1
|
Stanwick M, Fenesha F, Hamid A, Kang K, Kanniard D, Kim I, Mandarano N, Schumacher FL, Peters SB. Impaired Tertiary Dentin Secretion after Shallow Injury in Tgfbr2-Deficient Dental Pulp Cells Is Rescued by Extended CGRP Signaling. Int J Mol Sci 2024; 25:6847. [PMID: 38999956 PMCID: PMC11241056 DOI: 10.3390/ijms25136847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
The transforming growth factor β (TGFβ) superfamily is a master regulator of development, adult homeostasis, and wound repair. Dysregulated TGFβ signaling can lead to cancer, fibrosis, and musculoskeletal malformations. We previously demonstrated that TGFβ receptor 2 (Tgfbr2) signaling regulates odontoblast differentiation, dentin mineralization, root elongation, and sensory innervation during tooth development. Sensory innervation also modulates the homeostasis and repair response in adult teeth. We hypothesized that Tgfbr2 regulates the neuro-pulpal responses to dentin injury. To test this, we performed a shallow dentin injury with a timed deletion of Tgfbr2 in the dental pulp mesenchyme of mice and analyzed the levels of tertiary dentin and calcitonin gene-related peptide (CGRP) axon sprouting. Microcomputed tomography imaging and histology indicated lower dentin volume in Tgfbr2cko M1s compared to WT M1s 21 days post-injury, but the volume was comparable by day 56. Immunofluorescent imaging of peptidergic afferents demonstrated that the duration of axon sprouting was longer in injured Tgfbr2cko compared to WT M1s. Thus, CGRP+ sensory afferents may provide Tgfbr2-deficient odontoblasts with compensatory signals for healing. Harnessing these neuro-pulpal signals has the potential to guide the development of treatments for enhanced dental healing and to help patients with TGFβ-related diseases.
Collapse
Affiliation(s)
- Monica Stanwick
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Fatma Fenesha
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Ahmed Hamid
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Khushroop Kang
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Dane Kanniard
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Irene Kim
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Nicholas Mandarano
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (N.M.); (F.L.S.)
| | - Fernanda L. Schumacher
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (N.M.); (F.L.S.)
| | - Sarah B. Peters
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (N.M.); (F.L.S.)
| |
Collapse
|
2
|
Peters SB, Emrick JJ. Nociceptors are needed to guide tooth development, function, repair, and regeneration. Neural Regen Res 2023; 18:1503-1504. [PMID: 36571354 PMCID: PMC10075122 DOI: 10.4103/1673-5374.360280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sarah B. Peters
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Joshua J. Emrick
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Stanwick M, Barkley C, Serra R, Kruggel A, Webb A, Zhao Y, Pietrzak M, Ashman C, Staats A, Shahid S, Peters SB. Tgfbr2 in Dental Pulp Cells Guides Neurite Outgrowth in Developing Teeth. Front Cell Dev Biol 2022; 10:834815. [PMID: 35265620 PMCID: PMC8901236 DOI: 10.3389/fcell.2022.834815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) plays an important role in tooth morphogenesis and mineralization. During postnatal development, the dental pulp (DP) mesenchyme secretes neurotrophic factors that guide trigeminal nerve fibers into and throughout the DP. This process is tightly linked with dentin formation and mineralization. Our laboratory established a mouse model in which Tgfbr2 was conditionally deleted in DP mesenchyme using an Osterix promoter-driven Cre recombinase (Tgfbr2 cko ). These mice survived postnatally with significant defects in bones and teeth, including reduced mineralization and short roots. Hematoxylin and eosin staining revealed reduced axon-like structures in the mutant mice. Reporter imaging demonstrated that Osterix-Cre activity within the tooth was active in the DP and derivatives, but not in neuronal afferents. Immunofluorescence staining for β3 tubulin (neuronal marker) was performed on serial cryosections from control and mutant molars on postnatal days 7 and 24 (P7, P24). Confocal imaging and pixel quantification demonstrated reduced innervation in Tgfbr2 cko first molars at both stages compared to controls, indicating that signals necessary to promote neurite outgrowth were disrupted by Tgfbr2 deletion. We performed mRNA-Sequence (RNA-Seq) and gene onotology analyses using RNA from the DP of P7 control and mutant mice to investigate the pathways involved in Tgfbr2-mediated tooth development. These analyses identified downregulation of several mineralization-related and neuronal genes in the Tgfbr2 cko DP compared to controls. Select gene expression patterns were confirmed by quantitative real-time PCR and immunofluorescence imaging. Lastly, trigeminal neurons were co-cultured atop Transwell filters overlying primary Tgfbr2 f/f DP cells. Tgfbr2 in the DP was deleted via Adenovirus-expressed Cre recombinase. Confocal imaging of axons through the filter pores showed increased axonal sprouting from neurons cultured with Tgfbr2-positive DP cells compared to neurons cultured alone. Axon sprouting was reduced when Tgfbr2 was knocked down in the DP cells. Immunofluorescence of dentin sialophosphoprotein in co-cultured DP cells confirmed reduced mineralization potential in cells with Tgfbr2 deletion. Both our proteomics and RNA-Seq analyses indicate that axonal guidance cues, particularly semaphorin signaling, were disrupted by Tgfbr2 deletion. Thus, Tgfbr2 in the DP mesenchyme appears to regulate differentiation and the cells' ability to guide neurite outgrowth during tooth mineralization and innervation.
Collapse
Affiliation(s)
- Monica Stanwick
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Courtney Barkley
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew Kruggel
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Chandler Ashman
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Allie Staats
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Shifa Shahid
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Sarah B. Peters
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States,Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Sarah B. Peters,
| |
Collapse
|
4
|
Byers MR, Calkins DF. Trigeminal sensory nerve patterns in dentine and their responses to attrition in rat molars. Arch Oral Biol 2021; 129:105197. [PMID: 34146928 DOI: 10.1016/j.archoralbio.2021.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Our goal was to define trigeminal nerve ending quantities and patterns in rat molar dentine, their responses to attrition (tooth wear), and their associated odontoblasts and connections with pulpal plexuses. DESIGN Trigeminal ganglia were labeled for axonal transport of 3H-proteins to dentinal nerve endings in male rats (3-13 months old). Autoradiography detected radio-labeled dentinal tubules as indicators of nerve ending locations. Quantitative morphometry was done (ANOVA, t-tests), and littermates were compared for attrition and innervation. RESULTS There were six dentinal patterns, only two of which had an associated neural plexus of Raschkow and cell-free zone (Den-1, Den-2). Other nerves entered dentin from bush-like endings near elongated odontoblasts (Den-B), as single fibers (Den-X), as networks in predentine (PdN), or as single fibers in tertiary dentine at cusp tips (Den-S). There were at least 186,600 innervated dentinal tubules within the set of three right maxillary molars of the best-labeled rat, and similar densities were found in other rats. Attrition levels differed among cusps and in littermates (t-test p < 0.02-0.0001), but the matched right/left cusps per rat were similar. Innervations of tertiary and enamel-free dentine (Den-S, Den-X) were preserved in all rats. Den-B and Den-2 coronal patterns were unchanged unless displaced by dentinogenesis. Den-1 losses occurred in older cusps, while Den-2 patterns increased near cervical and intercuspal odontoblasts. CONCLUSIONS The extensive molar dentinal innervation had unique distributions per rat per cusp that depended on region (buccal, middle, palatal) and attrition, but only two of six patterns connected to a plexus of Raschkow.
Collapse
Affiliation(s)
- Margaret R Byers
- Department of Anesthesiology and Pain Medicine, Univ. Washington, Seattle, WA, 98195-6540, USA.
| | - Dianne F Calkins
- Department of Anesthesiology and Pain Medicine, Univ. Washington, Seattle, WA, 98195-6540, USA
| |
Collapse
|
5
|
Glia and Orofacial Pain: Progress and Future Directions. Int J Mol Sci 2021; 22:ijms22105345. [PMID: 34069553 PMCID: PMC8160907 DOI: 10.3390/ijms22105345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Orofacial pain is a universal predicament, afflicting millions of individuals worldwide. Research on the molecular mechanisms of orofacial pain has predominately focused on the role of neurons underlying nociception. However, aside from neural mechanisms, non-neuronal cells, such as Schwann cells and satellite ganglion cells in the peripheral nervous system, and microglia and astrocytes in the central nervous system, are important players in both peripheral and central processing of pain in the orofacial region. This review highlights recent molecular and cellular findings of the glia involvement and glia–neuron interactions in four common orofacial pain conditions such as headache, dental pulp injury, temporomandibular joint dysfunction/inflammation, and head and neck cancer. We will discuss the remaining questions and future directions on glial involvement in these four orofacial pain conditions.
Collapse
|
6
|
Byers MR. Chewing causes rapid changes in immunoreactive nerve patterns in rat molar teeth: Implications for dental proprioception and pain. Arch Oral Biol 2019; 107:104511. [PMID: 31445382 DOI: 10.1016/j.archoralbio.2019.104511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study tests the hypothesis that normal use of teeth (chewing) causes changes in immunoreactive-(IR) patterns for endings of large Aβ and CGRP axons in rat molar cusps. DESIGN First, a new paradigm to test chewing in adult male rats was developed. Then IR patterns for large dental axons were analysed for a calcium-binding protein, parvalbumin (PV), heavy neurofilament protein-200 (NFP), and vesicle-release molecule synaptophysin (SYN) that all typify large dental axons and proprioceptors for comparison with endings of CGRP-IR neuropeptide axons. The behavior groups were: (1) daytime sleeping/fasting (Group:SF); (2) brief feeding after 8-11 h of daytime sleeping/fasting (Group:SF-C); (3) normal nocturnal feeding (Group:N); (4) nocturnal fasting (Group:NF); (5) brief feeding/chewing after nocturnal fasting (Group:NF-C). RESULTS Nerve endings with NFP-, PV-, or SYN-IR were lost or altered in pulp and dentin in all chewing groups. Other endings with CGRP-IR were near those with PV-, NFP- and SYN-IR at the pulp-dentin border and in dentin, and they also lost immunoreactivity in all chewing groups. The special beaded regions along the crown pulp/dentin borders lost neural labeling in all chewing groups. Nerves of molar roots and periodontal ligament were not changed. CONCLUSIONS Rapid neural reactions to chewing show extensive, reversible, non-nociceptive depletions of crown innervation. Those changes were rapid enough to occur during normal feeding followed by recovery during rest. The new dental paradigm related to chewing and fasting allows dissection of intradental proprioceptive-like mechanisms during normal tooth functions for comparison with nociceptive and mechanosensitive reactions after injury or inflammation.
Collapse
Affiliation(s)
- Margaret R Byers
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195-6540 USA.
| |
Collapse
|
7
|
Widbiller M, Austah O, Lindner SR, Sun J, Diogenes A. Neurotrophic Proteins in Dentin and Their Effect on Trigeminal Sensory Neurons. J Endod 2019; 45:729-735. [PMID: 31036381 DOI: 10.1016/j.joen.2019.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION A plethora of bioactive molecules present during tooth formation become sequestered in the mineralized dentin matrix and can be released into the pulp tissue after demineralization from carious lesions. However, neurotrophic factors are differentially expressed and secreted during various stages of odontogenesis. Thus, the aims of this study were (1) to investigate their presence and relative abundance in crown and root dentin and (2) to evaluate the bioactivity of dentin-derived proteins on neuronal cells. METHODS Dentin matrix proteins (DMPs) were isolated from matched roots and crowns of extracted healthy human third molars. The total protein amount as well as the concentration of growth factors and neurotrophic proteins were quantified. The impact on neuritogenesis was determined with mouse trigeminal neurons in vitro and by a hydrogel implant model in vivo. Transient receptor potential cation channel subfamily V member 1 (TRPV1) sensitization of DMP-conditioned neurons was evaluated by single-cell calcium imaging. RESULTS The relative concentration of neurotrophic molecules revealed that nerve growth factor is the most abundant neurotrophin with 3-fold increased expression in radicular dentin. Similarly, brain-derived neurotrophic factor and neurotrophin 3 are more abundant in radicular than coronal dentin. Conversely, glial cell line-derived neurotrophic factor is more abundant in coronal dentin, whereas neurotrophin 4 is equally distributed. Dentin matrix proteins promoted neurite outgrowth in vitro and axonal targeting in vivo, with a greater effect observed by radicular dentin extracts. Furthermore, DMPs sensitized TRPV1 responses in mouse trigeminal neurons with greater activity seen with extracts from root dentin. CONCLUSIONS Neurotrophic factors are differentially distributed between coronal and radicular dentin with different effects of dentin-derived proteins on axonal growth and targeting as well as the sensitization of TRPV1. Thus, extracellular proteins from the dentin matrix are likely involved in neurogenic responses to caries and could be exploited in clinical regenerative endodontics to promote reinnervation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Matthias Widbiller
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Obadah Austah
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sophia R Lindner
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jenny Sun
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| |
Collapse
|
8
|
Mahdee A, Eastham J, Whitworth JM, Gillespie JI. Evidence for changing nerve growth factor signalling mechanisms during development, maturation and ageing in the rat molar pulp. Int Endod J 2018; 52:211-222. [DOI: 10.1111/iej.12997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 08/06/2018] [Indexed: 11/27/2022]
Affiliation(s)
- A. Mahdee
- Centre for Oral Health Research; Newcastle University; Newcastle upon Tyne UK
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne UK
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
- University of Baghdad College of Dentistry; Baghdad Iraq
| | - J. Eastham
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne UK
| | - J. M. Whitworth
- Centre for Oral Health Research; Newcastle University; Newcastle upon Tyne UK
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - J. I. Gillespie
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
- Urology and Urological Rehabilitation; Antwerp University; Antwerp Belgium
| |
Collapse
|
9
|
Chmilewsky F, About I, Cooper LF, Chung SH. C5L2 Silencing in Human Pulp Fibroblasts Enhances Nerve Outgrowth Under Lipoteichoic Acid Stimulation. J Endod 2018; 44:1396-1401. [PMID: 30032862 DOI: 10.1016/j.joen.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION We recently reported that caries-associated C5a receptor (C5aR) expression and activation result in up-regulation of brain-derived neurotropic factor secretion by pulp fibroblasts inducing prominent neurite outgrowth toward the carious site. Our data further showed a negative regulation of this brain-derived neurotropic factor secretion by C5L2, another C5aR. C5L2 was considered a nonfunctional receptor and thus has received much less attention than C5aR. The aim of this study was to identify the role of C5L2 in pulp fibroblast-mediated neurite outgrowth. METHODS In this study, lipoteichoic acid (LTA) was used to mimic dental caries-like inflammation. To evaluate the role of C5L2 in pulp neurite outgrowth, human pulp fibroblasts were C5L2 small interfering RNA silenced and cocultured with human neurons in a nerve growth assay system. RESULTS C5L2 silencing drastically increased the neurite outgrowth toward the LTA-stimulated pulp fibroblasts. The number of neurites detected was increased in the LTA-treated pulp fibroblasts. CONCLUSIONS Our results show that C5L2 constitutes a negative regulator of the neurite outgrowth under LTA stimulation. Of the events occurring during dentin-pulp regeneration, nerve regeneration is the key factor for maintaining tooth viability after infection or injury. Our study provides a foundation for creating therapeutic tools that target pulp fibroblasts during pulp/nerve regeneration.
Collapse
Affiliation(s)
- Fanny Chmilewsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Imad About
- Department of Oral Biology, Aix Marseille University, Marseille, France
| | - Lyndon F Cooper
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Seung H Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Valverde Y, Narayanan R, Alapati SB, Chmilewsky F, Huang CC, Ravindran S, Chung SH. Poly(Adenosine Phosphate Ribose) Polymerase 1 Inhibition Enhances Brain-derived Neurotrophic Factor Secretion in Dental Pulp Stem Cell-derived Odontoblastlike Cells. J Endod 2018; 44:1121-1125. [PMID: 29884339 DOI: 10.1016/j.joen.2018.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The nuclear enzyme poly(adenosine phosphate ribose) polymerase 1 (PARP-1) has been implicated in the maintenance and differentiation of several stem cells. The role of PARP-1 in dental pulp stem cell (DPSC) differentiation, especially in the context of its ability to modulate nerve regeneration factors, has not been investigated. Regeneration of neuronal components in pulp tissue is important for the assessment of tooth vitality. Brain-derived neurotrophic factor (BDNF) is known to play an integral signaling factor during nerve regeneration. In this study, we identified the role of PARP-1 in the modulation of BDNF in DPSC differentiation into odontoblastlike cells. METHODS Human DPSCs were prepared from healthy molars and cultured in regular and osteogenic media treated with PARP-1 antagonist and PARP-1 exogeneous protein. Polymerase chain reaction and immunohistochemistry analysis for BDNF and various differentiation markers were performed. RESULTS Our polymerase chain reaction results showed that differentiated cells show odontoblastlike properties because they express odontogenic markers such as dentin sialophosphoprotein and dentin matrix protein 1. Both PARP-1 inhibitor and protein did not affect odontogenic differentiation and proliferation because the number of the differentiated cells was unaffected, and the expression of dentin sialophosphoprotein and dentin matrix protein 1 was not significantly changed. There is the possibility that PARP-1 treatment induces DPSCs into the unique cell lineage. Some differentiated cells show a very unique morphology with large irregular cytoplasm and an oval nucleus. Moreover, PARP-1 inhibition significantly increased BDNF secretion in DPSC-derived odontoblastlike cells. This observation was also confirmed by immunohistochemistry. CONCLUSIONS Taken together, our results indicate PARP-1 as a negative regulator in BDNF secretion during odontogenic DPSC differentiation, showing its potential application for translational nerve regeneration strategies to improve dental pulp tissue vitality assessments.
Collapse
Affiliation(s)
- Yessenia Valverde
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Satish B Alapati
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois
| | - Fanny Chmilewsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Chun-Chieh Huang
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Sriram Ravindran
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Seung H Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Mahdee A, Eastham J, Whitworth JM, Gillespie JI. Evidence for programmed odontoblast process retraction after dentine exposure in the rat incisor. Arch Oral Biol 2017; 85:130-141. [PMID: 29073561 DOI: 10.1016/j.archoralbio.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To re-examine the morphology and potential functions of odontoblasts in intact rat incisors and after cavity preparation into dentine. DESIGN Intact incisors were fixed, decalcified, snap frozen and sectioned (10μm), before staining with rhodamine phalloidin or antibodies for cyto-skeletal proteins: vimentin and actin, ion transporter: NaK-ATPase, and dendritic cell marker: OX6. Samples with cavity were processed similarly and stained for actin and vimentin before comparing the lengths of odontoblast processes (OP) at baseline, 3h and 24h (n=5 for each group). RESULTS Actin was expressed through the full length of OP, while vimentin immunoreactivity was not uniform, with 4 distinct regions. OP showed morphological complexity with fine branches emanating within different regions of dentine. Novel actin-positive tree-like OP were identified within predentine which reduced in intensity and length toward the incisal portion of the tooth. Specimens with cavities showed time-dependant pulpal retraction of OP. CONCLUSIONS Differences in structural antibody expression suggest functional variations in OP within different regions of dentine. The role of actin positive OP in predentine is not known, but could be related to dentine deposition, cellular stability or sensing mechanisms. Cavity preparation into dentine was followed by programmed retraction of OP which could be controlled either mechanically by the spatial limitation of the OP within dentinal tubules or structurally by the presence of vimentin, in addition to actin, in the mid-dentine.
Collapse
Affiliation(s)
- A Mahdee
- Centre for Oral Health Research, UK; Institute of Cellular Medicine, UK; School of Dental Sciences Newcastle University, UK; University of Baghdad College of Dentistry, Iraq.
| | - J Eastham
- School of Dental Sciences Newcastle University, UK.
| | - J M Whitworth
- Centre for Oral Health Research, UK; School of Dental Sciences Newcastle University, UK.
| | - J I Gillespie
- Urology and Urological Rehabilitation Antwerp University, Belgium.
| |
Collapse
|
12
|
Abstract
Recent findings have indicated that immune responses are subjected to modulation by the sympathetic nervous system (SNS). Moreover, the findings show that the SNS inhibits the production of pro-inflammatory cytokines, while stimulating the production of anti-inflammatory cytokines. The present review is an attempt to summarize the current results on how the SNS affects inflammation in dental tissues. In dental tissues, it has been found that the SNS is significant for recruitment of inflammatory cells such as CD 43+ granulocytes. Sympathetic nerves appear to have an inhibitory effect on osteoclasts, odontoclasts, and on IL-1α production. The SNS stimulates reparative dentin production, since reparative dentin formation was reduced after sympathectomy. Sprouting of sympathetic nerve fibers occurs in chronically inflamed dental pulp, and neural imbalance caused by unilateral sympathectomy recruits immunoglobulin-producing cells to the dental pulp. In conclusion, this article presents evidence in support of interactions between the sympathetic nervous system and dental inflammation.
Collapse
Affiliation(s)
- S R Haug
- Department of Biomedicine, Section for Physiology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.
| | | |
Collapse
|
13
|
Chmilewsky F, Ayaz W, Appiah J, About I, Chung SH. Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth. Sci Rep 2016; 6:31799. [PMID: 27539194 PMCID: PMC4990934 DOI: 10.1038/srep31799] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
Given the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation.
Collapse
Affiliation(s)
- Fanny Chmilewsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Warda Ayaz
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - James Appiah
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Imad About
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France
| | - Seung-Hyuk Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
14
|
Chmilewsky F, About I, Chung SH. Pulp Fibroblasts Control Nerve Regeneration through Complement Activation. J Dent Res 2016; 95:913-22. [DOI: 10.1177/0022034516643065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dentin-pulp regeneration is closely linked to the presence of nerve fibers in the pulp and to the healing mechanism by sprouting of the nerve fiber’s terminal branches beneath the carious injury site. However, little is known about the initial mechanisms regulating this process in carious teeth. It has been recently demonstrated that the complement system activation, which is one of the first immune responses, contributes to tissue regeneration through the local production of anaphylatoxins such as C5a. While few pulp fibroblasts in intact teeth and in untreated fibroblast cultures express the C5a receptor (C5aR), here we show that all dental pulp fibroblasts, localized beneath the carious injury site, do express this receptor. This observation is consistent with our in vitro results, which showed expression of C5aR in lipoteichoic acid–stimulated pulp fibroblasts. The interaction of C5a, produced after complement synthesis and activation from pulp fibroblasts, with the C5aR of these cells mediated the local brain-derived neurotropic factor (BDNF) secretion. Overall, this activation guided the neuronal growth toward the lipoteichoic acid–stimulated fibroblasts. Thus, our findings highlight a new mechanism in one of the initial steps of the dentin-pulp regeneration process, linking pulp fibroblasts to the nerve sprouting through the complement system activation. This may provide a useful future therapeutic tool in targeting the fibroblasts in the dentin-pulp regeneration process.
Collapse
Affiliation(s)
- F. Chmilewsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - I. About
- Aix-Marseille Université, CNRS, ISM, UMR 7287, Marseille cedex 09, France
| | - S.-H. Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Saito K, Ida-Yonemochi H, Ushiki T, Ohshima H. Responses of pulp vasculature after cavity preparation in rat molars. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sattari M, Mozayeni MA, Matloob A, Mozayeni M, Javaheri HH. Substance P and CGRP expression in dental pulps with irreversible pulpitis. AUST ENDOD J 2009; 36:59-63. [DOI: 10.1111/j.1747-4477.2009.00186.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Kline LW, Yu DC. Effects of calcitonin, calcitonin gene-related peptide, human recombinant bone morphogenetic protein-2, and parathyroid hormone-related protein on endodontically treated ferret canines. J Endod 2009; 35:866-9. [PMID: 19482187 DOI: 10.1016/j.joen.2009.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The purpose of this study was to determine whether human recombinant bone morphogenetic protein-2 (rhBMP-2), calcitonin gene-related peptide (CGRP), calcitonin (CT), or parathyroid hormone-related protein (PTHrP) promoted reparative tertiary dentin or osteodentin formation in ferret canines. METHODS Ferrets had up to 4 pulpotomies performed under anesthesia. All pulps had sterile absorbable sponge of a standard size placed in contact with the pulp. The sponge contained sterile saline, rhBMP-2, CGRP, CT, or PTHrP. The opening was filled with an intermediate restorative material. After 6 weeks, the ferrets were anesthetized, and the pulpotomized teeth were extracted. The canines were fixed, decalcified, sectioned, and stained with hematoxylin-eosin. Sections were selected from the area of the opening, and the amount of reparative tertiary dentin and osteodentin was measured by using a digitizer. RESULTS Analysis of the photomicrographs showed that rhBMP-2 induced 0.58 +/- 0.19 mm(2) osteodentin and 0.56 +/- 0.18 mm(2) tertiary dentin. CGRP induced 0.46 +/- 0.05 mm(2) osteodentin and 0.38 +/- 0.04 mm(2) tertiary dentin. The amount of rhBMP-2-induced and CGRP-induced osteodentin and tertiary dentin was significantly (P < .001) more than that found in the sterile saline-treated teeth (0.29 +/- 0.03 mm(2) osteodentin and 0.14 +/- 0.03 mm(2) tertiary dentin) or CT (0.2 +/- 0.06 mm(2) osteodentin and 0.16 +/- 0.05 mm(2) tertiary dentin; P < .01). PTHrP significantly (P < .05) reduced the amount of osteodentin (0.17 +/- 0.02 mm(2)) observed in the saline-treated teeth but was not significantly different in the amount of tertiary dentin observed. CONCLUSIONS RhBMP-2 and CGRP promoted more pulpal healing than either CT or PTHrP.
Collapse
Affiliation(s)
- Loren W Kline
- Division of Oral Biology, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
18
|
Capsaicin-evoked iCGRP release from human dental pulp: a model system for the study of peripheral neuropeptide secretion in normal healthy tissue. Pain 2009; 144:253-261. [PMID: 19428185 DOI: 10.1016/j.pain.2009.03.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 03/13/2009] [Accepted: 03/24/2009] [Indexed: 11/22/2022]
Abstract
The mechanisms underlying trigeminal pain conditions are incompletely understood. In vitro animal studies have elucidated various targets for pharmacological intervention; however, a lack of clinical models that allow evaluation of viable innervated human tissue has impeded successful translation of many preclinical findings into clinical therapeutics. Therefore, we developed and characterized an in vitro method that evaluates the responsiveness of isolated human nociceptors by measuring basal and stimulated release of neuropeptides from collected dental pulp biopsies. Informed consent was obtained from patients presenting for extraction of normal wisdom teeth. Patients were anesthetized using nerve block injection, teeth were extracted and bisected, and pulp was removed and superfused in vitro. Basal and capsaicin-evoked peripheral release of immunoreactive calcitonin gene-related peptide (iCGRP) was analyzed by enzyme immunoassay. The presence of nociceptive markers within neurons of the dental pulp was characterized using confocal microscopy. Capsaicin increased the release of iCGRP from dental pulp biopsies in a concentration-dependent manner. Stimulated release was dependent on extracellular calcium, reversed by a TRPV1 receptor antagonist, and desensitized acutely (tachyphylaxis) and pharmacologically by pretreatment with capsaicin. Superfusion with phorbol 12-myristate 13-acetate (PMA) increased basal and stimulated release, whereas PGE2 augmented only basal release. Compared with vehicle treatment, pretreatment with PGE2 induced competence for DAMGO to inhibit capsaicin-stimulated iCGRP release, similar to observations in animal models where inflammatory mediators induce competence for opioid inhibition. These results indicate that the release of iCGRP from human dental pulp provides a novel tool to determine the effects of pharmacological compounds on human nociceptor sensitivity.
Collapse
|
19
|
MARKOWITZ K, PASHLEY DH. Discovering new treatments for sensitive teeth: the long path from biology to therapy. J Oral Rehabil 2008; 35:300-15. [DOI: 10.1111/j.1365-2842.2007.01798.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Shimeno Y, Sugawara Y, Iikubo M, Shoji N, Sasano T. Sympathetic nerve fibers sprout into rat odontoblast layer, but not into dentinal tubules, in response to cavity preparation. Neurosci Lett 2008; 435:73-7. [DOI: 10.1016/j.neulet.2008.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/20/2007] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
|
21
|
FRISTAD INGE, BLETSA ATHANASIA, BYERS MARGARET. Inflammatory nerve responses in the dental pulp. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1601-1546.2010.00247.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Yang H, Bernanke JM, Naftel JP. Immunocytochemical evidence that most sensory neurons of the rat molar pulp express receptors for both glial cell line-derived neurotrophic factor and nerve growth factor. Arch Oral Biol 2006; 51:69-78. [PMID: 16444814 DOI: 10.1016/j.archoralbio.2005.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most pulpal afferent neurons have cytochemical features in common with the class of nociceptors that express neuropeptides and respond to NGF, while very few bind the plant lectin IB4, a widely used marker for the class of nociceptors that respond to the GDNF family of neurotrophic factors. The present study was undertaken to determine whether the GDNF receptor, GFRalpha-1, is expressed by pulpal afferents, and, further, to determine whether tooth injury evokes changes in expression of the GDNF and NGF receptors among pulpal afferents. The tracer, fluoro-gold (FG), was applied to shallow cavities in dentin of first and second maxillary molars. After 4 weeks, the molars of one side received a test injury consisting of a deeper cavity that exposed pulp horns. Animals were perfusion fixed 2 days later, and sections of the trigeminal ganglia were double immunostained with combinations of antibodies against GFRalpha-1, and TrkA. Under control conditions, GFRalpha-1 immunostaining was observed in 72% of neurons that projected to the molar pulp, TrkA in 78%, and immunostaining for both receptors was observed in 65% of pulpal afferents. Tooth injury evoked up-regulation of GFRalpha-1 expression (to 93%) and a slight down-regulation of TrkA expression (67%) among tooth afferents, while there was no discernable change in the proportion of pulpal afferents that expressed both TrkA and GFRalpha-1 (to 61%).
Collapse
Affiliation(s)
- Hong Yang
- Department of Anatomy, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | |
Collapse
|
23
|
Caviedes-Bucheli J, Lombana N, Azuero-Holguín MM, Munoz HR. Quantification of neuropeptides (calcitonin gene-related peptide, substance P, neurokinin A, neuropeptide Y and vasoactive intestinal polypeptide) expressed in healthy and inflamed human dental pulp. Int Endod J 2006; 39:394-400. [PMID: 16640639 DOI: 10.1111/j.1365-2591.2006.01093.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM To quantify the expression of calcitonin gene-related peptide (CGRP), substance P (SP), neurokinin A (NKA), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) in healthy and inflamed human dental pulp tissue. METHODOLOGY Six pulp samples were obtained from teeth having a clinical diagnosis of acute irreversible pulpitis. Another 12 pulp samples were obtained from premolars where extraction was indicated for orthodontic purposes. In six of these premolar teeth inflammation was induced by mechanical pulp exposure prior to sample collection. All samples were processed and 125I-labelled; neuropeptides were quantified by competition assays. ANOVA and Mann-Whitney's (post hoc) tests were used to establish statistically significant differences between the groups. RESULTS Expression of five neuropeptides was found in all human pulp samples. Statistical analysis revealed a significantly higher (P < 0.05) expression of CGRP, SP, NKA and NPY in both inflammatory conditions compared with healthy pulp control values. VIP expression remained stable during the inflammatory conditions. CONCLUSION Expression of CGRP, SP and NKA released from C-fibres and NPY released from sympathetic fibres is significantly higher in the inflamed human pulp compared with healthy pulp. Expression of VIP released from parasympathetic fibres is not increased during the inflammatory conditions of human dental pulp.
Collapse
Affiliation(s)
- J Caviedes-Bucheli
- Graduate Studies Department, School of Dentistry, Pontificia Universidad Javeriana, Bogota, Colombia.
| | | | | | | |
Collapse
|
24
|
Caviedes-Bucheli J, Arenas N, Guiza O, Moncada NA, Moreno GC, Diaz E, Munoz HR. Calcitonin gene-related peptide receptor expression in healthy and inflamed human pulp tissue. Int Endod J 2005; 38:712-7. [PMID: 16164685 DOI: 10.1111/j.1365-2591.2005.01006.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To use radioreceptor analysis for comparing calcitonin gene-related peptide (CGRP) receptor expression in human pulp tissue samples collected from teeth having a clinical diagnosis of acute irreversible pulpitis, healthy pulps and teeth with induced inflammation. METHODOLOGY Six pulp samples were obtained from teeth having a clinical diagnosis of acute irreversible pulpitis. Another eight pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic purposes. In four of these premolars, inflammation was induced prior to pulp collection. All the samples were processed and labelled with 125I-CGRP. Binding sites were identified by 125I-CGRP and standard CGRP competition assays. RESULTS CGRP receptor expression was found in all human pulp tissue samples. Most receptors were found in the group of pulps from teeth having a clinical diagnosis of acute irreversible pulpitis, followed by the group of pulps having induced inflammation. The least number of receptors was expressed in the group of healthy pulps. The Kruskal-Wallis and Mann-Whitney (post-hoc) tests showed statistically significant differences between the groups (P < 0.05). CONCLUSION CGRP receptor expression in human pulp tissue is significantly increased during inflammatory phenomena such as acute irreversible pulpitis.
Collapse
Affiliation(s)
- J Caviedes-Bucheli
- Graduate Studies Department, School of Dentistry, Pontificia Universidad Javeriana, Bogota, Colombia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Renton T, Yiangou Y, Plumpton C, Tate S, Bountra C, Anand P. Sodium channel Nav1.8 immunoreactivity in painful human dental pulp. BMC Oral Health 2005; 5:5. [PMID: 16001984 PMCID: PMC1183220 DOI: 10.1186/1472-6831-5-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 07/07/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 (SNS1/PN3) is expressed by nociceptors and may play a role in pain states. METHODS Using specific antibodies for immunohistochemistry, we studied Nav1.8 immunoreactivity in human dental pulp in relation to the neuronal marker neurofilament. Human tooth pulp was extracted from teeth harvested from a total of twenty-two patients (fourteen without dental pain, eight patients with dental pain). RESULTS Fibres immunoreactive for Nav1.8, were significantly increased on image analysis in the painful group: median (range) Nav1.8 to Neurofilament % area ratio, non-painful 0.059 (0.006-0.24), painful 0.265 (0.13-0.5), P = 0.0019. CONCLUSION Nav1.8 sodium channels may thus represent a therapeutic target in trigeminal nerve pain states.
Collapse
Affiliation(s)
- T Renton
- Department of Oral & Maxillofacial Surgery, Dental Institute, Queen Mary's College, London University, Whitechapel, London UK
| | - Y Yiangou
- Peripheral Neuropathy Unit, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - C Plumpton
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - S Tate
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - C Bountra
- Neurology-CEDD, GlaxoSmithKline, Third Avenue, Harlow CM19 5AW, UK
| | - P Anand
- Peripheral Neuropathy Unit, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
26
|
SAITO I, OKAMOTO Y, GOGEN H, SHANFELD J, HANADA K, DAVIDOVITCH Z. Alterations in staining intensity for calcitonin gene-related peptide (CGRP) in osteoblasts of the periodontal ligament during orthodontic tooth movement. Biomed Res 2004. [DOI: 10.2220/biomedres.25.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Byers MR, Suzuki H, Maeda T. Dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration. Microsc Res Tech 2003; 60:503-15. [PMID: 12619126 DOI: 10.1002/jemt.10291] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers current information about the ability of dental nerves to regenerate and the role of tooth pulp in recruitment of regenerating nerve fibers. In addition, the participation of dental nerves in pulpal injury responses and healing is discussed, especially concerning pulp regeneration and reinnervation after tooth replantation. The complex innervation of teeth is highly asymmetric and guided towards specific microenvironments along blood vessels or in the crown pulp and dentin. Pulpal products such as nerve growth factor are distributed in the same asymmetric gradients as the dentinal sensory innervation, suggesting regulation and recruitment of those nerve fibers by those specific factors. The nerve fibers have important effects on pulpal blood flow and inflammation, while their sprouting and cytochemical changes after tooth injury are in response to altered pulpal cytochemistry. Thus, their pattern and neuropeptide intensity are indicators of pulp status, while their local actions continually affect that status. When denervated teeth are injured, either by pulp exposure on the occlusal surface or by replantation, they have more pulpal necrosis than occurs for innervated teeth. However, small pulp exposures on the side of denervated crowns or larger lesions in germ-free animals can heal well, showing the value of postoperative protection from occlusal trauma or from infection. Current ideas about dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration are related to the overall topics of tooth biomimetics and pulp/dentin regeneration.
Collapse
Affiliation(s)
- Margaret R Byers
- Department of Anesthesiology, University of Washington, Seattle 98195-6540, USA.
| | | | | |
Collapse
|
28
|
Abstract
Permeabilities of enamel and dentin are not fully understood despite their importance for caries, restorative materials, and pulp-dentin-enamel interactions. We have found that Fluoro-Gold is useful for examining tooth permeability, and we designed studies to test the effects of aging, injury, neural function, and dentinal repair on its influx into vital rat teeth. We used fluorescence microscopy and immunocytochemistry to show that Fluoro-Gold rapidly penetrates enamel, the dentin-enamel junction, and outer dentinal acellular tubules, and then concentrates in odontoblasts, where it remains for weeks. As predicted, influx was greatest in immature teeth, and formation of reparative dentin impeded it. We expected that denervation would disrupt influx, because of neural regulation of dentinal fluid movement, but it did not. Damage to odontoblasts under injured dentin caused increased influx and efflux of Fluoro-Gold. Analysis of our data suggests that permeabilities of enamel and dentin to Fluoro-Gold are age-related, inter-dependent, and regulated by odontoblasts.
Collapse
Affiliation(s)
- M R Byers
- Department of Anesthesiology, Box 356540, University of Washignton, Seattle, 98195-6540, USA.
| | | |
Collapse
|
29
|
Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation. J Comp Neurol 2003; 455:25-39. [PMID: 12454994 DOI: 10.1002/cne.2164] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Unlike lingual taste buds in most mammals, fungiform buds on the anterior tongue of mature hamster survive sensory denervation. The role of the neurotrophin ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), and their respective tyrosine kinase (Trk) receptors, TrkB and TrkC, in denervated taste buds is not known. The present report investigates changes in the degree of gemmal cell immunoreactivity (IR) (i.e., number of immunoreactive cells/bud profile) and density of nerve fiber-IR of these markers in unilaterally denervated mature hamsters. The fungiform bud field after chorda tympani/lingual nerve resection is compared with the nerve-dependent, posterior tongue foliate and circumvallate bud fields after glossopharyngeal nerve resection. Four weeks post lesion, the number of denervated fungiform buds matched that on the unoperated side, whereas denervated foliate and circumvallate bud counts decreased by 72% and 38%, respectively. In taste buds that survived on the posterior tongue, the degree of foliate bud cell BDNF-, NT-3-, and TrkB-like IR, and circumvallate bud cell BDNF- and NT-3-like IR, significantly decreased compared with the unoperated side. In contrast, for anterior tongue fungiform bud cells, the degree of neurotrophin- and receptor-like IR was relatively less affected: NT-3- and TrkB-like IR were unchanged; BDNF-like IR, although significantly decreased, was also maintained. Moreover, TrkB-like fiber IR was essentially eliminated within and surrounding fungiform buds. Hence, NT-3-, BDNF-, and TrkB-like IR in fungiform gemmal cells may reflect an autocrine capacity promoting survival. Because TrkC-like IR in bud cells is absent (i.e., immunonegative), and sparse in fibers intragemmally and perigemmally, NT-3 may also bind to bud cell TrkB so as to sustain fungiform gemmal cell viability post denervation.
Collapse
Affiliation(s)
- Donald Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
30
|
Tanabe K, Yoshiba K, Yoshiba N, Iwaku M, Ozawa H. Immunohistochemical study on pulpal response in rat molars after cavity preparation by Er:YAG laser. Eur J Oral Sci 2002; 110:237-45. [PMID: 12120710 DOI: 10.1034/j.1600-0722.2002.21282.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
While Er:YAG laser systems are in extensive use for caries removal and cavity preparation, the effects of such treatment on pulp tissue remain unclear. This study evaluates these systems using immunohistochemical methods and compares the results with information gained from treatment using conventional burs. Cervical cavities were prepared in the upper first molars of rats, using either an Er:YAG laser or a conventional tungsten-carbide bur. At intervals of 5 min, 6 h, 12 h, 1 d, 3 d and 7 d after cavity preparation, the teeth were processed for immunohistochemical analyses of tissue non-specific alkaline phosphatase, OX6-positive major histocompatibility complex class II antigen-expressing cells and PGP 9.5-immunoreactive nerve fibers. DNA fragmentation was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method. Tissue non-specific alkaline phosphatase was observed mainly in the subodontoblastic layer under the cavity lesion, from 5 min, in both groups. The immunoreactivity was more pronounced in the laser group, but by 7 d no significant differences were recognizable. At 12 h, TUNEL-positive cells were detected around the odontoblastic layer in both groups. From 3 d to 7 d, a limited number of positive cells were still visible in the group that underwent standard treatment. Clear similarities in the distribution patterns of OX6-immunopositive cells and PGP 9.5-immunoreactive nerve fibers were also noted. From 12 h to 1 d, OX6-positive cells accumulated along the pulp-dentin border, extending their processes into the dentinal tubules. Numerous bead-like PGP 9.5-immunoreactive nerve fibers were observed under the odontoblastic layer at 7 d. These results demonstrated that there was no appreciable difference in the manner in which pulp tissue responded to treatment with either Er:YAG laser or a conventional drill. This would seem to indicate the usefulness of the Er:YAG laser system in the removal of caries and cavity preparation.
Collapse
Affiliation(s)
- Keita Tanabe
- Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | | | | | | | | |
Collapse
|
31
|
Haug SR, Berggreen E, Heyeraas KJ. The effect of unilateral sympathectomy and cavity preparation on peptidergic nerves and immune cells in rat dental pulp. Exp Neurol 2001; 169:182-90. [PMID: 11312570 DOI: 10.1006/exnr.2001.7642] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent evidence suggests interactions between primary afferent nociceptors and postganglionic sympathetic efferents in the pathogenesis of inflammation. The effect of unilateral removal of the superior cervical ganglion on the innervation pattern of nerve fibers immunoreactive (IR) to calcitonin gene-related peptide (CGRP), substance P (SP), and neuropeptide Y (NPY), as well as the occurrence of immune cells in the injured and uninjured rat molar pulp, was investigated. Light microscopic immunocytochemistry demonstrated that the molar pulps contralateral to the sympathectomy contained a NPY-IR nerve fiber network more dense and heavily stained than unoperated control rats. The NPY-IR fibers showed, however, no sprouting after deep cavity preparation. There was no compensatory increase in CGRP- and SP-IR nerve fibers in the dental pulp after unilateral sympathectomy, although a significant increase in cells IR to CGRP and SP was found in the ipsilateral trigeminal ganglion. Unilateral sympathectomy induced a significant increase in immune cell density both in the inflamed and in the uninflamed dental pulp bilaterally. Our results demonstrate, for the first time, a trophic effect of the sympathetic nerves on immune cells in the dental pulp, indicating that an imbalance of sympathetic nerves may induce inflammation and pain in teeth.
Collapse
Affiliation(s)
- S R Haug
- Department of Physiology, University of Bergen, Bergen, 5009, Norway
| | | | | |
Collapse
|
32
|
Byers MR, Närhi MV. Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:4-39. [PMID: 10759425 DOI: 10.1177/10454411990100010101] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent research has shown that peripheral mechanisms of pain are much more complex than previously thought, and they differ for acutely injured normal tissues compared with chronic inflammation or neuropathic (nerve injury) pain. The purpose of the present review is to describe uses of dental injury models as experimental tools for understanding the normal functions of polymodal nociceptive nerves in healthy tissues, their neuroinflammatory interactions, and their roles in healing. A brief review of normal dental innervation and its interactions with healthy pulp tissue will be presented first, as a framework for understanding the changes that occur after injury. Then, the different types of dental injury that allow gradation of the extent of tissue damage will be described, along with the degree and duration of inflammation, the types of reactions in the trigeminal ganglion and brainstem, and the type of healing. The dental injury models have some unique features compared with neuroinflammation paradigms that affect other peripheral tissues such as skin, viscera, and joints. Peripheral inflammation models can all be contrasted to nerve injury studies that produce a different kind of neuroplasticity and neuropathic pain. Each of these models provides different insights about the normal and pathologic functions of peripheral nerve fibers and their effects on tissue homeostasis, inflammation, and wound healing. The physical confinement of dental pulp and its innervation within the tooth, the high incidence of polymodal A-delta and C-fibers in pulp and dentin, and the somatotopic organization of the trigeminal ganglion provide some special advantages for experimental design when dental injury models are used for the study of neuroinflammatory interactions.
Collapse
Affiliation(s)
- M R Byers
- Department of Anesthesiology, University of Washington, Seattle 98195-6540, USA
| | | |
Collapse
|
33
|
Byers MR, Chudler EH, Iadarola MJ. Chronic tooth pulp inflammation causes transient and persistent expression of Fos in dynorphin-rich regions of rat brainstem. Brain Res 2000; 861:191-207. [PMID: 10760482 DOI: 10.1016/s0006-8993(00)01936-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have analyzed central Fos immunoreactivity (Fos-IR) brainstems of adult rats after three clinically relevant dental injuries: filled dentin (DF) cavities that cause mild pulp injury and heal within 1-2 weeks; open pulp exposures (PX) that cause gradual pulp loss and subsequent periodontal lesions; and filled pulp exposures (PXF). By 1 week after DF cavities, no Fos-IR remained except for sites such as lateral-ventral periolivary nucleus (LVPO) that had Fos-IR in all rats including controls. PX injury induced (1) a delayed transient expression of Fos at 1-2 weeks at three loci (ipsilateral neurons in dorsomedial nucleus oralis, paratrigeminal nucleus, and trigeminal tract), (2) persistent ipsilateral Fos for at least 4 weeks after injury in dynorphin (Dyn)-rich regions (rostral lateral solitary nucleus, periobex dorsal nucleus caudalis), and (3) late Fos-IR at 2-4 weeks (bilateral superficial cervical dorsal horn, contralateral dorsal nucleus caudalis, contralateral rostral lateral solitary nucleus). Rats with PXF injury were examined at 2 weeks, and they had greater numbers and more extensive rostro-caudal distribution of Fos neurons than the PX group. One week after PX injury, Fos-IR neurons were found in regions with strong Dyn-IR central fibers. Co-expression of Dyn and Fos was found in some unusually large neurons of the ipsilateral rostral lateral solitary nucleus, trigeminal tract, and dorsal nucleus caudalis. Immunocytochemistry for the p75 low affinity neurotrophin receptor (p75NTR) or for calcitonin gene-related peptide (CGRP) showed no consistent change in trigeminal central endings in any Fos-reactive brainstem areas, despite the extensive structural and cytochemical reorganization of the peripheral endings of the dental neurons. The Fos responses of central neurons to tooth injury have some unusual temporal and spatial patterns in adult rats compared to other trigeminal injury models.
Collapse
Affiliation(s)
- M R Byers
- Department of Anesthesiology, University of Washington, Seattle, WA 98195-6540, USA.
| | | | | |
Collapse
|
34
|
Abstract
Maintenance of constant relations between receptor cell types and branching from a single gustatory nerve fiber during normal cell turnover and regeneration requires cell-cell recognition likely mediated by timed expression of molecules at surfaces of taste bud cells, nerve endings, and in extracellular matrix. These processes assure stability of gustatory quality representation during intragemmal remodeling. Coincidentally, features of gemmal cell lifespan, including elongation, differentiation, and migration prior to apoptosis, must also be orchestrated by molecular signals. This article reviews the potential roles played by a variety of molecular markers for some relevant classes of proteins, peptides, and enzymes, which were presumed to be important for carrying out these gustatory cellular functions.
Collapse
Affiliation(s)
- J R Ganchrow
- Department of Oral Biology, The Hebrew University-Hadassah Faculty of Dental Medicine Founded by the Alpha Omega Fraternity, Jerusalem, Israel.
| |
Collapse
|
35
|
Ulrich-Lai YM, Engeland WC. Hyperinnervation during adrenal regeneration influences the rate of functional recovery. Neuroendocrinology 2000; 71:107-23. [PMID: 10686525 DOI: 10.1159/000054527] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rat adrenal cortex has the uncommon ability to demonstrate morphological and functional regeneration after injury-induced loss of cortical tissue. Peripheral nerves are involved in tissue regeneration and healing after injury, implying that nerves may also be involved in modulating the regeneration of the adrenal cortex. Studies were initiated to assess changes in adrenal innervation during cortical tissue regeneration subsequent to adrenal enucleation. Innervation of regenerating adrenals was assessed from 3 to 62 days postenucleation by immunohistofluorescent detection of neuronal markers for primary afferent, preganglionic sympathetic, and postganglionic sympathetic fibers. The regenerating adrenal contained few nerves at 3 days postenucleation, but became differentially innervated, with extensive innervation by nerve fibers positive for calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH), neuropeptide Y (NPY), and neuronal nitric oxide synthase (nNOS). In contrast, there was only minimal innervation by nerve fibers positive for vasoactive intestinal peptide. By 14 days postenucleation, the CGRP-, TH-, and NPY-positive innervation included areas of hyperinnervation in the capsule, cortex, and central inflammatory site of the regenerating gland. In addition, many chromaffin cells were present at all time points postenucleation. Quantification of the regenerating gland content of CGRP, norepinephrine, epinephrine, and nNOS verified the immunohistofluorescent observations. The period of extensive innervation correlated temporally with the time (3-30 days) during which the regenerating glands recovered steroidogenic function. Moreover, splanchnic nerve transection at the time of adrenal enucleation decreased the innervation by CGRP-positive and vesicular acetylcholine transporter-positive fibers and delayed regeneration. These results support the hypothesis that adrenal innervation modulates tissue regeneration and functional recovery of the enucleated adrenal gland.
Collapse
Affiliation(s)
- Y M Ulrich-Lai
- Departments of Neuroscience and Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
36
|
Takamori K. A histopathological and immunohistochemical study of dental pulp and pulpal nerve fibers in rats after the cavity preparation using Er:YAG laser. J Endod 2000; 26:95-9. [PMID: 11194381 DOI: 10.1097/00004770-200002000-00009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to investigate histopathological changes in the dental pulp after Er:YAG laser irradiation compared with those after high-speed drill preparation. For evaluation, repair of nerve fibers was observed using an immunohistochemical technique. There was no significant difference between the remaining dentin thickness in either cases. (Mann-Whitney U test). In the Er:YAG laser group a marked fibroblast proliferation and the formation of reparative dentin were observed relative to the high-speed drill group. The time course of the increase and decrease in calcitonin gene-related peptide-immunoreactive fibers in the high-speed drill group was similar to that of previous reports. In the Er:YAG laser group an increase in calcitonin gene-related peptide-immunoreactive fibers was seen earlier than in the high-speed drill group, and 7 days after operation these fibers decreased to control level. The results suggested that the Er:YAG laser leads to pulpal repair earlier than the high-speed drill.
Collapse
Affiliation(s)
- K Takamori
- Department of Pedodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| |
Collapse
|
37
|
Abstract
We have studied changes in the level of calcium channel expression in the cell bodies of neurons located in the maxillary division of the trigeminal ganglion following induction of persistent pulpitis by pulp exposure in the right maxillary molars. Using anti-peptide antibodies to the alpha1 subunit of class A (P-/Q-type) voltage-gated calcium channels, we observed slight increases in the expression level three days following surgery and approximately 4 fold increase by eight days following the lesion. These changes in the expression of the alpha1 subunit of class A calcium channels may have functional implications in the responses of nociceptive neurons to chronic inflammation.
Collapse
Affiliation(s)
- R E Westenbroek
- Department of Pharmacology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
38
|
Uddman R, Kato J, Lindgren P, Sundler F, Edvinsson L. Expression of calcitonin gene-related peptide-1 receptor mRNA in human tooth pulp and trigeminal ganglion. Arch Oral Biol 1999; 44:1-6. [PMID: 10075144 DOI: 10.1016/s0003-9969(98)00102-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Numerous nerve fibres containing calcitonin gene-related peptide (CGRP) were found by immunocytochemistry in human molar pulp. These nerves were often seen around small blood vessels and as free endings without vascular contact. In the trigeminal ganglion a large number of CGRP-immunoreactive nerve-cell bodies, mostly of small to medium size, was encountered. Reverse transcriptase-polymerase chain reaction, using specific sense and antisense primers, detected mRNA expression of the human CGRP1 receptor in the pulp tissue and the trigeminal ganglion. Thus, both CGRP-containing nerve fibres and CGRP1 receptor mRNA are present in human tooth pulp, where they may be involved in the regulation of vascular tone and other local reactions to injury.
Collapse
Affiliation(s)
- R Uddman
- Department of Oto-rhino-laryngology, Malmö General Hospital, Sweden
| | | | | | | | | |
Collapse
|
39
|
Nørholt SE. Treatment of acute pain following removal of mandibular third molars. Use of the dental pain model in pharmacological research and development of a comparable animal model. Int J Oral Maxillofac Surg 1998; 27 Suppl 1:1-41. [PMID: 9638499 DOI: 10.1016/s0901-5027(98)80001-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
MESH Headings
- Acute Disease
- Analgesics/administration & dosage
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Bite Force
- Calcitonin Gene-Related Peptide/analysis
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Evaluation
- Humans
- Mandible/physiopathology
- Mandible/surgery
- Molar, Third/surgery
- Morphine/administration & dosage
- Morphine/pharmacology
- Morphine/therapeutic use
- Movement
- Neuropeptides/analysis
- Pain Threshold/drug effects
- Pain, Postoperative/drug therapy
- Piroxicam/administration & dosage
- Piroxicam/analogs & derivatives
- Piroxicam/pharmacology
- Piroxicam/therapeutic use
- Rats
- Substance P/analysis
- Tooth Extraction/adverse effects
Collapse
Affiliation(s)
- S E Nørholt
- Department of Oral and Maxillofacial Surgery, Royal Dental College, Faculty of Health Sciences, University of Aarhus
| |
Collapse
|
40
|
Whitehead MC, Ganchrow JR, Ganchrow D, Yao B. Neural cell adhesion molecule, neuron-specific enolase and calcitonin gene-related peptide immunoreactivity in hamster taste buds after chorda tympani/lingual nerve denervation. Neuroscience 1998; 83:843-56. [PMID: 9483568 DOI: 10.1016/s0306-4522(97)00442-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hamster fungiform papilla taste buds persist in an atrophic form following sensory denervation. While atrophic and innervated taste buds are morphologically similar, it is not known whether their gemmal cells have similar molecular characteristics. Three neurochemicals, neural cell adhesion molecule, neuron-specific enolase, and calcitonin gene-related peptide have been implicated in trophic phenomena, synaptogenesis and cell recognition in neurons and sensory neuroepithelia. The present study uses immunocytochemical localization of these molecular markers to characterize normal and denervated fungiform taste buds following unilateral chorda tympani/lingual nerve denervation in hamsters. In normal taste buds, immunoreactivity to neural cell adhesion molecule, neuron-specific enolase, and calcitonin gene-related peptide was present in a group of cells located centrally in the bud as well as in fungiform nerve fibres and endings. After denervation, gemmal cell immunoreactivity to all three markers was reduced and often confined to a single or a few bud cell(s). Also, fibre staining was absent except for sparse calcitonin gene-related peptide-immunoreactive fibres associated with blood vessels and within the fungiform papillae. These remaining fibres may be autonomic or somatomotor in origin. These results indicate that sensory denervation of hamster taste buds reduces, but does not wholly eliminate the immunoreactivity of surviving gemmal cells to neural cell adhesion molecule, neuron-specific enolase, and calcitonin gene-related peptide. While the number of taste bud cells expressing the markers appears to be nerve-dependent, immunoreactivity in sensory-denervated bud cells of hamster may reflect the influence of local tissue factors.
Collapse
Affiliation(s)
- M C Whitehead
- University of California, Department of Surgery, La Jolla, San Diego 92093, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Adult dental tissues have unusual neurotrophin biology. Pulpal fibroblasts express nerve growth factor (NGF) and the low-affinity p75 neurotrophin receptor, their sensory nerve fibers express p75 and trk A, and pulpal sympathetic fibers lack p75. Following tooth injury, there is increased pulpal NGF, sprouting of sensory nerve endings, and increased immunoreactivity for the sensory neuropeptide calcitonin gene-related peptide (CGRP). In the present study, we have analyzed tooth structure and innervation of pulp and periodontal ligament in young (6-8 weeks, 3 months) and older (5-12 months) adult mice carrying a null mutation in the p75 gene and compared the results with those of age-matched wild-type controls. Our hypotheses were that tooth structure would be abnormal and that pulpal innervation would be greatly reduced because it consists primarily of nociceptive fibers that have been found to be severely depleted in skin of p75(-/-) mice. Tissues were fixed, X-rayed for gross dental morphology, decalcified, and analyzed for immunoreactivity for CGRP and for a general nerve marker, protein gene product 9.5. Radiographs showed worn-down molar crowns in p75-deficient mice. Light microscopy confirmed the accelerated molar wear and showed intense CGRP immunoreactivity in pulp nerve endings of mutant mice, compared with a gradual decrease in CGRP intensity in controls during normal aging. The CGRP intensity in 5-12-month-old pairs of mice was threefold greater in the mutants (P < 0.03), and in younger mice the mutant always had more CGRP than its matched control. The innervation of molar ligament in all p75-deficient mice was similar to that of controls except there was nerve sprouting near bone loss in mutants. The incisors of mutant mice did not have unusual wear and their pulpal CGRP immunoreactivity remained normal, but their periodontal ligament had fewer thin branched nerve endings at all ages. Thus, most innervation of teeth and their supporting tissues developed normally, and the only neural changes in p75(-/-) mutant mice were the reduction of incisor ligament sensory receptors and increased molar CGRP. Sensory nerves in teeth gradually lose neuropeptide intensity during aging, but that did not happen in the mutant mice, suggesting that the accelerated molar wear stimulated persistent high levels of CGRP.
Collapse
Affiliation(s)
- S Sarram
- Department of Endodontics, University of Washington, Seattle 98195-6540, USA
| | | | | |
Collapse
|
42
|
Abstract
Cell monolayers derived from human pulpal explants were passaged 3 to 4 times before characterization of the response of the cells to calcitonin gene-related peptide (CGRP). Northern blot analysis of mRNA revealed the presence of transcripts for bone morphogenetic protein-2 (BMP-2). Stimulation with CGRP produced a 1.8-fold increase in BMP-2 mRNA expression by the cells. Analysis of binding of CGRP to whole cells indicated that unlabeled human CGRP competed with labeled CGRP in a dose dependent fashion with a KD, estimated from the EC50, in the range of 5 x 10(-8)M. Binding of labeled CGRP was greatly reduced by the presence of 10(-6)M CGRP but was unaffected by the presence of 10(-6)M Human PTH(1-34) or 10(-6)M calcitonin. CGRP produced a 2.8-fold increase in cyclic AMP over basal levels, which was similar to the increase produced by PTH(1-34) (2.6 fold) but slightly more than the increase produced by calcitonin (1.9 fold). The pulp-derived cells displayed a high basal level of alkaline phosphatase enzyme activity, which was not altered by treatment with CGRP or either PTH(1-34) or 1,25(OH)2D3. Stimulation with 2.5 x 10(-8)M 1,25(OH)2D3 did produce a 7.6-fold increase in osteocalcin. These results indicate that pulp cells possess the cellular machinery to respond to CGRP and that stimulation of the production of BMP-2, a factor known to be associated with induction of dentin formation, is a component of the response.
Collapse
Affiliation(s)
- J W Calland
- Department of Endodontics, University of Texas Health Science Center at San Antonio 78284-7892, USA
| | | | | |
Collapse
|
43
|
Pertl C, Amann R, Odell E, Robinson PD, Kim S. Effects of local anesthesia on substance P and CGRP content of the human dental pulp. J Endod 1997; 23:416-8. [PMID: 9587292 DOI: 10.1016/s0099-2399(97)80293-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of the study was to determine immunoreactive Substance P (iSP) and immunoreactive calcitonin gene-related peptide (iCGRP) content in the human dental pulp and whether local anesthesia has an effect on the neuropeptide content. Dental pulps were obtained from patients, who underwent surgical extraction of all 4 impacted wisdom teeth under general isoflurane gas anesthesia. There was a very high interindividual variation in tissue content, with small variation in levels found in teeth from the same patient. Pulps obtained from lower teeth without local anesthesia contained an average of 131 +/- 62 fmol/mg protein of iCGRP and 15 +/- 9 fmol/mg iSP (n = 10). With additional mandibular block anesthesia the values were 194 +/- 71 fmol/mg iCGRP (statistically significant, p = 0.0356, Mann-Whitney-rank-sum-test) and 12 +/- 3.6 fmol/mg iSP. The results suggest that local anesthesia attenuates neuropeptide release in the human dental pulp during surgical extraction.
Collapse
Affiliation(s)
- C Pertl
- Department of Oral Surgery, School of Dental, Oral, and Maxillofacial Medicine, Karl-Franzens University of Graz, Austria
| | | | | | | | | |
Collapse
|
44
|
Ferrari AM, Byers MR. Chronic dexamethasone treatment and its effects on sensory neuropeptides, pulpal injury reactions and reparative dentin. Brain Res 1996; 723:125-34. [PMID: 8813389 DOI: 10.1016/0006-8993(96)00231-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Initial sensory nerve reactions to dental injuries include terminal sprouting and intensified immunoreactivity for calcitonin gene-related peptide (CGRP) and substance P (SP); those reactions are reduced at 4 days after injury when rats are treated daily with dexamethasone (DEX) [17]. Here we have analyzed long-term effects of DEX (daily, 0.2 mg/kg) on wound healing, sensory nerve sprouting, and CGRP/SP intensity at 7-14 days after cavity preparation. All DEX treated rats had loss of appetite and stopped growing during the postoperative periods while controls had normal postoperative growth. After 7-14 days, CGRP immunoreactivity (IR) was decreased to one-third of normal (P < 0.05) compared to vehicle in both the intact and injured molar pulp, and SP also decreased, but the neuropeptide intensity in adjacent periodontal innervation was not changed. Pulpal injury and inflammation were reduced by DEX treatment, but reparative dentin was formed just as well in the DEX rats as in the vehicle group. When the injured teeth formed fibrous dentin, there was sprouting of nerves towards that matrix, and DEX did not inhibit that reaction. The sprouts could contain intense neuropeptide immunoreactivity in DEX rats even though the CGRP/SP intensity in uninjured pulp was reduced. We conclude that (1) chronic DEX treatment causes a generalized decrease in CGRP and SP neuropeptides in pulpal nerves but not in periodontal ligament; (2) it reduces abscess formation in injured teeth; (3) it does not block reparative dentin formation; and (4) it does not block sprouting of pulpal nerves towards fibrous dentin. The selective loss of pulpal neuropeptides CGRP and SP during dexamethasone treatment may be caused by reduced dental function since there was substantial loss of appetite and chronic weight loss during the 1-2 week treatment periods.
Collapse
Affiliation(s)
- A M Ferrari
- School of Dentistry, University of Washington, Seattle 98195-7137, USA
| | | |
Collapse
|
45
|
Montavon P, Hellekant G, Farbman A. Immunohistochemical, electrophysiological, and electron microscopical study of rat fungiform taste buds after regeneration of chorda tympani through the non-gustatory lingual nerve. J Comp Neurol 1996; 367:491-502. [PMID: 8731221 DOI: 10.1002/(sici)1096-9861(19960415)367:4<491::aid-cne2>3.0.co;2-#] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sensory innervation of fungiform papillae on the rat dorsal tongue is derived from branches of two cranial nerves: the lingual branch of the trigeminal nerve which provides somatosensory innervation and the chorda tympani (CT) branch of the facial nerve, which provides innervation to the taste buds. Removal of the CT results in degeneration of the taste buds. Removal of both nerves results in reduction in size of fungiform papillae and an altered pattern of keratinization in its epithelium. Regeneration of nerves to the epithelium restores the pre-operative condition. Thus, in addition to their sensory functions, both the CT and lingual seem to exert trophic effects on the phenotypic expression of epithelial cells in the fungiform papillae. We severed both the CT and lingual nerves in rats and sutured the proximal stump of the CT to the distal stump of the lingual to promote regeneration of the CT along the lingual nerve pathway. At the same time, we prevented the proximal stump of the lingual from regenerating into the tongue. Our purpose was to determine whether and how the innervation pattern of the regenerated taste bud might be different from normal under these experimental conditions. We found that reinnervation by the CT through the lingual nerve occurs, that this restores the anatomical and functional integrity of the fungiform taste buds and papillae, and that some papillae, but not all, were richly innervated with subgemmal, extragemmal, and perigemmal neuron-specific enolase, calcitonin gene-related peptide, substance P, and neurokinin A-positive fibers. Moreover, responses to taste stimuli were recorded electrophysiologically from the CT.
Collapse
Affiliation(s)
- P Montavon
- Nestec, Ltd, Research Centre, Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | | |
Collapse
|
46
|
Pashley DH. Dynamics of the pulpo-dentin complex. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1996; 7:104-33. [PMID: 8875027 DOI: 10.1177/10454411960070020101] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dentin has a relatively high water content due to its tubular structure. Once dentin is exposed, this intratubular water is free to move in response to thermal, osmotic, evaporative, or tactile stimuli. Fluid shifts across dentin are thought to cause sufficient shear forces on odontoblasts, nerve endings, nearby fibroblasts, and blood vessels to cause significant mechanical irritation, disruption, or damage, depending on the magnitude of the fluid shift. Even in the absence of fluid shifts, the water-filled tubules provide diffusion channels for noxious (i.e., bacterial products) substances which diffuse inward toward the pulp, where they can activate the immune system, provide chemotactic stimuli, cytokine production, and produce pain and pulpal inflammation. Viewed from this perspective, dentin is a poor barrier to external irritants. However, pulpal tissues react to these challenges by increasing the activity of nerves, blood vessels, the immune system, and interstitial fluid turnover, to make the exposed dentin less permeable either physiologically, via increased outward fluid flow, or microscopically, by lining tubules with proteins, mineral deposits, or tertiary dentin, thereby enhancing the barrier properties of dentin, and providing additional protection to pulpal tissues. These reactions involve dentin and pulp, both in the initiation of the processes and in their resolution. These responses of the dental pulp to irritation of dentin demonstrate the dynamic nature of the pulpo-dentin complex.
Collapse
Affiliation(s)
- D H Pashley
- Department of Oral Biology, School of Dentistry, Medical College of Georgia, Augusta 30912-1129, USA
| |
Collapse
|
47
|
Bongenhielm U, Haegerstrand A, Theodorsson E, Fried K. Effects of neuropeptides on growth of cultivated rat molar pulp fibroblasts. REGULATORY PEPTIDES 1995; 60:91-8. [PMID: 8746536 DOI: 10.1016/0167-0115(95)00115-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of the neuropeptides substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) on DNA synthesis of dental pulp cells was investigated in cells grown from molar tooth bud explants from 4-6 days old rat pups. A concentration response-assay of the proliferative response of pulpal cells was performed with SP, NPY, NKA, CGRP and VIP (0.01 to 1 nM) in the presence of EGF (10 ng/ml), hydrocortisone (0.4 microgram/ml) and 3% FCS, using [3H]thymidine incorporation. The results showed that SP, NKA and CGRP, but not NPY and VIP, increased the cell number in a concentration-dependent manner, with maxima at 10(-10)-10(-9) M (SP, NKA) and 10(-7) M (CGRP). No potentiating effect was noted when cells were simultaneously stimulated with SP and CGRP. The finding that SP, NKA and CGRP have growth regulatory properties on pulpal cells in vitro suggests that sensory neuropeptides may be involved during pulpal development or in wound healing after pulpal injury.
Collapse
Affiliation(s)
- U Bongenhielm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
48
|
Bhatnagar M, Cintra A, Tinner B, Agnati LF, Kerezoudis N, Edwall L, Fuxe K. Neurotensin-like immunoreactivity in odontoblasts and their processes in rat maxillary molar teeth and the effect of pulpotomy. REGULATORY PEPTIDES 1995; 58:141-7. [PMID: 8577926 DOI: 10.1016/0167-0115(95)00062-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A strong neurotensin-like immunoreactivity (NT-like IR) was detected in the odontoblast cells of the rat teeth. 4 h after a partial pulpotomy performed in two maxillary molar teeth a decreased NT-like IR was observed in the odontoblast layer located at the vicinity of the lesion together with edema and nuclear pyknosis. NT-like IR became further decreased after 24 h. After 7 days NT-like IR had almost fully disappeared with signs of necrosis of the dental pulp and infiltration of polymorphonuclear lymphocytes. It seems possible that NT like peptides in the odontoblast cell layer may play a role, e.g., in dentinogenesis and/or nociception.
Collapse
Affiliation(s)
- M Bhatnagar
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
49
|
Tuisku F, Hildebrand C. Immunohistochemical and electron microscopic demonstration of nerve fibres in relation to gingiva, tooth germs and functional teeth in the lower jaw of the cichlid Tilapia mariae. Arch Oral Biol 1995; 40:513-20. [PMID: 7677596 DOI: 10.1016/0003-9969(94)00200-u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immunohistochemistry revealed the presence of numerous neurofilament (NF)-like immunoreactive axons in relation to gingiva and dental follicles surrounding mineralizing tooth germs. The gingival nerve fibres frequently approached the prospective papilla of early tooth primordia. Electron microscopic (EM) analysis revealed the presence of bundles of unmyelinated axons immediately below the epithelial-proprial junction of the gingiva. Bundles of nerve fibres were also present in the border zone between the prospective papilla of bud-stage tooth germs and surrounding mesenchyme and in close proximity to blood vessels of the follicles surrounding older tooth germs, but no axons were observed within the emerging dental papilla. In the individual functional tooth, a bundle of NF-like immunoreactive nerve fibres entered the apical part of the pulp forming a subodontoblastic plexus at mid-pulpal levels. EM analysis showed that the apical bundle consisted of many unmyelinated and a few myelinated axons invested by Schwann cell processes. The subodontoblastic plexus contained unmyelinated axons only. Thin, axon-like profiles were also seen in predentinal tubules. Nerve fibres were not observed at pulpal horn levels and in the ligamentous attachment. It is concluded that both immature and mature parts of the lower-jaw dentition of the cichlid T. mariae are innervated and that the microscopic anatomy of this innervation is partly similar to the pattern seen in developing and adult mammals.
Collapse
Affiliation(s)
- F Tuisku
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden
| | | |
Collapse
|
50
|
Abstract
(1) Although our knowledge on teeth and tooth nerves has increased substantially during the past 25 years, several important issues remain to be fully elucidated. As a result of the work now going on at many laboratories over the world, we can expect exciting new findings and major break-throughs in these and other areas in a near future. (2) Dentin-like and enamel-like hard tissues evolved as components of the exoskeletal bony armor of early vertebrates, 500 million years ago, long before the first appearance of teeth. It is possible that teeth developed from tubercles (odontodes) in the bony armor. The presence of a canal system in the bony plates, of tubular dentin, of external pores in the enamel layer and of a link to the lateral line system promoted hypotheses that the bony plates and tooth precursors may have had a sensory function. The evolution of an efficient brain, of a head with paired sense organs and of toothed jaws concurred with a shift from a sessile filter-feeding life to active prey hunting. (3) The wide spectrum of feeding behaviors exhibited by modern vertebrates is reflected by a variety of dentition types. While the teeth are continuously renewed in toothed non-mammalian vertebrates, tooth turnover is highly restricted in mammals. As a rule, one set of primary teeth is replaced by one set of permanent teeth. Since teeth are richly innervated, the turnover necessitates a local neural plasticity. Another factor calling for a local plasticity is the relatively frequent occurrence of age-related and pathological dental changes. (4) Tooth development is initiated through interactions between the oral epithelium and underlying neural crest-derived mesenchymal cells. The interactions are mediated by cell surface molecules, extracellular matrix molecules and soluble molecules. The possibility that the initiating events might involve a neural component has been much discussed. With respect to mammals, the experimental evidence available does not support this hypothesis. In the teleost Tilapia mariae, on the other hand, tooth germ formation is interrupted, and tooth turnover ceases after local denervation. (5) Prospective dental nerves enter the jaws well before onset of tooth development. When a dental lamina has formed, a plexus of nerve branches is seen in the subepithelial mesenchyme. Shortly thereafter, specific branches to individual tooth primordia can be distinguished. In bud stage tooth germs, axon terminals surround the condensed mesenchyme and in cap stage primordia axons grow into the dental follicle.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Hildebrand
- Department of Cell Biology, University of Linköping, Sweden
| | | | | | | |
Collapse
|