1
|
Weng J, Wang YH, Li M, Zhang DY, Jiang BG. GSK3β inhibitor promotes myelination and mitigates muscle atrophy after peripheral nerve injury. Neural Regen Res 2018; 13:324-330. [PMID: 29557384 PMCID: PMC5879906 DOI: 10.4103/1673-5374.226403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Delay of axon regeneration after peripheral nerve injury usually leads to progressive muscle atrophy and poor functional recovery. The Wnt/β-catenin signaling pathway is considered to be one of the main molecular mechanisms that lead to skeletal muscle atrophy in the elderly. We hold the hypothesis that the innervation of target muscle can be promoted by accelerating axon regeneration and decelerating muscle cell degeneration so as to improve functional recovery of skeletal muscle following peripheral nerve injury. This process may be associated with the Wnt/β-catenin signaling pathway. Our study designed in vitro cell models to simulate myelin regeneration and muscle atrophy. We investigated the effects of SB216763, a glycogen synthase kinase 3 beta inhibitor, on the two major murine cell lines RSC96 and C2C12 derived from Schwann cells and muscle satellite cells. The results showed that SB216763 stimulated the Schwann cell migration and myotube contraction. Quantitative polymerase chain reaction results demonstrated that myelin related genes, myelin associated glycoprotein and cyclin-D1, muscle related gene myogenin and endplate-associated gene nicotinic acetylcholine receptors levels were stimulated by SB216763. Immunocytochemical staining revealed that the expressions of β-catenin in the RSC96 and C2C12 cytosolic and nuclear compartments were increased in the SB216763-treated cells. These findings confirm that the glycogen synthase kinase 3 beta inhibitor, SB216763, promoted the myelination and myotube differentiation through the Wnt/β-catenin signaling pathway and contributed to nerve remyelination and reduced denervated muscle atrophy after peripheral nerve injury.
Collapse
Affiliation(s)
- Jian Weng
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Yan-hua Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Ming Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Dian-ying Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Bao-guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| |
Collapse
|
2
|
Abstract
The difference in regenerative capacity between the PNS and the CNS is not due to an intrinsic inability of central neurons to extend fibers. Rather, it is probably related to the environment in the CNS that is either repulsive to axonal outgrowth and/or nonsupportive of axonal elongation. In contrast, the PNS both supports and allows for axonal elongation after injury. The Schwann cell, which is the glial cell of the PNS, is strictly required for peripheral regeneration. Here we discuss recent work describing the biology of Schwann cell- dependent regeneration, discuss what is known of the molecular basis of this phenomenon, and how it might apply to the damaged CNS. NEUROSCIENTIST 5:208-216, 1999
Collapse
Affiliation(s)
- David E. Weinstein
- Departments of Neuroscience and Pathology Albert Einstein College of Medicine Bronx, New York
| |
Collapse
|
3
|
Abstract
As most elegantly confirmed by the recent success in deriving mice with null mutations in the genes for specific neurotrophic factors or their respective receptors, it is clear that neurotrophic factors alone or in combination are essential for the development of many classes of neurons. Specific neurotrophic factors have now been characterized that have actions on primary sensory afferents, sympathetic and parasym pathetic neurons, and motor neurons—the major contributors to the axon bundles that comprise the periph eral nervous system. The peripheral tissues or "end organs" that these neurons innervate have traditionally been thought of as the key source of neurotrophic factor support, but it is now evident that this "target- derived neurotrophic factor hypothesis" has restricted validity. Rather, the totality of neurotrophic support required to promote the survival, maturation, and maintenance of a neuron appears to be derived not only from targets, but also from support cells and possibly even neurons themselves. In this article, we review the role played by multiple sources of neurotrophic factors, especially factors derived from non-neuronal cells, not only in development, but also in the maintenance and regenerative responses of the adult PNS. In par ticular, we focus on neurotrophic factors of the neurotrophin family and ciliary neurotrophic factor. The Neuro scientist 1:192-199, 1995
Collapse
Affiliation(s)
| | - Vivien Wong
- Regeneron Pharmaceuticals Inc. Tarrytown, New York
| | | |
Collapse
|
4
|
Özay R, Aktaş A, Taşkapılıoğlu MÖ, Gürer B, Erdoğan B, Çağlar YŞ. Does glioblastoma cyst fluid promote sciatic nerve regeneration? Neural Regen Res 2015; 10:1643-9. [PMID: 26692863 PMCID: PMC4660759 DOI: 10.4103/1673-5374.167764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glioblastoma cyst fluid contains growth factors and extracellular matrix proteins which are known as neurotrophic and neurite-promoting agents. Therefore, we hypothesized that glioblastoma cyst fluid can promote the regeneration of injured peripheral nerves. To validate this hypothesis, we transected rat sciatic nerve, performed epineural anastomosis, and wrapped the injured sciatic nerve with glioblastoma cyst fluid- or saline-soaked gelatin sponges. Neurological function and histomorphological examinations showed that compared with the rats receiving local saline treatment, those receiving local glioblastoma cyst fluid treatment had better sciatic nerve function, fewer scars, greater axon area, counts and diameter as well as fiber diameter. These findings suggest that glioblastoma cyst fluid can promote the regeneration of injured sciatic nerve and has the potential for future clinical application in patients with peripheral nerve injury.
Collapse
Affiliation(s)
- Rafet Özay
- Department of Neurosurgery, Diskapi Yıldırım Beyazıt Educational and Research Hospital, Ankara, Turkey
| | - Abit Aktaş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | | | - Bora Gürer
- Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Bülent Erdoğan
- Department of Neurosurgery, School of Medicine, Fatih University, Ankara, Turkey
| | - Yusuf Şükrü Çağlar
- Department of Neurosurgery, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Yamada Y, Nishiura Y, Saijilafu, Hara Y, Ichimura H, Yoshii Y, Ochiai N. Repair of peripheral nerve defect by direct gradual lengthening of the distal nerve stump in rats: Cellular reaction. ACTA ACUST UNITED AC 2009; 43:297-304. [DOI: 10.1080/02844310903052578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Effect of bone marrow-derived mononuclear cells on nerve regeneration in the transection model of the rat sciatic nerve. J Clin Neurosci 2009; 16:1211-7. [PMID: 19596581 DOI: 10.1016/j.jocn.2009.01.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 01/05/2009] [Indexed: 12/12/2022]
Abstract
Bone marrow-derived stem cells enhance the rate of regeneration and clinical improvement in nerve injury, spinal cord injury and brain infarction. Recent experiments in rat spinal cord demyelination showed that remyelination was specific to intravenous delivery of the bone marrow-derived mononuclear cell (BM-MNC) fraction, although the specific role of this fraction in peripheral nerve regeneration has not been examined. Therefore we evaluated the role of BM-MNCs in peripheral nerve regeneration in the rat sciatic nerve transection model. After anesthesia, the right sciatic nerve of 20 adult-male Wistar rats was transected under an operating microscope. In the test group, the cut ends of the nerve were approximated with two epineural microsutures, the gap was filled with rat BM-MNCs and the approximated nerve ends were covered with fibrin glue. In the control group, the transected nerve ends were repaired with two epineural microsutures and fibrin sealant only. Histological assessment of the nerve was performed 30 days and 60 days after the operation and regenerative changes were compared between the two groups. The recovery after nerve anastamosis was far better in the test group at both 30 days and 60 days. There was a statistically significant difference in axonal regeneration, remyelination and myelin thickness at sites 5mm and 10mm from the site of repair of the nerve. Schwann cell proliferation and degenerative changes were more prevalent in the controls. This study demonstrates that local delivery of BM-MNCs (which can be isolated easily from bone marrow aspirates) into injured peripheral nerve increases the rate and degree of nerve regeneration. The present study highlights the role of BM-MNCs in peripheral nerve regeneration.
Collapse
|
7
|
Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol 2009; 223:102-11. [PMID: 19505459 DOI: 10.1016/j.expneurol.2009.05.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/29/2009] [Accepted: 05/30/2009] [Indexed: 01/09/2023]
Abstract
Traumatic injury to the nervous system often results in life changing loss of neurological function. Spontaneous neural regeneration occurs rarely and the outcome of therapeutic intervention is most often unacceptable. An intensive effort is underway to improve methods and technologies for nervous system repair. To date, the most success has been attained in the outcomes of peripheral nerve restoration. The importance of the peripheral nerve sheaths in successful nerve regeneration has been long recognized. In particular, Schwann cells and their basal laminae play a central role in axon development, maintenance, physiology, and response to injury. The endoneurial basal lamina is rich in components that promote axonal growth. It is now evident that the bioactivities of these components are counterbalanced by various factors that impede axonal growth. The growth-promoting potential of peripheral nerve is realized in the degenerative processes that occur distal to a lesion. This potentiation involves precise spatiotemporal alterations in the balance of antagonistic regulators of axonal growth. Experimental alteration of nerve sheath composition can also potentiate nerve and improve key features of nerve regeneration. For instance, enzymatic degradation of inhibitory chondroitin sulfate proteoglycan mimics endogenous processes that potentiate degenerated nerve and improves the outcome of direct nerve repair and grafting in animal models. This review provides a perspective of the essential role that peripheral nerve sheaths play in regulating axonal regeneration and focuses on discoveries leading to the inception and development of novel therapies for nerve repair.
Collapse
Affiliation(s)
- David Muir
- Department of Pediatrics, Neurology Division, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
8
|
Saijilafu, Nishiura Y, Hara Y, Yoshii Y, Ochiai N. Simultaneous gradual lengthening of both proximal and distal nerve stumps for repair of peripheral nerve defect in rats. Muscle Nerve 2008; 38:1474-1480. [DOI: 10.1002/mus.21147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Hattori T, Matsuyama Y, Sakai Y, Ishiguro N, Hirata H, Nakamura R. Chondrotinase ABC enhances axonal regeneration across nerve gaps. J Clin Neurosci 2007; 15:185-91. [PMID: 18078754 DOI: 10.1016/j.jocn.2006.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Revised: 12/06/2006] [Accepted: 12/17/2006] [Indexed: 11/19/2022]
Abstract
We evaluated the effects of chondroitinase ABC on axonal regeneration across peripheral nerve gaps. We compared axonal regeneration after 15-mm tibial nerve resection and repair with a silicone tube filled with type I collagen gel (negative control group), with a silicone tube filled with type I collagen gel containing chondroitinase ABC at three different concentrations (2.5 units/mL, 5 units/mL, 10 units/mL) (chondroitinase ABC groups), and with an autologous nerve segment (nerve autograft group). Electrophysiological and histological assessments were carried out 12 weeks after surgery. In the electrophysiological study, compound muscle action potentials (CMAPs) and nerve conduction velocities (NCVs) were recorded in all groups except the negative control group. Although both CMAPs and NCVs were highest in the nerve autograft group, there were no significant differences among the three chondroitinase ABC groups in either parameter. Histological findings were consistent with electrophysiological results. Based on these findings, we conclude that topical injection of chondroitinase ABC can significantly increase the critical length of nerve gap repair by tubulization or artificial nerve placement.
Collapse
Affiliation(s)
- Tatsuya Hattori
- Department of Hand Surgery, Graduate School of Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Ozgenel GY, Filiz G. Effects of human amniotic fluid on peripheral nerve scarring and regeneration in rats. J Neurosurg 2003; 98:371-7. [PMID: 12593625 DOI: 10.3171/jns.2003.98.2.0371] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECT Peripheral nerve repair surgery is still replete with challenges. Despite technical improvements in microsurgery, classic methods of nerve repair have failed to provide satisfactory results. The purpose of this study was to investigate the effects of amniotic fluid from humans on peripheral nerve scarring and regeneration in rats. METHODS Forty adult Sprague-Dawley rats were used in this study. After the right sciatic nerve in each rat was transected and repaired using an epineural suture procedure, the nerves were divided into two groups according to the solution applied around the repair site: experimental group, 0.3 ml human amniotic fluid (HAF); and control group, 0.3 ml saline. Macroscopic and histological evaluations of peripheral nerve scarring were performed 4 weeks postsurgery. Nerves treated with HAF demonstrated a significant reduction in the amount of scar tissue surrounding the repair site (p < 0.05). No evidence of a reaction against HAF was noted. Functional nerve regeneration was measured once every 2 weeks by using a sciatic function index until 12 weeks postsurgery. Functional recovery in nerves treated with amniotic fluid occurred significantly faster than that in nerves treated with saline (p < 0.05). Peripheral nerve regeneration was evaluated histomorphologically at 12 weeks postsurgery. Nerves treated with amniotic fluid showed significant improvement with respect to the indices of fiber maturation (p < 0.05). CONCLUSIONS Preliminary data show that HAF enhances peripheral nerve regeneration. The preventive effect of HAF on epineural scarring and the rich content of neurotrophic and neurite-promoting factors possibly contribute to this result.
Collapse
Affiliation(s)
- Güzin Yeşim Ozgenel
- Departments of Plastic and Reconstructive Surgery, and Pathology, Uludağ University Medical School, Bursa, Turkey.
| | | |
Collapse
|
11
|
Iannotti C, Li H, Stemmler M, Perman WH, Xu XM. Identification of regenerative tissue cables using in vivo MRI after spinal cord hemisection and schwann cell bridging transplantation. J Neurotrauma 2002; 19:1543-54. [PMID: 12542856 DOI: 10.1089/089771502762300210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to examine the feasibility of a non-invasive in vivo magnetic resonance imaging (MRI) procedure, performed at 1.5 T, to detect regenerative tissue cables in a rat spinal cord hemisection and Schwann cell (SC) bridging transplantation paradigm. Two months after implantation of a SC-seeded guidance channel (1.25 mm in diameter and 3.0 mm in length) into a T8 spinal cord hemisection-gap lesion, axial fast-spin echo (FSE) T2-weighted MR imaging (T2WI) was performed. Axial T2WI through the graft identified a circular area of low intensity surrounded by high-intensity signal within the guidance channel lumen. Correlative histological assessments of Toluidine blue-stained sections confirmed that the low-intensity signal represented a tissue cable, which, in most cases, contained a substantial number of myelinated axons oriented along the rostro-caudal axis of the spinal cord. The percentage of guidance channel cross-sectional area occupied by the tissue cable, expressed as the tissue cable index (TCI), was also determined from histological sections. Linear regression analysis of the TCI plotted relative to the number of myelinated axons revealed a strong positive correlation (r(2) = 0.85) between these two outcome measures. In addition, the sensitivity of MRI to detect regenerative tissue cables within guidance channels was 86%. These results demonstrate that (1). 1.5 T MR imaging performed 2 months after spinal cord hemisection and SC bridging transplantation is sensitive in detecting low-intensity regenerative tissue cables, and (2). the TCI strongly correlates with the extent of axonal regeneration into implanted SC-seeded guidance channels.
Collapse
Affiliation(s)
- Christopher Iannotti
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
12
|
Kubo T, Yamashita T, Yamaguchi A, Hosokawa K, Tohyama M. Analysis of genes induced in peripheral nerve after axotomy using cDNA microarrays. J Neurochem 2002; 82:1129-36. [PMID: 12358760 DOI: 10.1046/j.1471-4159.2002.01060.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the most striking features of neurons in the mature peripheral nervous system is their ability to survive and to regenerate their axons following axonal injury. To perform a comprehensive survey of the molecular mechanisms that underlie peripheral nerve regeneration, we analyzed a cDNA library derived from the distal stumps of post-injured sciatic nerve which was enriched in non-myelinating Schwann cells using cDNA microarrays. The number of up- and down-regulated genes in the transected sciatic nerve was 370 and 157, respectively, of the 9596 spotted genes. In the up-regulated group, the number of known genes was 216 and the number of expressed sequence tag (EST) sequences was 154. In the down-regulated group, the number of known genes was 103 and that of EST sequences was 54. We obtained several genes that were previously reported to be involved in regeneration of the injured neurons, such as cathepsin D, ninjurin 1, tenascin C, and co-receptor for glial cell line-derived neurotrophic factor family of trophic factors. In addition to unknown genes, there seemed to be a lot of annotated genes whose role in nerve regeneration remains unknown.
Collapse
Affiliation(s)
- Tateki Kubo
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
13
|
Golding JP, Tonge D. A two-dimensional gel electrophoretic study of proteins synthesized and released by degenerating adult mouse sciatic nerve. Exp Neurol 2000; 162:194-200. [PMID: 10716900 DOI: 10.1006/exnr.1999.7332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous two-dimensional (2-D) gel electrophoretic studies of proteins secreted by degenerating mammalian peripheral nerves (Ignatius et al., 1986, Proc. Natl. Acad. Sci. USA 83: 1125-1129; Muller et al., 1986, J. Cell Biol. 102: 393-402) detected the up-regulation of two proteins of 67-70 and 34-37 kDa, although they failed to resolve proteins smaller than about 15 kDa or with isoelectric points greater than 8. In the present study, we have used 2-D gels that can resolve proteins in the molecular mass range 3.6-200 kDa and isoelectric point range 2.4-10.6. This revealed that the incorporation of radiolabel by three diffusible proteins with apparent molecular mass/isoelectric point values of 38/5-6, 27-31/4-5, and 8/>10 was increased in the distal stumps of sciatic nerves 4 days after lesion, while the radiolabel incorporation by a further two proteins (15/5.3 and 12.5-17.5/6.8-7.5) was increased in the distal nerve stump 15 days after lesion. The possible cellular sources of these proteins were assessed by comparing protein secretion from unoperated nerves with nerve segments maintained in culture for 4 days (in which the contribution from recruited macrophages would be expected to be minimal) and segments of nerve that had been frozen and then replaced in situ for 4 days (in which the contribution from nerve sheath cells would be expected to be minimal). This revealed that three of the proteins up-regulated in lesioned nerves (27-31/4-5, 15/5.3, and 12.5-17.5/6.8-7.5) are probably sheath cell products, while the other two (38/5-6 and 8/>10) may be secreted mainly by macrophages (or other cells) that infiltrate the frozen nerve segments. The identity of these proteins and their possible involvement in axonal regeneration remain to be determined.
Collapse
Affiliation(s)
- J P Golding
- Physiology Group, King's College, Strand, London, WC2R 2LS, United Kingdom
| | | |
Collapse
|
14
|
Gondré M, Burrola P, Weinstein DE. Accelerated nerve regeneration mediated by Schwann cells expressing a mutant form of the POU protein SCIP. J Cell Biol 1998; 141:493-501. [PMID: 9548726 PMCID: PMC2148444 DOI: 10.1083/jcb.141.2.493] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1997] [Revised: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
After injury, the peripheral nervous system (PNS) is capable of full regeneration and recovery of function. Many molecular events that are the hallmarks of the regenerating PNS are recapitulations of developmental processes. The expression of one such molecule, the POU transcription factor suppressed cAMP-inducible POU protein (SCIP), is required for the establishment of normal nerves and is reexpressed during regeneration. Here we describe markedly accelerated regeneration and hypertrophy of both myelin and axons in transgenic mice that express an amino-terminal deletion of the SCIP molecule. This mutant SCIP molecule retains the POU-specific and POU homeodomain moieties, which allow for both DNA binding and some protein-protein interaction. We demonstrate that the transgene indirectly effects dramatic axonal changes. This is the first demonstration of a genetically controlled acceleration of neural regeneration.
Collapse
Affiliation(s)
- M Gondré
- The Department of Neuroscience and the Department of Pathology, The Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
15
|
Labrador RO, Butí M, Navarro X. Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair. Exp Neurol 1998; 149:243-52. [PMID: 9454634 DOI: 10.1006/exnr.1997.6650] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to assess the usefulness of collagen and laminin gels prefilling nerve chambers to enhance nerve regeneration, we compared reinnervation of target organs after sciatic nerve resection leaving gaps of 4 or 6 mm followed by repair with silicone tubes in different groups of mice. Tubes were prefilled with saline solution, collagen gels, or laminin-containing gels at different concentrations. Functional reinnervation was assessed by noninvasive methods to quantitate recovery of sweating, nociceptive, sensory, and motor functions in the hindpaw repeatedly during 4-5 months postoperation. The increase in gap length between nerve stumps delayed the beginning and reduced the degree of functional recovery achieved. Reinnervation started earlier and achieved slightly higher levels with collagen gel diluted at 1.28 mg/ml than with more concentrated (1.92 and 2.56 mg/ml) collagen gels and with saline-prefilled tubes bridging a 4-mm gap. Recovery was also better with diluted (4 mg/ml) than with concentrated (12 mg/ml) laminin-containing gel, although lower than with collagen gels and saline. By prefilling silicone tubes bridging a 6-mm gap, a length considered limiting for regeneration in the mouse sciatic nerve, with diluted collagen or laminin gels, both matrices allowed for higher levels of recovery and for successful regeneration in a higher proportion of mice than saline solution. The laminin gel performed slightly better than the collagen gel.
Collapse
Affiliation(s)
- R O Labrador
- Department of Cell Biology and Physiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
16
|
Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J Neurosci 1996. [PMID: 8764655 DOI: 10.1523/jneurosci.16-15-04673.1996] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schwann cells proliferate, migrate, and act as sources of neurotrophic support during development and regeneration of peripheral nerves. Recent studies have demonstrated that neuregulins, a family of growth factors secreted by developing motor and peripheral neurons, influence Schwann cell development. In this study, we use three distinct assays to show that glial growth factor 2 (GGF2), a secreted neuregulin, exerts multiple effects on mature Schwann cells in vitro. At doses submaximal for proliferation, GGF2 increases the motility of Schwann cells cultured on peripheral nerve cryosections. Furthermore, in a novel bioassay, focal application of GGF2 causes directed migration in conventional monolayer cultures of directed migration of Schwann cells. At higher doses, GGF2 causes proliferation, as described previously. In a new explant culture system designed to emulate entubulation repair of transected peripheral nerves, GGF2 concentrations greater than necessary to saturate the mitotic response induce the secretion by Schwann cells of activities that promote sympathetic neuron survival and outgrowth. These findings support a model in which neuregulins secreted by peripheral neurons are key components of reciprocal neuron-glia interactions that are important for peripheral nerve development and regeneration.
Collapse
|
17
|
Abstract
Axons damaged in a peripheral nerve are often able to regenerate from the site of injury along the degenerate distal segment of the nerve to reform functional synapses. Schwann cells play a central role in this process. However, in the adult mammalian central nervous system, from which Schwann cells are absent, axonal regeneration does not progress to allow functional recovery. This is due to inhibitors of axonal growth produced by both oligodendrocytes and astrocytes and also to the decreased ability of adult neurons to extend axons during regeneration compared to embryonic neurons during development. However once provided with a substrate conducive to axonal growth, such as a peripheral nerve graft, many central neurons are able to regenerate axons over long distances. Over the past year this response has been utilised in experimental models to produce a degree of behavioural recovery.
Collapse
|
18
|
Tonge DA, Aaronson OS, Golding JP, Jaggers D. Cellular migration and axonal outgrowth from adult mammalian peripheral nerves in vitro. JOURNAL OF NEUROBIOLOGY 1996; 29:151-64. [PMID: 8821174 DOI: 10.1002/(sici)1097-4695(199602)29:2<151::aid-neu3>3.0.co;2-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is known that following peripheral nerve transections, sheath cells proliferate and migrate to form a bridge between nerve stumps, which may facilitate axonal regeneration. In the present investigations, cellular migration and axonal outgrowth from nerves of adult mice were studied in vitro using collagen gels. During the first 3 days in culture, profuse migration of fibroblasts and macrophages occurred from the ends of sciatic nerve segments, which had been lesioned in situ a few days prior to explantation, but not from segments of normal nerves. The mechanism of cellular activation in the lesioned nerves was not determined, but migration was blocked by suramin, which inhibits the actions of several growth factors. The migrating cells, which form the bridge tissue, may promote axonal regeneration in two ways. Firstly, axonal outgrowth from isolated intercostal nerves was significantly increased in co-cultures with bridges from lesioned sciatic nerves. This stimulatory effect was inhibited by antibodies to 2.5S nerve growth factor. Secondly, the segments of bridge tissue contracted when removed from animals. It is possible that fibroblasts within the bridge exert traction that would tend to pull the lesioned stumps of peripheral nerve together, as in the healing of skin wounds. The traction may also influence deposition of extracellular matrix materials, such as collagen fibrils, which could orient the growth of the regenerating axons toward the distal nerve stump.
Collapse
Affiliation(s)
- D A Tonge
- Biomedical Sciences Division, King's College, London, United Kingdom
| | | | | | | |
Collapse
|
19
|
Xu XM, Guénard V, Kleitman N, Bunge MB. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 1995; 351:145-60. [PMID: 7896937 DOI: 10.1002/cne.903510113] [Citation(s) in RCA: 429] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Schwann cells (SC) have been shown to promote regeneration in both the peripheral and central nervous systems. In this study we tested the ability of SC to enhance axonal regeneration in adult rat spinal cord by grafting SC-seeded guidance channels into transected cords. SC were purified in culture from adult inbred rat sciatic nerves, suspended in Matrigel, and seeded into semipermeable PAN/PVC channels (2.6 mm I.D. x 10 mm long) at a final density of 120 x 10(6) cells/ml. Channels filled with Matrigel alone served as controls. Adult isologous rat spinal cords were transected at the T8 level, and segments T9-T11 were removed. The rostral stump was inserted 1 mm into channels with capped distal ends. One month after grafting, a vascularized tissue cable was present within the channel in all animals. In SC-seeded channels (n = 14), a mean of 501 myelinated axons was found in the cable, and many axons extended 9-10 mm. Electron microscopy revealed typical SC ensheathment and myelination of axons with four times more unmyelinated than myelinated axons. Control channels (n = 8) contained fewer myelinated axons (mean = 71). When SC were prelabeled in culture with a nuclear dye, labeled nuclei were observed at 30 days, confirming SC survival. Astrocytes identified by glial fibrillary acidic protein staining did not migrate far into the cable, and prelabeled SC did not enter the cord. Lack of immunostaining for serotonin and dopamine beta-hydroxylase indicated that supraspinal axons did not regenerate into the cable. Fast Blue injections into the middle of the cable (n = 3) marked spinal cord interneurons (mean = 306) as far as nine segments rostral (25 mm, C7) extending axons into the graft; fewer dorsal root ganglion neurons were retrogradely labeled. In conclusion, purified populations of SC transplanted within channels promote both propriospinal and sensory axonal regeneration in the adult rat thoracic spinal cord.
Collapse
Affiliation(s)
- X M Xu
- Chambers Family Electron Microscopy Laboratory, University of Miami School of Medicine, Florida 33136
| | | | | | | |
Collapse
|
20
|
Haynes LW, Rushton JA, Perrins MF, Dyer JK, Jones R, Howell R. Diploid and hyperdiploid rat Schwann cell strains displaying negative autoregulation of growth in vitro and myelin sheath-formation in vivo. J Neurosci Methods 1994; 52:119-27. [PMID: 7967716 DOI: 10.1016/0165-0270(94)90120-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neonatal rat Schwann cells were cultured for several months with intermittent exposure to the mitogen, cholera toxin, and infrequent passaging to avoid premature transformation. A cell line SCL4.1/F7 was derived following the cloning of one of these long-term cultures by limiting dilution in liquid medium to select for cells capable of continuous proliferation in the absence of mitogen. F7 cells have been passaged 40 times (80-120 generations) over 14 months. Two substrains were identified at passage 20, one of which ,s diploid and the other which has trisomy 7 (t7). The cell line displays a characteristic flattened or crescent-shaped morphology, substratum adhesion which is calcium-dependent in the millimolar range, and pronounced contact-inhibition of growth. Confluent or subconfluent cultures readily cease proliferation and change to a differentiated (stellate/bipolar) morphology through the mediation of an autocrine growth-inhibitory factor. F7 cells grafted into the site of a crush injury in adult rat sciatic nerves remained viable and myelinated host axons. F7 is the first clonally derived diploid immortal Schwann cell line to have been published and should provide a suitable tool for the study of the biochemical and cellular basis of sheath cell-neuron interactions, myelin stabilization in peripheral nerve and Schwann cell growth autoregulation.
Collapse
Affiliation(s)
- L W Haynes
- School of Biological Sciences, University of Bristol, UK
| | | | | | | | | | | |
Collapse
|
21
|
Anton ES, Weskamp G, Reichardt LF, Matthew WD. Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci U S A 1994; 91:2795-9. [PMID: 8146193 PMCID: PMC43457 DOI: 10.1073/pnas.91.7.2795] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Migrating Schwann cells in developing or regenerating peripheral nerves are known to express dramatically increased levels of nerve growth factor (NGF) and the low-affinity NGF receptor (LNGFR). Schwann cells do not express detectable pp140trk, the NGF-activated receptor tyrosine kinase which is essential for neuronal responses to NGF. The temporal correlation observed in Schwann cells between migration and the enhanced expression of NGF and LNGFR suggests that NGF and LNGFR may promote Schwann cell migration. To test this possibility, we examined the effects of NGF on Schwann cell migration on cryostat sections of biologically relevant NGF-poor and NGF-rich substrates--normal or denervated peripheral (sciatic) nerve, untreated or pretreated with NGF. Results show that Schwann cells migrate more rapidly on denervated than on normal sciatic nerve. Antibodies to NGF or to LNGFR strongly, but incompletely, inhibit enhanced migration on denervated nerves. Pretreatment of denervated nerve sections with NGF increases further the rate of Schwann cell migration. The same antibodies to NGF or to LNGFR abolish this response. These results suggest that one function of the elevated levels of NGF known to be present in embryonic and regenerating peripheral nerves is to promote the migration of Schwann cells. In contrast to neurons, where pp140trk appears to be the functionally critical NGF receptor, NGF responses in Schwann cells depend on LNGFR.
Collapse
Affiliation(s)
- E S Anton
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
22
|
Abstract
The present series of experiments demonstrate that a polypeptide activity present in rat serum induces a proliferative response in cultured rat Schwann cells. Schwann cells in multi-well tissue culture plates were incubated in medium containing 10% heat-inactivated fetal bovine serum and serial dilutions of normal rat serum, and control preparations were incubated in the same culture medium without rat serum. Rates of cell proliferation were assayed by measuring DNA incorporation of tritiated thymidine using liquid scintillation counting. A prominent dose-dependent proliferative response was observed among Schwann cells incubated with rat serum and rat plasma dilutions as compared to controls; this activity is abolished by heat inactivation and by proteolytic digestion, and was not affected by dialysis against a cellulose ester membrane that excludes molecules larger than 10,000 daltons. In contrast, no increase in DNA uptake of tritiated thymidine was observed when astrocyte and oligodendrocyte cultures were incubated with serial dilutions of rat serum. No proliferative effect was observed when rat Schwann cells were incubated with a dilution of standard adult bovine serum. These results suggest there is an intravascular plasma polypeptide with a molecular weight greater than 10,000 daltons that specifically stimulates Schwann cell proliferation, and it is proposed that this factor may be the mitogen responsible for the Schwann cell proliferative response known to occur after nerve injury.
Collapse
Affiliation(s)
- S R Maertens
- Program in Neuroscience, University of Utah, Salt Lake City 84132
| |
Collapse
|
23
|
|
24
|
Abstract
Successful peripheral nerve regeneration and functional recovery require the reestablishment of the neuron-Schwann cell relationship in the regenerating rat sciatic nerve, neurons differentially regulate Schwann cell genes. The message for the low-affinity NGF receptor, p75NGFR, is induced in Schwann cells distal to the injury and is repressed as regenerating axons make contact with these cells. The inverse is true for mRNA of the myelin gene P0; expression decreases distal to injury and increases as new axons contact Schwann cells and a program of myelination is initiated. Using an in vitro co-culture paradigm in which primary neurons and adult Schwann cells are separated by a microporous membrane, we show that axon contact is not an absolute requirement for neuronal regulation of Schwann cell genes. In this system neurons but not other cell types, repress the expression of Schwann cell p75NGFR while inducing the expression of the POU domain transcription factor, suppressed cAMP inducible POU, and myelin P0. These results demonstrate that regenerating axons can direct the Schwann cell genetic program from a distance through diffusible molecules.
Collapse
Affiliation(s)
- L M Bolin
- Department of Neurobiology, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
25
|
Ekström PA, Edbladh M, Edström A. Time-dependent effects of insulin on Schwann cell proliferation in the in vitro regenerating adult frog sciatic nerve. J Neurosci Res 1993; 34:614-21. [PMID: 8315661 DOI: 10.1002/jnr.490340603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study showed that insulin (0.01 microgram/ml, approximately 2 nM) inhibited [3H]-thymidine incorporation in support cells, most likely Schwann cells, of the cultured frog sciatic nerve. A 25-35% inhibition took place in regenerating nerve preparations as well as in preparations devoid of neuronal protein synthesis, i.e., in isolated 5 mm nerve segments and in gangliectomized nerves, suggesting that the effect was direct and not mediated via the neuronal cells. The inhibition by insulin was time-dependent in that an effect was seen after 4 days but not at shorter or at longer periods of culturing. In separate experiments biotinylated insulin was shown to be taken up by Schwann cells in the regenerating nerve. Addition of serum increased the [3H]-thymidine incorporation severalfold and abolished the inhibitory action of insulin. Our results suggest that insulin, at a certain stage of the regeneration programme, exerts a direct, inhibitory effect on the proliferation of the Schwann cells in the cultured frog sciatic nerve.
Collapse
Affiliation(s)
- P A Ekström
- Department of Animal Physiology, University of Lund, Sweden
| | | | | |
Collapse
|
26
|
Bolin LM, Iismaa TP, Shooter EM. Isolation of activated adult Schwann cells and a spontaneously immortal Schwann cell clone. J Neurosci Res 1992; 33:231-8. [PMID: 1280693 DOI: 10.1002/jnr.490330206] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Successful mammalian peripheral nerve regeneration is dependent on activated Schwann cells. Schwann cells facilitate neuronal regrowth through the production of tropic cell membrane molecules, neurotrophins, and extracellular matrix components. To better understand Schwann cell function in the regenerating nerve, we have designed a method of isolating proliferating adult Schwann cells from the injured rat sciatic nerve. Relying on the mitotic signal that is present after a crush injury, we can obtain sufficient numbers of dividing Schwann cells within one week of initial culture. A spontaneously immortal Schwann cell clone (iSC) was observed in and isolated from one of these primary cultures. These cells were transformed at a time of maximal Schwann cell activation in response to injury. Both the primary Schwann cells and the iSC have been characterized as Schwann cells by morphology, immunohistochemistry and gene expression.
Collapse
Affiliation(s)
- L M Bolin
- Department of Neurobiology, Stanford University School of Medicine, CA 94305-5401
| | | | | |
Collapse
|
27
|
Dubový P, Svízenská I. Migration of Schwann cells from the distal stump of the sciatic nerve 1 week after transection: the effects of insulin and cytosine arabinoside. Glia 1992; 6:281-8. [PMID: 1464460 DOI: 10.1002/glia.440060406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have examined the migratory capacity of Schwann cells from the distal stump of a 1-week transected sciatic nerve of adult rat for a distance of 10 mm. The distal stump was introduced into the open end of a silicone chamber packed with artificial fibrin sponge (Gelaspon) soaked in phosphate-buffered saline (control chambers), cytosine arabinoside (Ara-C) (0.05 mM), or insulin (40 U/ml). Migrating Schwann cells were distinguished from fibroblasts by the presence of non-specific cholinesterase (nChE) activity and glial fibrillary acidic protein (GFAP). The cells of distal stumps including Schwann cells accepted Gelaspon as a suitable adhesive substratum. In the chambers filled with Gelaspon soaked in phosphate-buffered saline alone Schwann cells were outnumbered by fibroblasts. The addition of Ara-C resulted in greater numbers of Schwann cells, which migrate longer distances into the chambers. The application of insulin enhanced Schwann cell migration as well. These morphologic observations were further supported by biochemical measurements of nChE activity. The results suggest an influence on Schwann cell migration by fibroblasts of connective tissue sheaths and a stimulation of Schwann cell migration by insulin.
Collapse
Affiliation(s)
- P Dubový
- Department of Anatomy, Medical Faculty, Masaryk University, Brno, Czechoslovakia
| | | |
Collapse
|
28
|
Le Beau JM. Growth factor expression in normal and diabetic rats during peripheral nerve regeneration through silicone tubes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 321:37-44. [PMID: 1280400 DOI: 10.1007/978-1-4615-3448-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The silicone tube model of regeneration has proved to be an invaluable tool for experimental studies aimed at understanding expression of growth factors during normal and abnormal metabolic states of regeneration. Since the morphological parameters of nerve growth and myelination are well-defined and easily identified in this model, the expression of both diffusible and intracellular-acting growth factors can be readily correlated with the occurrence of these cellular events. These studies facilitate the study of the cellular and molecular events that accompany regeneration. Further, because the sciatic nerve can be traced up to its corresponding neurons, growth factor gene expression can also be studied by in situ hybridization and Northern blotting techniques. This is particularly important in defining the cell source of extracellularly released growth factors. Finally, and most importantly, the regeneration process in the normal or diseased metabolic state (such as diabetes) can be manipulated via the administration of adjuncts to the tube that either promote or inhibit regeneration. Further studies in this regard, and in the identification of growth factors involved and their role during regeneration should shed some light on the pathogenesis and possible means of mitigating or reversing diabetic neuropathy.
Collapse
Affiliation(s)
- J M Le Beau
- Eastern Virginia Medical School, Diabetes Institute, Norfolk 23510
| |
Collapse
|
29
|
Anders JJ, Woolery S. Microbeam laser-injured neurons increase in vitro astrocytic gap junctional communication as measured by fluorescence recovery after laser photobleaching. Lasers Surg Med 1992; 12:51-62. [PMID: 1614264 DOI: 10.1002/lsm.1900120110] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An important aspect of the neuronal-astrocyte relationship is the interaction of reactive astrocytes with injured and/or dying neurons. Few studies have focused on the signaling of astrocytes by injured neurons or on the possibility that neurons can alter astrocytic gap junctional communication. The purpose of this study was to determine whether the presence of injured neurons could alter astrocytic gap junctional coupling by establishing an in vitro method of microbeam laser neuronal injury and coculturing these neurons with astrocytes. Neurons from two rat neuronal clonal cell lines were injured using a 20-W argon laser operating on the ultraviolet (UV) multiline (351-361 nm) directed through a X40 objective of an inverted microscope. After laser injury, the glass slide with the injured neurons was sandwiched with a slide on which primary rat astrocytes were grown. Although the neurons and astrocytes were bathed in the same medium, they were not in direct contact during the coculture period (24, 48, or 72 hr). Astrocytic gap junctional dye coupling was examined using the fluorescence recovery after laser photobleaching (gap-FRAP) analysis technique. Astrocytes cocultured with the injured neurons for 24 to 48 hr did not show a significant difference in fluorescence recovery when compared to control values. After 72 hr of coculture, there was a significant increase in the gap junctional dye coupling. These results indicate that injured neurons influence in vitro astrocytic gap junctional conductance after 72 hr of coculture as measured by dye coupling.
Collapse
Affiliation(s)
- J J Anders
- Department of Anatomy and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | |
Collapse
|
30
|
Komiyama A, Suzuki K. Age-related changes in attachment and proliferation of mouse Schwann cells in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 62:7-16. [PMID: 1836981 DOI: 10.1016/0165-3806(91)90184-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Schwann cells can be cultured readily from the peripheral nerves of the neonatal animal but not from the adult. To correlate the physiological properties of Schwann cells relevant to such a difference, we examined age-related changes in attachment and proliferation of mouse Schwann cells in vitro. The capacity of Schwann cells to attach to polylysine-coated coverslips at 1 day in vitro declined rapidly between 3 and 30 days of age, followed by a more gradual decrease with age. Attachment of Schwann cells from younger mice (but not older mice) was enhanced by precoating coverslips with laminin or to a lesser degree with fibronectin, suggesting an age-dependent decrease in receptors for these substrates. Indeed, the staining for fibronectin receptor could be demonstrated in vivo, and was more intense and diffuse in neonatal sciatic nerves. In vitro, although staining of Schwann cells and fibroblasts was clear, there was no age-related difference for the intensity or distribution of the staining. Proliferation, as assessed by thymidine incorporation at 1 day in vitro, was high when Schwann cells were isolated from younger mice but declined as a function of the age of mice from which cells were prepared. Removal of axonal and myelin debris from cultures 3 h after plating resulted in a reduction of thymidine uptake by Schwann cells from 30-day-old mice, but much less from 10-day-old mice. Schwann cell growth was faster in the cells from younger mice than older ones, thus leading to early confluency and cell-contact inhibition in the former. In addition, evidence is presented that in medium supplemented with fetal bovine serum, thymidine uptake by Schwann cells from mice at 3-30 days of age was three times higher than that by Schwann cells from age-matched rats. These results indicate that the methodology usually used for purification of rat Schwann cells involving antimitotics is not suitable for highly proliferating mouse Schwann cells.
Collapse
Affiliation(s)
- A Komiyama
- Department of Pathology and Brain, School of Medicine, University of North Carolina, Chapel Hill 27599-7525
| | | |
Collapse
|
31
|
Komiyama A, Novicki DL, Suzuki K. Adhesion and proliferation are enhanced in vitro in Schwann cells from nerve undergoing Wallerian degeneration. J Neurosci Res 1991; 29:308-18. [PMID: 1920531 DOI: 10.1002/jnr.490290306] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proliferation of Schwann cells during nerve degeneration or regeneration is well documented in vivo. We investigated whether the proliferative response of Schwann cells to injury is retained in vitro. Using 5-month-old male C57BL mice, Schwann cells were isolated from sciatic nerves under 3 experimental conditions: (1) uninjured, (2) after permanent nerve-transection, or (3) after nerve-crush, which permits axonal regeneration. Schwann cells rarely attached to polylysine-coated coverslips when isolated from uninjured or 1 day posttransection/crush nerves. The number of adherent cells increased when Schwann cells were isolated 3 days after nerve-transection or -crush. When cells were isolated from transected nerves, cell adhesion reached a peak 2 weeks after the injury and then declined. Maximal attachment of Schwann cells occurred when the cells were isolated 2-4 weeks after nerve-crush. The percentage of Schwann cells with spreading processes corresponded closely with the number of thymidine-labeled cells at 1 day in vitro. The in vitro capacity of cells to spread and incorporate thymidine reached maximal levels at 5 days posttransection/crush. Capacity of cells to spread and incorporate thymidine subsequently decreased with time following transection. However, a biphasic elevation in cell spreading and thymidine incorporation was observed in Schwann cells isolated from crushed nerves. Maximal growth of Schwann cells in vitro occurred at 1-2 weeks posttransection and at 1-4 weeks postcrush. Adhesion and spreading of Schwann cells were promoted by coating coverslips with laminin or fibronectin. Preincubation of Schwann cells with soluble laminin or fibronectin prevented the initial cell attachment induced by the corresponding protein. Our results suggest that Schwann cells from injured nerves possess binding sites for laminin and fibronectin, which are, in part, responsible for the enhanced adhesion of Schwann cells in vitro. This study provides a new method for preparation of Schwann cells from peripheral nerves of adult mice.
Collapse
Affiliation(s)
- A Komiyama
- Department of Pathology, School of Medicine, University of North Carolina, Chapel Hill 27599-7525
| | | | | |
Collapse
|
32
|
Le Beau JM, Tedeschi B, Walter G. Increased expression of pp60c-src protein-tyrosine kinase during peripheral nerve regeneration. J Neurosci Res 1991; 28:299-309. [PMID: 1709691 DOI: 10.1002/jnr.490280217] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since little is known about the intracellular changes that take place in response to Schwann cell-neuron interactions that occur during neurite outgrowth and myelination, we investigated the expression of a protein-tyrosine kinase, pp60c-src, during peripheral nerve regeneration through a silicone tube. Segments of regenerated nerve, extracted at various times following nerve-transection, showed an induction of in vitro c-src kinase activity as measured by autophosphorylation of immunoprecipitated pp60c-src. This activity occurred at 7 days following nerve transection coincident with the onset of neurite outgrowth in vivo. This kinase activity, which peaked out between 21 and 35 days and decreased thereafter, appeared to be associated with axonal growth and myelination, but not mitogenesis in the tube. Analysis of c-src proteins levels by Western blot showed a similar expression profile as that of the kinase activity. Qualitatively, the expression of an immunoreactive c-src band, migrating slightly slower than pp60, was detected in extracts of regenerating nerve segments as well as in the corresponding L4 and L5 dorsal root ganglia. This protein may be the CNS neuronal-specific form (pp60+) of the c-src protein. In situ hybridization revealed that Schwann cells and sensory and motor neurons associated with the regenerated sciatic nerve were positive for c-src mRNA during regeneration possibly accounting for the increased src protein expression during regeneration. Since the increased expression of pp60c-src in regenerated nerve segments coincides with both axonal sprouting and myelination, our findings suggest that the c-src protein may play a role in Schwann cell-neuron interactions which facilitate the occurrence of these events during regeneration. In addition, although pp60+ is generally not detectable in the mature PNS, our findings show that this protein may be induced during conditions of PNS differentiation which promote neurite outgrowth.
Collapse
Affiliation(s)
- J M Le Beau
- Department of Pathology, University of California, San Diego, La Jolla
| | | | | |
Collapse
|
33
|
Knoops B, Hubert I, Hauw JJ, van den Bosch de Aguilar P. Axonal growth and glial migration from co-cultured hippocampal and septal slices into fibrin-fibronectin-containing matrix of peripheral regeneration chambers: a light and electron microscope study. Brain Res 1991; 540:183-94. [PMID: 2054610 DOI: 10.1016/0006-8993(91)90506-q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to investigate whether a fibrin-fibronectin-containing matrix of a peripheral regeneration chamber could promote the growth of central nervous system neurons, hippocampal and septal slices were co-cultured in the presence of this acellular substrate. In introducing the peripheral matrix into a 2-mm-long tube between hippocampal and septal slices, a spatio-temporal sequence of cell migration and axonal growth was described by light and electron microscopy. Axons were able to elongate directly into the flocculent material constituting the matrix and a possible neurite-promoting activity was implicated in this process as axonal growth was not detected in direct contact with rat plasma coagulated with calcium, or chicken plasma coagulated with thrombin, used as control matrices. However, in the 3 different substrates tested, astrocytes were able to migrate and dilated astroglial processes containing intermediate filaments were detected. Axonal processes were observed growing on the glial cell surface. GFAP-positive phagocytic cells, that could be of the same origin as astrocytes, were involved in matrix removing. Neuronal growth and glial migration arose from hippocampal and septum slices and acetylcholinesterase-containing fibers were seen in the bridging structure suggesting that cholinergic axons were able to progress to the hippocampal slice. This technique appeared to provide a model in which axonal growth and cell migration can be studied 'in vitro' in a 3-dimensional environment.
Collapse
Affiliation(s)
- B Knoops
- Laboratoire de Biologie Cellulaire, Université Catholique de Louvain, Belgium
| | | | | | | |
Collapse
|
34
|
Abstract
This project tests an important aspect of the cellular events controlling the processes of recovery of function and remyelination that follow demyelination in the peripheral nervous system. Frog sciatic nerves have been shown to survive and remain functional for up to 10 days following transection. We have utilized this property in order to dissociate the recovery process from possible control by the neuronal soma. Xenopus sciatic nerves were demyelinated in one branch by an intraneural injection of lysolecithin. The nerve was cut proximally to the injection site either immediately before, or several days after the lysolecithin injection. Recovery of function and remyelination were then followed by electrophysiological, optical, and ultrastructural techniques applied both to whole branches and single fibers. Controls included the cut but uninjected branch, and injected but uncut nerves. The progression of events during both demyelination and recovery in cut axons was indistinguishable from that in uncut fibers. This suggests that this process may be under local control and can be initiated and carried out in the absence of constant communication with the nerve cell body.
Collapse
Affiliation(s)
- C T Rubinstein
- Department of Physiology, University of Rochester Medical Center, NY 14642
| | | |
Collapse
|
35
|
Muir D, Gennrich C, Varon S, Manthorpe M. Rat sciatic nerve Schwann cell microcultures: responses to mitogens and production of trophic and neurite-promoting factors. Neurochem Res 1989; 14:1003-12. [PMID: 2608156 DOI: 10.1007/bf00965935] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During embryonic development and in response to injury, the growing axons of peripheral neurons may influence the migration and proliferation of Schwann cells which, in return, may present neurons with a critical supply of factors required for neuronal survival, growth and differentiation. The identification and characterization of agents influencing the proliferation of Schwann cells as well as Schwann cell production of factors affecting neurons is greatly facilitated by the use of in vitro techniques. We describe here a simplified method of obtaining large numbers of purified neonatal rat sciatic nerve Schwann cells for use in generating large numbers of replicate microcultures. We then illustrate the use of these microcultures to examine Schwann cell: i) morphology and survival; ii) proliferation; and iii) production of neuronotrophic and neurite-promoting activities. We report that rat Schwann cells in microculture proliferate in response to serum, laminin and fibronectin, cholera toxin, and chick embryo parasympathetic ciliary neurons. Also, extracts of Schwann cell microcultures contain independently regulated activities which support the survival and neurite outgrowth of peripheral ganglionic neurons.
Collapse
Affiliation(s)
- D Muir
- Department of Biology, School of Medicine, University of California, San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
36
|
Fields RD, Le Beau JM, Longo FM, Ellisman MH. Nerve regeneration through artificial tubular implants. Prog Neurobiol 1989; 33:87-134. [PMID: 2678271 DOI: 10.1016/0301-0082(89)90036-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R D Fields
- Laboratory of Developmental Neurobiology, NICHD, Bethesda, MD 20892
| | | | | | | |
Collapse
|