1
|
Synaptic Zinc: An Emerging Player in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094724. [PMID: 33946908 PMCID: PMC8125092 DOI: 10.3390/ijms22094724] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023] Open
Abstract
Alterations of zinc homeostasis have long been implicated in Parkinson's disease (PD). Zinc plays a complex role as both deficiency and excess of intracellular zinc levels have been incriminated in the pathophysiology of the disease. Besides its role in multiple cellular functions, Zn2+ also acts as a synaptic transmitter in the brain. In the forebrain, subset of glutamatergic neurons, namely cortical neurons projecting to the striatum, use Zn2+ as a messenger alongside glutamate. Overactivation of the cortico-striatal glutamatergic system is a key feature contributing to the development of PD symptoms and dopaminergic neurotoxicity. Here, we will cover recent evidence implicating synaptic Zn2+ in the pathophysiology of PD and discuss its potential mechanisms of actions. Emphasis will be placed on the functional interaction between Zn2+ and glutamatergic NMDA receptors, the most extensively studied synaptic target of Zn2+.
Collapse
|
2
|
Krall RF, Tzounopoulos T, Aizenman E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021; 457:235-258. [PMID: 33460731 DOI: 10.1016/j.neuroscience.2021.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA.
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
3
|
Hazzaz Abouamal T, Choukairi Z, Taoufiq F. Functional Exploration Of T-Type Calcium Channels (Cav3.2 And Cav3.3) And Their Sensitivity To Zinc. Open Microbiol J 2018; 12:280-287. [PMID: 30197701 PMCID: PMC6110071 DOI: 10.2174/1874285801812010280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/22/2022] Open
Abstract
Introduction: T-type Ca2+ channels (TTCC) are low Voltage-gated calcium channels, expressed in various tissues such as the brain and heart, and contribute to a variety of physiological functions including neuronal excitability, hormone secretion, muscle contraction, and pacemaker activity. At high concentrations, Zinc (Zn2+) is naturally attached to cell membranes and is therefore considered a reversible inhibitor of calcium. Zinc is also involved in the kinetics of sodium and potassium currents. Zinc is essential for many functions. A low zinc tenor is associated with emotional instability, digestive disorders, slow-growing and alteration of protein synthesis. Material and Methods: For the Cell Culture we used HEK-293/tsA-201, and for transfection, the pCDNA3 plasmid constructs encoding human CaV3.2, and CaV3.3 subunits. Electrophysiological experiments were performed using the whole cell configuration of the patch-clamp technique. T-type currents were recorded using a test pulse from a holding potential at (-100mV) to (-30 mV), data Acquisition and Analysis for Current-voltage relationships (I-V curves) were recorded for the two cloned T-type Ca2+ channels (Cav3.2, Cav3.3). Results: Our studies describe the behavior of these channels Cav3.2 and Cav3.3 and also their current sensitivity to Zinc (Zn2+) in transfected HEK-293/tsA-201cells. Our results show that Zn2+ applies a modulatory effect on T-type calcium channels. We observe that Zn2+ differentially modulates the CaV3.2 and CaV3.3 channels. Zn2+ preferably inhibits Cav3.2. Conclusion: We have demonstrated that Zn2+ differentially modulates two CaV3 channels (Cav3.2 and Cav3.3): It is a preferential blocker of CaV3.2 channels and it alters the gating behaviour of CaV3.3 channels.
Collapse
Affiliation(s)
- Tahar Hazzaz Abouamal
- Department of Biology, Laboratory of Biosciences, Faculty of Sciences and Technology of Mohammedia, Casablanca, Morocco
| | - Zineb Choukairi
- Department of Biology, Laboratory of Biosciences, Faculty of Sciences and Technology of Mohammedia, Casablanca, Morocco
| | - Fechtali Taoufiq
- Department of Biology, Laboratory of Biosciences, Faculty of Sciences and Technology of Mohammedia, Casablanca, Morocco
| |
Collapse
|
4
|
Cuajungco MP, Lees GJ, Kydd RR, Tanzi RE, Bush AI. Zinc and Alzheimer's Disease: An Update. Nutr Neurosci 2016; 2:191-208. [DOI: 10.1080/1028415x.1999.11747277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Danscher G, Stoltenberg M. Zinc-specific Autometallographic In Vivo Selenium Methods: Tracing of Zinc-enriched (ZEN) Terminals, ZEN Pathways, and Pools of Zinc Ions in a Multitude of Other ZEN Cells. J Histochem Cytochem 2016; 53:141-53. [PMID: 15684327 DOI: 10.1369/jhc.4r6460.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vivo-applied sodium selenide or sodium selenite causes the appearance of zinc-selenium nanocrystals in places where free or loosely bound zinc ions are present. These nanocrystals can in turn be silver enhanced by autometallographic (AMG) development. The selenium method was introduced in 1982 as a tool for zinc-ion tracing, e.g., in vesicular compartments such as synaptic vesicles of zinc-enriched (ZEN) terminals in the central nervous system, and for visualization of zinc ions in ZEN secretory vesicles of, e.g., somatotrophic cells in the pituitary, zymogene granules in pancreatic acinar cells, beta-cells of the islets of Langerhans, Paneth cells of the crypts of Lieberkühn, secretory cells of the tubuloacinar glands of prostate, epithelium of parts of ductus epididymidis, and osteoblasts. If sodium selenide/selenite is injected into brain, spinal cord, spinal nerves containing sympathetic axons, or intraperitoneally, retrograde axonal transport of zinc-selenium nanocrystals takes place in ZEN neurons, resulting in accumulation of zinc-selenium nanocrystals in lysosomes of the neuronal somata. The technique is, therefore, also a highly specific tool for tracing ZEN pathways. The present review includes an update of the 1982 paper and presents evidence that only zinc ions are traced with the AMG selenium techniques if the protocols are followed to the letter.
Collapse
Affiliation(s)
- Gorm Danscher
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark.
| | | |
Collapse
|
6
|
Danscher G, Montagnese C. Autometallographic Localization of Synaptic Vesicular Zinc and Lysosomal Gold, Silver and Mercury. J Histotechnol 2013. [DOI: 10.1179/his.1994.17.1.15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Abstract
Zinc is a life-sustaining trace element, serving structural, catalytic, and regulatory roles in cellular biology. It is required for normal mammalian brain development and physiology, such that deficiency or excess of zinc has been shown to contribute to alterations in behavior, abnormal central nervous system development, and neurological disease. In this light, it is not surprising that zinc ions have now been shown to play a role in the neuromodulation of synaptic transmission as well as in cortical plasticity. Zinc is stored in specific synaptic vesicles by a class of glutamatergic or "gluzinergic" neurons and is released in an activity-dependent manner. Because gluzinergic neurons are found almost exclusively in the cerebral cortex and limbic structures, zinc may be critical for normal cognitive and emotional functioning. Conversely, direct evidence shows that zinc might be a relatively potent neurotoxin. Neuronal injury secondary to in vivo zinc mobilization and release occurs in several neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis, in addition to epilepsy and ischemia. Thus, zinc homeostasis is integral to normal central nervous system functioning, and in fact its role may be underappreciated. This article provides an overview of zinc neurobiology and reviews the experimental evidence that implicates zinc signals in the pathophysiology of neuropsychiatric diseases. A greater understanding of zinc's role in the central nervous system may therefore allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
8
|
Dong J, Robertson JD, Markesbery WR, Lovell MA. Serum zinc in the progression of Alzheimer's disease. J Alzheimers Dis 2009; 15:443-50. [PMID: 18997297 DOI: 10.3233/jad-2008-15310] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies show significantly decreased levels of zinc transporter 1 (ZnT-1) in the brain of subjects with mild cognitive impairment (MCI) but significantly increased ZnT-1 in late stage AD (LAD). However, the reason for the apparent dichotomy is unclear. Based on in vivo studies that show animals provided a zinc (Zn) deficient diet demonstrate decreased brain ZnT-1, we used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify serum Zn levels from 18 living mild to moderate AD patients (9 men, 9 women), 19 MCI patients (9 men, 10 women) and 16 age-matched normal control (NC) subjects (9 men, 7 women). Zinc levels for all subjects were not significantly different among any of the three subject groups. However, there was a statistically significant decrease of serum Zn (11.7 +/- 0.5 microM) in men with MCI compared to women with MCI (13.7 +/- 0.6 microM) and NC men (13.9 +/- 0.6 microM). Serum Zn levels in probable AD patients were comparable to those in NC subjects. Overall, these data suggest a significant decrease of serum Zn in men with MCI, may explain the loss of ZnT-1 observed in previous studies and suggest there may be more pronounced sex differences in MCI than were previously recognized.
Collapse
Affiliation(s)
- Jiang Dong
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
9
|
Lovell MA. A potential role for alterations of zinc and zinc transport proteins in the progression of Alzheimer's disease. J Alzheimers Dis 2009; 16:471-83. [PMID: 19276540 PMCID: PMC2881701 DOI: 10.3233/jad-2009-0992] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although multiple studies have suggested a role for alterations of zinc (Zn) and zinc transport (ZnT) proteins in the pathogenesis of Alzheimer's disease, the exact role of this essential trace element in the progression of the disease remains unclear. The following review discusses the normal role of Zn and ZnT proteins in brain and the potential effects of their alteration in the pathogenesis of Alzheimer's disease, particularly in the processing of the amyloid-beta protein precursor and amyloid-beta peptide generation and aggregation.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
Wang ZY, Dahlström A. Axonal transport of zinc transporter 3 and zinc containing organelles in the rodent adrenergic system. Neurochem Res 2008; 33:2472-9. [PMID: 18712599 DOI: 10.1007/s11064-008-9798-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 06/26/2008] [Indexed: 11/25/2022]
Abstract
Zinc is the second most abundant trace metal (after iron) in mammalian tissues, and it is an essential element for growth, development, DNA synthesis, immunity, and other important cellular processes. A considerable amount of zinc in the brain exists as a pool of free or loosely bound zinc ions in synaptic vesicles with zinc transporter 3 (ZnT3) in their membranes. Here we demonstrate that also in the peripheral sympathetic nervous system zinc handling neurons exist. In autonomic ganglia of rats and mice a subset of neuronal cell bodies contain zinc, visualized by the autometallographic (AMG) and TSQ histochemical methods. The Zn-transporter 3 is, as shown by immunofluorescence, also present in tyrosine hydroxylase (TH)-positive neurons, but rarely in cell bodies with neuropeptide Y (NPY)-immunoreactivity (IR). In axons of crush-operated sciatic nerves a rapid bidirectional accumulation of AMG granules occurred. Also ZnT3-IR was found to accumulate rapidly in anterograde as well as retrograde direction, colocalized with TH-IR. So far nerve terminals with ZnT3-IR have not been observed. The functional significance of zinc ions in the sympathetic system is not known.
Collapse
Affiliation(s)
- Zhan-You Wang
- Department of Histology and Embryology, China Medical University, Shenyang, 110001, People's Republic of China.
| | | |
Collapse
|
11
|
Gao HL, Xu H, Wang X, Dahlstrom A, Huang L, Wang ZY. Expression of zinc transporter ZnT7 in mouse superior cervical ganglion. Auton Neurosci 2008; 140:59-65. [PMID: 18499530 DOI: 10.1016/j.autneu.2008.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 11/16/2022]
Abstract
The superior cervical ganglion (SCG) neurons contain a considerable amount of zinc ions, but little is known about the zinc homeostasis in the SCG. It is known that zinc transporter 7 (ZnT7, Slc30a7), a member of the Slc30 ZnT family, is involved in mobilizing zinc ions from the cytoplasm into the Golgi apparatus. In the present study, we examined the expression and localization of ZnT7 and labile zinc ions in the mouse SCG using immunohistochemistry, Western blot and in vivo zinc selenium autometallography (AMG). Our immunohistochemical analysis revealed that the ZnT7 immunoreactivity in the SCG neurons was predominately present in the perinuclear region of the neurons, suggesting an affiliation to the Golgi apparatus. The Western blot results verified that ZnT7 protein was expressed in the mouse SCGs. The AMG reaction product was shown to have a similar distribution as ZnT7 immunoreactivity. These observations support the notion that ZnT7 may participate in zinc transport, storage, and incorporation of zinc into zinc-binding proteins in the Golgi apparatus of mouse SCG neurons.
Collapse
Affiliation(s)
- Hui-Ling Gao
- Department of Histology and Embryology, China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Ketterman JK, Li YV. Presynaptic evidence for zinc release at the mossy fiber synapse of rat hippocampus. J Neurosci Res 2008; 86:422-34. [PMID: 17847078 DOI: 10.1002/jnr.21488] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vesicular zinc (Zn(2+)) is found in a subset of glutamatergic nerve terminals throughout the mammalian forebrain and is colocalized with glutamate. Despite well-documented neuromodulatory roles, exocytosis of endogenous Zn(2+) from presynaptic terminals has never been directly demonstrated, because existing studies have measured elevated Zn(2+) concentrations by examining the perfusate. Thus, the specific origin of synaptic Zn(2+) remains a controversial subject. Here, we describe synaptic Zn(2+) trafficking between cellular compartments at hippocampal mossy fiber synapses by using the fluorescent indicator Zinpyr-1 to label the hippocampal mossy fiber boutons. We determined endogenous Zn(2+) exocytosis by direct observation of vesicular Zn(2+) as decreasing fluorescence intensity from presynaptic axonal boutons in the stratum lucidum of CA3 during neural activities induced by the stimulation of membrane depolarization. This presynaptic fluorescence gradually returned to a level near baseline after the withdrawal of moderate stimulation, indicating an endogenous mechanism to replenish vesicular Zn(2+). The exocytosis of the synaptic Zn(2+) was also dependent on extracellular Ca(2+) and was sensitive to Zn(2+)-specific chelators. Vesicular Zn(2+) loading was sensitive to the vacuolar-type H(+)-ATPase inhibitor concanamycin A, and our experiments indicated that blockade of vesicular reloading with concanamycin A led to a depletion of that synaptic Zn(2+). Furthermore, synaptic Zn(2+) translocated to the postsynaptic cell body upon release to produce increases in the concentration of weakly bound Zn(2+) within the postsynaptic cytosol, demonstrating a feature unique to ionic substances released during neurotransmission. Our data provide important evidence for Zn(2+) as a substance that undergoes release in a manner similar to common neurotransmitters.
Collapse
Affiliation(s)
- Joshua K Ketterman
- Department of Biomedical Science, Neuroscience Program, Ohio University, Athens, Ohio 45701, USA
| | | |
Collapse
|
13
|
Doering P, Danscher G, Larsen A, Bruhn M, Søndergaard C, Stoltenberg M. Changes in the vesicular zinc pattern following traumatic brain injury. Neuroscience 2007; 150:93-103. [DOI: 10.1016/j.neuroscience.2007.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/13/2007] [Accepted: 09/11/2007] [Indexed: 02/05/2023]
|
14
|
Stoltenberg M, Bush AI, Bach G, Smidt K, Larsen A, Rungby J, Lund S, Doering P, Danscher G. Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency. Neuroscience 2007; 150:357-69. [PMID: 17949919 DOI: 10.1016/j.neuroscience.2007.09.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/20/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
The ZnT3 zinc transporter is uniquely expressed in cortical glutamatergic synapses where it organizes zinc release into the synaptic cleft and mediates beta-amyloid deposition in transgenic mice. We studied the association of zinc in plaques in relation to cytoarchitectural zinc localization in the APP/PS1 transgenic mouse model of Alzheimer's disease. The effects of low dietary zinc for 3 months upon brain pathology were also studied. We determined that synaptic zinc distribution within cortical layers is paralleled by amyloid burden, which is heaviest for both in layers 2-3 and 5. ZnT3 immunoreactivity is prominent in dystrophic neurites within amyloid plaques. Low dietary zinc caused a significant 25% increase in total plaque volume in Alzheimer's mice using stereological measures. The level of oxidized proteins in brain tissue did not changed in animals on a zinc-deficient diet compared with controls. No obvious changes were observed in the autometallographic pattern of zinc-enriched terminals in the neocortex or in the expression levels of zinc transporters, zinc importers or metallothioneins. A small decrease in plasma zinc induced by the low-zinc diet was consistent with the subclinical zinc deficiency that is common in older human populations. While the mechanism remains uncertain, our findings indicate that subclinical zinc deficiency may be a risk factor for Alzheimer's pathology.
Collapse
Affiliation(s)
- M Stoltenberg
- Neurobiology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jo SM, Danscher G, Schrøder HD, Suh SW. Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice. Biometals 2007; 21:151-8. [PMID: 17570038 DOI: 10.1007/s10534-007-9103-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
Zinc enriched (ZEN) neurons and terminals are abundant in the rodent spinal cord. Zinc ions have been suggested to modulate the excitability of primary afferent fibers believed to be important in nociceptive transmission. To test the hypothesis that vesicular zinc concentration is related to neuropathic pain we applied Chung's rodent pain model on BALB/c mice, and traced zinc transporter 3 (ZnT3) proteins and zinc ions with immunohistochemistry and autometallography (AMG), respectively. Under anesthesia the left fifth lumbar spinal nerve was ligated in male mice in order to produced neuropathic pain. The animals were then sacrificed 5 days later. The ZnT3 immunoreactivity was found to have decreased significantly in dorsal horn of fourth, fifth, and sixth lumbar segments. In parallel with the depressed ZnT3 immunoreactivity the amount of vesicular zinc decreased perceptibly in superficial gray matters of especially layer I-IV of the same segments. The transection-induced reduction of vesicular zinc in ZEN terminals of the dorsal horn was synchronic to reduced pain threshold, as measured by von Frey method. In a separate study, we observed intensive zinc selenite precipitation in somata of the smaller spinal ganglion cell, but 5 days after spinal nerve transection zinc precipitation was also found in the lager ganglion cells. The present results indicate that zinc may be involved in pain mechanism in the spinal ganglion level. These results support the hypothesis that vesicular zinc might have a modulatory role for neuropathic pain. Thus, increased pain sensitivity might be related to reduce vesicular zinc level in the dorsal spinal gray matter.
Collapse
Affiliation(s)
- Seung Mook Jo
- Department of Anatomy, Gachon Medical School, Namdong-Gu, Inchon, South Korea
| | | | | | | |
Collapse
|
16
|
Danscher G, Stoltenberg M. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc–sulphur/zinc–selenium nanocrystals, (3) metal ions liberated from metal implants and particles. ACTA ACUST UNITED AC 2006; 41:57-139. [PMID: 16949439 DOI: 10.1016/j.proghi.2006.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Autometallographic (AMG) silver enhancement is a potent histochemical tool for tracing a variety of metal containing nanocrystals, e.g. pure gold and silver nanoclusters and quantum dots of silver, mercury, bismuth or zinc, with sulphur and/or selenium. These nanocrystals can be created in many different ways, e.g. (1) by manufacturing colloidal gold or silver particles, (2) by treating an organism in vivo with sulphide or selenide ions, (3) as the result of a metabolic decomposition of bismuth-, mercury- or silver-containing macromolecules in cell organelles, or (4) as the end product of histochemical processing of tissue sections. Such nano-sized AMG nanocrystals can then be silver-amplified several times of magnitude by being exposed to an AMG developer, i.e. a normal photographic developer enriched with silver ions. The present monograph attempts to provide a review of the autometallographic silver amplification techniques known today and their use in biology. After achieving a stronghold in histochemistry by Timm's introduction of the "silver-sulphide staining" in 1958, the AMG technique has evolved and expanded into several different areas of research, including immunocytochemistry, tracing of enzymes at LM and EM levels, blot staining, retrograde axonal tracing of zinc-enriched (ZEN) neurons, counterstaining of semithin sections, enhancement of histochemical reaction products, marking of phagocytotic cells, staining of myelin, tracing of gold ions released from gold implants, and visualization of capillaries. General technical comments, protocols for the current AMG methods and a summary of the most significant scientific results obtained by this wide variety of AMG histochemical approaches are included in the present article.
Collapse
Affiliation(s)
- Gorm Danscher
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
17
|
Wang X, Wang ZY, Gao HL, Danscher G, Huang L. Localization of ZnT7 and zinc ions in mouse retina--immunohistochemistry and selenium autometallography. Brain Res Bull 2006; 71:91-6. [PMID: 17113933 DOI: 10.1016/j.brainresbull.2006.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/11/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
Zinc transporter 7 (ZnT7, Slc30a7), a member of the Slc30 family, is involved in mobilizing zinc ions from the cytoplasm into the Golgi apparatus. In the present study, we examined the distribution and localization of ZnT7 and the labile zinc ions in the mouse retina using immunohistochemistry and in vivo zinc-selenium autometallography (ZnSe(AMG)). Our results showed that ZnT7 is abundantly expressed in the ganglion cells and pigment epithelial cells of the mouse retina. ZnT7 is also expressed in the amacrine cells and the layer of optic fibers of the mouse retina, but to a lesser extent. Weak staining of ZnT7 was detected in the inner plexiform layer, outer plexiform layer, and outer segment of the photoreceptors. However, ZnT7 was not detected in the outer nuclear layer and inner segment of the photoreceptors. A high level of labile zinc pool was detected in the pigment epithelial cells, the inner segment of the photoreceptors, and the marginal region of the inner nuclear layer. Less amount of labile zinc ions were detected in the ganglion cells of the retina. These observations strongly suggest that ZnT7 may play critical roles in retinal zinc homeostasis and that chelatable zinc pools may have multiple functions in the retina.
Collapse
Affiliation(s)
- Xin Wang
- Department of Histology and Embryology, China Medical University, Shenyang 110001, PR China
| | | | | | | | | |
Collapse
|
18
|
Lovell MA, Smith JL, Markesbery WR. Elevated zinc transporter-6 in mild cognitive impairment, Alzheimer disease, and pick disease. J Neuropathol Exp Neurol 2006; 65:489-98. [PMID: 16772872 DOI: 10.1097/01.jnen.0000229237.98124.91] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Filamentous cytoplasmic inclusions are hallmarks of Alzheimer disease (AD) and Pick disease (PD). Although previous studies show elevated zinc (Zn) in AD brain, there has been little study of zinc transporter (ZnT) proteins that are critical in the maintenance of Zn homeostasis. Using Western blot analysis, we show significantly elevated ZnT-6, the protein responsible for sequestration of Zn in the trans-Golgi network, in the hippocampus/parahippocampal gyrus (HPG) of AD subjects compared to age-matched controls and a trend toward elevated ZnT-6 in subjects with amnestic mild cognitive impairment (MCI). Based on these data, we used immunohistochemistry to investigate the cellular distribution of ZnT-6 in the HPG of control subjects and subjects with MCI, AD, and PD. Comparison of immediately adjacent serial sections stained using the modified Bielschowsky method and immunostained for ZnT-6 showed elevated ZnT-6 in 89 +/- 7% of neurofibrillary tangle (NFT)-bearing neurons in AD and 100 +/- 19% of Pick bodies in PD specimens. Confocal microscopy of HPG from MCI subjects double labeled for ZnT-6 and MC-1, a marker of early NFT formation, showed 85 +/- 4% of MC-1-positive cells were strongly ZnT-6-positive. Increased ZnT-6 immunostaining in neurons containing cytoplasmic inclusions in MCI, AD, and PD suggests a role for ZnT-6 in the pathogenesis of these lesions.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.
| | | | | |
Collapse
|
19
|
Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Mueller RN, Muelle RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, de Valdenebro M, Prough DS, Zornow MH. Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 2006; 198:285-93. [PMID: 16443223 DOI: 10.1016/j.expneurol.2005.08.030] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/05/2005] [Accepted: 08/26/2005] [Indexed: 11/19/2022]
Abstract
"Free Zn2+" (rapidly exchangeable Zn2+) is stored along with glutamate in the presynaptic terminals of specific specialized (gluzinergic) cerebrocortical neurons. This synaptically releasable Zn2+ has been recognized as a potent modulator of glutamatergic transmission and as a key toxin in excitotoxic neuronal injury. Surprisingly (despite abundant work on bound zinc), neither the baseline concentration of free Zn2+ in the brain nor the presumed co-release of free Zn2+ and glutamate has ever been directly observed in the intact brain in vivo. Here, we show for the first time in dialysates of rat and rabbit brain and human CSF samples from lumbar punctures that: (i) the resting or "tonic" level of free Zn2+ signal in the extracellular fluid of the rat, rabbit and human being is approximately 19 nM (95% range: 5-25 nM). This concentration is 15,000-fold lower than the "300 microM" concentration which is often used as the "physiological" concentration of free zinc for stimulating neural tissue. (ii) During ischemia and reperfusion in the rabbit, free zinc and glutamate are (as has often been presumed) released together into the extracellular fluid. (iii) Unexpectedly, Zn2+ is also released alone (without glutamate) at a variable concentration for several hours during the reperfusion aftermath following ischemia. The source(s) of this latter prolonged release of Zn2+ is/are presumed to be non-synaptic and is/are now under investigation. We conclude that both Zn2+ and glutamate signaling occur in excitotoxicity, perhaps by two (or more) different release mechanisms.
Collapse
Affiliation(s)
- C J Frederickson
- NeuroBioTex, Inc., 101 Christopher Columbus Blvd., Galveston, TX 77550, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Frederickson CJ, Giblin LJ, Balaji RV, Rengarajan B, Masalha R, Frederickson CJ, Zeng Y, Lopez EV, Koh JY, Chorin U, Besser L, Hershfinkel M, Li Y, Thompson RB, Krezel A. Synaptic release of zinc from brain slices: factors governing release, imaging, and accurate calculation of concentration. J Neurosci Methods 2006; 154:19-29. [PMID: 16460810 DOI: 10.1016/j.jneumeth.2005.11.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/17/2005] [Accepted: 11/18/2005] [Indexed: 12/16/2022]
Abstract
Cerebrocortical neurons that store and release zinc synaptically are widely recognized as critical in maintenance of cortical excitability and in certain forms of brain injury and disease. Through the last 20 years, this synaptic release has been observed directly or indirectly and reported in more than a score of publications from over a dozen laboratories in eight countries. However, the concentration of zinc released synaptically has not been established with final certainty. In the present work we have considered six aspects of the methods for studying release that can affect the magnitude of zinc release, the imaging of the release, and the calculated concentration of released zinc. We present original data on four of the issues and review published data on two others. We show that common errors can cause up to a 3000-fold underestimation of the concentration of released zinc. The results should help bring consistency to the study of synaptic release of zinc.
Collapse
|
21
|
Varea E, Alonso-Llosà G, Molowny A, Lopez-Garcia C, Ponsoda X. Capture of extracellular zinc ions by astrocytes. Glia 2006; 54:304-15. [PMID: 16856150 DOI: 10.1002/glia.20382] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Synaptic zinc ions released during synaptic transmission interact with pre- and postsynaptic neuroreceptors, thus modulating neurotransmission. It is likely that they have to be efficiently cleared from the extracellular milieu to assure subsequent synaptic events. Both neurons and glia are assumed to participate in this clearance by mechanisms that are not fully understood. In this study, electron microscopic zinc cytochemistry has shown zinc-electrondense particles associated with hippocampal astrocytic membranes frequently found accumulated in stacked lamellae. In cultured astrocytes, the use of zinc fluorochromes and endocytic markers allowed the simultaneous imaging of the capture of extracellular zinc simultaneously to plasma membrane markers; this endocytic process was inhibited by high sucrose concentrations. Finally, electron microscopy of zinc-loaded and fluorochrome photoconverted cells demonstrated some early events of extracellular zinc capture as well as its late accumulation in lysosome-like organelles.
Collapse
Affiliation(s)
- Emilio Varea
- Cell Biology Department, Universitat de Valencia, Valencia, Spain
| | | | | | | | | |
Collapse
|
22
|
Abstract
The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized.
Collapse
Affiliation(s)
- Jae-Yong Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Stoltenberg M, Bruhn M, Søndergaard C, Doering P, West MJ, Larsen A, Troncoso JC, Danscher G. Immersion autometallographic tracing of zinc ions in Alzheimer beta-amyloid plaques. Histochem Cell Biol 2005; 123:605-11. [PMID: 15981003 DOI: 10.1007/s00418-005-0787-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2005] [Indexed: 11/30/2022]
Abstract
An easy to perform autometallographic technique (AMG) for capturing zinc ions in Alzheimer plaques is presented. The possibility of visualizing loosely bound or free zinc ions in tissue by immersion autometallography (iZnS(AMG)) is a relatively recent development. The iZnS(AMG) staining is caused by zinc-sulphur nanocrystals created in 1-2 mm thick brain slices that are immersed in a 0.1% sodium sulphide, 3% glutaraldehyde phosphate buffered solution, the NeoTimm Solution (NTS), for 3 days. When the zinc-sulphur nanocrystals are subsequently silver-enhanced by autometallography, the plaques are readily identified as spheres of dark interlacing strands of different sizes, embedded in the pattern of zinc-enriched terminals. The zinc specificity of the iZnS(AMG) technique was tested by immersion of brain slides in the chelator DEDTC prior to the NTS immersion. The iZnS(AMG) detection of zinc ions is easily standardized and can be used in the quantification of plaques with stereological methods. This technique is the first to detect zinc in plaques in the cerebellum of transgenic PS1/APP mice and the first to detect zinc ions in plaques and dystrophic neurites at electron microscopical levels.
Collapse
Affiliation(s)
- M Stoltenberg
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, 8000, Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'.
Collapse
|
25
|
Lovell MA, Smith JL, Xiong S, Markesbery WR. Alterations in zinc transporter protein-1 (ZnT-1) in the brain of subjects with mild cognitive impairment, early, and late-stage Alzheimer's disease. Neurotox Res 2005; 7:265-71. [PMID: 16179263 DOI: 10.1007/bf03033884] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several studies show increased levels of zinc (Zn) in the Alzheimer's disease (AD) brain. More recently, alterations in synaptic Zn and Zn transporter proteins (ZnT) have been implicated in the accumulation of amyloid plaques in an animal model of AD. To determine if alterations in ZnT proteins are present in AD brain, we measured levels of ZnT-1, the protein responsible for export of Zn to the extracellular space in the amygdala (AMY), hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyrus (SMTG), inferior parietal lobule (IPL), and cerebellum (CER) of 19 AD and 14 age-matched control subjects. To determine if alterations of ZnT-1 occur early in the progression of AD, we analyzed protein levels in the HPG, SMTG and CER of 5 subjects with mild cognitive impairment (MCI), 5 subjects with early AD (EAD) and 4 appropriately age-matched controls. Western blot and dot-blot analysis showed statistically significant (p 0.05) elevations of ZnT-1 in AD AMY, HPG, and IPL and significantly depleted ZnT-1 in AD SMTG compared to age-matched control subjects. We also observed statistically significant elevations of ZnT-1 in the HPG of EAD subjects compared with controls. In contrast to late-stage AD subjects, ZnT-1 levels were significantly decreased in HPG of subjects with MCI and were significantly elevated in the SMTG of both MCI and EAD subjects compared with age-matched controls. Correlation analysis of ZnT-1 levels and senile plaque (SP) and neurofibrillary tangle (NFT) counts in the AMY and CA1 and subiculum of AD HPG showed a significant (p 0.05) positive correlation with SP counts and a trend towards a significant (p = 0.12) positive correlation with NFT counts in AMY. Overall, our results show alterations in one of the key proteins responsible for maintenance of Zn homeostasis early in the progression of AD suggesting that alterations in Zn balance could be involved in the pathogenesis of neuron degeneration and amyloid deposition in AD.
Collapse
Affiliation(s)
- M A Lovell
- Sanders-Brown Center on Aging and Departments of Chemistry, Neurology and Pathology, University of Kentucky, Lexington, KY 40536, USA. malove2@.uky.edu
| | | | | | | |
Collapse
|
26
|
Sheline CT, Takata T, Ying H, Canzoniero LMT, Yang A, Yu SP, Choi DW. Potassium attenuates zinc-induced death of cultured cortical astrocytes. Glia 2004; 46:18-27. [PMID: 14999810 DOI: 10.1002/glia.10313] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transient global ischemia induces CA1 hippocampal neuronal death without astrocyte death, perhaps mediated in part by the toxic translocation of zinc from presynaptic terminals to postsynaptic neurons. We tested the hypothesis that cellular depolarization, which occurs in the ischemic brain due to increased extracellular potassium and energy failure, might contribute to astrocyte resistance to zinc-induced death. We previously reported that neurons in mixed cortical neuronal-astrocyte cultures were more vulnerable to a 5-15-min exposure to Zn(2+) than astrocytes in the same cultures. In the present report, we show that (1) neurons in isolation or in conjunction with astrocytes were 2-3-fold more sensitive to a 15-min nondepolarizing Zn(2+) exposure than are glia; (2) KCl-induced depolarization attenuated glial vulnerability to zinc toxicity but potentiated neuronal vulnerability to zinc toxicity; (3) Zn(2+)-induced glial death was attenuated by T-type Ca(2+) channel blockade, as well as compounds that increase NAD(+) levels; and (4) both astrocytic (65)Zn(2+) accumulation and the increase in astrocytic [Zn(2+)](i) induced by Zn(2+) exposure were also attenuated by depolarization or T-type Ca(2+) channel blockers. Zn(2+)-induced cell death in astrocytes was at least in part apoptotic, as caspase-3 was activated, and the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone partially attenuated Zn(2+)-induced death. The levels of peak [Zn(2+)](i) achieved in astrocytes during this toxic nondepolarizing Zn(2+) exposure (250 nM) were substantially greater than those achieved in neurons (40 nM). In glia, exposure to 400 microM Zn(2+) induced a 13-mV depolarization, which can activate T-type Ca(2+) channels. This Zn(2+)-induced astrocyte death, like neuronal death, was attenuated by the addition of pyruvate or niacinamide to the exposure medium.
Collapse
Affiliation(s)
- Christian T Sheline
- Department of Neurology and Center for the Study of Nervous System Injury, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Sheline CT, Wang H, Cai AL, Dawson VL, Choi DW. Involvement of poly ADP ribosyl polymerase-1 in acute but not chronic zinc toxicity. Eur J Neurosci 2003; 18:1402-9. [PMID: 14511320 DOI: 10.1046/j.1460-9568.2003.02865.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously suggested that zinc-induced neuronal death may be mediated in part by inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), secondary to depletion of the essential cosubstrate NAD+. Given convergent evidence implicating the NAD+-catabolizing enzyme, poly ADP ribosyl polymerase (PARP) in mediating ATP depletion and neuronal death after excitotoxic and ischemic insults, we tested the specific hypothesis that the neuronal death induced by exposure to toxic levels of extracellular zinc might be partly mediated by PARP. PARP was activated in cultured mouse cortical astrocytes after a toxic acute Zn2+ exposure (350 microm Zn2+ for 15 min), but not in cortical neurons or glia after exposure to a toxic chronic Zn2+ exposure (40 microm Zn2+ for 1-4 h), an exposure sufficient to deplete NAD+ and ATP levels. Furthermore, the neurotoxicity induced by acute, but not chronic, Zn2+ exposure was reduced in mixed neuronal-glial cultures prepared from mutant mice lacking the PARP gene. These data suggest PARP activation may contribute to more fulminant forms of Zn2+-induced neuronal death.
Collapse
Affiliation(s)
- Christian T Sheline
- Department of Neurology and, Center for the Study of Nervous System Injury, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
28
|
Wang ZY, Danscher G, Dahlström A, Li JY. Zinc transporter 3 and zinc ions in the rodent superior cervical ganglion neurons. Neuroscience 2003; 120:605-16. [PMID: 12895501 DOI: 10.1016/s0306-4522(03)00419-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have revealed that zinc-enriched (ZEN) terminals are present in all parts of the CNS though with great differences in intensity. The densest populations of both ZEN terminals and ZEN somata are found in telencephalic structures, but also structures like the spinal cord demonstrate impressive ZEN systems spreading terminals several segments around the respective ZEN somata. The present study evaluates whether sympathetic neurons in the superior cervical ganglia (SCG) are ZEN neurons, i.e. contain vesicles that have zinc transporter 3 (ZnT3) proteins in their membranes and contain zinc ions. ZnT3 immunoreactivity (IR) was found in the somata and processes in the postganglionic neurons of mouse SCG. Only a small fraction of neurons (less than 5%), expressed varying degrees of ZnT3. Colchicine treatment, however, increased the number of ZnT3-positive neurons three-fold, suggesting an accumulation of ZnT3 protein in the somata. A small proportion of the postganglionic axons revealed dotted accumulations of ZnT3 IR along their courses. Double labeling showed that all ZnT3-positive neurons and axons were also tyrosine hydroxylase-positive with strong immunofluorescence, while no colocalization was found between ZnT3 and the vesicular acetylcholine transporter (VAChT) or neuropeptide Y IR. VAChT-positive preganglionic neurons were found to terminate on ZnT3 neuronal somata. 6-Methoxy 8-para toluene sulfonamide quinoline fluorescence and zinc selenium autometallography (ZnSe(AMG)) revealed that a subgroup of SCG cells contained free or loosely bound zinc ions. It is therefore concluded that ZnT3 and zinc ions are present in a subpopulation of TH-positive, NPY-negative neurons in the rodent SCG, supporting the notion that vesicular zinc ions may play a special role in the peripheral sympathetic adrenergic system.
Collapse
Affiliation(s)
- Z Y Wang
- Department of Histology and Embryology, China Medical University, Shenyang 110001, China
| | | | | | | |
Collapse
|
29
|
Stupien G, Florian C, Roullet P. Involvement of the hippocampal CA3-region in acquisition and in memory consolidation of spatial but not in object information in mice. Neurobiol Learn Mem 2003; 80:32-41. [PMID: 12737932 DOI: 10.1016/s1074-7427(03)00022-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigates the implication of the hippocampal CA3-region in the different phases of learning and memory in spatial and non-spatial tasks. For that purpose, we performed focal injections of diethyldithiocarbamate (DDC) into the CA3-region of the dorsal hippocampus. The DDC chelates most of the heavy metals in the brain which blocks selectively and reversibly the synapses containing heavy metals, i.e., the mossy fibres synaptic buttons and synapses of the dendrites of pyramidal cells. The effects of temporal inactivation of the CA3-region was examined in a non-associative task, the spatial open-field, designed to estimate the ability of mice to react to spatial changes, and in the object recognition task, designed to estimate the ability of mice to identify a familiar object. The results show that DDC induced a specific impairment on learning and memory consolidation in the spatial open-field but had no effect on recall in this task. In the object recognition task, DDC did not induce any impairment in the different phases of learning and memory. These data demonstrate that the hippocampal CA3-region is specifically implicated in spatial information processing and seems to be involved not only in acquisition but also in consolidation of spatial information.
Collapse
Affiliation(s)
- Grégory Stupien
- Centre de Recherches Sur la Cognition Animale, CNRS FRE 2382, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
| | | | | |
Collapse
|
30
|
Sheline CT, Ying HS, Ling CS, Canzoniero LMT, Choi DW. Depolarization-induced 65zinc influx into cultured cortical neurons. Neurobiol Dis 2002; 10:41-53. [PMID: 12079403 DOI: 10.1006/nbdi.2002.0497] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toxic Zn(2+) influx may be a key mechanism underlying selective neuronal death after transient global ischemia in rats. To identify routes responsible for neuronal Zn(2+) influx, we measured the accumulation of (65)Zn(2+) into cultured murine cortical cells under depolarizing conditions (60 mM K(+)) associated with severe hypoxia-ischemia in brain tissue. Addition of 60 mM K(+) or 300 microM kainate substantially increased (65)Zn(2+) accumulation into mixed cultures of neurons and glia, but not glia alone. (65)Zn(2+) accumulation was attenuated by increasing concentrations of extracellular Ca(2+) or trypsin pretreatment, but not by late trypsinization, and corresponded to an increase in atomic Zn(2+). Confirming predominantly neuronal entry, K(+)-induced (65)Zn(2+) accumulation was reduced by prior selective destruction of neurons with NMDA. K(+)-induced (65)Zn(2+) influx was not sensitive to glutamate receptor antagonists, but was attenuated by Gd(3+) and Cd(2+) as well as 1 microM nimodipine; it was partially sensitive to 1 microM omega-conotoxin-GVIA, and insensitive to 1 microM omega-agatoxin-IVA. K(+)-induced, Gd(3+)-sensitive (45)Ca(2+) accumulation but not (65)Zn(2+) accumulation was sharply attenuated by lowering extracellular pH to 6.6.
Collapse
Affiliation(s)
- Christian T Sheline
- Center for the Study of Nervous System Injury, Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
31
|
Wang ZY, Li JY, Danscher G, Dahlström A. Localization of zinc-enriched neurons in the mouse peripheral sympathetic system. Brain Res 2002; 928:165-74. [PMID: 11844484 DOI: 10.1016/s0006-8993(01)03344-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Growing evidence supports the notion that zinc ions located in the synaptic vesicles of zinc-enriched neurons (ZEN) play important physiological roles and are involved in certain pathological changes in the central nervous system. Here we present data revealing the distribution of zinc ions and the co-localization of zinc transporter 3 (ZnT3) and tyrosine hydroxylase (TH) in crush-operated sciatic nerves and lumbar sympathetic ganglia of mice, using zinc selenide autometallography (ZnSe(AMG)) and ZnT3 immunofluorescence combined with confocal scanning microscopy, respectively. Six hours after the crush operation, ZnSe(AMG) grains and ZnT3 immunoreactivity were predominantly present in a subpopulation of thin unmyelinated sciatic nerve axons. In order to identify the type(s) of ZEN axons involved, double labeling with ZnT3 and (1) TH, (2) vesicular acetylcholine transporter (VAChT), (3) calcitonin gene-related peptide (CGRP), and (4) neuropeptide Y (NPY) was performed. Confocal microscopic observations showed that ZnT3 was located in a subpopulation of sciatic axons in distended parts proximal and distal to the crush site. Most, if not all, ZnT3-positive axons contained TH immunofluorescence, a few showed co-localization of ZnT3 and VAChT with very weak immunostaining, while no congruence was observed between ZnT3 and CGRP or NPY. Studies of the lumbar sympathetic ganglia showed that not more than 5% of the neurons were ZnT3-positive and that almost all of these were TH-positive. Furthermore, approximately 5% of total lumbar sympathetic ganglionic cells were ZnSe(AMG) positive, 48 h after a local injection of sodium selenide into the sciatic nerve. The present data support the notion that a subgroup of mouse sympathetic postganglionic neurons are ZEN neurons.
Collapse
Affiliation(s)
- Zhan-You Wang
- Department of Anatomy and Cell Biology, University of Gothenburg, Box 420, SE-405 30 Gothenburg, Sweden.
| | | | | | | |
Collapse
|
32
|
Abstract
Electrophysiological experiments have shown that zinc ions modulate glutamate and GABA receptors in brain slices. All the zinc-enriched neuronal pathways in the brain analyzed up until now have been found to be glutaminergic. Many years ago, zinc-enriched terminals with flat vesicles and symmetric synapses were found to be present in rat spinal cord by Henrik Daa Schrøder, and recently these findings have been supported by immunohistochemical and electron microscopical data in lamprey, mouse and rat. In the present study we expanded these observations by revealing a colocalization of zinc ions, zinc transporter-3 (ZnT3) and glutamic acid decarboxylase (GAD) in synaptic vesicles of zinc-enriched terminals throughout the mouse spinal cord. Confocal analysis of ZnT3 and GAD immunofluorescence was used at light microscopical levels, and a combination of zinc selenium autometallography and GAD immunocytochemistry at electron microscopic levels. Zinc-enriched/GABAergic terminals were observed in all laminae of the spinal gray matter, but most densely populated were laminae I and III in the dorsal horn. In the lateral and ventral funiculi of the white matter, rows of inhibitory zinc-enriched boutons were seen radiating from the gray matter. Ultrastructurally, colocalization of zinc ions and GAD immunoreactivity was seen in a pool of presynaptic terminals in the above locations. Some zinc-enriched terminals were not GAD-positive and some GAD-positive terminals were void of zinc ions. The majority of the zinc-enriched, not GABAergic terminals could be classified as excitatory based on their morphology, i.e. round clear vesicles and symmetric synapses. We conclude that a majority of the spinal cord zinc-enriched terminals are GABAergic. The zinc-enriched terminals with excitatory morphology are most likely glutaminergic, a few have an inhibitory morphology but are not GABAergic. These are most likely glycinergic.
Collapse
Affiliation(s)
- Z Wang
- Department of Anatomy and Cell Biology, Göteborg University, Gothenburg, Sweden
| | | | | | | |
Collapse
|
33
|
Li Y, Hough CJ, Suh SW, Sarvey JM, Frederickson CJ. Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol 2001; 86:2597-604. [PMID: 11698545 DOI: 10.1152/jn.2001.86.5.2597] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.
Collapse
Affiliation(s)
- Y Li
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
34
|
Varea E, Ponsoda X, Molowny A, Danscher G, Lopez-Garcia C. Imaging synaptic zinc release in living nervous tissue. J Neurosci Methods 2001; 110:57-63. [PMID: 11564525 DOI: 10.1016/s0165-0270(01)00417-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Zinc enriched neurons have a pool of synaptic vesicles which contain free or loosely-bound zinc ions. The movement of the vesicular zinc ions into the synaptic clefts has been previously studied by microdialysis, fluorescence postmortem staining for zinc and radioactive zinc isotope. In this study the zinc fluorescence probe N-6-metoxy-p-toluensulfonamide quinoline (TSQ) has been applied as a tracer of synaptic release of zinc ions. This fluorochrome permeates cell membranes and when exposed to living brain slices gives rise to a staining pattern similar to that seen with autometallography. In the living brain slices, fluorescence emission persists after exposure to calcium saturated ethylen diamino-tetra-acetic acid (Ca-EDTA) because this chelator does not penetrate cell membranes, while sodium dethyldithiocarbamate (DEDTC), that does penetrate membranes, partially suppressed the fluorescence emission. Stimulation of slices bathed in the non-permeant chelator Ca-EDTA with 50 mM potassium chloride leads to a rapid and complete disappearance of fluorescence. In the absence of Ca-EDTA, however, potassium stimulation induces a sudden transitory increase in fluorescence. This increase is caused by a translocation of the fluorochrome (TSQ) zinc molecules from the weakly acid interior of the synaptic vesicles to the neutral extracellular space, whereby the fluorescence emission of the molecules is enhanced sufficiently to be recorded by a high sensitivity TV camera.
Collapse
Affiliation(s)
- E Varea
- Neurobiology, Cell Biology Department, University of Valencia, Avda. Dr. Moliner 50, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
35
|
Wang ZY, Li JY, Varea E, Danscher G, Dahlström A. Is the postganglionic sympathetic neuron zinc-enriched? A stop-flow nerve crush study on rat sciatic nerve. Neuroreport 2001; 12:2247-50. [PMID: 11447343 DOI: 10.1097/00001756-200107200-00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Axonal transport of endogenous zinc ions in the rat sciatic nerve was studied by a stop-flow/nerve crush technique combined with zinc selenide autometallography (ZnSeAMG) at light and electron microscopic levels. Distinct accumulations of ZnSeAMG grains were detected, in particular proximal but also distal to the crushes, 1.5 h after the operation, and the amounts of zinc ions increased further in the following 3-8 h. Ultrastructurally, ZnSeAMG grains were located predominantly in unmyelinated axons. The data suggest that a subpopulation of sciatic nerve axons contains and transports zinc ions both antero- and retrogradely, indicating that the second neuron in the sympathetic nervous system is zinc enriched (ZEN).
Collapse
Affiliation(s)
- Z Y Wang
- Department of Anatomy and Cell Biology, University of Gothenburg, Box 420, SE 405 30, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
36
|
Czupryn A, Skangiel-Kramska J. Deprivation and denervation differentially affect zinc-containing circuitries in the barrel cortex of mice. Brain Res Bull 2001; 55:287-95. [PMID: 11470329 DOI: 10.1016/s0361-9230(01)00457-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the neocortex, a population of glutamatergic synapses contains chelatable zinc that is released upon depolarization. The present study compares the effect of chronic tactile deprivation and vibrissectomy performed at different postnatal ages on the synaptic zinc distribution in the mouse barrel cortex. We found that a chronic unilateral tactile deprivation resulted in an increase of synaptic zinc in deprived barrels. Distribution and intensity of zinc staining in non-deprived barrels resembled the control situation. The increase of zinc staining was observed if chronic deprivation started in early postnatal life or in adolescent mice but not in 70-day-old animals. This suggests that a critical period exists for plasticity of zinc containing terminals in the barrel cortex. The alteration of zinc staining was localized to not only the thalamorecipient layers IV but also layer II/III, and upper layer V. Neonatal denervation of selected vibrissal rows resulted in rearrangement of synaptic zinc distribution following cytoarchitectonic alterations in the barrel field. However, no changes in the intensity of zinc staining were observed. Vibrissectomy performed after the critical period for barrel formation did not affect either the distribution or intensity of zinc staining. It appears that the integrity of vibrissa-barrel pathway is necessary to induce activity-dependent alterations in synaptic zinc.
Collapse
Affiliation(s)
- A Czupryn
- Department of Neurophysiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
37
|
Wang Z, Danscher G, Mook Jo S, Shi Y, Schrøder HD. Retrograde tracing of zinc-enriched (ZEN) neuronal somata in rat spinal cord. Brain Res 2001; 900:80-7. [PMID: 11325349 DOI: 10.1016/s0006-8993(01)02261-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The zinc selenide autometallographic (ZnSeAMG) technique for tracing the retrograde axonal transport of zinc ions in zinc-enriched (ZEN) neurons was used to map the distribution of ZEN neuronal somata in rat spinal cord. After a local injection of sodium selenide into the dorsal or ventral horn, ZnSeAMG-labeled ZEN neurons appeared in Rexed's laminae V, VII and X while laminae I and II were void. A few scattered ZEN somata were observed in the remaining laminae. The labeled neurons differed in shape and size, and the relatively high level of labeled somata around the injection site suggests that many ZEN neurons have relatively short axons or boutons en passage close to the neuronal origin. Ultrastructurally, the retrogradely transported zinc selenide clusters were found in the lysosomes of ZEN somata and proximal dendrites. Electron microscopic studies also revealed two different kinds of ZEN terminals: (1) terminals with flat synaptic vesicles making symmetric synaptic contacts; and (2) terminals with round vesicles making asymmetric synaptic contacts. The present study suggests the existence of propriospinal systems of ZEN neurons comprising both segmental and intersegmental ZEN connections and having either inhibitory or excitatory ZEN terminals. The ZEN neurons seem to form a vast network of terminals located primarily in the gray matter, but also contacting dendrites radiating into the white matter. Important functions of this rather massive system of ZEN terminals can not be deduced from our present knowledge, but the systems appear to be involved in both motor and sensory functions.
Collapse
Affiliation(s)
- Z Wang
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, DK-8000, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
38
|
Birinyi A, Parker D, Antal M, Shupliakov O. Zinc co-localizes with GABA and glycine in synapses in the lamprey spinal cord. J Comp Neurol 2001; 433:208-21. [PMID: 11283960 DOI: 10.1002/cne.1136] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The presence of zinc in synaptic terminals in the lamprey spinal cord was examined utilizing a modification of the Timm's sulfide silver method and with the fluorescent marker 6-methoxy-8-quinolyl-p-toluenesulfonamide (TSQ). Axons labeled with a Timm's staining method were predominantly located in the lateral region of the dorsal column. This correlated with a maximum of TSQ fluorescence in this region of the spinal cord. Single labeled terminals accumulating Timm reaction product were also found throughout the gray matter and fiber tracts. At the ultrastructural level, zinc was located in a population of synaptic terminals that co-localized gamma-aminobutyric acid (GABA) and glycine. Possible effects of Zn2+ on neuronal activity were examined. In spinobulbar interneurons, which receive GABAergic input in the dorsal column, zinc potentiated responses to GABA application, but it did not affect responses to GABA in motoneurons. Responses in motoneurons to pressure application of glycine were also not affected by Zn2+. Zinc, however, potentiated monosynaptic glycinergic inhibitory postsynaptic potentials (IPSPs) evoked in motoneurons by inhibitory locomotor network interneurons and increased frequency, but not amplitude of spontaneous miniature IPSPs recorded in the presence of tetrodotoxin (TTX), suggesting presynaptic effects. Glutamate responses and the amplitude of monosynaptic excitatory postsynaptic potentials (EPSPs) in motoneurons were reduced by zinc. These effects appeared to be mediated largely postsynaptically through an effect on the N-methyl-D-aspartate (NMDA) component of the glutamatergic input. Our results thus show that free zinc is present in inhibitory synaptic terminals in the lamprey spinal cord, and that it may function as a modulator of inhibitory synaptic transmission.
Collapse
Affiliation(s)
- A Birinyi
- Department of Anatomy, Histology, and Embryology, University Medical School of Debrecen, H-4012, Debrecen, Hungary
| | | | | | | |
Collapse
|
39
|
Partlo LA, Sainsbury RS, Roth SH. Effects of repeated hydrogen sulphide (H2S) exposure on learning and memory in the adult rat. Neurotoxicology 2001; 22:177-89. [PMID: 11405250 DOI: 10.1016/s0161-813x(01)00016-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of repeated exposure (125 ppm) of hydrogen sulphide (H2S) on learning and memory in the rat were investigated. A 16-arm radial arm maze (RAM) was used to examine neurobehavioural functioning in a series of three experiments. Experiment 1 involved training animals on a complex spatial maze task, prior to a 5-week period of exposure to H2S or a control gas mixture. Rats were tested for maze retention after each 5-day exposure period. It was determined that repeated H2S exposure had no effect on memory for a previously learned spatial task. Experiment 2 was conducted to determine whether H2S interferes with the acquisition of a novel spatial task. Naïve animals received daily maze training and exposure (H2S or control) sessions over an extended 11-week period (48 sessions). The results indicated that the groups were comparable on four of five measures of maze performance. H2S animals were impaired in their ability to find all of the reinforcers prior to the end of a trial, suggesting that H2S had an effect on performance rate, but not acquisition of the maze task. Finally, Experiment 3 was conducted to determine what role proactive interference might play in H2S-related brain impairment. Animals from the preceding experiment were trained on a new reversed contingency maze task. H2S animals made more overall arm entries than controls, suggesting that H2S may impair learning by increasing the animals' susceptibility to interference from irrelevant stimuli. The prefrontal cortex was discussed as a potential target site of H2S. The pathophysiological mechanisms underlying the effect of H2S on normal brain function have yet to be identified.
Collapse
Affiliation(s)
- L A Partlo
- Department of Psychology, University of Calgary, Alberta, Canada.
| | | | | |
Collapse
|
40
|
Lin DD, Cohen AS, Coulter DA. Zinc-induced augmentation of excitatory synaptic currents and glutamate receptor responses in hippocampal CA3 neurons. J Neurophysiol 2001; 85:1185-96. [PMID: 11247988 DOI: 10.1152/jn.2001.85.3.1185] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Zinc is found throughout the CNS at synapses co-localized with glutamate in presynaptic terminals. In particular, dentate granule cells' (DGC) mossy fiber (MF) axons contain especially high concentrations of zinc co-localized with glutamate within vesicles. To study possible physiological roles of zinc, visualized slice-patch techniques were used to voltage-clamp rat CA3 pyramidal neurons, and miniature excitatory postsynaptic currents (mEPSCs) were isolated. Bath-applied zinc (200 microM) enhanced median mEPSC peak amplitudes to 153.0% of controls, without affecting mEPSC kinetics. To characterize this augmentation further, rapid agonist application was performed on perisomatic outside-out patches to coapply zinc with glutamate extremely rapidly for brief (1 ms) durations, thereby emulating release kinetics of these substances at excitatory synapses. When zinc was coapplied with glutamate, zinc augmented peak glutamate currents (mean +/- SE, 116.6 +/- 2.8% and 143.8 +/- 9.8% of controls at 50 and 200 microM zinc, respectively). This zinc-induced potentiation was concentration dependent, and pharmacological isolation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents (AMPAR currents) gave results similar to those observed with glutamate application (mean, 115.0 +/- 5.4% and 132.5 +/- 9.1% of controls at 50 and 200 microM zinc, respectively). Inclusion of the AMPAR desensitization blocker cyclothiazide in the control solution, however, abolished zinc-induced augmentation of glutamate-evoked currents, suggesting that zinc may potentiate AMPAR currents by inhibiting AMPAR desensitization. Based on the results of the present study, we hypothesize that zinc is a powerful modulator of both excitatory synaptic transmission and glutamate-evoked currents at physiologically relevant concentrations. This modulatory role played by zinc may be a significant factor in enhancing excitatory neurotransmission and could significantly regulate function at the mossy fiber-CA3 synapse.
Collapse
Affiliation(s)
- D D Lin
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0599, USA
| | | | | |
Collapse
|
41
|
Snider BJ, Choi J, Turetsky DM, Canzoniero LM, Sensi SL, Sheline CT, Wang X, Yu SP, Choi DW. Nitric oxide reduces Ca(2+) and Zn(2+) influx through voltage-gated Ca(2+) channels and reduces Zn(2+) neurotoxicity. Neuroscience 2001; 100:651-61. [PMID: 11098127 DOI: 10.1016/s0306-4522(00)00311-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The translocation of synaptic Zn(2+) from nerve terminals into selectively vulnerable neurons may contribute to the death of these neurons after global ischemia. We hypothesized that cellular Zn(2+) overload might be lethal for reasons similar to cellular Ca(2+) overload and tested the hypothesis that Zn(2+) neurotoxicity might be mediated by the activation of nitric oxide synthase. Although Zn(2+) (30-300microM) altered nitric oxide synthase activity in cerebellar extracts in solution, it did not affect nitric oxide synthase activity in cultured murine neocortical neurons. Cultured neurons exposed to 300-500microM Zn(2+) for 5min under depolarizing conditions developed widespread degeneration over the next 24h that was unaffected by the concurrent addition of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine. Furthermore, Zn(2+) neurotoxicity was attenuated when nitric oxide synthase activity in the cultures was induced by exposure to cytokines, exogenous nitric oxide was added or nitric oxide production was pharmacologically enhanced. The unexpected protective effect of nitric oxide against Zn(2+) toxicity may be explained, at least in part, by reduction of toxic Zn(2+) entry. Exposure to nitric oxide donors reduced Ba(2+) current through high-voltage activated calcium channels, as well as K(+)-stimulated neuronal uptake of 45Ca(2+) or 65Zn(2+). The oxidizing agents thimerosal and 2,2'-dithiodipyridine also reduced K(+)-stimulated cellular 45Ca(2+) uptake, while akylation of thiols by pretreatment with N-ethylmaleimide blocked the reduction of 45Ca(2+) uptake by a nitric oxide donor.The results suggest that Zn(2+)-induced neuronal death is not mediated by the activation of nitric oxide synthase; rather, available nitric oxide may attenuate Zn(2+) neurotoxicity by reducing Zn(2+) entry through voltage-gated Ca(2+) channels, perhaps by oxidizing key thiol groups.
Collapse
Affiliation(s)
- B J Snider
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Akagi T, Kaneda M, Ishii K, Hashikawa T. Differential subcellular localization of zinc in the rat retina. J Histochem Cytochem 2001; 49:87-96. [PMID: 11118481 DOI: 10.1177/002215540104900109] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the retina, zinc is believed to be a modulator of synaptic transmission and a constituent of metalloenzymes. To determine whether the intracellular localization of zinc correlates with function, we examined the localization of endogenous zinc in the rat retina using the silver amplification method. By light microscopy, reaction products were detected in the pigment epithelial cells (PE), the inner segment of photoreceptors (IS), the outer nuclear layer (ONL) and the inner nuclear layer (INL), the outer plexiform layer (OPL) and the inner plexiform layer (IPL), and the ganglion cell layer (GC). The heaviest accumulation of precipitate was observed in PE and IS, whereas only a little precipitate was found in GC. When the intracellular zinc was chelated with diethyldithiocarbamate, a small amount of precipitate was observed only in ONL. By electron microscopy, zinc was associated with three compartments. In OPL and IPL, zinc was associated with neural processes, while in PE, IS, INL, and GC it was associated with the Golgi apparatus. In ONL, zinc was associated with the nucleus. Zinc in the neural processes is believed to act as a modulator of synaptic transmission, and zinc associated with the Golgi apparatus is assumed to catalyze metalloenzyme reactions.
Collapse
Affiliation(s)
- T Akagi
- Laboratory for Neural Architecture, Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | | | | | | |
Collapse
|
43
|
Blasco-Ibáñez JM, Martínez-Guijarro FJ, Freund TF. Recurrent mossy fibers preferentially innervate parvalbumin-immunoreactive interneurons in the granule cell layer of the rat dentate gyrus. Neuroreport 2000; 11:3219-25. [PMID: 11043552 DOI: 10.1097/00001756-200009280-00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Detection of vesicular zinc and immunohistochemistry against markers for different interneuron subsets were combined to study the postsynaptic target selection of zinc-containing recurrent mossy fiber collaterals in the dentate gyrus. Mossy fiber collaterals in the granule cell layer selectively innervated parvalbumin-containing cells, with numerous contacts per cell, whereas the granule cells were avoided. Under the electron microscope, those boutons made asymmetrical contacts on dendrites and somata. These findings suggest that, in addition to the hilar perforant path-associated (HIPP) interneurons, the basket and chandelier cells also receive a powerful feed-back drive from the granule cells, and thereby are able to control population synchrony in the dentate gyrus. On the other hand, the amount of monosynaptic excitatory feed-back among granule cells is shown to be negligible.
Collapse
Affiliation(s)
- J M Blasco-Ibáñez
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | | | |
Collapse
|
44
|
Colvin RA, Davis N, Nipper RW, Carter PA. Zinc transport in the brain: routes of zinc influx and efflux in neurons. J Nutr 2000; 130:1484S-7S. [PMID: 10801963 DOI: 10.1093/jn/130.5.1484s] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies of the routes of entry and exit for zinc in different tissues and cell types have shown that zinc can use several pathways of exit or entry. In neurons, known pathways include (1) presynaptic release along with glutamate when synaptic vesicles empty their contents into the synaptic cleft, (2) voltage-gated L-type Ca(2+) channels and glutamate-gated channels that provide an entry route when cells are depolarized and that mediate extracellular zinc toxicity and (3) a plasma membrane transporter potentially present in all neurons important for cellular zinc homeostasis. The least understood of these pathways, in terms of mechanism, is the transporter pathway. The kinetics of zinc uptake in cultured neurons under resting conditions are consistent with and suggest the existence of a saturable transporter in the plasma membrane. The proteins responsible for plasma membrane zinc transport have not yet been definitely identified. Likely candidates include two proteins identified by molecular cloning termed zinc transporter 1 and divalent cation transporter DCT1. Both proteins have been shown to be expressed in the brain, but only DCT1 is clearly demonstrated to be a transport protein, whereas zinc transporter 1 may only modulate zinc transport in association with as-yet-unidentified proteins. Understanding the mechanism and neuromodulation of plasma membrane zinc transport will be an important first step toward a complete understanding of neuronal zinc homeostasis.
Collapse
Affiliation(s)
- R A Colvin
- Department of Biological Sciences, Program in Neuroscience, Ohio University Athens, OH 45701, USA
| | | | | | | |
Collapse
|
45
|
Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 2000; 130:1471S-83S. [PMID: 10801962 DOI: 10.1093/jn/130.5.1471s] [Citation(s) in RCA: 586] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc is essential to the structure and function of myriad proteins, including regulatory, structural and enzymatic. It is estimated that up to 1% of the human genome codes for zinc finger proteins. In the central nervous system, zinc has an additional role as a neurosecretory product or cofactor. In this role, zinc is highly concentrated in the synaptic vesicles of a specific contingent of neurons, called "zinc-containing" neurons. Zinc-containing neurons are a subset of glutamatergic neurons. The zinc in the vesicles probably exceeds 1 mmol/L in concentration and is only weakly coordinated with any endogenous ligand. Zinc-containing neurons are found almost exclusively in the forebrain, where in mammals they have evolved into a complex and elaborate associational network that interconnects most of the cerebral cortices and limbic structures. Indeed, one of the intriguing aspects of these neurons is that they compose somewhat of a chemospecific "private line" of the mammalian cerebral cortex. The present review outlines (1) the methods used to discover, define and describe zinc-containing neurons; (2) the neuroarchitecture and synaptology of zinc-containing neural circuits; (3) the physiology of regulated vesicular zinc release; (4) the "life cycle" and molecular biology of vesicular zinc; (5) the importance of synaptically released zinc in the normal and pathological processes of the cerebral cortex; and (6) the role of specific and nonspecific stressors in the release of zinc.
Collapse
|
46
|
Takeda A, Takefuta S, Okada S, Oku N. Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet. Brain Res 2000; 859:352-7. [PMID: 10719084 DOI: 10.1016/s0006-8993(00)02027-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between brain zinc and learning behavior was studied based on the data of 65Zn localization in the hippocampal formation. Learning behavior, tested by passive avoidance performance, of 6-week-old rats improved significantly compared to that of 4-week-old rats and it was maintained at 20 weeks of age. When 8-week-old rats were fed zinc-deficient diet for 4 weeks, the learning behavior was significantly impaired. However, it was recovered to almost normal level by feeding with control (zinc-adequate) diet for 5 weeks. These results demonstrate that a proper zinc supply to the brain is necessary for improvement and maintenance of learning ability. Although an appreciable decrease in brain zinc was not observed in the rats fed zinc-deficient diet for 4 weeks, significant decrease of hippocampal zinc was observed in rats fed zinc-deficient diet for 12 weeks. Moreover, synaptosomal zinc in the hippocampal formation and cerebral cortex was significantly decreased by the 12 weeks of zinc deprivation. These results suggest that the decrease of vesicular zinc in the hippocampal formation and cerebral cortex is involved in the transient learning impairment of adults rats.
Collapse
Affiliation(s)
- A Takeda
- Department of Radiobiochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, Japan.
| | | | | | | |
Collapse
|
47
|
Thompson RB, Whetsell WO, Maliwal BP, Fierke CA, Frederickson CJ. Fluorescence microscopy of stimulated Zn(II) release from organotypic cultures of mammalian hippocampus using a carbonic anhydrase-based biosensor system. J Neurosci Methods 2000; 96:35-45. [PMID: 10704669 DOI: 10.1016/s0165-0270(99)00183-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We demonstrate here that electrical stimulation of organotypic cultures of rat hippocampus results in the prompt release of significant amounts of Zn(II) by a fluorescence microscopic method. The fluorescence imaging of free Zn(II) is achieved using a highly selective biosensing indicator system consisting of human apo-carbonic anhydrase II (apoCAII) and a fluorescent aryl sulfonamide inhibitor of the enzyme, ABD-N. The apoenzyme and ABD-N in the absence of Zn(II) exhibit weak, reddish fluorescence typical of the ABD-N alone; when Zn(II) is added it binds to the apoenzyme (K(D) = 4 pM), which strongly promotes binding of ABD-N to the holoenzyme (K(D) = 0.9 microM). Binding of ABD-N to the holoenzyme results in a 9-fold increase in apparent quantum yield, significant blue shifts in excitation and emission, an increase in average fluorescence lifetime, a 4-fold increase in the ratio of intensities at 560 and 680 nm, and a large increase in anisotropy. Prior to stimulation, cultures immersed in phosphate-buffered saline with glucose and apoCAII with ABD-N emitted negligible fluorescence, but within 20 s after electrical stimulation a diffuse cloud of greenish fluorescence emerged and subsequently covered most of the culture, indicating release of zinc into the extracellular medium.
Collapse
Affiliation(s)
- R B Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Zinc (Zn) is essential for synthesis of coenzymes that mediate biogenic-amine synthesis and metabolism. Zn from vesicles in presynaptic terminals of certain glutaminergic neurons modulates postsynaptic N-methyl-D-aspartate (NMDA) receptors for glutamate. Large amounts of Zn released from vesicles by seizures or ischemia can kill postsynaptic neurons. Acute Zn deficiency impairs brain function of experimental animals and humans. Zn deficiency in experimental animals during early brain development causes malformations, whereas deficiency later in brain development causes microscopic abnormalities and impairs subsequent function. A limited number of studies suggest that similar phenomena can occur in humans.
Collapse
Affiliation(s)
- H H Sandstead
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston 77555-1109, USA
| | | | | |
Collapse
|
49
|
Ishii K, Sato M, Akita M, Tomita H. Localization of zinc in the rat submandibular gland and the effect of its deficiency on salivary secretion. Ann Otol Rhinol Laryngol 1999; 108:300-8. [PMID: 10086626 DOI: 10.1177/000348949910800315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To clarify the role of zinc in the mechanism of salivary secretion, the effects of zinc deficiency on the morphologic findings and secretory function of the salivary gland were investigated with a rat model of chronic zinc deficiency, prepared by feeding a zinc-deficient diet, and a rat model of acute zinc deficiency, prepared by administration of a zinc chelator, dithizone. In rats with chronic zinc deficiency, the granule production in the granular duct cells was decreased, but the glandular epithelial cells and myoepithelial cells showed no degenerative or other destructive morphologic changes. The degranulation of the granular duct cells and acinar cells in response to acetylcholine hydrochloride seen in control rats was strongly inhibited in rats with acute and chronic zinc deficiency. The contractile response of the actin microfilament bundles in the myoepithelial cells to acetylcholine seen in the control rats was also absent in the zinc-deficient rats. Further, electron microscopy of the submandibular gland stained by Timm's method disclosed prominent zinc localization at the membrane surface, granules, and vesicles of the glandular epithelial cells and in the pits of the myoepithelial cells. These findings suggest that zinc, together with many zinc-dependent enzymes, is closely involved in the production and degranulation of secretory granules in the glandular epithelial cells, and also in the contraction of the myoepithelial cells in the submandibular gland.
Collapse
Affiliation(s)
- K Ishii
- Department of Otolaryngology, Saitama Medical Center, Japan
| | | | | | | |
Collapse
|
50
|
Sørensen JC, Mattsson B, Andreasen A, Johansson BB. Rapid disappearance of zinc positive terminals in focal brain ischemia. Brain Res 1998; 812:265-9. [PMID: 9813362 DOI: 10.1016/s0006-8993(98)00943-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study was undertaken to determine if the levels of vesicular zinc in neuronal terminals would decrease in response to focal brain ischemia. The middle cerebral artery was occluded distal to the striatal branches in male spontaneously hypertensive rats. At 7, 15, 30, 45, 60, 90, 120 min; 3, 6, 12, 24, 48 h and 7 days later the animals were sacrificed and the brains were stained for zinc-sulfides, cell bodies and AChE-positive cholinergic fibers. The density of zinc positive terminals significantly decreased in the neocortical ischemic zone 7 min after middle cerebral artery occlusion (MCAO). In the neocortical layers II and III most zinc positive neuronal terminals disappeared at 7 min after MCAO whereas the zinc positive terminals in layers V and VI remained positive at least 2 h. Beginning at 1 h after MCAO and progressing to 24 h a significant decrease in the density of zinc positive terminals was observed in the dorsolateral striatum, and ventrobasal thalamic nucleus, both major projection areas of the sensorimotor cortex. The disappearance of zinc positive neuronal terminals in the ischemic neocortex and related areas, is most likely due to a neuronal release of vesicular zinc in response to hypoxia. The high extracellular concentration of zinc is thought to be both neuroprotective by blocking the NMDA receptor and neurotoxic by activating neuronal influx of Ca2+ through voltage gated calcium channels. It seems evident that the latter effect of zinc is contributing to the neuronal death in focal brain ischemia.
Collapse
Affiliation(s)
- J C Sørensen
- Department of Anatomy and Cytology, Institute of Medical Biology, University of Odense, Winslowparken 19, DK-5000, Odense C, Denmark
| | | | | | | |
Collapse
|