of the major means of calcium (Ca2+) extrusion at the plasma membrane during OPCs differentiation. Also addition of KB-R7943, NCX3 inhibitor, to simulate Pb toxicity, resulted in decreased myelin basic protein (MBP) expression and cell branching. Ca2+ response trace with Pb and KB-R7943 treatment did not drop down in the same recovery time as the control, which elevated intracellular Ca2+ concentration reducing MBP expression. In contrast, over-expression of NCX3 in Pb exposed OPCs displayed significant increase MBP fluorescence signal in positive regions and CNPase expression, which recovered OPCs differentiation to counterbalance Pb toxicity. In conclusion, Pb exposure disturbs OLs differentiation via affecting the function of NCX3 by inducing intracellular calcium overload.
Collapse
Affiliation(s)
- Teng Ma
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
- Battalion 7 of Cadet Brigade, Third Military Medical University, Chongqing 400038, China.
| | - Xiyan Wu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| | - Qiyan Cai
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| | - Yun Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| | - Lan Xiao
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| | - Yanping Tian
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| | - Hongli Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
6
|
Chan YH, Gao M, Wu W. Are newborn rat-derived neural stem cells more sensitive to lead neurotoxicity? Neural Regen Res 2013; 8:581-92. [PMID: 25206702 PMCID: PMC4145982 DOI: 10.3969/j.issn.1673-5374.2013.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 01/05/2013] [Indexed: 01/01/2023] Open
Abstract
Lead ion (Pb2+) has been proven to be a neurotoxin due to its neurotoxicity on mammalian nervous system, especially for the developing brains of juveniles. However, many reported studies involved the negative effects of Pb2+ on adult neural cells of humans or other mammals, only few of which have examined the effects of Pb2+ on neural stem cells. The purpose of this study was to reveal the biological effects of Pb2+ from lead acetate [Pb (CH3COO)2] on viability, proliferation and differentiation of neural stem cells derived from the hippocampus of newborn rats aged 7 days and adult rats aged 90 days, respectively. This study was carried out in three parts. In the first part, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT viability assay) was used to detect the effects of Pb2+ on the cell viability of passage 2 hippocampal neural stem cells after 48-hour exposure to 0–200 μM Pb2+. In the second part, 10 μM bromodeoxyuridine was added into the culture medium of passage 2 hippocampal neural stem cells after 48-hour exposure to 0–200 μM Pb2+, followed by immunocytochemical staining with anti-bromodeoxyuridine to demonstrate the effects of Pb2+ on cell proliferation. In the last part, passage 2 hippocampal neural stem cells were allowed to grow in the differentiation medium with 0–200 μM Pb2+. Immunocytochemical staining with anti-microtubule-associated protein 2 (a neuron marker), anti-glial fibrillary acidic protein (an astrocyte marker), and anti-RIP (an oligodendrocyte marker) was performed to detect the differentiation commitment of affected neural stem cells after 6 days. The data showed that Pb2+ inhibited not only the viability and proliferation of rat hippocampal neural stem cells, but also their neuronal and oligodendrocyte differentiation in vitro. Moreover, increased activity of astrocyte differentiation of hippocampal neural stem cells from both newborn and adult rats was observed after exposure to high concentration of lead ion in vitro. These findings suggest that hippocampal neural stem cells of newborn rats were more sensitive than those from adult rats to Pb2+ cytotoxicity.
Collapse
Affiliation(s)
- Yan Ho Chan
- Department of Anatomy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mingyong Gao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China ; Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei Province, China
| | - Wutian Wu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China ; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China ; Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China ; GHM Institute of Central Nervous System Regeneration, Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
7
|
Felitsyn N, McLeod C, Shroads AL, Stacpoole PW, Notterpek L. The heme precursor delta-aminolevulinate blocks peripheral myelin formation. J Neurochem 2008; 106:2068-79. [PMID: 18665889 DOI: 10.1111/j.1471-4159.2008.05552.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Delta-aminolevulinic acid (delta-ALA) is a heme precursor implicated in neurological complications associated with porphyria and tyrosinemia type I. Delta-ALA is also elevated in the urine of animals and patients treated with the investigational drug dichloroacetate (DCA). We postulated that delta-ALA may be responsible, in part, for the peripheral neuropathy observed in subjects receiving DCA. To test this hypothesis, myelinating cocultures of Schwann cells and sensory neurons were exposed to delta-ALA (0.1-1 mM) and analyzed for the expression of neural proteins and lipids and markers of oxidative stress. Exposure of myelinating samples to delta-ALA is associated with a pronounced reduction in the levels of myelin-associated lipids and proteins, including myelin protein zero and peripheral myelin protein 22. We also observed an increase in protein carbonylation and the formation of hydroxynonenal and malondialdehyde after treatment with delta-ALA. Studies of isolated Schwann cells and neurons indicate that glial cells are more vulnerable to this pro-oxidant than neurons, based on a selective decrease in the expression of mitochondrial respiratory chain proteins in glial, but not in neuronal, cells. These results suggest that the neuropathic effects of delta-ALA are attributable, at least in part, to its pro-oxidant properties which damage myelinating Schwann cells.
Collapse
Affiliation(s)
- Natalia Felitsyn
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA
| | | | | | | | | |
Collapse
|
8
|
Bouyatas MM, Gamrani H. Immunohistochemical evaluation of the effect of lead exposure on subcommissural organ innervation and secretion in Shaw's Jird (Meriones shawi). Acta Histochem 2007; 109:421-7. [PMID: 17707886 DOI: 10.1016/j.acthis.2007.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 05/09/2007] [Accepted: 05/16/2007] [Indexed: 11/17/2022]
Abstract
The secretory activity of subcommissural organ cells is controlled by various extrinsic and intrinsic factors. Lead has been recognised as a neurotoxic heavy metal, since it induces morphological and functional abnormalities in the brain. In this work, we examined the effect of lead exposure on the subcommissural organ (SCO), a brain gland known by its secretion of Reissner's fiber (RF) in cerebro-spinal fluid. Glycoprotein secretion and serotonin (5HT) innervation of the SCO was examined after acute and chronic lead exposures in the sub-desert rodent Meriones shawi. Lead exposures were achieved by, respectively, intra-peritoneal injection of 25 mg/kg body weight of lead acetate for 3 days and 0.5% of lead acetate in the drinking water over 4 months until adult age. 5HT and RF immunolabeling in the SCO revealed several serotoninergic fibers reaching the SCO and abundant secretory material. An increase in both 5HT innervation and secretory material of the SCO was recorded after both acute and chronic lead exposure. These results show that lead exposure affects the serotonergic innervation of the SCO. Moreover, the enhancement of SCO secretion suggests a role of this gland in neuroprotection and lead detoxification of the brain in Meriones shawi.
Collapse
Affiliation(s)
- My M Bouyatas
- Université Cadi Ayyad, Faculté des Sciences Semlalia, Laboratoire de Neurosciences, B.P. /2930, Marrakech, Morocco.
| | | |
Collapse
|
9
|
Arrieta O, Palencia G, García-Arenas G, Morales-Espinosa D, Hernández-Pedro N, Sotelo J. Prolonged exposure to lead lowers the threshold of pentylenetetrazole-induced seizures in rats. Epilepsia 2005; 46:1599-602. [PMID: 16190930 DOI: 10.1111/j.1528-1167.2005.00267.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this work was to study the effects of prolonged exposure to lead on the threshold of experimental seizures induced by pentylenetetrazole (PTZ). METHODS The 120 Wistar male rats were allocated randomly into four groups; (A) controls, and lead-treatment groups (B, C, and D) that received lead acetate in the drinking water for a period of 30 days at concentrations of 250, 500, and 1,000 ppm, respectively. After exposure, a trial of PTZ-induced seizures was conducted in all groups, and blood contents of lead were determined by atomic absorption spectrophotometry. RESULTS Blood lead contents increased in a dose-dependent manner. Time elapsed to develop the first myoclonic jerk and the tonic-clonic seizure was less in all lead-exposed groups than in controls. This effect was greater in the groups administered 500 and 1,000 ppm of lead. The required doses of PTZ to induce myoclonic jerks and tonic-clonic seizures were lower in lead-exposed rats than in controls. CONCLUSIONS We found a reduction in the threshold for seizures in rats whose blood contents of lead were similar to those of humans from some areas of urban centers with high levels of air pollution.
Collapse
Affiliation(s)
- Oscar Arrieta
- Neuroimmunology Unit, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
10
|
Huang F, Schneider JS. Effects of lead exposure on proliferation and differentiation of neural stem cells derived from different regions of embryonic rat brain. Neurotoxicology 2005; 25:1001-12. [PMID: 15474618 DOI: 10.1016/j.neuro.2004.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2004] [Accepted: 03/15/2004] [Indexed: 10/26/2022]
Abstract
Lead is a potent neurotoxin, causing brain damage and cognitive deficits in children even at low exposure levels. Although lead neurotoxicity can occur after prenatal or postnatal exposure, little is known of the effects of lead on embryonic neural stem cells (NSCs) or the extent to which NSCs originating in different brain regions may be differentially sensitive to the effects of lead exposure. The present study examined the effects of lead on proliferation and differentiation of neural stem cells (NSCs) originating from E15 rat cortex (CX), striatum (ST) or ventral mesencephalon (VM). Free-floating neurospheres were grown under standard conditions or in lead (0.01-100 microM)-containing conditioned media for 5 days and proliferation assessed by 3H-thymidine uptake. In other studies, control and lead-exposed neurospheres were collected, dissociated and re-plated in control or lead-containing differentiation media for 7 days. Cells were immunostained for visualization of mature neural and glial markers and counted. Lead exposure (0.01-10 microM) had no effect on neurosphere viability but caused a significant dose-dependent inhibition of proliferation in VM and ST but not CX neurospheres. The number of MAP2 positive neurons differentiated from lead-exposed neurospheres of VM and ST origin (but not CX) was significantly decreased from control as were the number of oligodendrocytes obtained, regardless of their region of origin. In contrast, lead exposure significantly increased the number of astrocytes obtained regardless of site of origin. These data suggest that even low levels of lead can differentially affect proliferation and differentiation of embryonic NSCs originating from different brain regions and supports the need for prevention of prenatal lead exposure.
Collapse
Affiliation(s)
- Funan Huang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, 521 JAH Philadelphia, PA 19107, USA
| | | |
Collapse
|
11
|
Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 2003; 126:5-19. [PMID: 12477693 DOI: 10.1093/brain/awg014] [Citation(s) in RCA: 649] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lead has been recognized as a poison for millennia and has been the focus of public health regulation in much of the developed world for the better part of the past century. The nature of regulation has evolved in response to increasing information provided by vigorous scientific investigation of lead's effects. In recognition of the particular sensitivity of the developing brain to lead's pernicious effects, much of this legislation has been addressed to the prevention of childhood lead poisoning. The present review discusses the current state of knowledge concerning the effects of lead on the cognitive development of children. Addressed are the reasons for the child's exquisite sensitivity, the behavioural effects of lead, how these effects are best measured, and the long-term outlook for the poisoned child. Of particular importance are the accumulating data suggesting that there are toxicological effects with behavioural concomitants at exceedingly low levels of exposure. In addition, there is also evidence that certain genetic and environmental factors can increase the detrimental effects of lead on neural development, thereby rendering certain children more vulnerable to lead neurotoxicity. The public health implications of these findings are discussed.
Collapse
Affiliation(s)
- Theodore I Lidsky
- Center for Trace Element Studies and Environmental Neurotoxicology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | |
Collapse
|
12
|
Deng W, McKinnon RD, Poretz RD. Lead exposure delays the differentiation of oligodendroglial progenitors in vitro. Toxicol Appl Pharmacol 2001; 174:235-44. [PMID: 11485384 DOI: 10.1006/taap.2001.9219] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lead (Pb) is an environmental neurotoxicant that can cause hypo- and demyelination. Oligodendrocytes (OLs), the myelin-forming cells in the central nervous system, may be a possible target for Pb toxicity. The present study describes the effect of Pb on the maturation of rat OL progenitor (OP) cells and the developmental expression of myelin-specific galactolipids. Dose-response studies showed that OP cultures were more sensitive to Pb than mature OLs. Pb delayed the differentiation of OL progenitors, as demonstrated by cell morphology and immunostaining with a panel of stage-specific differentiation markers. Pb given prior to and during differentiation caused a decrease in the biosynthesis of galactolipids in both undifferentiated and differentiated OLs, as detected by metabolic radiolabeling with 3H-D-galactose. While the ratios of galacto/gluco-cerebrosides, hydroxy fatty acid/nonhydroxy fatty acid galactolipids, and galactocerebrosides/sulfatides increased in control cultures during cell differentiation, Pb treatment prevented these changes. The results suggest that chronic Pb exposure may impact brain development by interfering with the timely developmental maturation of OL progenitors.
Collapse
Affiliation(s)
- W Deng
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
13
|
Black JA, Felts P, Smith KJ, Kocsis JD, Waxman SG. Distribution of sodium channels in chronically demyelinated spinal cord axons: immuno-ultrastructural localization and electrophysiological observations. Brain Res 1991; 544:59-70. [PMID: 1649663 DOI: 10.1016/0006-8993(91)90885-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The immuno-ultrastructural localization of voltage-sensitive sodium channels was demonstrated within a central demyelinating lesion induced in the rat spinal cord by ethidium bromide/irradiation using polyclonal antibody 7493. Antibody 7493 has previously been shown to immunostain intensely axon membrane at nodes of Ranvier, and also perinodal astrocyte processes. At 25-35 days post injection/irradiation, the central portion of the demyelinating lesion is populated with chronically demyelinated axons and there is an absence of glial processes. Sodium channel immunoreactivity was not observed on the chronically demyelinated axolemma within this central portion of the lesion. Within the peripheral portion of the lesion demyelinated axons were occasionally abutted by astrocyte and Schwann cell processes. At these focal sites of apposition, the axon membrane displayed intense sodium channel immunoreactivity, while the abutting astrocyte and Schwann cell processes did not exhibit immunostaining. Also in the periphery of the lesion, some axons become ensheathed and myelinated by oligodendrocytes and Schwann cells. The axon membrane of circumferentially ensheathed axons displayed antibody 7493 immunostaining, and this immunoreactivity persisted on the axolemma until the ensheathing cytoplasmic processes compacted into myelin. Internodal axon membrane beneath the myelin sheath did not display sodium channel immunoreactivity, though (putative) developing nodal axon membrane adjacent to terminal paranodal loops exhibited robust sodium channel staining. Electrophysiological recordings within the ethidium bromide/irradiation lesion demonstrated that at least some axons conducted action potentials within the lesion, while others exhibited conduction block. These results indicate that there is a reorganization of sodium channels within the axon membrane of chronically demyelinated central axons.
Collapse
Affiliation(s)
- J A Black
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | | | |
Collapse
|
14
|
Chapter 7 Development, Maintenance, and Modulation of Voltage-Dependent Sodium Channel Topography in Nerve Cells. CURRENT TOPICS IN MEMBRANES 1991. [DOI: 10.1016/s0070-2161(08)60805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
15
|
Black JA, Friedman B, Waxman SG, Elmer LW, Angelides KJ. Immuno-ultrastructural localization of sodium channels at nodes of Ranvier and perinodal astrocytes in rat optic nerve. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES B, BIOLOGICAL SCIENCES 1989; 238:39-51. [PMID: 2574468 DOI: 10.1098/rspb.1989.0065] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immuno-electron microscopic localization of sodium channels at nodes of Ranvier within adult optic nerve was demonstrated with polyclonal antibody 7493. The 7493 antisera, which is directed against purified sodium channels from rat brain, recognizes a 260 kDa protein in immunoblots of the crude glycoprotein fraction from adult rat optic nerve. Intense immunoreactivity with 7493 antisera was observed at nodes of Ranvier. Axon membrane at the node was densely stained, whereas paranodal and internodal axon membrane did not exhibit immunoreactivity. The axoplasm beneath the nodal membrane displayed variable immunostaining. Neither terminal paranodal oligodendroglial loops nor oligodendrocyte plasmalemma were immunoreactive with 7493 antisera. However, perinodal astrocyte processes exhibited intense immunoreactivity with the anti-sodium channel antisera. Optic nerves incubated with pre-immune sera, or with 7493 antisera that had been pre-adsorbed with purified sodium channel protein, displayed no immunoreactivity. These results demonstrate localization of sodium channels at high density at mammalian nodes of Ranvier and in some perinodal astrocyte processes. The latter observation offers support for an active role for perinodal astrocyte processes in the aggregation of sodium channels within the axon membrane at the node of Ranvier.
Collapse
Affiliation(s)
- J A Black
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
16
|
Guy J, Ellis EA, Kelley K, Hope GM, Rao NA. Quantitative analysis of labelled inner retinal proteins in experimental optic neuritis. Curr Eye Res 1989; 8:253-60. [PMID: 2707041 DOI: 10.3109/02713688908997567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to determine if axonal transport changes in chronic experimental allergic encephalomyelitis (EAE) were due to blockade or increased discharge of fast transported proteins from the inner retina, we examined the presence of pulse labeled proteins in autoradiograms of the optic nerve head, retinal ganglion cell and nerve fiber layers of juvenile strain-13 guinea pigs with chronic EAE and normal controls. Quantitative analysis of silver grains, performed six and twenty-four hours following the intravitreal injection of tritiated leucine, showed a decrease in inner retinal radioactivity in those with EAE, whereas no difference was detected between the two groups after three days. Grain counts within the optic nerve heads of guinea pigs with EAE were reduced at all time intervals studied. These results are consistent with an increase in discharge of fast transported proteins from retinal ganglion cells into optic nerve axons and support our previous observations of increased radioactivity at the foci of optic nerve demyelination.
Collapse
Affiliation(s)
- J Guy
- Department of Ophthalmology, University of Florida, Gainesville
| | | | | | | | | |
Collapse
|
17
|
Guy J, Ellis EA, Tark EF, Hope GM, Rao NA. Axonal transport reductions in acute experimental allergic encephalomyelitis: qualitative analysis of the optic nerve. Curr Eye Res 1989; 8:261-9. [PMID: 2707042 DOI: 10.3109/02713688908997568] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to determine if changes in axonal transport were different in adult animals with acute experimental allergic encephalomyelitis (EAE), in comparison to juvenile animals with chronic EAE, the effects of this acute demyelinating disorder on axonal transport were examined in the optic nerves of adult strain-13 guinea pigs. Utilizing autoradiographic analysis of silver grain counts, both the fast and slow components of orthograde transport were studied at intervals of thirty minutes, three hours, one day and three days after tritiated leucine injection into the vitreous cavity. In order to determine the contribution of fiber loss in acute EAE, optic nerve fiber density was analyzed from electron micrographs of normal and demyelinated nerves. Animals with acute EAE had a decrease in radioactivity at the lamina retinalis and lamina choroidalis after thirty minutes and three hours, and at the lamina scleralis and foci of demyelination after one and three days. A 16% loss of fibers did not account for as much as a 74% reduction in radioactivity with acute EAE. The global reductions in axonal transport observed in acute EAE animals may contribute to their progressive deterioration and eventual demise by lack of delivery of tubulo-vesicular materials for synaptic transmission, axolemmal proteins for electrogenesis and neurofilamentary components of the cytoskeleton. Moreover, they are unlike the increase of fast axonal transport associated with recovery of physiologic function characteristic of animals with the chronic form of the disease.
Collapse
Affiliation(s)
- J Guy
- Department of Ophthalmology, University of Florida, Gainesville
| | | | | | | | | |
Collapse
|
18
|
Genovese OM, Panizza M, Conti H, Battle A, Sica RE. [Electrophysiological study of neuromuscular function in a population poisoned by lead]. ARQUIVOS DE NEURO-PSIQUIATRIA 1988; 46:16-21. [PMID: 2841919 DOI: 10.1590/s0004-282x1988000100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A comprehensive electrophysiological examination of the peripheral nervous system was carried out in 12 patients who proved to be toxicated with lead (high lead blood levels, and diminished activity of the delta-aminolevulinate dehydratase, ALA D, in erythrocytes). Maximal motor nerve conduction velocities and terminal latencies were investigated in the median, radial and deep peroneal nerves. Also the amplitude of the evoked muscle response (M wave) was measured in thenar, extensor longus and extensor digitorium brevis muscles. Sensory conduction velocity and amplitude of the nerve compound action potential were measured at the median nerve. Tibialis anterior muscle responses to deep peroneal nerve repetitive stimulation were also explored. Conventional needle electromyogram was performed in the deltoid and tibialis anterior muscles. Slight diminished motor and sensory conduction velocities were found as well as a reduction of the amplitude of the evoked muscle response of the compound sensory action potential. Four out of the 12 patients tested showed either decremental or incremental amplitude of the muscle response with nerve repetitive stimulation. A electromyographical diminished interference pattern was found in all patients tested. Most of the remaining motor unit potentials were fragmented or polyphasic. Just one patient disclosed potentials of enhanced duration and amplitude. No relationship was found between blood lead levels or ALA D erythrocytes concentration and the different electrophysiological tests performed, except between reduced ALA D concentration and diminished amplitudes of the M wave and of the sensory compound action potential, and also between ALA D and diminished radial motor conduction velocity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- O M Genovese
- División Neurología, Hospital J. M. Ramos Mejía, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
19
|
Coria F, Fernández R, Silos I, Geijo E. Cytochemical characteristics of the axon membrane at nodes of Ranvier in resting, tetrodotoxin-blocked, and electrically stimulated peripheral nerves of the rat. Exp Neurol 1987; 96:61-7. [PMID: 2435572 DOI: 10.1016/0014-4886(87)90168-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To test whether intraaxonal ferric ion-ferrocyanide staining at nodes of Ranvier is influenced by functional state of the nodal membrane, the tibial nerves of Sprague-Dawley rats were subjected to one of the following experimental procedures prior to fixation and staining: General anesthesia to induce nerves at rest, tetrodotoxin blocking of nerve activity, and high-frequency (100 Hz) electrical stimulation. In all cases most but not all nodes were stained. No statistically significant differences were found either in the percentage of total stained nodes or in the percentage of stained nodes from large- and small-diameter fibers among the three conditions tested. An explanation is offered to account for the apparent discrepancy between these results and those from other studies involving related cytochemical markers of the nodal apparatus.
Collapse
|
20
|
Meiri H, Steinberg R, Medalion B. Detection of sodium channel distribution in rat sciatic nerve following lysophosphatidylcholine-induced demyelination. J Membr Biol 1986; 92:47-56. [PMID: 2427728 DOI: 10.1007/bf01869015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vivo application of lysophosphatidylcholine (LPC) to rat sciatic nerve induces impaired hind leg movement within 2 days which is recovered by 6 days. Segmental demyelination was seen at 2 days after LPC application, and remyelination had barely started in a few axons by 6 days. Using sodium channel-specific monoclonal antibodies and immunofluorescence microscopy, we observed altered distribution of sodium channels in demyelinated axons. Bright fluorescent labeling was found along the segmentally demyelinated axolemma at 6 days in contrast to the dim staining of the demyelinated nerve found at 2 days. In addition, radioimmunoassays detected an elevated number of antibody binding sites on sciatic nerve trunk from the sixth day. Our data provide the immunocytochemical evidence for the assumption that recruitment of sodium channels into demyelinated axolemma contributes to the recovery of function following axon demyelination by LPC.
Collapse
|
21
|
Abstract
Daily intraperitoneal injections of lead acetate for several weeks were followed by a peripheral neuropathy. The conduction of impulses in the sciatic nerve became slower, but their amplitude, duration and threshold remained normal. Sodium channel labeling with specific monoclonal antibodies revealed staining at demyelinated regions, while normal axons were stained exclusively at nodes of Ranvier. These results support the view that remodelling of sodium channel distribution may contribute to impulse conduction in demyelinated fibers.
Collapse
|
22
|
Coria F, Silos I, Fernandez R, Monton F, Lafarga M. Demyelination-induced plasticity in the axon membrane: an ultrastructural cytochemical study of lead neuropathy in the rat. Neurosci Lett 1985; 58:359-64. [PMID: 2995880 DOI: 10.1016/0304-3940(85)90081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We examined the distribution of ferric ion-ferrocyanide stain (a marker for excitable regions of myelinated fibers) in the lead-induced demyelinating neuropathy of the rat. By electron microscopy, we found that paranodal degeneration resulted in spreading of the reaction product from nodal to internodal axolemma. During repair, nodal-like stained areas formed at the contact zones between preremyelinating Schwann cells. These data suggest that the location and extent of excitable axonal regions are influenced by axoglial relationships. Additionally, some fibers displayed staining at paranodal axolemma adjacent to demyelinated segments, suggesting it might be an alternative site for impulse generation in demyelinated fibers.
Collapse
|
23
|
Abstract
The functional organization of the mammalian myelinated nerve fiber is complex and elegant. In contrast to nonmyelinated axons, whose membranes have a relatively uniform structure, the mammalian myelinated axon exhibits a high degree of regional specialization that extends to the location of voltage-dependent ion channels within the axon membrane. Sodium and potassium channels are segregated into complementary membrane domains, with a distribution reflecting that of the overlying Schwann or glial cells. This complexity of organization has important implications for physiology and pathophysiology, particularly with respect to the development of myelinated fibers.
Collapse
|
24
|
Waxman SG, Kocsis JD, Eng DL. Ligature-induced injury in peripheral nerve: electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle Nerve 1985; 8:85-92. [PMID: 2414652 DOI: 10.1002/mus.880080202] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of the potassium channel blocking agent 4-aminopyridine (4-AP) on action potential properties were studied in chronically injured rat sciatic nerves. In normal, mature myelinated fibers, application of 4-AP does not lead to any significant change in action potential waveform or firing pattern in response to single stimuli. In contrast, application of 4-AP to nerves injured by the placement of loose ligatures results in the appearance of late rippled components in the compound action potential. This alteration in waveform is present at the injury site, but not at nerve segments proximal or distal to this region. Paired stimulation experiments demonstrate that this oscillation of the whole nerve response reflects repetitive firing in response to single stimuli following application of 4-AP. Intra-axonal recording following 4-AP application demonstrates bursts of action potentials, with several spikes of reduced amplitude arising from a depolarizing potential following the initial spike. Refractory period for the late spike is greater than that of the primary action potential. These results demonstrate that potassium channels are present and functional in chronically injured nerves, where blockage of these channels results in repetitive firing in response to single stimuli.
Collapse
|
25
|
|