1
|
Country MW, Jonz MG. Calcium dynamics and regulation in horizontal cells of the vertebrate retina: lessons from teleosts. J Neurophysiol 2017; 117:523-536. [PMID: 27832601 PMCID: PMC5288477 DOI: 10.1152/jn.00585.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 01/20/2023] Open
Abstract
Horizontal cells (HCs) are inhibitory interneurons of the vertebrate retina. Unlike typical neurons, HCs are chronically depolarized in the dark, leading to a constant influx of Ca2+ Therefore, mechanisms of Ca2+ homeostasis in HCs must differ from neurons elsewhere in the central nervous system, which undergo excitotoxicity when they are chronically depolarized or stressed with Ca2+ HCs are especially well characterized in teleost fish and have been used to unlock mysteries of the vertebrate retina for over one century. More recently, mammalian models of the retina have been increasingly informative for HC physiology. We draw from both teleost and mammalian models in this review, using a comparative approach to examine what is known about Ca2+ pathways in vertebrate HCs. We begin with a survey of Ca2+-permeable ion channels, exchangers, and pumps and summarize Ca2+ influx and efflux pathways, buffering, and intracellular stores. This includes evidence for Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptors and for voltage-gated Ca2+ channels. Special attention is given to interactions between ion channels, to differences among species, and in which subtypes of HCs these channels have been found. We then discuss a number of unresolved issues pertaining to Ca2+ dynamics in HCs, including a potential role for Ca2+ in feedback to photoreceptors, the role for Ca2+-induced Ca2+ release, and the properties and functions of Ca2+-based action potentials. This review aims to highlight the unique Ca2+ dynamics in HCs, as these are inextricably tied to retinal function.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Jacoby J, Kreitzer MA, Alford S, Qian H, Tchernookova BK, Naylor ER, Malchow RP. Extracellular pH dynamics of retinal horizontal cells examined using electrochemical and fluorometric methods. J Neurophysiol 2011; 107:868-79. [PMID: 22090459 DOI: 10.1152/jn.00878.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular H(+) has been hypothesized to mediate feedback inhibition from horizontal cells onto vertebrate photoreceptors. According to this hypothesis, depolarization of horizontal cells should induce extracellular acidification adjacent to the cell membrane. Experiments testing this hypothesis have produced conflicting results. Studies examining carp and goldfish horizontal cells loaded with the pH-sensitive dye 5-hexadecanoylaminofluorescein (HAF) reported an extracellular acidification on depolarization by glutamate or potassium. However, investigations using H(+)-selective microelectrodes report an extracellular alkalinization on depolarization of skate and catfish horizontal cells. These studies differed in the species and extracellular pH buffer used and the presence or absence of cobalt. We used both techniques to examine H(+) changes from isolated catfish horizontal cells under identical experimental conditions (1 mM HEPES, no cobalt). HAF fluorescence indicated an acidification response to high extracellular potassium or glutamate. However, a clear extracellular alkalinization was found using H(+)-selective microelectrodes under the same conditions. Confocal microscopy revealed that HAF was not localized exclusively to the extracellular surface, but rather was detected throughout the intracellular compartment. A high degree of colocalization between HAF and the mitochondrion-specific dye MitoTracker was observed. When HAF fluorescence was monitored from optical sections from the center of a cell, glutamate produced an intracellular acidification. These results are consistent with a model in which depolarization allows calcium influx, followed by activation of a Ca(2+)/H(+) plasma membrane ATPase. Our results suggest that HAF is reporting intracellular pH changes and that depolarization of horizontal cells induces an extracellular alkalinization, which may relieve H(+)-mediated inhibition of photoreceptor synaptic transmission.
Collapse
Affiliation(s)
- Jason Jacoby
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Ultrastructural analysis of the glutamatergic system in the outer plexiform layer of zebrafish retina. J Chem Neuroanat 2009; 37:254-65. [PMID: 19481010 DOI: 10.1016/j.jchemneu.2009.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 11/23/2022]
Abstract
L-Glutamate, the photoreceptor neurotransmitter, depolarizes horizontal cells and OFF-bipolar cells by ionotropic receptors and hyperpolarizes ON-bipolar cells by metabotropic receptors. Despite extensive light microscopy on the distribution of glutamate receptors in zebrafish retina, there are little ultrastructural data. Given the importance of zebrafish in studies on the genetic manipulation of retinal development and function, precise data on the synaptic neurochemical organization of the zebrafish retina is needed. Immunohistochemical techniques were used to determine the ultrastructural localization of glutamate receptor subunits GluR2, GluR4, NMDA2B (NR2B) and mGluR1alpha in zebrafish outer plexiform layer (OPL). These antibodies were chosen because of an apparent conservation of localization of GluR2, GluR4 and mGluR1alpha in the vertebrate OPL, while there is some support for NMDA receptors in the OPL. GluR2-immunoreactivity (IR) was in all horizontal cell dendrites that invaginated cone pedicles and rod spherules. Three arrangements of dendrites contained GluR-IR in rod spherules: classical-type with GluR2-IR on lateral horizontal cell dendrites, a butterfly-shaped horizontal cell dendrite, and a goblet-shaped dendrite, likely of bipolar cell origin. GluR4-IR was restricted to dendrites of OFF-bipolar cells that innervated rod and cone terminals. NR2B-IR was restricted to a subtype of cone ON-bipolar cell. mGluR1alpha-IR was restricted to ON mixed rod/cone (Mb) bipolar cells whose dendrites innervated rod and cone synaptic terminals. The presence of mGluR1alpha on Mb bipolar cell dendrites is consistent with a role in retrograde endocannabinoid suppression. The subunit composition of glutamate receptors should affect the kinetics and pharmacology of these cells to glutamate receptor activation.
Collapse
|
4
|
Davis SF, Linn CL. Mechanism linking NMDA receptor activation to modulation of voltage-gated sodium current in distal retina. Am J Physiol Cell Physiol 2003; 284:C1193-204. [PMID: 12676655 DOI: 10.1152/ajpcell.00256.2002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the mechanism that links activation of N-methyl-D-aspartate (NMDA) receptors to inhibition of voltage-gated sodium channels in isolated catfish cone horizontal cells. NMDA channels were activated in voltage-clamped cells incubated in low-calcium saline or dialyzed with the calcium chelator BAPTA to determine that calcium influx through NMDA channels is required for sodium channel modulation. To determine whether calcium influx through NMDA channels triggers calcium-induced calcium release (CICR), cells were loaded with the calcium-sensitive dye calcium green 2 and changes in relative fluorescence were measured in response to NMDA. Responses were compared with measurements obtained when caffeine depleted stores. Voltage-clamp studies demonstrated that CICR modulated sodium channels in a manner similar to that of NMDA. Blocking NMDA receptors with AP-7, blocking CICR with ruthenium red, depleting stores with caffeine, or dialyzing cells with calmodulin antagonists W-5 or peptide 290-309 all prevented sodium channel modulation. These results support the hypothesis that NMDA modulation of voltage-gated sodium channels in horizontal cells requires CICR and activation of a calmodulin-dependent signaling pathway.
Collapse
Affiliation(s)
- Scott F Davis
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
5
|
Davis SF, Linn CL. Activation of NMDA receptors linked to modulation of voltage-gated ion channels and functional implications. Am J Physiol Cell Physiol 2003; 284:C757-68. [PMID: 12456395 DOI: 10.1152/ajpcell.00252.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catfish (Ictalurus punctatus) cone horizontal cells contain N-methyl-d-aspartate (NMDA) receptors, the function of which has yet to be determined. In the present study, we have examined the effect of NMDA receptor activation on voltage-gated ion channel activity. NMDA receptor activation produced a long-term downregulation of voltage-gated sodium and calcium currents but had no effect on the delayed rectifying potassium current. NMDA's effect was eliminated in the presence of AP-7. To determine whether NMDA receptor activation had functional implications, isolated catfish cone horizontal cells were current clamped to mimic the cell's physiological response. When horizontal cells were depolarized, they elicited a single depolarizing overshoot and maintained a depolarized steady state membrane potential. NMDA reduced the amplitude of the depolarizing overshoot and increased the depolarized steady-state membrane potential. Both effects of NMDA were eliminated in the presence of AP-7. These results support the hypothesis that activation of NMDA receptors in catfish horizontal cells may affect the type of visual information conveyed through the distal retina.
Collapse
Affiliation(s)
- S F Davis
- Louisiana State University Health Sciences Center, Neuroscience Center of Excellence, New Orleans 70112, USA
| | | |
Collapse
|
6
|
Edwards JG, Michel WC. Pharmacological characterization of ionotropic glutamate receptors in the zebrafish olfactory bulb. Neuroscience 2003; 122:1037-47. [PMID: 14643770 DOI: 10.1016/s0306-4522(03)00544-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The distribution of N-methyl-D-aspartate- (NMDA) and kainic acid- (KA) sensitive ionotropic glutamate receptors (iGluR) in the zebrafish olfactory bulb was assessed using an activity-dependent labeling method. Olfactory bulbs were incubated with an ion channel permeant probe, agmatine (AGB), and iGluR agonists in vitro, and the labeled neurons containing AGB were visualized immunocytochemically. Preparations exposed to 250 microM KA in the presence of a NMDA receptor antagonist (D-2-amino-5-phosphono-valeric acid) and an alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist (sym 2206), revealed KA receptor-mediated labeling of approximately 60-70% of mitral cells, juxtaglomerular cells, tyrosine hydroxylase-positive cells and granule cells. A higher proportion of ventral olfactory bulb neurons were KA-sensitive. Application of 333 microM NMDA in the presence of an AMPA/KA receptor antagonist (6-cyano-7-nitroquinoxaline-2,3-dione) resulted in NMDA receptor-mediated labeling of almost all neurons. The concentrations eliciting 50% of the maximal response (effective concentration: EC(50)s) for NMDA-stimulated labeling of different cell types were not significantly different and ranged from 148 microM to 162 microM. These results suggest that while NMDA receptors with similar binding affinities are widely distributed in the neurons of the zebrafish olfactory bulb, KA receptors are heterogeneously expressed among these cells and may serve unique roles in different regions of the olfactory bulb.
Collapse
Affiliation(s)
- J G Edwards
- University of Utah School of Medicine, Department of Physiology, 410 Chipeta Way, Room 155, Salt Lake City, UT 84108-1297, USA
| | | |
Collapse
|
7
|
Edwards JG, Michel WC. Odor-stimulated glutamatergic neurotransmission in the zebrafish olfactory bulb. J Comp Neurol 2002; 454:294-309. [PMID: 12442320 DOI: 10.1002/cne.10445] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of glutamate as a neurotransmitter in the zebrafish olfactory bulb (OB) was established by examining neuronal activation following 1). glutamate receptor agonist stimulation of isolated olfactory bulbs and 2). odorant stimulation of intact fish. Four groups of neurons (mitral cells, projection neurons; granule cells, juxtaglomerular cells, and tyrosine hydroxylase-containing cells; interneurons) were identified on the basis of cell size, cell location, ionotropic glutamate receptor (iGluR) agonist/odorant sensitivity, and glutamate, gamma-aminobutyric acid (GABA), and tyrosine hydroxylase immunoreactivity. Immunoreactive glutamate levels were highest in olfactory sensory neurons (OSNs) and mitral cells, the putative glutamatergic neurons. The sensitivity of bulbar neurons to iGluR agonists and odorants was established using a cationic channel permeant probe, agmatine (AGB). Agmatine that permeated agonist- or odor-activated iGluRs was fixed in place with glutaraldehyde and detected immunohistochemically. N-methyl-D-aspartic acid (NMDA) and alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainic acid (KA) iGluR agonists and odorants (glutamine, taurocholic acid) stimulated activity-dependent labeling of bulbar neurons, which was blocked with a mixture of the iGluR antagonists, D-2-amino-5-phosphono-valeric acid (APV) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The AMPA/KA antagonist CNQX completely blocked glutamine-stimulated AGB labeling of granule cells and tyrosine hydroxylase-containing cells, suggesting that, in these cell types, AMPA/KA receptor activation is essential for NMDA receptor activation. However, blocking AMPA/KA receptor activity failed to eliminate AGB labeling of mitral cells or juxtaglomerular cells. Collectively, these findings indicate that glutamate is the primary excitatory neurotransmitter in the zebrafish OB and that iGluR subtypes function heterogeneously in the bulbar neurons.
Collapse
Affiliation(s)
- Jeffrey G Edwards
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah 84108-1297, USA
| | | |
Collapse
|
8
|
Hayashida Y, Yagi T. On the interaction between voltage-gated conductances and Ca(2+) regulation mechanisms in retinal horizontal cells. J Neurophysiol 2002; 87:172-82. [PMID: 11784740 DOI: 10.1152/jn.00778.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The horizontal cell is a second-order retinal neuron that is depolarized in the dark and responds to light with graded potential changes. In such a nonspiking neuron, not only the voltage-gated ionic conductances but also Ca(2+) regulation mechanisms, e.g., the Na(+)/Ca(2+) exchange and the Ca(2+) pump, are considered to play important roles in generating the voltage responses. To elucidate how these physiological mechanisms interact and contribute to generating the responses of the horizontal cell, physiological experiments and computer simulations were made. Fura-2 fluorescence measurements made on dissociated carp horizontal cells showed that intracellular Ca(2+) concentration ([Ca(2+)]i) was maintained <100 nM in the resting state and increased with an initial transient to settle at a steady level of approximately 600 nM during prolonged applications of L-glutamate (L-glu, 100 microM). A preapplication of caffeine (10 mM) partially suppressed the initial transient of [Ca(2+)]i induced by L-glu but did not affect the L-glu-induced steady [Ca(2+)]i. This suggests that a part of the initial transient can be explained by the Ca(2+)-induced Ca(2+) release from the caffeine-sensitive Ca(2+) store. The Ca(2+) regulation mechanisms and the ionic conductances found in the horizontal cell were described by model equations and incorporated into a hemi-spherical cable model to simulate the isolated horizontal cell. The physiological ranges of parameters of the model equations describing the voltage-gated conductances, the glutamate-gated conductance and the Na(+)/Ca(2+) exchange were estimated by referring to previous experiments. The parameters of the model equation describing the Ca(2+) pump were estimated to reproduce the steady levels of [Ca(2+)]i measured by Fura-2 fluorescence measurements. Using the cable model with these parameters, we have repeated simulations so that the voltage response and [Ca(2+)]i change induced by L-glu applications were reproduced. The simulation study supports the following conclusions. 1) The Ca(2+)-dependent inactivation of the voltage-gated Ca(2+) conductance has a time constant of approximately 2.86 s. 2) The falling phase of the [Ca(2+)]i transient induced by L-glu is partially due to the inactivation of the voltage-gated Ca(2+) conductance. 3) Intracellular Ca(2+) is extruded mainly by the Na(+)/Ca(2+) exchange when [Ca(2+)]i is more than approximately 2 microM and by the Ca(2+) pump when [Ca(2+)]i is less than approximately 1 microM. 4) In the resting state, the Na(+)/Ca(2+) exchange may operate in the reverse mode to induce Ca(2+) influx and the Ca(2+) pump extrudes intracellular Ca(2+) to counteract the influx. The model equations of physiological mechanisms developed in the present study can be used to elucidate the underlying mechanisms of the light-induced response of the horizontal cell in situ.
Collapse
Affiliation(s)
- Yuki Hayashida
- Neurosystems Laboratory, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | | |
Collapse
|
9
|
Witkovsky P, Thoreson W, Tranchina D. Transmission at the photoreceptor synapse. PROGRESS IN BRAIN RESEARCH 2001; 131:145-59. [PMID: 11420937 DOI: 10.1016/s0079-6123(01)31013-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Witkovsky
- Departments of Ophthalmology and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
10
|
Abstract
AMPA and NMDA type glutamate receptors were studied in isolated catfish cone horizontal cells using the whole-cell and outside-out patch-recording techniques. In whole-cell recordings, cyclothiazide (CTZ) enhanced the peak current in response to glutamate (in the presence of NMDA receptor antagonists). In patch recordings, currents evoked by rapid and maintained applications of glutamate desensitized with a time constant of one millisecond. CTZ blocked this rapid desensitization. Recovery from desensitization of the AMPA receptors was rapid, having a time constant of 8.65 ms. In contrast, the whole-cell and patch responses to applications of NMDA were much smaller than the AMPA receptor responses and did not desensitize. The relative contribution of these two receptor subtypes depends critically on the condition of the synapse; if glutamate levels are tonically present, the NMDA receptors contribute significantly to the postsynaptic response. If glutamate levels fall rapidly following the release of a single quantum of glutamate, then AMPA receptor currents will dominate the postsynaptic response.
Collapse
Affiliation(s)
- S Eliasof
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
11
|
Laufer M, Negishi K, Salas R. Effects of glutamic acid and related agents on horizontal cells in a marine teleost retina. J Neurosci Res 1996; 44:568-76. [PMID: 8794948 DOI: 10.1002/(sici)1097-4547(19960615)44:6<568::aid-jnr7>3.0.co;2-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Excitatory amino acids (EAAs) such as glutamic and aspartic acids, considered as the most likely neurotransmitters at the photoreceptor-horizontal cell synapse of teleost retinas, as well as agonists such as kainic acid and several of their antagonists, were applied to isolated and superfused retinas of the teleost Eugerres plumieri. Intracellular recordings from horizontal cells reveal that EAA receptors are of the kainate-quisqualate type. There is competitive inhibition between the agonist and antagonist agents used, and under their combined effect, the synapse under study remains operational, in a functional state, able to modulate the horizontal cell membrane potential upon retinal illumination.
Collapse
Affiliation(s)
- M Laufer
- Center of Biophysics and Biochemistry, IVIC, Caracas, Venezuela
| | | | | |
Collapse
|
12
|
Abstract
Inositol 1,4,5-trisphosphate (InsP3) mobilizes intracellular stored Ca2+ by binding to specific receptors that are similar to the ryanodine receptor of skeletal and cardiac muscle. We have immunolocalized the InsP3 receptor to the inner nuclear layer and limiting membranes of the catfish retina. Immunocytochemistry on dissociated retinal cells further localized the receptor in the horizontal, bipolar and Müller glial cells. Immunostaining of the rat retina localized the InsP3 receptor to the plexiform layers. These data show a different distribution of InsP3 receptor in the catfish retina compared to that of other vertebrates, that may be suggestive of a different functional role for this receptor in different species.
Collapse
Affiliation(s)
- M A Micci
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | |
Collapse
|
13
|
Hartveit E, Brandstätter JH, Sassoè-Pognetto M, Laurie DJ, Seeburg PH, Wässle H. Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina. J Comp Neurol 1994; 348:570-82. [PMID: 7836563 DOI: 10.1002/cne.903480407] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The localization of the N-methyl-D-aspartate receptor subunit NR2A was studied, by using light microscopic immunocytochemistry, in the retina of adult rat, rabbit, cat, and monkey. Strong, punctate immunolabeling was observed in the inner plexiform layer indicating a synaptic localization of the NR2A subunit. The punctate labeling was concentrated in two bands corresponding to the on- and off-sublaminae of the inner plexiform layer. The punctate character of immunofluorescence suggested a synaptic localization of the receptor. This was confirmed by electron microscopy of immunostained adult rat retina. The staining was localized postsynaptic to cone bipolar cells, and only one of the two postsynaptic elements of the dyad was labeled. Staining was not observed at extrasynaptic plasma membranes. In situ hybridization of adult rat retina showed expression of the NR2A subunit in virtually all ganglion cells and displaced amacrine cells in the ganglion cell layer and in a subset of amacrine cells in the inner nuclear layer. The postnatal developmental expression of the NR2A subunit was studied in rat retina by light microscopic immunocytochemistry. Punctate immunolabeling appeared prior to eye opening, and the developmental profile of NR2A could be compatible with a role in development of circuitry in the inner plexiform layer.
Collapse
Affiliation(s)
- E Hartveit
- Max-Planck-Institut für Hirnforschung, Neuroanatomische Abteilung, Frankfurt, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
14
|
Brandstätter JH, Hartveit E, Sassoè-Pognetto M, Wässle H. Expression of NMDA and high-affinity kainate receptor subunit mRNAs in the adult rat retina. Eur J Neurosci 1994; 6:1100-12. [PMID: 7952290 DOI: 10.1111/j.1460-9568.1994.tb00607.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The expression patterns of nine genes encoding the N-methyl-D-aspartate (NMDA) receptor subunits NR1 and NR2A, NR2B, NR2C and NR2D, and the high-affinity kainate receptor subunits KA1, KA2, GluR6 and GluR7, were studied in the adult rat retina by in situ hybridization. Hybridization with [35S]dATP-labelled oligonucleotide probes revealed the expression of four of the NMDA receptor subunits (NR1, NR2A, NR2B and NR2C) and three of the high-affinity kainate receptor subunits (KA2, GluR6 and GluR7) in the retina. The NMDA receptor subunit NR2D and the high-affinity kainate receptor subunit KA1 could not be detected. In the ganglion cell layer, virtually every ganglion cell or displaced amacrine cell expressed the receptor subunits NR1, NR2A, NR2B, NR2C, KA2 and GluR7. The GluR6 subunit was expressed in a more restricted manner in the ganglion cell layer. In the inner nuclear layer, the receptor subunits NR1 and KA2 were homogeneously distributed, and therefore are most likely expressed by all cell types in this layer. The GluR6, NR2A, NR2B and NR2C subunits were expressed by subsets of amacrine cells. Labelling for NR2C was also found above the middle of the inner nuclear layer, corresponding to the location of bipolar cell somata. The GluR7 subunit was expressed by most amacrine and bipolar cells. These findings suggest that NMDA and high-affinity kainate receptor subunits could be present at a majority of glutamatergic retinal synapses.
Collapse
Affiliation(s)
- J H Brandstätter
- Max-Planck-Institut für Hirnforschung, Neuroanatomische Abteilung, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
15
|
Hughes TE, Hermans-Borgmeyer I, Heinemann S. Differential expression of glutamate receptor genes (GluR1-5) in the rat retina. Vis Neurosci 1992; 8:49-55. [PMID: 1310870 DOI: 10.1017/s0952523800006489] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The recent isolation of at least five different cDNAs encoding functional subunits of glutamate receptors (GluR1 to GluR5) has revealed a diversity whose function is not understood. To learn more about how these different receptor subunits are used in the brain, we undertook an in situ hybridization study of the retina to define how the different glutamate receptor genes are expressed. We chose the retina because the glutamate sensitivities of its different cell types have been characterized, and these different neurons reside in different laminae. Hybridization of [35S]UTP-labeled cRNA probes with transverse sections and freshly dissociated cells reveals that all five receptor subunits are expressed in the retina. Hybridization signal is detected in different, but overlapping, sets of cells in the retina. GluR1, GluR2, and GluR5 are expressed by many somata, and GluR4 by a few, in the outer third of the inner nuclear layer, where the horizontal cells reside. Transcripts for GluR1, GluR2, and GluR5 are found in the somata within the middle third of the inner nuclear layer, which is where the bipolar cell somata are located, and GluR2 probes label freshly dissociated rod bipolar cells. All of the probes produce labeling over the cells at the inner edge of the inner nuclear layer, which are probably amacrine cells, as well as over the cell bodies in the ganglion cell layer.
Collapse
Affiliation(s)
- T E Hughes
- Department of Neurosciences 0608, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
16
|
Millar TJ, Anderton PJ. Effects of excitatory amino acids and their antagonists on the light response of luminosity and color-opponent horizontal cells in the turtle (Pseudemys scripta elegans) retina. Vis Neurosci 1991; 6:135-49. [PMID: 1675585 DOI: 10.1017/s095252380001052x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Both kainic acid (KA) and N-methyl-d-aspartatic acid (NMDA) depolarize luminosity-type horizontal cells (L-type H cells) in normal turtle retina. The presence of both NMDA and non-NMDA receptors for excitatory amino acids (EAAs) on these cells was highlighted by an unusual effect of the noncompetitive NMDA-antagonist, MK-801. In retinas that had been exposed to MK-801, the action of NMDA was irreversibly altered to one of hyperpolarization, while the depolarizing effect of KA was unaltered. The aim of the present study was to further characterize these receptors on L-type H cells and to extend the investigation to color-opponent H cells (C-type H cells). Intracellular recording was used to study the effects of KA, NMDA, MK-801, the competitive NMDA antagonists, 2-amino-5-phosphonopentanoic acid (AP5) and 2-amino-7-phosphonoheptanoic acid (AP7), and the nonspecific EAA antagonist, kynurenic acid (KYN) on the light responses of L-type and C-type H cells in turtle retina. The effects of combinations of these drugs were also studied. In L-type H cells the agonists caused depolarization and loss of light response, KYN caused hyperpolarization and loss of light response, and MK-801, AP5 or AP7 had no direct effect. However, application of NMDA following MK-801, AP5 or AP7, but not KYN, caused hyperpolarization and loss of light response. The depolarizing effect of KA was unaltered by these antagonists. These data confirm the presence of an unusual NMDA receptor on L-type H cells. In the case of red/green C-type H cells, application of KA caused loss of responses to both red and green light, with loss of green responses preceding loss of red responses. NMDA initially removed responses to both red and green light. The most striking effect of NMDA was seen during early washout where the responses to red were reversed (hyperpolarizing). These responses eventually recovered their normal polarity. These results suggest that the depolarizing response of C-type H cells to red light is mediated by L-type H cells, but not via inhibition of the excitatory input from green cones to C-type H cells.
Collapse
Affiliation(s)
- T J Millar
- Department of Biological Sciences, University of Western Sydney, Kingswood, N.S.W., Australia
| | | |
Collapse
|
17
|
Milani D, Facci L, Buso M, Toffano G, Leon A, Skaper SD. Excitatory amino acid receptor agonists stimulate membrane inositol phospholipid hydrolysis and increase cytoplasmic free Ca2+ in primary cultures of retinal neurons. Cell Signal 1990; 2:359-68. [PMID: 1979228 DOI: 10.1016/0898-6568(90)90066-j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A variety of neurotransmitters are believed to elicit effects through receptor-stimulated inositol phospholipid metabolism. It appears that most major types of retinal neurons receive a direct glutamatergic input. The aim of the present studies was to characterize excitatory amino acid (EAA) receptor-mediated breakdown of inositol phospholipids and changes in Ca2+ homeostasis in primary avian retinal cell cultures. Cell monolayers, prepared from 8-day-old chick embryo neural retina, were labelled with [3H]inositol for 48 h, and used after 7 days in vitro. Kainic acid stimulated the accumulation of inositol phosphates in a time- and dose-dependent manner (ED50 = 30 microM). The EAA receptor agonists glutamate, N-methyl-D-aspartate (NMDA), ibotenate and quisqualate were all active, with the rank order: glutamate greater than kainate greater than NMDA much greater than ibotenate approximately quisqualate. External Ca2+ was required for these effects. Agonist actions were inhibited by type-specific antagonists, and also Mg2+ in the case of glutamate and NMDA. Glutamate, NMDA and kainate also elevated cytosolic free Ca2+ in individual retinal cells loaded with the Ca2(+)-sensitive dye Fura-2, as assessed by digital fluorescence ratio imaging microscopy. The agonist-induced increases in [Ca2+]i were largely dependent on extracellular Ca2+, independent of membrane depolarization and were blocked by Mg2+ for glutamate and NMDA. These results demonstrate that vertebrate retinal cells possess EAA receptors coupled to intracellular signal transduction pathways.
Collapse
Affiliation(s)
- D Milani
- Fidia Research Laboratories, Department of CNS Research, Terme (PD), Italy
| | | | | | | | | | | |
Collapse
|
18
|
Anderton PJ, Millar TJ. MK801-induced antagonism of NMDA-preferring excitatory amino acid receptors in horizontal cells of the turtle retina. Neurosci Lett 1989; 101:331-6. [PMID: 2549465 DOI: 10.1016/0304-3940(89)90555-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracellular recordings were made from axon terminals of L-type horizontal cells in the turtle (Pseudemys scripta elegans) retina. Superfusion with Ringer's solution containing 3.0 mM N-methyl-D-aspartate (NMDA) or 0.2 mM kainic acid (KA) induced depolarization and reduction in the hyperpolarizing light responses of horizontal cells, consistent with an agonist effect of these excitatory amino acid (EAA) analogs on postsynaptic receptors. Delivery of 0.1 mM MK801, a selective blocker of NMDA-type EAA receptors, had no apparent effect on membrane potential or photoresponses, nor did it change the KA depolarization. Exposure of the retina to 3.0 mM NMDA following 0.1 mM MK801 always caused hyperpolarization of the horizontal cell and loss of light responses. Because MK801 is specific for NMDA-preferring receptors, we suggest that the reversal of the NMDA response to one of antagonism following MK801 is strong evidence for the presence of NMDA-preferring EAA receptors in turtle horizontal cells.
Collapse
Affiliation(s)
- P J Anderton
- School of Optometry, University of New South Wales, Kensington, Australia
| | | |
Collapse
|
19
|
Sattayasai J, Zappia J, Ehrlich D. Differential effects of excitatory amino acids on photoreceptors of the chick retina: an electron-microscopical study using the zinc-iodide-osmium technique. Vis Neurosci 1989; 2:237-45. [PMID: 2487650 DOI: 10.1017/s0952523800001152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although excitotoxins derived from acidic amino acids are known to damage neurons in the inner nuclear and ganglion cell layers of the retina, little is known about their effects on photoreceptors. This study examines the acute and long-term effects of excitotoxins on photoreceptors of the chick retina. The zinc-iodide-osmium (ZIO) technique, which darkly labels a substantial subpopulation of synaptic vesicles in normal photoreceptor terminals, was used to supplement routine electron microscopy. Two-day-old chicks received a single intraocular injection of either 10, 50, or 200 nmoles kainic acid (KA), 200 nmoles N-methyl-D-aspartic acid (NMDA), or 200 nmoles quisqualic acid (QUIS), and were allowed to survive for either 6 h, 7 d, or 21 d. At 6 h, following exposure to 10, 50, and 200 nmoles KA, there was swelling and disruption of photoreceptor lamellae of the outer segments. At 7- and 21-d survival, 50 and 200 nmoles KA resulted in rounded, condensed synaptic terminals, which contained a high density of synaptic vesicles. However, there was complete loss of ZIO-positive vesicles within these photoreceptors. Outer segments were still disrupted, although small patches of lamellae were evident, suggestive of regeneration. Following exposure to QUIS, there was extensive swelling of outer segment lamellae at 6 h survival. Synaptic ribbons in terminals were also swollen. At longer survival periods, QUIS exposure resulted in a reduction of ZIO-positive vesicles, as well as swollen lamellae in outer segments. NMDA exposure, at either short or long-term survival, did not alter photoreceptor morphology, including the pattern of ZIO stain. The prolonged effects of KA, and to a lesser extent QUIS, on photoreceptors suggests that these drugs have a long-term effect on photoreceptor function. The ZIO technique provides a novel and potentially useful approach for identification of damaged photoreceptors.
Collapse
Affiliation(s)
- J Sattayasai
- Department of Anatomy, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
20
|
O'Dell TJ. Pharmacological characterization of voltage-clamped catfish rod horizontal cell responses to kainic acid. Brain Res 1989; 477:118-25. [PMID: 2564798 DOI: 10.1016/0006-8993(89)91399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Excitatory amino acid-induced currents were examined in voltage-clamped rod horizontal cells dissociated from the catfish retina. The cells responded to glutamate (GLU) and the GLU analogues kainate (KA), quisqualate (QA), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), while N-methyl-D-aspartate (NMDA) produced inconsistent responses. Of the effective agonists, only KA produced large, concentration-dependent current responses. While QA, AMPA, GLU, and NMDA were poor agonists, these compounds were able to block rod horizontal cell responses to KA. The rank order potency for this inhibition was: QA greater than AMPA greater than or equal to L-GLU much greater than D-GLU = NMDA. Several excitatory amino acid receptor antagonists were also able to inhibit rod horizontal cell responses to KA. The rank order potency for the inhibition by the compounds tested was: kynurenate greater than cis-piperidine-dicarboxylic acid much greater than D,L-alpha-amino-adipate. Comparison of the potency of several ligands to inhibit rod and cone horizontal cell responses to KA suggested similarities in the KA binding sites of both cell types.
Collapse
Affiliation(s)
- T J O'Dell
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston 77550
| |
Collapse
|
21
|
Miyachi E, Murakami M. Coexistence of NMDA and non-NMDA receptors on turtle horizontal cells revealed using isolated retina preparations. Vision Res 1989; 29:385-8. [PMID: 2571210 DOI: 10.1016/0042-6989(89)90002-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Effects of glutamate and its agonists on horizontal cells appeared diversely when studied in turtle eyecup preparations. Consistent results were obtained when the isolated retina preparations were used. Not only kainate and quisqualate but also N-methyl-D-aspartate (NMDA) caused a sustained depolarization and light-evoked responses were suppressed for as long as these agonists were superfused. A selective antagonist of NMDA, 2-amino-5-phosphonovalerate (APV), hyperpolarized horizontal cells and reduced their light-evoked responses. These results indicate the coexistence of NMDA and non-NMDA receptors on turtle horizontal cells.
Collapse
Affiliation(s)
- E Miyachi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
22
|
O'Dell TJ, Christensen BN. Mecamylamine is a selective non-competitive antagonist of N-methyl-D-aspartate- and aspartate-induced currents in horizontal cells dissociated from the catfish retina. Neurosci Lett 1988; 94:93-8. [PMID: 3071750 DOI: 10.1016/0304-3940(88)90276-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The nicotinic acetylcholine channel blockers mecamylamine (MECA) and pempidine (PEMP) blocked voltage-clamped isolated catfish retina cone horizontal responses to aspartate (Asp) and N-methyl-D-aspartate (NMDA) but had little effect on currents induced by kainate and quisqualate. Concentration response curves for NMDA and Asp in the presence of MECA suggested that MECA was a non-competitive inhibitor of NMDA and Asp responses. Further, the MECA and PEMP block of NMDA and Asp-induced currents was highly voltage-sensitive. The non-competitive and voltage-sensitive block of NMDA and Asp-induced currents by MECA suggest that MECA (and PEMP) block the NMDA receptor ion channel.
Collapse
Affiliation(s)
- T J O'Dell
- Neuroscience Graduate Program, Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
23
|
Takahashi K, Murakami M. Subtype of excitatory amino acid receptor in cone horizontal cells of the carp retina as specified by reversal potential measurement technique. Neurosci Res 1988; 5:453-64. [PMID: 2840614 DOI: 10.1016/0168-0102(88)90029-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Effects of agonists of the excitatory amino acid (EAA) transmitters were examined in carp cone horizontal cells where glutamate (Glu) or aspartate (Asp) is believed to act as the transmitter released from the photoreceptors. Bath application of kainic (KA), quisqualic (QA) and N-methyl-D-aspartic (NMDA) acids produced little effect on cone cells, indicating that their effects act directly on the horizontal cells. KA and QA (100 microM for both) produced depolarizations in the horizontal cells. Their reversal potentials were measured by our novel technique which was developed to overcome a serious experimental disadvantage due to electrical coupling between horizontal cells. The retina was perfused with a modified Ringer solution which contained high-Ca2+,Ba2+, and some K+-channel blockers. A Ca2+ action potential having an overshoot was evoked in the horizontal cells when they were depolarized by application of the EAA. During the action potential, perfect potential uniformity was achieved throughout electrically coupled cells. Responses induced by KA and QA during the overshoot appeared in reversed polarities to those elicited at the resting state. Their reversal potentials were then estimated to be similar at around -6mV, and this value coincided with that of the Glu- or Asp-induced responses. On the other hand, effects of NMDA were diverse even though applied in the order of mM; some cells were hyperpolarized, but the others were little affected. These observations indicate that the EAA receptor of carp horizontal cells is KA/QA (non-NMDA) type.
Collapse
Affiliation(s)
- K Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
24
|
Byzov AL. Voltage-dependence of cobalt-induced blockade of synaptic transmission between photoreceptors and horizontal retinal cells. NEUROPHYSIOLOGY+ 1988. [DOI: 10.1007/bf02145690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|