1
|
Naganuma F, Khanday M, Bandaru SS, Hasan W, Hirano K, Yoshikawa T, Vetrivelan R. Regulation of wakefulness by neurotensin neurons in the lateral hypothalamus. Exp Neurol 2024; 383:115035. [PMID: 39481513 DOI: 10.1016/j.expneurol.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
The lateral hypothalamic region (LH) has been identified as a key region for arousal regulation, yet the specific cell types and underlying mechanisms are not fully understood. While neurons expressing orexins (OX) are considered the primary wake-promoting population in the LH, their loss does not reduce daily wake levels, suggesting the presence of additional wake-promoting populations. In this regard, we recently discovered that a non-OX cell group in the LH, marked by the expression of neurotensin (Nts), could powerfully drive wakefulness. Activation of these NtsLH neurons elicits rapid arousal from non-rapid eye movement (NREM) sleep and produces uninterrupted wakefulness for several hours in mice. However, it remains unknown if these neurons are necessary for spontaneous wakefulness and what their precise role is in the initiation and maintenance of this state. To address these questions, we first examined the activity dynamics of the NtsLH population across sleep-wake behavior using fiber photometry. We find that NtsLH neurons are more active during wakefulness, and their activity increases concurrently with, but does not precede, wake-onset. We then selectively destroyed the NtsLH neurons using a diphtheria-toxin-based conditional ablation method, which significantly reduced wake amounts and mean duration of wake bouts and increased the EEG delta power during wakefulness. These findings demonstrate a crucial role for NtsLH neurons in maintaining normal arousal levels, and their loss may be associated with chronic sleepiness in mice.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Mudasir Khanday
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Whidul Hasan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Kyosuke Hirano
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takeo Yoshikawa
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
2
|
Luo Y, Li Y, Yuan J. The regulation of the pedunculopontine tegmental nucleus in sleep-wake states. Sleep Biol Rhythms 2024; 22:5-11. [PMID: 38469582 PMCID: PMC10900045 DOI: 10.1007/s41105-023-00489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2023] [Indexed: 03/13/2024]
Abstract
The pedunculopontine tegmental nucleus (PPTg) plays a vital role in sleep/wake states. There are three main kinds of heterogeneous neurons involved: cholinergic, glutamatergic, and gamma-aminobutyric acidergic (GABAergic) neurons. However, the precise roles of cholinergic, glutamatergic and GABAergic PPTg cell groups in regulating sleep-wake are unknown. Recent work suggests that the cholinergic, glutamatergic, and GABAergic neurons of the PPTg may activate the main arousal-promoting nucleus, thus exerting their wakefulness effects. We review the related projection pathways and functions of various neurons of the PPTg, especially the mechanisms of the PPTg in sleep-wake, thus providing new perspectives for research of sleep-wake mechanisms.
Collapse
Affiliation(s)
- Yiting Luo
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Ying Li
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Jie Yuan
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyin, China
| |
Collapse
|
3
|
Gott JA, Stücker S, Kanske P, Haaker J, Dresler M. Acetylcholine and metacognition during sleep. Conscious Cogn 2024; 117:103608. [PMID: 38042119 DOI: 10.1016/j.concog.2023.103608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
Acetylcholine is a neurotransmitter and neuromodulator involved in a variety of cognitive functions. Additionally, acetylcholine is involved in the regulation of REM sleep: cholinergic neurons in the brainstem and basal forebrain project to and innervate wide areas of the cerebral cortex, and reciprocally interact with other neuromodulatory systems, to produce the sleep-wake cycle and different sleep stages. Consciousness and cognition vary considerably across and within sleep stages, with metacognitive capacity being strikingly reduced even during aesthetically and emotionally rich dream experiences. A notable exception is the phenomenon of lucid dreaming-a rare state whereby waking levels of metacognitive awareness are restored during sleep-resulting in individuals becoming aware of the fact that they are dreaming. The role of neurotransmitters in these fluctuations of consciousness and cognition during sleep is still poorly understood. While recent studies using acetylcholinesterase inhibitors suggest a potential role of acetylcholine in the occurrence of lucid dreaming, the underlying mechanisms by which this effect is produced remains un-modelled and unknown; with the causal link between cholinergic mechanisms and upstream psychological states being complex and elusive. Several theories and approaches targeting the association between acetylcholine and metacognition during wakefulness and sleep are highlighted in this review, moving through microscopic, mesoscopic and macroscopic levels of analysis to detail this phenomenon at several organisational scales. Several exploratory hypotheses will be developed to guide future research towards fully articulating how metacognition is affected by activity at the acetylcholine receptor.
Collapse
Affiliation(s)
- Jarrod A Gott
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sina Stücker
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Vetrivelan R, Bandaru SS. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr Neurol Neurosci Rep 2023; 23:907-923. [PMID: 38060134 PMCID: PMC11891935 DOI: 10.1007/s11910-023-01322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools. RECENT FINDINGS Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy. Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
5
|
Santos ABD, Thaneshwaran S, Ali LK, Leguizamón CRR, Wang Y, Kristensen MP, Langkilde AE, Kohlmeier KA. Sex-dependent neuronal effects of α-synuclein reveal that GABAergic transmission is neuroprotective of sleep-controlling neurons. Cell Biosci 2023; 13:172. [PMID: 37710341 PMCID: PMC10500827 DOI: 10.1186/s13578-023-01105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Sleep disorders (SDs) are a symptom of the prodromal phase of neurodegenerative disorders that are mechanistically linked to the protein α-synuclein (α-syn) including Parkinson's disease (PD). SDs during the prodromal phase could result from neurodegeneration induced in state-controlling neurons by accumulation of α-syn predominant early in the disease, and consistent with this, we reported the monomeric form of α-syn (monomeric α-syn; α-synM) caused cell death in the laterodorsal tegmental nucleus (LDT), which controls arousal as well as the sleep and wakefulness state. However, we only examined the male LDT, and since sex is considered a risk factor for the development of α-syn-related diseases including prodromal SDs, the possibility exists of sex-based differences in α-synM effects. Accordingly, we examined the hypothesis that α-synM exerts differential effects on membrane excitability, intracellular calcium, and cell viability in the LDT of females compared to males. METHODS Patch clamp electrophysiology, bulk load calcium imaging, and cell death histochemistry were used in LDT brain slices to monitor responses to α-synM and effects of GABA receptor acting agents. RESULTS Consistent with our hypothesis, we found differing effects of α-synM on female LDT neurons when compared to male. In females, α-synM induced a decrease in membrane excitability and heightened reductions in intracellular calcium, which were reliant on functional inhibitory acid transmission, as well as decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) with a concurrent reduction in action potential firing rate. Cell viability studies showed higher α-synM-mediated neurodegeneration in males compared to females that depended on inhibitory amino acid transmission. Further, presence of GABA receptor agonists was associated with reduced cell death in males. CONCLUSIONS When taken together, we conclude that α-synM induces a sex-dependent effect on LDT neurons involving a GABA receptor-mediated mechanism that is neuroprotective. Understanding the potential sex differences in neurodegenerative processes, especially those occurring early in the disease, could enable implementation of sex-based strategies to identify prodromal PD cases, and promote efforts to illuminate new directions for tailored treatment and management of PD.
Collapse
Affiliation(s)
- Altair Brito Dos Santos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
- Dept of Neuroscience, University of Copenhagen, Copenhagen, 2200 Denmark
| | - Siganya Thaneshwaran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Lara Kamal Ali
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - César Ramón Romero Leguizamón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Yang Wang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | | | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| |
Collapse
|
6
|
Miyauchi Y, Shiraishi A, Abe K, Sato Y, Kita K. Excitatory amino acids, possible causative agents of nodding syndrome in eastern Africa. Trop Med Health 2023; 51:30. [PMID: 37202788 DOI: 10.1186/s41182-023-00520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Nodding syndrome (NS) is one type of epilepsy and a progressive disease characterized by nodding symptoms with children in sub-Saharan Africa. The burden for NS children is heavy, not only mentally but financially for themselves and their families, and yet, the cause and cure of NS remain unknown. The kainic acid-induced model in experimental animals is a well-known epilepsy model that is useful for studying human diseases. In this study, we examined similarities of clinical symptoms and histological brain changes between NS patients and kainic acid-treated rats. In addition, we argued for kainic acid agonist as one of the causes of NS. METHODS Clinical signs in rats were studied after kainic acid administration, and histological lesions including the expression of tau protein and gliosis, were examined at 24 h, 8 days, and 28 days after dosing. RESULTS Kainic acid-induced epileptic symptoms were observed in rats, including nodding accompanied by drooling and bilateral neuronal cell death in the hippocampus and piriform cortex regions. In the regions that exhibited neuronal cell death, an increase in tau protein expression and gliosis were found immunohistochemically. The symptoms and brain histology were similar in the NS and kainic acid-induced rat models. CONCLUSION The results suggest that kainic acid agonist may be one of the causative substances for NS.
Collapse
Affiliation(s)
- Yasushi Miyauchi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of Bio Research, Kamakura Techno-Science, Inc., Kamakura, Kanagawa, 248-0036, Japan.
| | - Ayaka Shiraishi
- Department of Bio Research, Kamakura Techno-Science, Inc., Kamakura, Kanagawa, 248-0036, Japan
| | - Konami Abe
- Department of Bio Research, Kamakura Techno-Science, Inc., Kamakura, Kanagawa, 248-0036, Japan
| | - Yasuaki Sato
- School of Global Humanities and Social Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| |
Collapse
|
7
|
Fan FF, Vetrivelan R, Yang Y, Guo ZN, Lu J. Role of pontine sub-laterodorsal tegmental nucleus (SLD) in rapid eye movement (REM) sleep, cataplexy, and emotion. CNS Neurosci Ther 2023; 29:1192-1196. [PMID: 36585816 PMCID: PMC10018081 DOI: 10.1111/cns.14074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
Pontine sub-laterodorsal tegmental nucleus (SLD) is crucial for REM sleep. However, the necessary role of SLD for REM sleep, cataplexy that resembles REM sleep, and emotion memory by REM sleep has remained unclear. To address these questions, we focally ablated SLD neurons using adenoviral diphtheria-toxin (DTA) approach and found that SLD lesions completely eliminated REM sleep accompanied by wake increase, significantly reduced baseline cataplexy amounts by 40% and reward (sucrose) induced cataplexy amounts by 70% and altered cataplexy EEG Fast Fourier Transform (FFT) from REM sleep-like to wake-like in orexin null (OXKO) mice. We then used OXKO animals with absence of REM sleep and OXKO controls and examined elimination of REM sleep in anxiety and fear extinction. Our resulted showed that REM sleep elimination significantly increased anxiety-like behaviors in open field test (OFT), elevated plus maze test (EPM) and defensive aggression and impaired fear extinction. The data indicate that in OXKO mice the SLD is the sole generator for REM sleep; (2) the SLD selectively mediates REM sleep cataplexy (R-cataplexy) that merges with wake cataplexy (W-cataplexy); (3) REM sleep enhances positive emotion (sucrose induced cataplexy) response, reduces negative emotion state (anxiety), and promotes fear extinction.
Collapse
Affiliation(s)
- Fang-Fang Fan
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China
| | - Jun Lu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
8
|
Wen YJ, Yang WJ, Guo CN, Qiu MH, Kroeger D, Niu JG, Zhan SQ, Yang XF, Gisabella B, Vetrivelan R, Lu J. Pontine control of rapid eye movement sleep and fear memory. CNS Neurosci Ther 2023; 29:1602-1614. [PMID: 36794544 PMCID: PMC10173714 DOI: 10.1111/cns.14123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
AIMS We often experience dreams of strong irrational and negative emotional contents with postural muscle paralysis during rapid eye movement (REM) sleep, but how REM sleep is generated and its function remain unclear. In this study, we investigate whether the dorsal pontine sub-laterodorsal tegmental nucleus (SLD) is necessary and sufficient for REM sleep and whether REM sleep elimination alters fear memory. METHODS To investigate whether activation of SLD neurons is sufficient for REM sleep induction, we expressed channelrhodopsin-2 (ChR2) in SLD neurons by bilaterally injecting AAV1-hSyn-ChR2-YFP in rats. We next selectively ablated either glutamatergic or GABAergic neurons from the SLD in mice in order to identify the neuronal subset crucial for REM sleep. We finally investigated the role of REM sleep in consolidation of fear memory using rat model with complete SLD lesions. RESULTS We demonstrate the sufficiency of the SLD for REM sleep by showing that photo-activation of ChR2 transfected SLD neurons selectively promotes transitions from non-REM (NREM) sleep to REM sleep in rats. Diphtheria toxin-A (DTA) induced lesions of the SLD in rats or specific deletion of SLD glutamatergic neurons but not GABAergic neurons in mice completely abolish REM sleep, demonstrating the necessity of SLD glutamatergic neurons for REM sleep. We then show that REM sleep elimination by SLD lesions in rats significantly enhances contextual and cued fear memory consolidation by 2.5 and 1.0 folds, respectively, for at least 9 months. Conversely, fear conditioning and fear memory trigger doubled amounts of REM sleep in the following night, and chemo-activation of SLD neurons projecting to the medial septum (MS) selectively enhances hippocampal theta activity in REM sleep; this stimulation immediately after fear acquisition reduces contextual and cued fear memory consolidation by 60% and 30%, respectively. CONCLUSION SLD glutamatergic neurons generate REM sleep and REM sleep and SLD via the hippocampus particularly down-regulate contextual fear memory.
Collapse
Affiliation(s)
- Yu Jun Wen
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Jia Yang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Shanghai Yueyang Integrated Medicine Hospital, Shanghai, China
| | - Chun Ni Guo
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Mei Hong Qiu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Jian Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Shu Qin Zhan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Fei Yang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Barbara Gisabella
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Stroke Center, Department of Neurology, 1st Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Sulaman BA, Wang S, Tyan J, Eban-Rothschild A. Neuro-orchestration of sleep and wakefulness. Nat Neurosci 2023; 26:196-212. [PMID: 36581730 DOI: 10.1038/s41593-022-01236-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Although considered an inactive state for centuries, sleep entails many active processes occurring at the cellular, circuit and organismal levels. Over the last decade, several key technological advances, including calcium imaging and optogenetic and chemogenetic manipulations, have facilitated a detailed understanding of the functions of different neuronal populations and circuits in sleep-wake regulation. Here, we present recent progress and summarize our current understanding of the circuitry underlying the initiation, maintenance and coordination of wakefulness, rapid eye movement sleep (REMS) and non-REMS (NREMS). We propose a de-arousal model for sleep initiation, in which the neuromodulatory milieu necessary for sleep initiation is achieved by engaging in repetitive pre-sleep behaviors that gradually reduce vigilance to the external environment and wake-promoting neuromodulatory tone. We also discuss how brain processes related to thermoregulation, hunger and fear intersect with sleep-wake circuits to control arousal. Lastly, we discuss controversies and lingering questions in the sleep field.
Collapse
Affiliation(s)
- Bibi A Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Su Wang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Tyan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Kuo CC, Chan H, Hung WC, Chen RF, Yang HW, Min MY. Carbachol increases locus coeruleus activation by targeting noradrenergic neurons, inhibitory interneurons and inhibitory synaptic transmission. Eur J Neurosci 2023; 57:32-53. [PMID: 36382388 DOI: 10.1111/ejn.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/11/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The locus coeruleus (LC) consists of noradrenergic (NA) neurons and plays an important role in controlling behaviours. Although much of the knowledge regarding LC functions comes from studying behavioural outcomes upon administration of muscarinic acetylcholine receptor (mAChR) agonists into the nucleus, the exact mechanisms remain unclear. Here, we report that the application of carbachol (CCh), an mAChR agonist, increased the spontaneous action potentials (sAPs) of both LC-NA neurons and local inhibitory interneurons (LC I-INs) in acute brain slices by activating M1/M3 mAChRs (m1/3 AChRs). Optogenetic activation of LC I-INs evoked inhibitory postsynaptic currents (IPSCs) in LC-NA neurons that were mediated by γ-aminobutyric acid type A (GABAA ) and glycine receptors, and CCh application decreased the IPSC amplitude through a presynaptic mechanism by activating M4 mAChRs (m4 AChRs). LC-NA neurons also exhibited spontaneous phasic-like activity (sPLA); CCh application increased the incidence of this activity. This effect of CCh application was not observed with blockade of GABAA and glycine receptors, suggesting that the sPLA enhancement occurred likely because of the decreased synaptic transmission of LC I-INs onto LC-NA neurons by the m4 AChR activation and/or increased spiking rate of LC I-INs by the m1/3 AChR activation, which could lead to fatigue of the synaptic transmission. In conclusion, we report that CCh application, while inhibiting their synaptic transmission, increases sAP rates of LC-NA neurons and LC I-INs. Collectively, these effects provide insight into the cellular mechanisms underlying the behaviour modulations following the administration of muscarinic receptor agonists into the LC reported by the previous studies.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao Chan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Hung
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ruei-Feng Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Wen Yang
- Department of Biomedical Sciences, Chung-Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Le Ray D, Bertrand SS, Dubuc R. Cholinergic Modulation of Locomotor Circuits in Vertebrates. Int J Mol Sci 2022; 23:ijms231810738. [PMID: 36142651 PMCID: PMC9501616 DOI: 10.3390/ijms231810738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Locomotion is a basic motor act essential for survival. Amongst other things, it allows animals to move in their environment to seek food, escape predators, or seek mates for reproduction. The neural mechanisms involved in the control of locomotion have been examined in many vertebrate species and a clearer picture is progressively emerging. The basic muscle synergies responsible for propulsion are generated by neural networks located in the spinal cord. In turn, descending supraspinal inputs are responsible for starting, maintaining, and stopping locomotion as well as for steering and controlling speed. Several neurotransmitter systems play a crucial role in modulating the neural activity during locomotion. For instance, cholinergic inputs act both at the spinal and supraspinal levels and the underlying mechanisms are the focus of the present review. Much information gained on supraspinal cholinergic modulation of locomotion was obtained from the lamprey model. Nicotinic cholinergic inputs increase the level of excitation of brainstem descending command neurons, the reticulospinal neurons (RSNs), whereas muscarinic inputs activate a select group of hindbrain neurons that project to the RSNs to boost their level of excitation. Muscarinic inputs also reduce the transmission of sensory inputs in the brainstem, a phenomenon that could help in sustaining goal directed locomotion. In the spinal cord, intrinsic cholinergic inputs strongly modulate the activity of interneurons and motoneurons to control the locomotor output. Altogether, the present review underlines the importance of the cholinergic inputs in the modulation of locomotor activity in vertebrates.
Collapse
Affiliation(s)
- Didier Le Ray
- Institut des Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), UMR 5287, Université de Bordeaux-CNRS, F-33076 Bordeaux, France
- Correspondence: (D.L.R.); (R.D.)
| | - Sandrine S. Bertrand
- Institut des Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), UMR 5287, Université de Bordeaux-CNRS, F-33076 Bordeaux, France
| | - Réjean Dubuc
- Department of Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Physical Activity Sciences and Research Group in Adapted Physical Activity, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Correspondence: (D.L.R.); (R.D.)
| |
Collapse
|
12
|
Grady FS, Boes AD, Geerling JC. A Century Searching for the Neurons Necessary for Wakefulness. Front Neurosci 2022; 16:930514. [PMID: 35928009 PMCID: PMC9344068 DOI: 10.3389/fnins.2022.930514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Wakefulness is necessary for consciousness, and impaired wakefulness is a symptom of many diseases. The neural circuits that maintain wakefulness remain incompletely understood, as do the mechanisms of impaired consciousness in many patients. In contrast to the influential concept of a diffuse "reticular activating system," the past century of neuroscience research has identified a focal region of the upper brainstem that, when damaged, causes coma. This region contains diverse neuronal populations with different axonal projections, neurotransmitters, and genetic identities. Activating some of these populations promotes wakefulness, but it remains unclear which specific neurons are necessary for sustaining consciousness. In parallel, pharmacological evidence has indicated a role for special neurotransmitters, including hypocretin/orexin, histamine, norepinephrine, serotonin, dopamine, adenosine and acetylcholine. However, genetically targeted experiments have indicated that none of these neurotransmitters or the neurons producing them are individually necessary for maintaining wakefulness. In this review, we emphasize the need to determine the specific subset of brainstem neurons necessary for maintaining arousal. Accomplishing this will enable more precise mapping of wakefulness circuitry, which will be useful in developing therapies for patients with coma and other disorders of arousal.
Collapse
Affiliation(s)
- Fillan S. Grady
- Geerling Laboratory, Department of Neurology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| | - Aaron D. Boes
- Boes Laboratory, Departments of Pediatrics, Neurology, and Psychiatry, The University of Iowa, Iowa City, IA, United States
| | - Joel C. Geerling
- Geerling Laboratory, Department of Neurology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Magnetic Resonance Parkinsonism Index Is Associated with REM Sleep Behavior Disorder in Parkinson’s Disease. Brain Sci 2022; 12:brainsci12020202. [PMID: 35203966 PMCID: PMC8870674 DOI: 10.3390/brainsci12020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the association between the Magnetic Resonance Parkinsonism Index (MRPI) and REM sleep behavior disorder (RBD). We included 226 de novo PD patients (82 PD-RBD and 144 PD-noRBD) and 19 idiopathic RBD patients. Furthermore, 3T T1-weighted MR images were used for automated brainstem calculations. MRPI values were higher in the PD-RBD (p = 0.004) compared to PD-noRBD patients. Moreover, MRPI proved to be a significant predictor of REM Behavior Disorder Screening Questionnaire scores in PD (β = 0.195, p = 0.007) and iRBD patients (β = 0.582, p = 0.003). MRPI can be used as an imaging marker of RBD in patients with de novo PD and iRBD.
Collapse
|
14
|
Bellot-Saez A, Stevenson R, Kékesi O, Samokhina E, Ben-Abu Y, Morley JW, Buskila Y. Neuromodulation of Astrocytic K + Clearance. Int J Mol Sci 2021; 22:ijms22052520. [PMID: 33802343 PMCID: PMC7959145 DOI: 10.3390/ijms22052520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Potassium homeostasis is fundamental for brain function. Therefore, effective removal of excessive K+ from the synaptic cleft during neuronal activity is paramount. Astrocytes play a key role in K+ clearance from the extracellular milieu using various mechanisms, including uptake via Kir channels and the Na+-K+ ATPase, and spatial buffering through the astrocytic gap-junction coupled network. Recently we showed that alterations in the concentrations of extracellular potassium ([K+]o) or impairments of the astrocytic clearance mechanism affect the resonance and oscillatory behavior of both the individual and networks of neurons. These results indicate that astrocytes have the potential to modulate neuronal network activity, however, the cellular effectors that may affect the astrocytic K+ clearance process are still unknown. In this study, we have investigated the impact of neuromodulators, which are known to mediate changes in network oscillatory behavior, on the astrocytic clearance process. Our results suggest that while some neuromodulators (5-HT; NA) might affect astrocytic spatial buffering via gap-junctions, others (DA; Histamine) primarily affect the uptake mechanism via Kir channels. These results suggest that neuromodulators can affect network oscillatory activity through parallel activation of both neurons and astrocytes, establishing a synergistic mechanism to maximize the synchronous network activity.
Collapse
Affiliation(s)
- Alba Bellot-Saez
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Orsolya Kékesi
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Yuval Ben-Abu
- Projects and Physics Section, Sapir Academic College, D.N. Hof Ashkelon, Sderot 79165, Israel;
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: ; Tel.: +61-246203853
| |
Collapse
|
15
|
Kamara D, Beauchaine TP. A Review of Sleep Disturbances among Infants and Children with Neurodevelopmental Disorders. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2020; 7:278-294. [PMID: 33344102 PMCID: PMC7747783 DOI: 10.1007/s40489-019-00193-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Sleep problems are common among children with neurodevelopmental disorders (NDDs). We review sleep disturbance in three major NDDs: autism spectrum disorder, Down syndrome, and fetal alcohol spectrum disorder (FASD). We review associations with functional impairment, discuss how patterns of sleep disturbance inform understanding of etiology, and theorize about mechanisms of impairment. Sleep disturbance is a transdiagnostic feature of NDDs. Caregivers report high rates of sleep problems, including difficulty falling or staying asleep. Polysomnography data reveal differences in sleep architecture and increased rates of sleep disorders. Sleep disturbance is associated with functional impairment and stress among families. Further research is needed to elucidate mechanisms of impairment and develop more effective interventions. Despite significant sleep disturbance in FASD, limited research is available.
Collapse
Affiliation(s)
- Dana Kamara
- The Ohio State University, Department of Psychology, 1835 Neil Ave., Columbus, OH 43210
| | | |
Collapse
|
16
|
Ettaro R, Markovic T, Daniels D, MacLaren DA, Clark SD. Microinjection of urotensin II into the pedunculopontine tegmentum leads to an increase in the consumption of sweet tastants. Physiol Behav 2020; 215:112775. [PMID: 31843472 DOI: 10.1016/j.physbeh.2019.112775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022]
Abstract
The pedunculopontine tegmentum (PPTg) plays a role in processing multiple sensory inputs and innervates brain regions associated with reward-related behaviors. The urotensin II receptor, activated by the urotensin II peptide (UII), is selectively expressed by the cholinergic neurons of the PPTg. Although the exact function of cholinergic neurons of the PPTg is unknown, they are thought to contribute to the perception of reward magnitude or salience detection. We hypothesized that the activation of PPTg cholinergic neurons would alter sensory processing across multiple modalities (ex. taste and hearing). Here we had three aims: first, determine if cholinergic activation is involved in consumption behavior of palatable solutions (sucrose). Second, if so, distinguish the impact of the caloric value by using saccharin, a zero calorie sweetener. Lastly, we tested the UII-mediated effects on perception of acoustic stimuli by measuring acoustic startle reflex (ASR). Male Sprague-Dawley rats were bilaterally cannulated into the PPTg, then placed under food restriction lasting the entire consumption experiment (water ad lib.). Treatment consisted of a microinjection of either 1 μL of aCSF or 1 μL of 10 μM UII into the PPTg, and the rats were immediately given access to either sucrose or saccharin. For the remaining five days, rats were allowed one hour access per day to the same sweet solution without any further treatments. During the saccharin experiment rats were tested in a contact lickometer which recorded each individual lick to give insight into the microstructure of the consumption behavior. ASR testing consisted of a baseline (no treatment), treatment day, and two additional days (no treatment). Immediately following the microinjection of UII, consumption of both saccharin and sucrose increased compared to controls. This significant increase persisted for days after the single administration of UII, but there was no generalized arousal or increase in water consumption between testing sessions. The effects on ASR were not significant. Activating cholinergic PPTg neurons may lead to a miscalculation of the salience of external stimuli, implicating the importance of cholinergic input in modulating a variety of behaviors. The long-lasting effects seen after UII treatment support further research into the role of sensory processing on reward related-behaviors at the level of the PPTg cholinergic neurons.
Collapse
Affiliation(s)
- Robert Ettaro
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| | - Tamara Markovic
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| | - Derek Daniels
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, Buffalo, NY 14214, United States
| | - Duncan Aa MacLaren
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
17
|
Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020; 45:6-20. [PMID: 31216564 PMCID: PMC6879642 DOI: 10.1038/s41386-019-0444-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
The principal neurons of the arousal and sleep circuits are comprised by glutamate and GABA neurons, which are distributed within the reticular core of the brain and, through local and distant projections and interactions, regulate cortical activity and behavior across wake-sleep states. These are in turn modulated by the neuromodulatory systems that are comprised by acetylcholine, noradrenaline, dopamine, serotonin, histamine, orexin (hypocretin), and melanin-concentrating hormone (MCH) neurons. Glutamate and GABA neurons are heterogeneous in their profiles of discharge, forming distinct functional cell types by selective or maximal discharge during (1) waking and paradoxical (REM) sleep, (2) during slow wave sleep, (3) during waking, or (4) during paradoxical (REM) sleep. The neuromodulatory systems are each homogeneous in their profile of discharge, the majority discharging maximally during waking and paradoxical sleep or during waking. Only MCH neurons discharge maximally during sleep. They each exert their modulatory influence upon other neurons through excitatory and inhibitory receptors thus effecting a concerted differential change in the functionally different cell groups. Both arousal and sleep circuit neurons are homeostatically regulated as a function of their activity in part through changes in receptors. The major pharmacological agents used for the treatment of wake and sleep disorders act upon GABA and neuromodulatory transmission.
Collapse
Affiliation(s)
- Barbara E. Jones
- 0000 0004 1936 8649grid.14709.3bDepartment of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
18
|
Abstract
The neural mechanisms of sleep, a fundamental biological behavior from invertebrates to humans, have been a long-standing mystery and present an enormous challenge. Gradually, perspectives on the neurobiology of sleep have been more various with the technical innovations over the recent decades, and studies have now identified many specific neural circuits that selectively regulate the initiation and maintenance of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. The cholinergic system in basal forebrain (BF) that fire maximally during waking and REM sleep is one of the key neuromodulation systems related to waking and REM sleep. Here we outline the recent progress of the BF cholinergic system in sleep-wake cycle. The intricate local connectivity and multiple projections to other cortical and subcortical regions of the BF cholinergic system elaborately presented here form a conceptual framework for understanding the coordinating effects with the dissecting regions. This framework also provides evidences regarding the relationships between the general anesthesia and wakefulness/sleep cycle focusing on the neural circuitry of unconsciousness induced by anesthetic drugs.
Collapse
|
19
|
Rogić Vidaković M, Šoda J, Jerković A, Benzon B, Bakrač K, Dužević S, Vujović I, Mihalj M, Pecotić R, Valić M, Mastelić A, Hagelien MV, Zmajević Schőnwald M, Đogaš Z. Obstructive Sleep Apnea Syndrome: A Preliminary Navigated Transcranial Magnetic Stimulation Study. Nat Sci Sleep 2020; 12:563-574. [PMID: 32821185 PMCID: PMC7418161 DOI: 10.2147/nss.s253281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/25/2020] [Indexed: 01/14/2023] Open
Abstract
PURPOSE An increase in resting motor threshold (RMT), prolonged cortical silent period duration (CSP), and reduced short-latency afferent inhibition (SAI), confirmed with previous transcranial magnetic stimulation (TMS), suggest decreased cortical excitability in obstructive sleep apnea syndrome (OSAS). The present study included MRI of OSAS patients for navigated TMS assessment of the RMT, as an index of the threshold for corticospinal activation at rest, and SAI as an index of cholinergic neurotransmission. We hypothesize to confirm findings on SAI and RMT with adding precision in the targeting of motor cortex in OSAS. SUBJECTS AND METHODS After acquiring head MRIs for 17 severe right-handed OSAS and 12 healthy subjects, the motor cortex was mapped with nTMS to assess the RMT and SAI, with motor evoked potentials (MEPs) recorded from the abductor-pollicis brevis (APB) muscle. The 120%RMT intensity was used for the SAI by a paired-pulse paradigm in which the electrical stimulation to the median nerve is followed by magnetic stimulation of the motor cortex at inter-stimulus intervals (ISIs) of 18-28 ms (ISIs18-28). The SAI control condition included a recording of MEPs without peripheral stimulation. Latency and amplitude of MEP at RMT at 120%RMT for eleven different at ISIs18-28 were analyzed. RESULTS The study showed a significantly lower percentage deviation of MEP amplitude at ISIs(18-28ms) from the control condition between OSAS and healthy subjects (U=44.0, p=0.01). The intensity of stimulation at RMT was significantly higher in OSAS subjects (U=55.0, p=0.04*). Correlation analysis showed that BMI significantly negatively correlated (ρ=-0.47) with MEP amplitude percentage deviation in OSAS patients. CONCLUSION The nTMS study results in increased RMT, and reduced cortical afferent inhibition in OSAS patients for SAI at ISIs18-28, confirming previous findings of impaired cortical afferent inhibition in OSAS. Future nTMS studies are desirable to elucidate the role of RMT and SAI in diagnostics and treatment of OSAS, and to elucidate the usefulness of nTMS in OSAS research.
Collapse
Affiliation(s)
- Maja Rogić Vidaković
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Joško Šoda
- University of Split, Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Split, Croatia
| | - Ana Jerković
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Benjamin Benzon
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Karla Bakrač
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Silvia Dužević
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Igor Vujović
- University of Split, Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Split, Croatia
| | - Mario Mihalj
- University Hospital Split, Department of Neurology, Laboratory of Electromyoneurography, Split, Croatia
| | - Renata Pecotić
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia.,University of Split, Split Sleep Medical Center, Split 21000, Croatia
| | - Maja Valić
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia.,University of Split, Split Sleep Medical Center, Split 21000, Croatia
| | - Angela Mastelić
- University of Split, School of Medicine, Department of Medical Chemistry and Biochemistry, Split, Croatia
| | - Maximilian Vincent Hagelien
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Marina Zmajević Schőnwald
- Clinical Medical Centre "Sisters Of Mercy", Department of Neurosurgery, Clinical Unit for Intraoperative Neurophysiologic Monitoring, Zagreb, Croatia
| | - Zoran Đogaš
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia.,University of Split, Split Sleep Medical Center, Split 21000, Croatia
| |
Collapse
|
20
|
Héricé C, Sakata S. Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep-Wake Cycle. Front Neurosci 2019; 13:1380. [PMID: 31920528 PMCID: PMC6933528 DOI: 10.3389/fnins.2019.01380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep-wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network model upon synaptic weight manipulations. Our model consists of three neural populations connected by excitatory and inhibitory synapses. Activity in each population is described by a firing-rate model, which determines the state of the network. Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By systematically manipulating the synaptic weight of every pathway, we show that even this simplified model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not just to the induction and maintenance of wakefulness, but also to sleep induction. Although a recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic strengths that affect a particular state, implying that the amount of manipulations, not just direction (i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative approaches for sleep-wake regulatory circuits.
Collapse
Affiliation(s)
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
21
|
Neurons in the Nucleus papilio contribute to the control of eye movements during REM sleep. Nat Commun 2019; 10:5225. [PMID: 31745081 PMCID: PMC6864097 DOI: 10.1038/s41467-019-13217-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Rapid eye movements (REM) are characteristic of the eponymous phase of sleep, yet the underlying motor commands remain an enigma. Here, we identified a cluster of Calbindin-D28K-expressing neurons in the Nucleus papilio (NPCalb), located in the dorsal paragigantocellular nucleus, which are active during REM sleep and project to the three contralateral eye-muscle nuclei. The firing of opto-tagged NPCalb neurons is augmented prior to the onset of eye movements during REM sleep. Optogenetic activation of NPCalb neurons triggers eye movements selectively during REM sleep, while their genetic ablation or optogenetic silencing suppresses them. None of these perturbations led to a change in the duration of REM sleep episodes. Our study provides the first evidence for a brainstem premotor command contributing to the control of eye movements selectively during REM sleep in the mammalian brain. Rapid eye movement (REM) sleep is a sleep phase characterised by random eye movements for which the underlying motor commands are yet to be revealed. The authors describe that a cluster of medulla oblongata neurons in the Nucleus papiliocontributes to the control of eye movements during REM sleep.
Collapse
|
22
|
Pais-Roldán P, Edlow BL, Jiang Y, Stelzer J, Zou M, Yu X. Multimodal assessment of recovery from coma in a rat model of diffuse brainstem tegmentum injury. Neuroimage 2019; 189:615-630. [PMID: 30708105 DOI: 10.1016/j.neuroimage.2019.01.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/22/2019] [Indexed: 01/03/2023] Open
Abstract
Despite the association between brainstem lesions and coma, a mechanistic understanding of coma pathogenesis and recovery is lacking. We developed a coma model in the rat mimicking human brainstem coma, which allowed multimodal analysis of a brainstem tegmentum lesion's effects on behavior, cortical electrophysiology, and global brain functional connectivity. After coma induction, we observed a transient period (∼1h) of unresponsiveness accompanied by cortical burst-suppression. Comatose rats then gradually regained behavioral responsiveness concurrent with emergence of delta/theta-predominant cortical rhythms in primary somatosensory cortex. During the acute stage of coma recovery (∼1-8h), longitudinal resting-state functional MRI revealed an increase in functional connectivity between subcortical arousal nuclei in the thalamus, basal forebrain, and basal ganglia and cortical regions implicated in awareness. This rat coma model provides an experimental platform to systematically study network-based mechanisms of coma pathogenesis and recovery, as well as to test targeted therapies aimed at promoting recovery of consciousness after coma.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, 72074, Germany
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuanyuan Jiang
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
| | - Johannes Stelzer
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
| | - Ming Zou
- Department of Geriatrics & Neurology, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
23
|
Discharge and Role of Acetylcholine Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recording in Mice. eNeuro 2018; 5:eN-CFN-0270-18. [PMID: 30225352 PMCID: PMC6140114 DOI: 10.1523/eneuro.0270-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 01/23/2023] Open
Abstract
Acetylcholine (ACh) neurons in the pontomesencephalic tegmentum (PMT) are thought to play an important role in promoting cortical activation with waking (W) and paradoxical sleep [PS; or rapid eye movement (REM)], but have yet to be proven to do so by selective stimulation and simultaneous recording of identified ACh neurons. Here, we employed optogenetics combined with juxtacellular recording and labeling of neurons in transgenic (TG) mice expressing ChR2 in choline acetyltransferase (ChAT)-synthesizing neurons. We established in vitro then in vivo in anesthetized (A) and unanesthetized (UA), head-fixed mice that photostimulation elicited a spike with short latency in neurons which could be identified by immunohistochemical staining as ACh neurons within the laterodorsal (LDT)/sublaterodorsal (SubLDT) and pedunculopontine tegmental (PPT) nuclei. Continuous light pulse stimulation during sleep evoked tonic spiking by ACh neurons that elicited a shift from irregular slow wave activity to rhythmic θ and enhanced γ activity on the cortex without behavioral arousal. With θ frequency rhythmic light pulse stimulation, ACh neurons discharged in bursts that occurred in synchrony with evoked cortical θ. During natural sleep-wake states, they were virtually silent during slow wave sleep (SWS), discharged in bursts during PS and discharged tonically during W. Yet, their bursting during PS was not rhythmic or synchronized with cortical θ but associated with phasic whisker movements. We conclude that ACh PMT neurons promote θ and γ cortical activity during W and PS by their tonic or phasic discharge through release of ACh onto local neurons within the PMT and/or more distant targets in the hypothalamus and thalamus.
Collapse
|
24
|
Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2018; 140:77-92. [PMID: 30118737 PMCID: PMC6403104 DOI: 10.1016/j.neures.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
REM sleep was discovered in the 1950s. Many hypothalamic and brainstem areas have been found to contribute to REM sleep. An up-to-date picture of REM-sleep-regulating circuits is reviewed. A brief overview of computational models for REM sleep regulation is provided. Outstanding issues for future studies are discussed.
Rapid eye movement (REM) sleep or paradoxical sleep is an elusive behavioral state. Since its discovery in the 1950s, our knowledge of the neuroanatomy, neurotransmitters and neuropeptides underlying REM sleep regulation has continually evolved in parallel with the development of novel technologies. Although the pons was initially discovered to be responsible for REM sleep, it has since been revealed that many components in the hypothalamus, midbrain, pons, and medulla also contribute to REM sleep. In this review, we first provide an up-to-date overview of REM sleep-regulating circuits in the brainstem and hypothalamus by summarizing experimental evidence from neuroanatomical, neurophysiological and gain- and loss-of-function studies. Second, because quantitative approaches are essential for understanding the complexity of REM sleep-regulating circuits and because mathematical models have provided valuable insights into the dynamics underlying REM sleep genesis and maintenance, we summarize computational studies of the sleep-wake cycle, with an emphasis on REM sleep regulation. Finally, we discuss outstanding issues for future studies.
Collapse
Affiliation(s)
- Charlotte Héricé
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Amisha A Patel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
25
|
Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018; 9:413. [PMID: 29928253 PMCID: PMC5997825 DOI: 10.3389/fneur.2018.00413] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
The lateral hypothalamus is comprised of a heterogeneous mix of neurons that serve to integrate and regulate sleep, feeding, stress, energy balance, reward, and motivated behavior. Within these populations, the hypocretin/orexin neurons are among the most well studied. Here, we provide an overview on how these neurons act as a central hub integrating sensory and physiological information to tune arousal and motivated behavior accordingly. We give special attention to their role in sleep-wake states and conditions of hyper-arousal, as is the case with stress-induced anxiety. We further discuss their roles in feeding, drug-seeking, and sexual behavior, which are all dependent on the motivational state of the animal. We further emphasize the application of powerful techniques, such as optogenetics, chemogenetics, and fiber photometry, to delineate the role these neurons play in lateral hypothalamic functions.
Collapse
Affiliation(s)
- Susan M Tyree
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jeremy C Borniger
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
26
|
Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation. eNeuro 2018; 4:eN-NWR-0269-17. [PMID: 29302615 PMCID: PMC5752701 DOI: 10.1523/eneuro.0269-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023] Open
Abstract
We have examined whether GABAergic neurons in the mesencephalic reticular formation (RFMes), which are believed to inhibit the neurons in the pons that generate paradoxical sleep (PS or REMS), are submitted to homeostatic regulation under conditions of sleep deprivation (SD) by enforced waking during the day in mice. Using immunofluorescence, we investigated first, by staining for c-Fos, whether GABAergic RFMes neurons are active during SD and then, by staining for receptors, whether their activity is associated with homeostatic changes in GABAA or acetylcholine muscarinic type 2 (AChM2) receptors (Rs), which evoke inhibition. We found that a significantly greater proportion of the GABAergic neurons were positively stained for c-Fos after SD (∼27%) as compared to sleep control (SC; ∼1%) and sleep recovery (SR; ∼6%), suggesting that they were more active during waking with SD and less active or inactive during sleep with SC and SR. The density of GABAARs and AChM2Rs on the plasma membrane of the GABAergic neurons was significantly increased after SD and restored to control levels after SR. We conclude that the density of these receptors is increased on RFMes GABAergic neurons during presumed enhanced activity with SD and is restored to control levels during presumed lesser or inactivity with SR. Such increases in GABAAR and AChM2R with sleep deficits would be associated with increased susceptibility of the wake-active GABAergic neurons to inhibition from GABAergic and cholinergic sleep-active neurons and to thus permitting the onset of sleep and PS with muscle atonia.
Collapse
|
27
|
Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017; 40:3059391. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complexity of the brain is yielding to technology. In the area of sleep neurobiology, conventional neuroscience tools such as lesions, cell recordings, c-Fos, and axon-tracing methodologies have been instrumental in identifying the complex and intermingled populations of sleep- and arousal-promoting neurons that orchestrate and generate wakefulness, NREM, and REM sleep. In the last decade, new technologies such as optogenetics, chemogenetics, and the CRISPR-Cas system have begun to transform how biologists understand the finer details associated with sleep-wake regulation. These additions to the neuroscience toolkit are helping to identify how discrete populations of brain cells function to trigger and shape the timing and transition into and out of different sleep-wake states, and how glia partner with neurons to regulate sleep. Here, we detail how some of the newest technologies are being applied to understand the neural circuits underlying sleep and wake.
Collapse
Affiliation(s)
- Priyattam J Shiromani
- Ralph H. Johnson Veterans Administration Medical Center, Research Service, Charleston, SC
| | - John H Peever
- Centre for Biological Timing and Cognition, Department Cell and Systems Biology, and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Olateju OI, Bhagwandin A, Ihunwo AO, Manger PR. Changes in the Cholinergic, Catecholaminergic, Orexinergic and Serotonergic Structures Forming Part of the Sleep Systems of Adult Mice Exposed to Intrauterine Alcohol. Front Neuroanat 2017; 11:110. [PMID: 29230167 PMCID: PMC5711786 DOI: 10.3389/fnana.2017.00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
We examined the effect of chronic prenatal alcohol exposure on certain neuronal systems involved with the sleep-wake cycle of C57BL/6J mice exposed to prenatal alcohol once they had reached 56 days post-natal. Pregnant mice were exposed to alcohol, through oral gavage, on gestational days 7–16, with recorded blood alcohol concentration (BAC)s averaging 1.84 mg/ml (chronic alcohol group, CA). Two control groups, an oral gavage sucrose control group (chronic alcohol control group, CAc) and a non-treated control group (NTc), were also examined. At 56 days post-natal, the pups from each group were sacrificed and the whole brain sectioned in a coronal plane and immunolabeled for cholineacetyltransferase (ChAT), tyrosine hydroxylase (TH), serotonin (5HT) and orexin-A (OxA) which labels cholinergic, catecholaminergic, serotonergic and orexinergic structures respectively. The overall nuclear organization and neuronal morphology were identical in all three groups studied, and resemble that previously reported for laboratory rodents. Quantification of the estimated numbers of ChAT immunopositive (+) neurons of the pons, the TH+ neurons of the pons and the OxA+ neurons of the hypothalamus showed no statistically significant difference between the three experimental groups. The stereologically estimated areas and volumes of OxA+ neurons in the CA group were statistically significantly larger than the groups not exposed to prenatal alcohol, but the ChAT+ neurons in the CA group were statistically significantly smaller. The density of orexinergic boutons in the anterior cingulate cortex was lower in the CA group than the other groups. No statistically significant difference was found in the area and volume of TH+ neurons between the three experimental groups. These differences are discussed in relation to the sleep disorders recorded in children with fetal alcohol spectrum disorder (FASD).
Collapse
Affiliation(s)
- Oladiran I Olateju
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Silkis IG. Hypothetical neurochemical mechanisms of paradoxical sleep deficiency in Alzheimer’s disease. NEUROCHEM J+ 2017. [DOI: 10.1134/s181971241702012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Homeostatic regulation through GABA and acetylcholine muscarinic receptors of motor trigeminal neurons following sleep deprivation. Brain Struct Funct 2017; 222:3163-3178. [PMID: 28299422 PMCID: PMC5585289 DOI: 10.1007/s00429-017-1392-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Muscle tone is regulated across sleep-wake states, being maximal in waking, reduced in slow wave sleep (SWS) and absent in paradoxical or REM sleep (PS or REMS). Such changes in tone have been recorded in the masseter muscles and shown to correspond to changes in activity and polarization of the trigeminal motor 5 (Mo5) neurons. The muscle hypotonia and atonia during sleep depend in part on GABA acting upon both GABAA and GABAB receptors (Rs) and acetylcholine (ACh) acting upon muscarinic 2 (AChM2) Rs. Here, we examined whether Mo5 neurons undergo homeostatic regulation through changes in these inhibitory receptors following prolonged activity with enforced waking. By immunofluorescence, we assessed that the proportion of Mo5 neurons positively stained for GABAARs was significantly higher after sleep deprivation (SD, ~65%) than sleep control (SC, ~32%) and that the luminance of the GABAAR fluorescence was significantly higher after SD than SC and sleep recovery (SR). Although, all Mo5 neurons were positively stained for GABABRs and AChM2Rs (100%) in all groups, the luminance of these receptors was significantly higher following SD as compared to SC and SR. We conclude that the density of GABAA, GABAB and AChM2 receptors increases on Mo5 neurons during SD. The increase in these receptors would be associated with increased inhibition in the presence of GABA and ACh and thus a homeostatic down-scaling in the excitability of the Mo5 neurons after prolonged waking and resulting increased susceptibility to muscle hypotonia or atonia along with sleep.
Collapse
|
31
|
Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys. J Neural Transm (Vienna) 2017; 125:471-483. [PMID: 28084536 DOI: 10.1007/s00702-017-1678-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/07/2017] [Indexed: 12/20/2022]
Abstract
Patients with Parkinson's disease (PD) develop cardinal motor symptoms, including akinesia, rigidity, and tremor, that are alleviated by dopaminergic medication and/or subthalamic deep brain stimulation. Over the time course of the disease, gait and balance disorders worsen and become resistant to pharmacological and surgical treatments. These disorders generate debilitating motor symptoms leading to increased dependency, morbidity, and mortality. PD patients also experience sleep disturbance that raise the question of a common physiological basis. An extensive experimental and clinical body of work has highlighted the crucial role of the pedunculopontine nucleus (PPN) in the control of gait and sleep, and its potential major role in PD. Here, we summarise our investigations in the monkey PPN in the normal and parkinsonian states. We first examined the anatomy and connectivity of the PPN and the cuneiform nucleus which both belong to the mesencephalic locomotor region. Second, we conducted experiments to demonstrate the specific effects of PPN cholinergic lesions on locomotion in the normal and parkinsonian monkey. Third, we aimed to understand how PPN cholinergic lesions impair sleep in parkinsonian monkeys. Our final goal was to develop a novel model of advanced PD with gait and sleep disorders. We believe that this monkey model, even if it does not attempt to reproduce the exact human disease with all its complexities, represents a good biomedical model to characterise locomotion and sleep in the context of PD.
Collapse
|
32
|
D'Onofrio S, Mahaffey S, Garcia-Rill E. Role of calcium channels in bipolar disorder. CURRENT PSYCHOPHARMACOLOGY 2017; 6:122-135. [PMID: 29354402 PMCID: PMC5771645 DOI: 10.2174/2211556006666171024141949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bipolar disorder is characterized by a host of sleep-wake abnormalities that suggests that the reticular activating system (RAS) is involved in these symptoms. One of the signs of the disease is a decrease in high frequency gamma band activity, which accounts for a number of additional deficits. Bipolar disorder has also been found to overexpress neuronal calcium sensor protein 1 (NCS-1). Recent studies showed that elements in the RAS generate gamma band activity that is mediated by high threshold calcium (Ca2+) channels. This mini-review provides a description of recent findings on the role of Ca2+ and Ca2+ channels in bipolar disorder, emphasizing the involvement of arousal-related systems in the manifestation of many of the disease symptoms. This will hopefully bring attention to a much-needed area of research and provide novel avenues for therapeutic development.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
33
|
Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 2016; 37:1352-1366. [PMID: 28039375 DOI: 10.1523/jneurosci.1405-16.2016] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023] Open
Abstract
The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. SIGNIFICANCE STATEMENT More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep-wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior, improving our understanding of how the PPT nucleus regulates cortical activity and behavioral states.
Collapse
|
34
|
Garcia-Rill E, Luster B, D'Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Implications of gamma band activity in the pedunculopontine nucleus. J Neural Transm (Vienna) 2016; 123:655-665. [PMID: 26597124 PMCID: PMC4877293 DOI: 10.1007/s00702-015-1485-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023]
Abstract
The fact that the pedunculopontine nucleus (PPN) is part of the reticular activating system places it in a unique position to modulate sensory input and fight-or-flight responses. Arousing stimuli simultaneously activate ascending projections of the PPN to the intralaminar thalamus to trigger cortical high-frequency activity and arousal, as well as descending projections to reticulospinal systems to alter posture and locomotion. As such, the PPN has become a target for deep brain stimulation for the treatment of Parkinson's disease, modulating gait, posture, and higher functions. This article describes the latest discoveries on PPN physiology and the role of the PPN in a number of disorders. It has now been determined that high-frequency activity during waking and REM sleep is controlled by two different intracellular pathways and two calcium channels in PPN cells. Moreover, there are three different PPN cell types that have one or both calcium channels and may be active during waking only, REM sleep only, or both. Based on the new discoveries, novel mechanisms are proposed for insomnia as a waking disorder. In addition, neuronal calcium sensor protein-1 (NCS-1), which is over expressed in schizophrenia and bipolar disorder, may be responsible for the dysregulation in gamma band activity in at least some patients with these diseases. Recent results suggest that NCS-1 modulates PPN gamma band activity and that lithium acts to reduce the effects of over expressed NCS-1, accounting for its effectiveness in bipolar disorder.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA.
| | - B Luster
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S D'Onofrio
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S Mahaffey
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - V Bisagno
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - F J Urbano
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Boucetta S, Salimi A, Dadar M, Jones BE, Collins DL, Dang-Vu TT. Structural Brain Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson's Disease. Sci Rep 2016; 6:26782. [PMID: 27245317 PMCID: PMC4887790 DOI: 10.1038/srep26782] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/09/2016] [Indexed: 01/20/2023] Open
Abstract
Characterized by dream-enactment motor manifestations arising from rapid eye movement (REM) sleep, REM sleep behavior disorder (RBD) is frequently encountered in Parkinson’s disease (PD). Yet the specific neurostructural changes associated with RBD in PD patients remain to be revealed by neuroimaging. Here we identified such neurostructural alterations by comparing large samples of magnetic resonance imaging (MRI) scans in 69 PD patients with probable RBD, 240 patients without RBD and 138 healthy controls, using deformation-based morphometry (p < 0.05 corrected for multiple comparisons). All data were extracted from the Parkinson’s Progression Markers Initiative. PD patients with probable RBD showed smaller volumes than patients without RBD and than healthy controls in the pontomesencephalic tegmentum, medullary reticular formation, hypothalamus, thalamus, putamen, amygdala and anterior cingulate cortex. These results demonstrate that RBD is associated with a prominent loss of volume in the pontomesencephalic tegmentum, where cholinergic, GABAergic and glutamatergic neurons are located and implicated in the promotion of REM sleep and muscle atonia. It is additionally associated with more widespread atrophy in other subcortical and cortical regions whose loss also likely contributes to the altered regulation of sleep-wake states and motor activity underlying RBD in PD patients.
Collapse
Affiliation(s)
- Soufiane Boucetta
- Center for Studies in Behavioural Neurobiology, PERFORM Center and Dpt of Exercise Science, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6 Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal and Dpt of Neurosciences, Université de Montréal, 4545 Chemin Queen Mary, Montréal, Québec, H3W 1W4 Canada
| | - Ali Salimi
- Center for Studies in Behavioural Neurobiology, PERFORM Center and Dpt of Exercise Science, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6 Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal and Dpt of Neurosciences, Université de Montréal, 4545 Chemin Queen Mary, Montréal, Québec, H3W 1W4 Canada
| | - Mahsa Dadar
- Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4 Canada
| | - Barbara E Jones
- Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4 Canada
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4 Canada
| | - Thien Thanh Dang-Vu
- Center for Studies in Behavioural Neurobiology, PERFORM Center and Dpt of Exercise Science, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6 Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal and Dpt of Neurosciences, Université de Montréal, 4545 Chemin Queen Mary, Montréal, Québec, H3W 1W4 Canada
| |
Collapse
|
36
|
Cox J, Pinto L, Dan Y. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat Commun 2016; 7:10763. [PMID: 26911837 PMCID: PMC4773416 DOI: 10.1038/ncomms10763] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/19/2016] [Indexed: 11/13/2022] Open
Abstract
The dorsal pons has long been implicated in the generation of rapid eye movement (REM) sleep, but the underlying circuit mechanisms remain poorly understood. Using cell-type-specific microendoscopic Ca2+ imaging in and near the laterodorsal tegmental nucleus, we found that many glutamatergic neurons are maximally active during REM sleep (REM-max), while the majority of GABAergic neurons are maximally active during wakefulness (wake-max). Furthermore, the activity of glutamatergic neurons exhibits a medio-lateral spatial gradient, with medially located neurons more selectively active during REM sleep. Dreaming occurs in REM sleep, yet the neural mechanisms involved in generating it are not understood. Here Cox and colleagues show that glutamatergic neurons in the dorsal pons are activated most during transition to REM sleep while GABAergic neurons are more active during waking state.
Collapse
Affiliation(s)
- Julia Cox
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, 230 Li Ka Shing Center, Berkeley, California 94720, USA
| | - Lucas Pinto
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, 230 Li Ka Shing Center, Berkeley, California 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, 230 Li Ka Shing Center, Berkeley, California 94720, USA
| |
Collapse
|
37
|
Jennum P, Christensen JA, Zoetmulder M. Neurophysiological basis of rapid eye movement sleep behavior disorder: informing future drug development. Nat Sci Sleep 2016; 8:107-20. [PMID: 27186147 PMCID: PMC4847600 DOI: 10.2147/nss.s99240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by a history of recurrent nocturnal dream enactment behavior and loss of skeletal muscle atonia and increased phasic muscle activity during REM sleep: REM sleep without atonia. RBD and associated comorbidities have recently been identified as one of the most specific and potentially sensitive risk factors for later development of any of the alpha-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and other atypical parkinsonian syndromes. Several other sleep-related abnormalities have recently been identified in patients with RBD/Parkinson's disease who experience abnormalities in sleep electroencephalographic frequencies, sleep-wake transitions, wake and sleep stability, occurrence and morphology of sleep spindles, and electrooculography measures. These findings suggest a gradual involvement of the brainstem and other structures, which is in line with the gradual involvement known in these disorders. We propose that these findings may help identify biomarkers of individuals at high risk of subsequent conversion to parkinsonism.
Collapse
Affiliation(s)
- Poul Jennum
- Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Julie Ae Christensen
- Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marielle Zoetmulder
- Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Sakai K. Paradoxical (rapid eye movement) sleep-on neurons in the laterodorsal pontine tegmentum in mice. Neuroscience 2015; 310:455-71. [DOI: 10.1016/j.neuroscience.2015.09.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/06/2015] [Accepted: 09/23/2015] [Indexed: 11/17/2022]
|
39
|
Grace KP, Horner RL. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation. Front Neurol 2015; 6:190. [PMID: 26388832 PMCID: PMC4555043 DOI: 10.3389/fneur.2015.00190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.
Collapse
Affiliation(s)
- Kevin P Grace
- Department of Medicine, University of Toronto , Toronto, ON , Canada
| | - Richard L Horner
- Department of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Physiology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
40
|
Xi M, Fung SJ, Yamuy J, Chase MH. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation. Neuroscience 2015; 298:190-9. [PMID: 25892701 DOI: 10.1016/j.neuroscience.2015.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 11/30/2022]
Abstract
Anatomical studies have demonstrated that hypocretinergic and GABAergic neurons innervate cells in the nucleus pontis oralis (NPO), a nucleus responsible for the generation of active (rapid eye movement (REM)) sleep (AS) and wakefulness (W). Behavioral and electrophysiological studies have shown that hypocretinergic and GABAergic processes in the NPO are involved in the generation of AS as well as W. An increase in hypocretin in the NPO is associated with both AS and W, whereas GABA levels in the NPO are elevated during W. We therefore examined the manner in which GABA modulates NPO neuronal responses to hypocretin. We hypothesized that interactions between the hypocretinergic and GABAergic systems in the NPO play an important role in determining the occurrence of AS or W. To determine the veracity of this hypothesis, we examined the effects of the juxtacellular application of hypocretin-1 and GABA on the activity of NPO neurons, which were recorded intracellularly, in chloralose-anesthetized cats. The juxtacellular application of hypocretin-1 significantly increased the mean amplitude of spontaneous EPSPs and the frequency of discharge of NPO neurons; in contrast, the juxtacellular microinjection of GABA produced the opposite effects, i.e., there was a significant reduction in the mean amplitude of spontaneous EPSPs and a decrease in the discharge of these cells. When hypocretin-1 and GABA were applied simultaneously, the inhibitory effect of GABA on the activity of NPO neurons was reduced or completely blocked. In addition, hypocretin-1 also blocked GABAergic inhibition of EPSPs evoked by stimulation of the laterodorsal tegmental nucleus. These data indicate that hypocretin and GABA function within the context of a neuronal gate that controls the activity of AS-on neurons. Therefore, we suggest that the occurrence of either AS or W depends upon interactions between hypocretinergic and GABAergic processes as well as inputs from other sites that project to AS-on neurons in the NPO.
Collapse
Affiliation(s)
- M Xi
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - S J Fung
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - J Yamuy
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - M H Chase
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Endocannabinoid CB1 receptor-mediated rises in Ca(2+) and depolarization-induced suppression of inhibition within the laterodorsal tegmental nucleus. Brain Struct Funct 2015; 221:1255-77. [PMID: 25573246 DOI: 10.1007/s00429-014-0969-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022]
Abstract
Cannabinoid type 1 receptors (CB1Rs) are functionally active within the laterodorsal tegmental nucleus (LDT), which is critically involved in control of rapid eye movement sleep, cortical arousal, and motivated states. To further characterize the cellular consequences of activation of CB1Rs in this nucleus, we examined whether CB1R activation led to rises in intracellular Ca(2+) ([Ca(2+)]i) and whether processes shown in other regions to involve endocannabinoid (eCB) transmission were present in the LDT. Using a combination of Ca(2+) imaging in multiple cells loaded with Ca(2+) imaging dye via 'bulk-loading' or in single cells loaded with dye via a patch-clamp electrode, we found that WIN 55212-2 (WIN-2), a potent CB1R agonist, induced increases in [Ca(2+)]i which were sensitive to AM251, a CB1R antagonist. A proportion of rises persisted in TTX and/or low-extracellular Ca(2+) conditions. Attenuation of these increases by a reversible inhibitor of sarcoplasmic reticulum Ca(2+)-ATPases, suggests these rises occurred following release of Ca(2+) from intracellular stores. Under voltage clamp conditions, brief, direct depolarization of LDT neurons resulted in a decrease in the frequency and amplitude of AM251-sensitive, inhibitory postsynaptic currents (IPSCs), which was an action sensitive to presence of a Ca(2+) chelator. Finally, actions of DHPG, a mGlu1R agonist, on IPSC activity were examined and found to result in an AM251- and BAPTA-sensitive inhibition of both the frequency and amplitude of sIPSCs. Taken together, our data further characterize CB1R and eCB actions in the LDT and indicate that eCB transmission could play a role in the processes governed by this nucleus.
Collapse
|
42
|
Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mével JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 2015; 67:214-58. [PMID: 25535277 DOI: 10.1124/pr.114.009480] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.
Collapse
Affiliation(s)
- Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Chatenet
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Alain Fournier
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David G Lambert
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Eliot H Ohlstein
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Adel Schwertani
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Hervé Tostivint
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| |
Collapse
|
43
|
Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A 2014; 112:584-9. [PMID: 25548191 DOI: 10.1073/pnas.1423136112] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.
Collapse
|
44
|
Vetreno RP, Broadwater M, Liu W, Spear LP, Crews FT. Adolescent, but not adult, binge ethanol exposure leads to persistent global reductions of choline acetyltransferase expressing neurons in brain. PLoS One 2014; 9:e113421. [PMID: 25405505 PMCID: PMC4236188 DOI: 10.1371/journal.pone.0113421] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022] Open
Abstract
During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) treatment led to persistent, global reductions of choline acetyltransferase (ChAT) expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70) produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28-P48) and adult (P70-P90) binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Margaret Broadwater
- Center for Developmental and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York, 13902, United States of America
| | - Wen Liu
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Linda P. Spear
- Center for Developmental and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York, 13902, United States of America
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| |
Collapse
|
45
|
Jordan LM, McVagh JR, Noga BR, Cabaj AM, Majczyński H, Sławińska U, Provencher J, Leblond H, Rossignol S. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches. Front Neural Circuits 2014; 8:132. [PMID: 25414645 PMCID: PMC4222238 DOI: 10.3389/fncir.2014.00132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023] Open
Abstract
Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a “hyper-cholinergic” state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments.
Collapse
Affiliation(s)
- Larry M Jordan
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| | - J R McVagh
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| | - B R Noga
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miami, FL, USA
| | - A M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland ; Department of Nerve-Muscle Engineering, Institute of Biocybernetics and Biomedical Engineering PAS Warsaw, Poland
| | - H Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - J Provencher
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| | - H Leblond
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| | - Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| |
Collapse
|
46
|
Soni N, Satpathy S, Kohlmeier KA. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus. Eur J Neurosci 2014; 40:3635-52. [PMID: 25251035 DOI: 10.1111/ejn.12730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/13/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022]
Abstract
Marijuana, which acts within the endocannabinoid (eCB) system as an agonist of the cannabinoid type 1 receptor (CB1R), exhibits addictive properties and has powerful actions on the state of arousal of an organism. The laterodorsal tegmental nucleus (LDT), as a component of the reticular activating system, is involved in cortical activation and is important in the development of drug addiction-associated behaviours. Therefore, eCBs might exert behavioural effects by actions on the LDT; however, it is unknown whether eCBs have actions on neurons in this nucleus. Accordingly, whole-cell voltage- and current-clamp recordings were conducted from mouse brain slices, and responses of LDT neurons to the CB1R agonist WIN-2 were monitored. Our results showed that WIN-2 decreased the frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs). Ongoing activity of endogenous eCBs was confirmed as AM251, a potent CB1R antagonist, elicited sIPSCs. WIN-2 reduced the firing frequency of LDT neurons. In addition, our RT-PCR studies confirmed the presence of CB1R transcript in the LDT. Taken together, we conclude that CB1Rs are functionally active in the LDT, and their activation changes the firing frequency and synaptic activity of neurons in this nucleus. Therefore, endogenous eCB transmission could play a role in processes involving the LDT, such as cortical activation and motivated behaviours and, further, behavioural actions of marijuana are probably mediated, in part, via cellular actions within the LDT induced by this addictive and behavioural state-altering drug.
Collapse
Affiliation(s)
- Neeraj Soni
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | | | | |
Collapse
|
47
|
Sleep disorders in Parkinsonian macaques: effects of L-dopa treatment and pedunculopontine nucleus lesion. J Neurosci 2014; 34:9124-33. [PMID: 24990932 DOI: 10.1523/jneurosci.0181-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patients with Parkinson's disease (PD) display significant sleep disturbances and daytime sleepiness. Dopaminergic treatment dramatically improves PD motor symptoms, but its action on sleep remains controversial, suggesting a causal role of nondopaminergic lesions in these symptoms. Because the pedunculopontine nucleus (PPN) regulates sleep and arousal, and in view of the loss of its cholinergic neurons in PD, the PPN could be involved in these sleep disorders. The aims of this study were as follows: (1) to characterize sleep disorders in a monkey model of PD; (2) to investigate whether l-dopa treatment alleviates sleep disorders; and (3) to determine whether a cholinergic PPN lesion would add specific sleep alterations. To this end, long-term continuous electroencephalographic monitoring of vigilance states was performed in macaques, using an implanted miniaturized telemetry device. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment induced sleep disorders that comprised sleep episodes during daytime and sleep fragmentation and a reduction of sleep efficiency at nighttime. It also induced a reduction in time spent in rapid eye movement (REM) sleep and slow-wave sleep and an increase in muscle tone during REM and non-REM sleep episodes and in the number of awakenings and movements. l-Dopa treatment resulted in a partial but significant improvement of almost all sleep parameters. PPN lesion induced a transient decrease in REM sleep and in slow-wave sleep followed by a slight improvement of sleep quality. Our data demonstrate the efficacy of l-dopa treatment in improving sleep disorders in parkinsonian monkeys, and that adding a cholinergic PPN lesion improves sleep quality after transient sleep impairment.
Collapse
|
48
|
Sanchez-Espinosa MP, Atienza M, Cantero JL. Sleep deficits in mild cognitive impairment are related to increased levels of plasma amyloid-β and cortical thinning. Neuroimage 2014; 98:395-404. [PMID: 24845621 DOI: 10.1016/j.neuroimage.2014.05.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/01/2014] [Accepted: 05/10/2014] [Indexed: 01/09/2023] Open
Abstract
Evidence suggests that amyloid-beta (Aβ) depositions parallel sleep deficits in Alzheimer's disease (AD). However, it remains unknown whether impaired sleep and changes in plasma Aβ levels are related in amnestic mild cognitive impairment (aMCI) subjects, and whether both markers are further associated with cortical thinning in canonical AD regions. To jointly address this issue, we investigated relationships between changes in physiological sleep and plasma Aβ concentrations in 21 healthy old (HO) adults and 21 aMCI subjects, and further assessed whether these two factors were associated with cortical loss in each group. aMCI, but not HO subjects, showed significant relationships between disrupted slow-wave sleep (SWS) and increased plasma levels of Aβ42. We also found that shortened rapid-eye movement (REM) sleep in aMCI correlated with thinning of the posterior cingulate, precuneus, and postcentral gyrus; whereas higher levels of Aβ40 and Aβ42 accounted for grey matter (GM) loss of posterior cingulate and entorhinal cortex, respectively. These results support preliminary relationships between Aβ burden and altered sleep physiology observed in animal models of AD amyloidosis, and provide precise cortical correlates of these changes in older adults with aMCI. Taken together, these findings open new research avenues on the combined role of sleep, peripheral Aβ levels and cortical integrity in tracking the progression from normal aging to early neurodegeneration.
Collapse
Affiliation(s)
- Mayely P Sanchez-Espinosa
- Laboratory of Functional Neuroscience, Spanish Network of Excellence for Research on Neurodegenerative Diseases (CIBERNED), Pablo de Olavide University, Seville, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Spanish Network of Excellence for Research on Neurodegenerative Diseases (CIBERNED), Pablo de Olavide University, Seville, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Spanish Network of Excellence for Research on Neurodegenerative Diseases (CIBERNED), Pablo de Olavide University, Seville, Spain.
| |
Collapse
|
49
|
Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 2014; 34:4708-27. [PMID: 24672016 PMCID: PMC3965793 DOI: 10.1523/jneurosci.2617-13.2014] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 01/04/2023] Open
Abstract
Distributed within the laterodorsal tegmental and pedunculopontine tegmental nuclei (LDT and PPT), cholinergic neurons in the pontomesencephalic tegmentum have long been thought to play a critical role in stimulating cortical activation during waking (W) and paradoxical sleep (PS, also called REM sleep), yet also in promoting PS with muscle atonia. However, the discharge profile and thus precise roles of the cholinergic neurons have remained uncertain because they lie intermingled with GABAergic and glutamatergic neurons, which might also assume these roles. By applying juxtacellular recording and labeling in naturally sleeping-waking, head-fixed rats, we investigated the discharge profiles of histochemically identified cholinergic, GABAergic, and glutamatergic neurons in the LDT, SubLDT, and adjoining medial part of the PPT (MPPT) in relation to sleep-wake states, cortical activity, and muscle tone. We found that all cholinergic neurons were maximally active during W and PS in positive correlation with fast (γ) cortical activity, as "W/PS-max active neurons." Like cholinergic neurons, many GABAergic and glutamatergic neurons were also "W/PS-max active." Other GABAergic and glutamatergic neurons were "PS-max active," being minimally active during W and maximally active during PS in negative correlation with muscle tone. Conversely, some glutamatergic neurons were "W-max active," being maximally active during W and minimally active during PS in positive correlation with muscle tone. Through different discharge profiles, the cholinergic, GABAergic, and glutamatergic neurons of the LDT, SubLDT, and MPPT thus appear to play distinct roles in promoting W and PS with cortical activation, PS with muscle atonia, or W with muscle tone.
Collapse
Affiliation(s)
- Soufiane Boucetta
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Youssouf Cissé
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Lynda Mainville
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Marisela Morales
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland 21224
| | - Barbara E. Jones
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| |
Collapse
|
50
|
Rupprecht S, Grimm A, Schultze T, Zinke J, Karvouniari P, Axer H, Witte OW, Schwab M. Does the clinical phenotype of fatal familial insomnia depend on PRNP codon 129 methionine-valine polymorphism? J Clin Sleep Med 2013; 9:1343-5. [PMID: 24340298 DOI: 10.5664/jcsm.3286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fatal familial insomnia (FFI) is a rare, hereditary prion-protein disease. Methionine-valine polymorphism at codon 129 of the prion-protein gene (PRNP) determines the phenotype in other hereditary prion-protein diseases, but association with the clinical phenotype in FFI remains uncertain. Early clinical findings in FFI comprise disturbances of the sleep-wake cycle and mild neuropsychiatric changes which typically emerge during middle to late adulthood. Here we describe an unusually early onset and rapid progression of FFI associated with dorsal midbrain involvement in a female patient with PRNP mutation at codon 178 and homozygote methionine polymorphism at codon 129. Early dorsal midbrain involvement became apparent by total loss of REM sleep and isolated bilateral trochlear nerve palsy. Early onset and rapid progression disease type associated with dorsal midbrain involvement may indicate a different spatiotemporal distribution of the neurodegenerative process in FFI patients with PRNP mutation and codon 129 methionine homozygosity compared to methioninevaline heterozygosity.
Collapse
Affiliation(s)
- Sven Rupprecht
- Hans-Berger-Department of Neurology, Jena University Hospital, Germany ; Center for Sepsis Control and Care, Jena University Hospital, Germany
| | | | | | | | | | | | | | | |
Collapse
|