1
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Huang Y, Zelmann R, Hadar P, Dezha-Peralta J, Richardson RM, Williams ZM, Cash SS, Keller CJ, Paulk AC. Theta-burst direct electrical stimulation remodels human brain networks. Nat Commun 2024; 15:6982. [PMID: 39143083 PMCID: PMC11324911 DOI: 10.1038/s41467-024-51443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Theta-burst stimulation (TBS), a patterned brain stimulation technique that mimics rhythmic bursts of 3-8 Hz endogenous brain rhythms, has emerged as a promising therapeutic approach for treating a wide range of brain disorders, though the neural mechanism of TBS action remains poorly understood. We investigated the neural effects of TBS using intracranial EEG (iEEG) in 10 pre-surgical epilepsy participants undergoing intracranial monitoring. Here we show that individual bursts of direct electrical TBS at 29 frontal and temporal sites evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic local field potential voltage changes over the course of stimulation presentations, including either increasing or decreasing responses, suggestive of short-term plasticity. Stronger stimulation augmented the mean TBS response amplitude and spread with more recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific with stronger TBS responses observed in regions with strong baseline stimulation effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, we could use these measures to predict stable and varying (e.g. short-term plasticity) TBS response locations. Future work may integrate pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaquelin Dezha-Peralta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Gil M, Caulino-Rocha A, Bento M, Rodrigues NC, Silva-Cruz A, Ribeiro JA, Cunha-Reis D. Postweaning Development Influences Endogenous VPAC 1 Modulation of LTP Induced by Theta-Burst Stimulation: A Link to Maturation of the Hippocampal GABAergic System. Biomolecules 2024; 14:379. [PMID: 38540797 PMCID: PMC10968312 DOI: 10.3390/biom14030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 11/11/2024] Open
Abstract
Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.
Collapse
Affiliation(s)
- Marta Gil
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Marta Bento
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Nádia C. Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Armando Silva-Cruz
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Joaquim A. Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Chen R, Vakilna YS, Lassers SB, Tang WC, Brewer G. Hippocampal network axons respond to patterned theta burst stimulation with lower activity of initially higher spike train similarity from EC to DG and later similarity of axons from CA1 to EC. J Neural Eng 2023; 20:056004. [PMID: 37666242 DOI: 10.1088/1741-2552/acf68a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Objective. Decoding memory functions for each hippocampal subregion involves extensive understanding of how each hippocampal subnetwork processes input stimuli. Theta burst stimulation (TBS) recapitulates natural brain stimuli which potentiates synapses in hippocampal circuits. TBS is typically applied to a bundle of axons to measure the immediate response in a downstream subregion like the cornu ammonis 1 (CA1). Yet little is known about network processing in response to stimulation, especially because individual axonal transmission between subregions is not accessible.Approach. To address these limitations, we reverse engineered the hippocampal network on a micro-electrode array partitioned by a MEMS four-chambered device with interconnecting microfluidic tunnels. The micro tunnels allowed monitoring single axon transmission which is inaccessible in slices orin vivo. The four chambers were plated separately with entorhinal cortex (EC), dentate gyrus (DG), CA1, and CA3 neurons. The patterned TBS was delivered to the EC hippocampal gateway. Evoked spike pattern similarity in each subregions was quantified with Jaccard distance metrics of spike timing.Main results. We found that the network subregion produced unique axonal responses to different stimulation patterns. Single site and multisite stimulations caused distinct information routing of axonal spikes in the network. The most spatially similar output at axons from CA3 to CA1 reflected the auto association within CA3 recurrent networks. Moreover, the spike pattern similarities shifted from high levels for axons to and from DG at 0.2 s repeat stimuli to greater similarity in axons to and from CA1 for repetitions at 10 s intervals. This time-dependent response suggested that CA3 encoded temporal information and axons transmitted the information to CA1.Significance. Our design and interrogation approach provide first insights into differences in information transmission between the four subregions of the structured hippocampal network and the dynamic pattern variations in response to stimulation at the subregional level to achieve probabilistic pattern separation and novelty detection.
Collapse
Affiliation(s)
- Ruiyi Chen
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
| | - Yash Shashank Vakilna
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
- Texas Institute of Restorative Neurotechnologies (TIRN), The University of Texas Health Science Center (UTHealth), Houston, TX 77030, United States of America
| | - Samuel Brandon Lassers
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
- Department of Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan (ROC)
| | - Gregory Brewer
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
- Center for Neuroscience of Learning and Memory & MIND Center, University of California, Irvine, CA 92697, United States of America
| |
Collapse
|
5
|
Bai Z, Zhang JJ, Fong KNK. Immediate Effects of Intermittent Theta Burst Stimulation on Primary Motor Cortex in Stroke Patients: A Concurrent TMS-EEG Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2758-2766. [PMID: 37276099 DOI: 10.1109/tnsre.2023.3282659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The neurophysiological effect of intermittent theta burst stimulation (iTBS) has been examined with TMS-electromyography (EMG)-based outcomes in healthy people; however, its effects in intracortical excitability and inhibition are largely unknown in patients with stroke. Concurrent transcranial magnetic stimulation and electroencephalogram (TMS-EEG) recording can be used to investigate both intracortical excitatory and inhibitory circuits of the primary motor cortex (M1) instantly and the property of brain networks at once. This study was to investigate the immediate effects of iTBS on intracortical excitatory and inhibitory circuits, neural connectivity, and network properties in patients with chronic stroke, using TMS-EEG and TMS-EMG approaches. In this randomized, sham-controlled, crossover study, 20 patients with chronic stroke received two separate stimulation conditions: a single-session iTBS or sham stimulation applied to the ipsilesional M1, in two separate visits, with a washout period of five to seven days between the two visits. A battery of TMS-EMG and TMS-EEG measurements were taken before and immediately after stimulation during the visit. Compared with sham stimulation, iTBS was effective in enhancing the amplitude of ipsilesional MEPs (p = 0.015) and P30 of TMS-evoked potentials located at the ipsilesional M1 (p = 0.037). However, iTBS did not show superior effects on ipsilesional intracortical facilitation, cortical silent period, or short-interval intracortical inhibition. Regarding the effects on TMS-related oscillations, and neural connectivity, comparisons of iTBS and sham did not yield any significant differences. iTBS facilitates intracortical excitability in patients with chronic stroke, but it does not show modulatory effects in intracortical inhibition.
Collapse
|
6
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
7
|
Caulino-Rocha A, Rodrigues NC, Ribeiro JA, Cunha-Reis D. Endogenous VIP VPAC 1 Receptor Activation Modulates Hippocampal Theta Burst Induced LTP: Transduction Pathways and GABAergic Mechanisms. BIOLOGY 2022; 11:biology11050627. [PMID: 35625355 PMCID: PMC9138116 DOI: 10.3390/biology11050627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Regulation of synaptic plasticity through control of disinhibition is an important process in the prevention of excessive plasticity in both physiological and pathological conditions. Interneuron-selective interneurons, such as the ones expressing VIP in the hippocampus, may play a crucial role in this process. In this paper we showed that endogenous activation of VPAC1—not VPAC2 receptors—exerts an inhibitory control of long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in the hippocampus, through a mechanism dependent on GABAergic transmission. This suggests that VPAC1-mediated modulation of synaptic transmission at GABAergic synapses to interneurons will ultimately influence NMDA-dependent LTP expression by modulating inhibitory control of pyramidal cell dendrites and postsynaptic depolarization during LTP induction. Accordingly, the transduction pathways mostly involved in this effect were the ones involved in TBS-induced LTP expression like NMDA receptor activation and CaMKII activity. In addition, the actions of endogenous VIP through VPAC1 receptors may indirectly influence the control of dendritic excitability by Kv4.2 channels. Abstract Vasoactive intestinal peptide (VIP), acting on both VPAC1 and VPAC2 receptors, is a key modulator of hippocampal synaptic transmission, pyramidal cell excitability and long-term depression (LTD), exerting its effects partly through modulation GABAergic disinhibitory circuits. Yet, the role of endogenous VIP and its receptors in modulation of hippocampal LTP and the involvement of disinhibition in this modulation have scarcely been investigated. We studied the modulation of CA1 LTP induced by TBS via endogenous VIP release in hippocampal slices from young-adult Wistar rats using selective VPAC1 and VPAC2 receptor antagonists, evaluating its consequence for the phosphorylation of CamKII, GluA1 AMPA receptor subunits and Kv4.2 potassium channels in total hippocampal membranes obtained from TBS stimulated slices. Endogenous VIP, acting on VPAC1 (but not VPAC2) receptors, inhibited CA1 hippocampal LTP induced by TBS in young adult Wistar rats and this effect was dependent on GABAergic transmission and relied on the integrity of NMDA and CaMKII-dependent LTP expression mechanisms but not on PKA and PKC activity. Furthermore, it regulated the autophosphorylation of CaMKII and the expression and Ser438 phosphorylation of Kv4.2 potassium channels responsible for the A-current while inhibiting phosphorylation of Kv4.2 on Thr607. Altogether, this suggests that endogenous VIP controls the expression of hippocampal CA1 LTP by regulating disinhibition through activation of VPAC1 receptors in interneurons. This may impact the autophosphorylation of CaMKII during LTP, as well as the expression and phosphorylation of Kv4.2 K+ channels at hippocampal pyramidal cell dendrites.
Collapse
Affiliation(s)
- Ana Caulino-Rocha
- Departamento de Química e Bioquímica Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Nádia Carolina Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
| | - Joaquim Alexandre Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Cunha-Reis
- Departamento de Química e Bioquímica Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
- Correspondence:
| |
Collapse
|
8
|
Le AA, Lauterborn JC, Jia Y, Wang W, Cox CD, Gall CM, Lynch G. Prepubescent female rodents have enhanced hippocampal LTP and learning relative to males, reversing in adulthood as inhibition increases. Nat Neurosci 2022; 25:180-190. [PMID: 35087246 PMCID: PMC8876130 DOI: 10.1038/s41593-021-01001-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023]
Abstract
Multiple studies indicate that adult male rodents perform better than females on spatial problems and have a lower threshold for long-term potentiation (LTP) of hippocampal CA3-to-CA1 synapses. We report here that, in rodents, prepubescent females rapidly encode spatial information and express low-threshold LTP, whereas age-matched males do not. The loss of low-threshold LTP across female puberty was associated with three inter-related changes: increased densities of α5 subunit-containing GABAARs at inhibitory synapses, greater shunting of burst responses used to induce LTP and a reduction of NMDAR-mediated synaptic responses. A negative allosteric modulator of α5-GABAARs increased burst responses to a greater degree in adult than in juvenile females and markedly enhanced both LTP and spatial memory in adults. The reasons for the gain of functions with male puberty do not involve these mechanisms. In all, puberty has opposite consequences for plasticity in the two sexes, albeit through different routes.
Collapse
Affiliation(s)
- Aliza A Le
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Weisheng Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Le AA, Quintanilla J, Amani M, Piomelli D, Lynch G, Gall CM. Persistent sexually dimorphic effects of adolescent THC exposure on hippocampal synaptic plasticity and episodic memory in rodents. Neurobiol Dis 2022; 162:105565. [PMID: 34838664 DOI: 10.1016/j.nbd.2021.105565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
There is evidence that cannabis use during adolescence leads to memory and cognitive problems in young adulthood but little is known about effects of early life cannabis exposure on synaptic operations that are critical for encoding and organizing information. We report here that a 14-day course of daily Δ9-tetrahydrocannabinol treatments administered to adolescent rats and mice (aTHC) leads to profound but selective deficits in synaptic plasticity in two axonal systems in female, and to lesser extent male, hippocampus as assessed in adulthood. Adolescent-THC exposure did not alter basic synaptic transmission (input/output curves) and had only modest effects on frequency facilitation. Nevertheless, aTHC severely impaired the endocannabinoid-dependent long-term potentiation in the lateral perforant path in females of both species, and in male mice; this was reliably associated with impaired acquisition of a component of episodic memory that depends on lateral perforant path function. Potentiation in the Schaffer-commissural (S-C) projection to field CA1 was disrupted by aTHC treatment in females only and this was associated with both a deficit in estrogen effects on S-C synaptic responses and impairments to CA1-dependent spatial (object location) memory. In all the results demonstrate sexually dimorphic and projection system-specific effects of aTHC exposure that could underlie discrete effects of early life cannabinoid usage on adult cognitive function. Moreover they suggest that some of the enduring, sexually dimorphic effects of cannabis use reflect changes in synaptic estrogen action.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Julian Quintanilla
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Mohammad Amani
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Daniele Piomelli
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Gary Lynch
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Psychiatry & Human Behavior, University of California, Irvine, CA 92868, United States of America.
| | - Christine M Gall
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Neurobiology & Behavior, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
10
|
Collingridge GL, Abraham WC. Glutamate receptors and synaptic plasticity: The impact of Evans and Watkins. Neuropharmacology 2021; 206:108922. [PMID: 34919905 DOI: 10.1016/j.neuropharm.2021.108922] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
On the occasion of the 40 year anniversary of the hugely impactful review by Richard (Dick) Evans and Jeff Watkins, we describe how their work has impacted the field of synaptic plasticity. We describe their influence in each of the major glutamate receptor subtypes: AMPARs, NMDARs, KARs and mGluRs. Particular emphasis is placed on how their work impacted our own studies in the hippocampus. For example, we describe how the tools and regulators that they identified for studying NMDARs (e.g., NMDA, D-AP5 and Mg2+) led to the understanding of the molecular basis of the induction of LTP. We also describe how other tools that they introduced (e.g., (1S,3R)-ACPD and MCPG) helped lead to the concept of metaplasticity.
Collapse
Affiliation(s)
- G L Collingridge
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, New Zealand; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; TANZ Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | - W C Abraham
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, New Zealand
| |
Collapse
|
11
|
Frye HE, Izumi Y, Harris AN, Williams SB, Trousdale CR, Sun MY, Sauerbeck AD, Kummer TT, Mennerick S, Zorumski CF, Nelson EC, Dougherty JD, Morón JA. Sex Differences in the Role of CNIH3 on Spatial Memory and Synaptic Plasticity. Biol Psychiatry 2021; 90:766-780. [PMID: 34548146 PMCID: PMC8571071 DOI: 10.1016/j.biopsych.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND CNIH3 is an AMPA receptor (AMPAR) auxiliary protein prominently expressed in the dorsal hippocampus (dHPC), a region that plays a critical role in spatial memory and synaptic plasticity. However, the effects of CNIH3 on AMPAR-dependent synaptic function and behavior have not been investigated. METHODS We assessed a gain-of-function model of Cnih3 overexpression in the dHPC and generated and characterized a line of Cnih3-/- C57BL/6 mice. We assessed spatial memory through behavioral assays, protein levels of AMPAR subunits and synaptic proteins by immunoblotting, and long-term potentiation in electrophysiological recordings. We also utilized a super-resolution imaging workflow, SEQUIN (Synaptic Evaluation and Quantification by Imaging of Nanostructure), for analysis of nanoscale synaptic connectivity in the dHPC. RESULTS Overexpression of Cnih3 in the dHPC improved short-term spatial memory in female mice but not in male mice. Cnih3-/- female mice exhibited weakened short-term spatial memory, reduced dHPC synapse density, enhanced expression of calcium-impermeable AMPAR (GluA2-containing) subunits in synaptosomes, and attenuated long-term potentiation maintenance compared with Cnih3+/+ control mice; Cnih3-/- males were unaffected. Further investigation revealed that deficiencies in spatial memory and changes in AMPAR composition and synaptic plasticity were most pronounced during the metestrus phase of the estrous cycle in female Cnih3-/- mice. CONCLUSIONS This study identified a novel effect of sex and estrous on CNIH3's role in spatial memory and synaptic plasticity. Manipulation of CNIH3 unmasked sexually dimorphic effects on spatial memory, synaptic function, AMPAR composition, and hippocampal plasticity. These findings reinforce the importance of considering sex as a biological variable in studies of memory and hippocampal synaptic function.
Collapse
Affiliation(s)
- Hannah E Frye
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri; Program in Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Alexis N Harris
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Sidney B Williams
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher R Trousdale
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri
| | - Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew D Sauerbeck
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Terrance T Kummer
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Jose A Morón
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
12
|
Rodrigues NC, Silva-Cruz A, Caulino-Rocha A, Bento-Oliveira A, Alexandre Ribeiro J, Cunha-Reis D. Hippocampal CA1 theta burst-induced LTP from weaning to adulthood: Cellular and molecular mechanisms in young male rats revisited. Eur J Neurosci 2021; 54:5272-5292. [PMID: 34251729 DOI: 10.1111/ejn.15390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023]
Abstract
Long-term potentiation (LTP) is a highly studied cellular process, yet determining the transduction and gamma aminobutyric acid (GABAergic) pathways that are the essential versus modulatory for LTP elicited by theta burst stimulation (TBS) in the hippocampal Cornu Ammonis 1 (CA1) area is still elusive, due to the use of different TBS intensities, patterns or different rodent/cellular models. We now characterised the developmental maturation and the transduction and GABAergic pathways required for mild TBS-induced LTP in hippocampal CA1 area in male rats. LTP induced by TBS (5x4) (five bursts of four pulses delivered at 100 Hz) lasted for up to 3 h and was increasingly larger from weaning to adulthood. Stronger TBS patterns - TBS (15x4) or three TBS (15x4) separated by 6 min induced nearly maximal LTP not being the best choice to study the value of LTP-enhancing drugs. LTP induced by TBS (5x4) in young adults was fully dependent on N-methyl D-aspartate (NMDA) receptor and calmodulin-dependent protein kinase II (CaMKII) activity but independent of protein kinase A (PKA) or protein kinase C (PKC) activity. Furthermore, it was partially dependent on GABAB receptor activation and was potentiated by GABAA receptor blockade and less by GAT-1 transporter blockade. AMPA GluA1 phosphorylation on Ser831 (CaMKII target) but not GluA1 Ser845 (PKA target) was essential for LTP expression. The phosphorylation of the Kv4.2 channel was observed at Ser438 (CaMKII target) but not at Thr602 or Thr607 (ERK/MAPK pathway target). This suggests that cellular kinases like PKA, PKC, or kinases of the ERK/MAPK family although important modulators of TBS (5x4)-induced LTP may not be essential for its expression in the CA1 area of the hippocampus.
Collapse
Affiliation(s)
| | - Armando Silva-Cruz
- Instituto de Medicina Molecular, Unidade de Neurociências, Lisbon, Portugal
| | - Ana Caulino-Rocha
- Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Bento-Oliveira
- Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim Alexandre Ribeiro
- Instituto de Medicina Molecular, Unidade de Neurociências, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Cunha-Reis
- Instituto de Medicina Molecular, Unidade de Neurociências, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Enhanced LTP of population spikes in the dentate gyrus of mice haploinsufficient for neurobeachin. Sci Rep 2020; 10:16058. [PMID: 32994505 PMCID: PMC7524738 DOI: 10.1038/s41598-020-72925-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Deletion of the autism candidate molecule neurobeachin (Nbea), a large PH-BEACH-domain containing neuronal protein, has been shown to affect synaptic function by interfering with neurotransmitter receptor targeting and dendritic spine formation. Previous analysis of mice lacking one allele of the Nbea gene identified impaired spatial learning and memory in addition to altered autism-related behaviours. However, no functional data from living heterozygous Nbea mice (Nbea+/−) are available to corroborate the behavioural phenotype. Here, we explored the consequences of Nbea haploinsufficiency on excitation/inhibition balance and synaptic plasticity in the intact hippocampal dentate gyrus of Nbea+/− animals in vivo by electrophysiological recordings. Based on field potential recordings, we show that Nbea+/− mice display enhanced LTP of the granule cell population spike, but no differences in basal synaptic transmission, synapse numbers, short-term plasticity, or network inhibition. These data indicate that Nbea haploinsufficiency causes remarkably specific alterations to granule cell excitability in vivo, which may contribute to the behavioural abnormalities in Nbea+/− mice and to related symptoms in patients.
Collapse
|
14
|
The Relationship Between Glutamate Dynamics and Activity-Dependent Synaptic Plasticity. J Neurosci 2020; 40:2793-2807. [PMID: 32102922 DOI: 10.1523/jneurosci.1655-19.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The spatiotemporal dynamics of excitatory neurotransmission must be tightly regulated to achieve efficient synaptic communication. By limiting spillover, glutamate transporters are believed to prevent excessive activation of extrasynaptically located receptors that can impair synaptic plasticity. While glutamate transporter expression is reduced in numerous neurodegenerative diseases, the contributions of transporter dysfunction to disease pathophysiology remain ambiguous as the fundamental relationship between glutamate dynamics and plasticity, and the mechanisms linking these two phenomena, remain poorly understood. Here, we combined electrophysiology and real-time high-speed imaging of extracellular glutamate transients during LTP induction and characterized the sensitivity of the relationship between glutamate dynamics during theta burst stimulation (TBS) and the resulting magnitude of LTP consolidation, both in control conditions and following selective and nonselective glutamate transporter blockade. Glutamate clearance times were negatively correlated with LTP magnitude following nonselective glutamate transporter inhibition but not following selective blockade of a majority of GLT-1, the brain's most abundant glutamate transporter. Although glutamate transporter inhibition reduced the postsynaptic population response to TBS, calcium responses to TBS were greatly exaggerated. The source of excess calcium was dependent on NMDARs, L-type VGCCs, GluA2-lacking AMPARs, and internal calcium stores. Surprisingly, inhibition of L-type VGCCs, but not GluA2-lacking AMPARs or ryanodine receptors, was required to restore robust LTP. In all, these data provide a detailed understanding of the relationship between glutamate dynamics and plasticity and uncover important mechanisms by which poor glutamate uptake can negatively impact LTP consolidation.SIGNIFICANCE STATEMENT Specific patterns of neural activity can promote long-term changes in the strength of synaptic connections through a phenomenon known as synaptic plasticity. Synaptic plasticity is well accepted to represent the cellular mechanisms underlying learning and memory, and many forms of plasticity are initiated by the excitatory neurotransmitter glutamate. While essential for rapid cellular communication in the brain, excessive levels of extracellular glutamate can negatively impact brain function. In this study, we demonstrate that pharmacological manipulations that increase the availability of extracellular glutamate during neural activity can have profoundly negative consequences on synaptic plasticity. We identify mechanisms through which excess glutamate can negatively influence synaptic plasticity, and we discuss the relevance of these findings to neurodegenerative diseases and in the aging brain.
Collapse
|
15
|
Wallach J, Colestock T, Agramunt J, Claydon MDB, Dybek M, Filemban N, Chatha M, Halberstadt AL, Brandt SD, Lodge D, Bortolotto ZA, Adejare A. Pharmacological characterizations of the 'legal high' fluorolintane and isomers. Eur J Pharmacol 2019; 857:172427. [PMID: 31152702 DOI: 10.1016/j.ejphar.2019.172427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022]
Abstract
1,2-Diarylethylamines represent a class of molecules that have shown potential in the treatment of pain, epilepsy, neurodegenerative disease and depression. Examples include lefetamine, remacemide, and lanicemine. Recently, several 1,2-diarylethylamines including the dissociatives diphenidine, methoxphenidine and ephenidine as well as the opioid MT-45, have appeared as 'research chemicals' or 'legal highs'. Due to their recent emergence little is known about their pharmacology. One of these, 1-[1-(2-fluorophenyl)-2-phenylethyl]pyrrolidine (fluorolintane, 2-F-DPPy), is available for purchase with purported dissociative effects intended to resemble phencyclidine (PCP) and ketamine. To better understand this emerging class, pharmacological investigations were undertaken for the first time on fluorolintane and its five aryl-fluorine-substituted isomers. In vitro binding studies revealed high affinity for N-methyl-D-aspartate (NMDA) receptors with fluorolintane (Ki = 87.92 nM) with lesser affinities for related compounds. Additional affinities were seen for all compounds at several sites including norepinephrine (NET), serotonin (SERT) and dopamine (DAT) transporters, and sigma receptors. Notably high affinities at DAT were observed, which were in most cases greater than NMDA receptor affinities. Additional functional and behavioral experiments show fluorolintane inhibited NMDA receptor-induced field excitatory postsynaptic potentials in rat hippocampal slices and inhibited long-term potentiation induced by theta-burst stimulation in rat hippocampal slices with potencies consistent with its NMDA receptor antagonism. Finally fluorolintane inhibited prepulse inhibition in rats, a measure of sensorimotor gating, with a median effective dose (ED50) of 13.3 mg/kg. These findings are consistent with anecdotal reports of dissociative effects of fluorolintane in humans.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA; Substance Use Disorders Institute, University of the Sciences, Philadelphia, PA, USA.
| | - Tristan Colestock
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Julià Agramunt
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Matt D B Claydon
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Michael Dybek
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, USA
| | - Nadine Filemban
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Muhammad Chatha
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - David Lodge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA; Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
16
|
Di Lorenzo F, Motta C, Bonnì S, Mercuri NB, Caltagirone C, Martorana A, Koch G. LTP-like cortical plasticity is associated with verbal memory impairment in Alzheimer's disease patients. Brain Stimul 2019; 12:148-151. [DOI: 10.1016/j.brs.2018.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 11/24/2022] Open
|
17
|
Lodge D, Watkins JC, Bortolotto ZA, Jane DE, Volianskis A. The 1980s: D-AP5, LTP and a Decade of NMDA Receptor Discoveries. Neurochem Res 2018; 44:516-530. [PMID: 30284673 PMCID: PMC6420420 DOI: 10.1007/s11064-018-2640-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/02/2023]
Abstract
In the 1960s and 70s, biochemical and pharmacological evidence was pointing toward glutamate as a synaptic transmitter at a number of distinct receptor classes, known as NMDA and non-NMDA receptors. The field, however, lacked a potent and highly selective antagonist to block these putative postsynaptic receptors. So, the discoveries in the early 1980s of d-AP5 as a selective NMDA receptor antagonist and of its ability to block synaptic events and plasticity were a major breakthrough leading to an explosion of knowledge about this receptor subtype. During the next 10 years, the role of NMDA receptors was established in synaptic transmission, long-term potentiation, learning and memory, epilepsy, pain, among others. Hints at pharmacological heterogeneity among NMDA receptors were followed by the cloning of separate subunits. The purpose of this review is to recognize the important contributions made in the 1980s by Graham L. Collingridge and other key scientists to the advances in our understanding of the functions of NMDA receptors throughout the central nervous system.
Collapse
Affiliation(s)
- D Lodge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - J C Watkins
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Z A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - A Volianskis
- School of Clinical Sciences, University of Bristol, Bristol, UK.
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
18
|
Neonatal exposure to sevoflurane caused cognitive deficits by dysregulating SK2 channels and GluA2-lacking AMPA receptors in juvenile rat hippocampus. Neuropharmacology 2018; 141:66-75. [DOI: 10.1016/j.neuropharm.2018.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022]
|
19
|
Mizrak E, Kim K, Roberts B, Ragland DJ, Carter C, Ranganath C. Impact of oscillatory tDCS targeting left prefrontal cortex on source memory retrieval. Cogn Neurosci 2018; 9:194-207. [DOI: 10.1080/17588928.2018.1512480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Eda Mizrak
- Department of Psychology, University of California at Davis, Davis, CA, USA
| | - Kamin Kim
- Department of Psychology, University of California at Davis, Davis, CA, USA
| | - Brooke Roberts
- Department of Psychology, University of California at Davis, Davis, CA, USA
| | | | - Cameron Carter
- Department of Psychology, University of California at Davis, Davis, CA, USA
- Center for Neuroscience, University of California at Davis, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Charan Ranganath
- Department of Psychology, University of California at Davis, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| |
Collapse
|
20
|
Shikanai H, Oshima N, Kawashima H, Kimura SI, Hiraide S, Togashi H, Iizuka K, Ohkura K, Izumi T. N-methyl-d-aspartate receptor dysfunction in the prefrontal cortex of stroke-prone spontaneously hypertensive rat/Ezo as a rat model of attention deficit/hyperactivity disorder. Neuropsychopharmacol Rep 2018; 38:61-66. [PMID: 30106260 PMCID: PMC7292284 DOI: 10.1002/npr2.12007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 11/07/2022] Open
Abstract
AIM We previously reported that stroke-prone spontaneously hypertensive rat/Ezo (SHRSP/Ezo) has high validity as an attention deficit/hyperactivity disorder (AD/HD) animal model, based on its behavioral phenotypes, such as inattention, hyperactivity, and impulsivity. Fronto-cortical dysfunction is implicated in the pathogenesis of AD/HD. In this study, we investigated prefrontal cortex (PFC) function in SHRSP/Ezo rats by electrophysiological methods and radioreceptor assay. METHODS We recorded excitatory postsynaptic potential in layer V pyramidal neurons in the PFC by intracellular recording method to assess synaptic plasticity in the form of long-term potentiation (LTP). We also performed N-methyl-d-aspartate acid (NMDA) receptor binding assay in the PFC and hippocampus using radiolabeled NMDA receptor antagonist [3 H]MK-801. RESULTS Theta-burst stimulation induced LTP in the PFC of genetic control, WKY/Ezo, whereas failed to induce LTP in that of SHRSP/Ezo. The Kd value of [3 H]MK-801 binding for NMDA receptors in the PFC of SHRSP/Ezo was higher than in the WKY/Ezo. Neither the Bmax nor Kd of [3 H]MK-801 binding in the SHRSP/Ezo hippocampus was significantly different to WKY/Ezo. CONCLUSION These results suggest that the AD/HD animal model SHRSP/Ezo has NMDA receptor dysfunction in the PFC.
Collapse
Affiliation(s)
- Hiroki Shikanai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Nobuhiro Oshima
- Department of Biophysical Sciences, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Hidekazu Kawashima
- Department of Biophysical Sciences, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Shin-Ichi Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Sachiko Hiraide
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Hiroko Togashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Kenji Iizuka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Kazue Ohkura
- Department of Biophysical Sciences, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Takeshi Izumi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| |
Collapse
|
21
|
Sanders PJ, Thompson B, Corballis PM, Maslin M, Searchfield GD. A review of plasticity induced by auditory and visual tetanic stimulation in humans. Eur J Neurosci 2018; 48:2084-2097. [PMID: 30025183 DOI: 10.1111/ejn.14080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/10/2018] [Accepted: 07/04/2018] [Indexed: 12/01/2022]
Abstract
Long-term potentiation is a form of synaptic plasticity thought to play an important role in learning and memory. Recently noninvasive methods have been developed to induce and measure activity similar to long-term potentiation in humans. Sensory tetani (trains of quickly repeating auditory or visual stimuli) alter the electroencephalogram in a manner similar to electrical stimulation that results in long-term potentiation. This review briefly covers the development of long-term potentiation research before focusing on in vivo human studies that produce long-term potentiation-like effects using auditory and visual stimulation. Similarities and differences between traditional (animal and brain tissue) long-term potentiation studies and human sensory tetanization studies will be discussed, as well as implications for perceptual learning. Although evidence for functional consequences of sensory tetanization remains scarce, studies involving clinical populations indicate that sensory induced plasticity paradigms may be developed into diagnostic and research tools in clinical settings. Individual differences in the effects of sensory tetanization are not well-understood and provide an interesting avenue for future research. Differences in effects found between research groups that have emerged as the field has progressed are also yet to be resolved.
Collapse
Affiliation(s)
- Philip J Sanders
- Section of Audiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Auckland, New Zealand
| | - Benjamin Thompson
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,School of Optometry & Vision Science, University of Auckland, Auckland, New Zealand.,School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Paul M Corballis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Psychology, University of Auckland, Auckland, New Zealand
| | | | - Grant D Searchfield
- Section of Audiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Auckland, New Zealand
| |
Collapse
|
22
|
Fried PJ, Schilberg L, Brem AK, Saxena S, Wong B, Cypess AM, Horton ES, Pascual-Leone A. Humans with Type-2 Diabetes Show Abnormal Long-Term Potentiation-Like Cortical Plasticity Associated with Verbal Learning Deficits. J Alzheimers Dis 2018; 55:89-100. [PMID: 27636847 DOI: 10.3233/jad-160505] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Type-2 diabetes mellitus (T2DM) accelerates cognitive aging and increases risk of Alzheimer's disease. Rodent models of T2DM show altered synaptic plasticity associated with reduced learning and memory. Humans with T2DM also show cognitive deficits, including reduced learning and memory, but the relationship of these impairments to the efficacy of neuroplastic mechanisms has never been assessed. OBJECTIVE Our primary objective was to compare mechanisms of cortical plasticity in humans with and without T2DM. Our secondary objective was to relate plasticity measures to standard measures of cognition. METHODS A prospective cross-sectional cohort study was conducted on 21 adults with T2DM and 15 demographically-similar non-diabetic controls. Long-term potentiation-like plasticity was assessed in primary motor cortex by comparing the amplitude of motor evoked potentials (MEPs) from single-pulse transcranial magnetic stimulation before and after intermittent theta-burst stimulation (iTBS). Plasticity measures were compared between groups and related to neuropsychological scores. RESULTS In T2DM, iTBS-induced modulation of MEPs was significantly less than controls, even after controlling for potential confounds. Furthermore, in T2DM, modulation of MEPs 10-min post-iTBS was significantly correlated with Rey Auditory Verbal Learning Task (RAVLT) performance. CONCLUSION Humans with T2DM show abnormal cortico-motor plasticity that is correlated with reduced verbal learning. Since iTBS after-effects and the RAVLT are both NMDA receptor-dependent measures, their relationship in T2DM may reflect brain-wide alterations in the efficacy of NMDA receptors. These findings offer novel mechanistic insights into the brain consequences of T2DM and provide a reliable means to monitor brain health and evaluate the efficacy of clinical interventions.
Collapse
Affiliation(s)
- Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lukas Schilberg
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna-Katharine Brem
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sadhvi Saxena
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Bonnie Wong
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Frontotemporal Dementia Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.,Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Edward S Horton
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Shu G, Kramár EA, López AJ, Huynh G, Wood MA, Kwapis JL. Deleting HDAC3 rescues long-term memory impairments induced by disruption of the neuron-specific chromatin remodeling subunit BAF53b. ACTA ACUST UNITED AC 2018; 25:109-114. [PMID: 29449454 PMCID: PMC5817283 DOI: 10.1101/lm.046920.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
Multiple epigenetic mechanisms, including histone acetylation and nucleosome remodeling, are known to be involved in long-term memory formation. Enhancing histone acetylation by deleting histone deacetylases, like HDAC3, typically enhances long-term memory formation. In contrast, disrupting nucleosome remodeling by blocking the neuron-specific chromatin remodeling subunit BAF53b impairs long-term memory. Here, we show that deleting HDAC3 can ameliorate the impairments in both long-term memory and synaptic plasticity caused by BAF53b mutation. This suggests a dynamic interplay exists between histone acetylation/deacetylation and nucleosome remodeling mechanisms in the regulation of memory formation.
Collapse
Affiliation(s)
- Guanhua Shu
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Alberto J López
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Grace Huynh
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Janine L Kwapis
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| |
Collapse
|
24
|
Martinez LA, Tejada-Simon MV. Pharmacological Rescue of Hippocampal Fear Learning Deficits in Fragile X Syndrome. Mol Neurobiol 2017; 55:5951-5961. [DOI: 10.1007/s12035-017-0819-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
|
25
|
Senter RK, Ghoshal A, Walker AG, Xiang Z, Niswender CM, Conn PJ. The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies. Curr Neuropharmacol 2017; 14:455-73. [PMID: 27296640 PMCID: PMC4983746 DOI: 10.2174/1570159x13666150421003225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SCCA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - P Jeffrey Conn
- Department of Pharmacology, Faculty of Vanderbilt University Medical Center, 1205 Light Hall, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Kouvaros S, Papatheodoropoulos C. Theta burst stimulation-induced LTP: Differences and similarities between the dorsal and ventral CA1 hippocampal synapses. Hippocampus 2016; 26:1542-1559. [DOI: 10.1002/hipo.22655] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Stylianos Kouvaros
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| | - Costas Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| |
Collapse
|
27
|
Borralleras C, Mato S, Amédée T, Matute C, Mulle C, Pérez-Jurado LA, Campuzano V. Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome. Mol Brain 2016; 9:76. [PMID: 27485321 PMCID: PMC4971717 DOI: 10.1186/s13041-016-0258-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023] Open
Abstract
Mice heterozygous for a complete deletion (CD) equivalent to the most common deletion found in individuals with Williams-Beuren syndrome (WBS) recapitulate relevant features of the neurocognitive phenotype, such as hypersociability, along with some neuroanatomical alterations in specific brain areas. However, the pathophysiological mechanisms underlying these phenotypes still remain largely unknown. We have studied the synaptic function and cognition in CD mice using hippocampal slices and a behavioral test sensitive to hippocampal function. We have found that long-term potentiation (LTP) elicited by theta burst stimulation (TBS) was significantly impaired in hippocampal field CA1 of CD animals. This deficit might be associated with the observed alterations in spatial working memory. However, we did not detect changes in presynaptic function, LTP induction mechanisms or AMPA and NMDA receptor function. Reduced levels of Brain-derived neurotrophic factor (BDNF) were present in the CA1-CA3 hippocampal region of CD mice, which could account for LTP deficits in these mice. Taken together, these results suggest a defect of CA1 synapses in CD mice to sustain synaptic strength after stimulation. These data represent the first description of synaptic functional deficits in CD mice and further highlights the utility of the CD model to study the mechanisms underlying the WBS neurocognitive profile.
Collapse
Affiliation(s)
- Cristina Borralleras
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Susana Mato
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Thierry Amédée
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Carlos Matute
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Luis A Pérez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Victoria Campuzano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. .,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
28
|
Zarif H, Petit-Paitel A, Heurteaux C, Chabry J, Guyon A. TRH modulates glutamatergic synaptic inputs on CA1 neurons of the mouse hippocampus in a biphasic manner. Neuropharmacology 2016; 110:69-81. [PMID: 27060411 DOI: 10.1016/j.neuropharm.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
Abstract
Thyrotropin Releasing Hormone (TRH) is a tripeptide that induces the release of Thyroid Stimulating Hormone (TSH) in the blood. Besides its role in the thyroid system, TRH has been shown to regulate several neuronal systems in the brain however its role in hippocampus remains controversial. Using electrophysiological recordings in acute mouse brain slices, we show that TRH depresses glutamate responses at the CA3-CA1 synapse through an action on NMDA receptors, which, as a consequence, decreases the ability of the synapse to establish a long term potentiation (LTP). TRH also induces a late increase in AMPA/kainate responses. Together, these results suggest that TRH plays an important role in the modulation of hippocampal neuronal activities, and they contribute to a better understanding of the mechanisms by which TRH impacts synaptic function underlying emotional states, learning and memory processes.
Collapse
Affiliation(s)
- Hadi Zarif
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Agnès Petit-Paitel
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Joëlle Chabry
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France.
| |
Collapse
|
29
|
Abstract
This review covers the spatial and temporal rules governing induction of hippocampal long-term potentiation (LTP) by theta-burst stimulation. Induction of LTP in field CA1 by high frequency stimulation bursts that resemble the burst discharges (complex-spikes) of hippocampal pyramidal neurons involves a multiple-step mechanism. A single burst is insufficient for LTP induction because it evokes both excitatory and inhibitory currents that partially cancel and limit postsynaptic depolarization. Bursts repeated at the frequency (~5 Hz) of the endogenous theta rhythm induce maximal LTP, primarily because this frequency disables feed-forward inhibition and allows sufficient postsynaptic depolarization to activate voltage-sensitive NMDA receptors. The disinhibitory process, referred to as "priming", involves presynaptic GABA autoreceptors that inhibit GABA release. Activation of NMDA receptors allows a calcium flux into dendritic spines that serves as the proximal trigger for LTP. We include new data showing that theta-burst stimulation is more efficient than other forms of stimulation for LTP induction. In addition, we demonstrate that associative interactions between synapses activated during theta-bursts are limited to major dendritic domains since such interactions occur within apical or basal dendritic trees but not between them. We review evidence that recordings of electrophysiological responses during theta burst stimulation can help to determine if experimental manipulations that affect LTP do so by affecting events antecedent to the induction process, such as NMDA receptor activation, or downstream signaling cascades that result from postsynaptic calcium fluxes. Finally, we argue that theta-burst LTP represents a minimal model for stable, non-decremental LTP that is more sensitive to a variety of experimental manipulations than is LTP induced by other stimulation paradigms. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- John Larson
- Psychiatric Institute, Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL 60612, United States.
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, Department of Cell and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, United States
| |
Collapse
|
30
|
Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J Neurosci 2015; 35:621-33. [PMID: 25589756 DOI: 10.1523/jneurosci.2193-14.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deciphering and storing information coded in different firing patterns are important properties of neuronal networks, as they allow organisms to respond and adapt to external and internal events. Here we report that hippocampal CA1 pyramidal neurons respond to brief bursts of high-frequency stimulation (HFS) and θ burst stimulation (TBS) with long-lasting enhanced responses (long-term potentiation [LTP]), albeit by engaging different signaling pathways. TBS induces LTP through calpain-1-mediated suprachiasmatic nucleus circadian oscillatory protein degradation, ERK activation, and actin polymerization, whereas HFS requires adenosine A2 receptors, PKA, and actin polymerization. TBS- but not HFS-induced LTP is impaired in calpain-1 knock-out mice. However, TBS-induced LTP and learning impairment in knock-out mice are restored by activating the HFS pathway. Thus, different patterns of rhythmic activities trigger potentiation by activating different pathways, and cross talks between these can be used to restore LTP and learning when elements of the pathways are impaired.
Collapse
|
31
|
Cash RFH, Murakami T, Chen R, Thickbroom GW, Ziemann U. Augmenting Plasticity Induction in Human Motor Cortex by Disinhibition Stimulation. Cereb Cortex 2014; 26:58-69. [PMID: 25100853 DOI: 10.1093/cercor/bhu176] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cellular studies showed that disinhibition, evoked pharmacologically or by a suitably timed priming stimulus, can augment long-term plasticity (LTP) induction. We demonstrated previously that transcranial magnetic stimulation evokes a period of presumably GABA(B)ergic late cortical disinhibition (LCD) in human primary motor cortex (M1). Here, we hypothesized that, in keeping with cellular studies, LCD can augment LTP-like plasticity in humans. In Experiment 1, patterned repetitive TMS was applied to left M1, consisting of 6 trains (intertrain interval, 8 s) of 4 doublets (interpulse interval equal to individual peak I-wave facilitation, 1.3-1.5 ms) spaced by the individual peak LCD (interdoublet interval (IDI), 200-250 ms). This intervention (total of 48 pulses applied over ∼45 s) increased motor-evoked potential amplitude, a marker of corticospinal excitability, in a right hand muscle by 147% ± 4%. Control experiments showed that IDIs shorter or longer than LCD did not result in LTP-like plasticity. Experiment 2 indicated topographic specificity to the M1 hand region stimulated by TMS and duration of the LTP-like plasticity of 60 min. In conclusion, GABA(B)ergic LCD offers a powerful new approach for augmenting LTP-like plasticity induction in human cortex. We refer to this protocol as disinhibition stimulation (DIS).
Collapse
Affiliation(s)
- Robin F H Cash
- Australian Neuro-Muscular Research Institute and Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Australia Department of Neurology, Goethe-University of Frankfurt, Frankfurt, Germany Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Takenobu Murakami
- Department of Neurology, Goethe-University of Frankfurt, Frankfurt, Germany Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Robert Chen
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Gary W Thickbroom
- Australian Neuro-Muscular Research Institute and Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Australia
| | - Ulf Ziemann
- Department of Neurology, Goethe-University of Frankfurt, Frankfurt, Germany Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
32
|
Pilli J, Kumar SS. Potentiation of convergent synaptic inputs onto pyramidal neurons in somatosensory cortex: dependence on brain wave frequencies and NMDA receptor subunit composition. Neuroscience 2014; 272:271-85. [PMID: 24814019 DOI: 10.1016/j.neuroscience.2014.04.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 11/16/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) at layer (L)1/primary whisker motor cortex synaptic inputs are distinct from thalamic/striatal (Str) synaptic inputs onto L5 pyramidal neurons in the rat somatosensory cortex. However, the consequences of differential expression of putative GluN3A-containing triheteromeric NMDARs at L1 inputs and GluN2A-containing diheteromeric NMDARs at Str inputs on plasticity of the underlying synapses at the respective inputs remain unknown. Here we demonstrate that L1, but not Str, synapses are potentiated following delta burst stimulation (dBS). This potentiation is blocked by d-serine and/or intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) suggesting that it is subunit-specific and dependent on elevations in intracellular Ca(2+). Interestingly, ifenprodil, the GluN2B-preferring antagonist, suppresses baseline L1 responses but does not prevent induction of dBS-evoked potentiation. Unlike L1, Str synapses are maximally potentiated following theta burst stimulation (tBS) and this potentiation is blocked with BAPTA and/or the GluN2A-preferring antagonist NVP-AAM077. We show further that while dBS is both necessary and sufficient to potentiate L1 synapses, tBS is most effective in potentiating Str synapses. Our data suggest distinct potentiating paradigms for the two convergent inputs onto pyramidal neurons in the somatosensory cortex and co-dependence of synaptic potentiation on brain wave-tuned frequencies of burst stimulation and subunit composition of underlying NMDARs. A model for predicting the likelihood of enhancing synaptic efficacy is proposed based on Ca(2+) influx through these receptors and integration of EPSPs at these inputs. Together, these findings raise the possibility of input-specific enhancements of synaptic efficacy in neurons as a function of the animal's behavioral state and/or arousal in vivo.
Collapse
Affiliation(s)
- J Pilli
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - S S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States.
| |
Collapse
|
33
|
The role of the N-methyl-d-aspartate receptor in the proliferation of adult hippocampal neural stem and precursor cells. SCIENCE CHINA-LIFE SCIENCES 2014; 57:403-11. [DOI: 10.1007/s11427-014-4637-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 12/29/2022]
|
34
|
VandeVrede L, Abdelhamid R, Qin Z, Choi J, Piyankarage S, Luo J, Larson J, Bennett BM, Thatcher GRJ. An NO donor approach to neuroprotective and procognitive estrogen therapy overcomes loss of NO synthase function and potentially thrombotic risk. PLoS One 2013; 8:e70740. [PMID: 23976955 PMCID: PMC3745399 DOI: 10.1371/journal.pone.0070740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/28/2013] [Indexed: 01/16/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs) are effective therapeutics that preserve favorable actions of estrogens on bone and act as antiestrogens in breast tissue, decreasing the risk of vertebral fractures and breast cancer, but their potential in neuroprotective and procognitive therapy is limited by: 1) an increased lifetime risk of thrombotic events; and 2) an attenuated response to estrogens with age, sometimes linked to endothelial nitric oxide synthase (eNOS) dysfunction. Herein, three 3(rd) generation SERMs with similar high affinity for estrogen receptors (ERα, ERβ) were studied: desmethylarzoxifene (DMA), FDMA, and a novel NO-donating SERM (NO-DMA). Neuroprotection was studied in primary rat neurons exposed to oxygen glucose deprivation; reversal of cholinergic cognitive deficit was studied in mice in a behavioral model of memory; long term potentiation (LTP), underlying cognition, was measured in hippocampal slices from older 3×Tg Alzheimer's transgenic mice; vasodilation was measured in rat aortic strips; and anticoagulant activity was compared. Pharmacologic blockade of GPR30 and NOS; denudation of endothelium; measurement of NO; and genetic knockout of eNOS were used to probe mechanism. Comparison of the three chemical probes indicates key roles for GPR30 and eNOS in mediating therapeutic activity. Procognitive, vasodilator and anticoagulant activities of DMA were found to be eNOS dependent, while neuroprotection and restoration of LTP were both shown to be dependent upon GPR30, a G-protein coupled receptor mediating estrogenic function. Finally, the observation that an NO-SERM shows enhanced vasodilation and anticoagulant activity, while retaining the positive attributes of SERMs even in the presence of NOS dysfunction, indicates a potential therapeutic approach without the increased risk of thrombotic events.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ramy Abdelhamid
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zhihui Qin
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jaewoo Choi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sujeewa Piyankarage
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jia Luo
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - John Larson
- Department of Psychiatry, Neuropsychiatric Institute, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian M. Bennett
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
35
|
Neuroligin1 drives synaptic and behavioral maturation through intracellular interactions. J Neurosci 2013; 33:9364-84. [PMID: 23719805 DOI: 10.1523/jneurosci.4660-12.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In vitro studies suggest that the intracellular C terminus of Neuroligin1 (NL1) could play a central role in the maturation of excitatory synapses. However, it is unknown how this activity affects synapses in vivo, and whether it may impact the development of complex behaviors. To determine how NL1 influences the state of glutamatergic synapses in vivo, we compared the synaptic and behavioral phenotypes of mice overexpressing a full-length version of NL1 (NL1FL) with mice overexpressing a version missing part of the intracellular domain (NL1ΔC). We show that overexpression of full-length NL1 yielded an increase in the proportion of synapses with mature characteristics and impaired learning and flexibility. In contrast, the overexpression of NL1ΔC increased the number of excitatory postsynaptic structures and led to enhanced flexibility in mnemonic and social behaviors. Transient overexpression of NL1FL revealed that elevated levels are not necessary to maintain synaptic and behavioral states altered earlier in development. In contrast, overexpression of NL1FL in the fully mature adult was able to impair normal learning behavior after 1 month of expression. These results provide the first evidence that NL1 significantly impacts key developmental processes that permanently shape circuit function and behavior, as well as the function of fully developed neural circuits. Overall, these manipulations of NL1 function illuminate the significance of NL1 intracellular signaling in vivo, and enhance our understanding of the factors that gate the maturation of glutamatergic synapses and complex behavior. This has significant implications for our ability to address disorders such as autism spectrum disorders.
Collapse
|
36
|
Gandolfi D, Lombardo P, Mapelli J, Solinas S, D'Angelo E. θ-Frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Front Neural Circuits 2013; 7:64. [PMID: 23596398 PMCID: PMC3622075 DOI: 10.3389/fncir.2013.00064] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/20/2013] [Indexed: 11/13/2022] Open
Abstract
The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006). However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer (GRL) generates its maximum response at 5-7 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber bundle stimulation. The spatial analysis of GRL activity performed using voltage-sensitive dye (VSD) imaging revealed 5-7 Hz resonance covering large GRL areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, K slow (M-like) and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the GRL when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition, and learning.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Modena, Italy
| | | | | | | | | |
Collapse
|
37
|
Volianskis A, Bannister N, Collett VJ, Irvine MW, Monaghan DT, Fitzjohn SM, Jensen MS, Jane DE, Collingridge GL. Different NMDA receptor subtypes mediate induction of long-term potentiation and two forms of short-term potentiation at CA1 synapses in rat hippocampus in vitro. J Physiol 2013; 591:955-72. [PMID: 23230236 PMCID: PMC3591708 DOI: 10.1113/jphysiol.2012.247296] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/07/2012] [Indexed: 12/16/2022] Open
Abstract
Potentiation at synapses between CA3 and the CA1 pyramidal neurons comprises both transient and sustained phases, commonly referred to as short-term potentiation (STP or transient LTP) and long-term potentiation (LTP), respectively. Here, we utilized four subtype-selective N-methyl-d-aspartate receptor (NMDAR) antagonists to investigate whether the induction of STP and LTP is dependent on the activation of different NMDAR subtypes. We find that the induction of LTP involves the activation of NMDARs containing both the GluN2A and the GluN2B subunits. Surprisingly, however, we find that STP can be separated into two components, the major form of which involves activation of NMDARs containing both GluN2B and GluN2D subunits. These data demonstrate that synaptic potentiation at CA1 synapses is more complex than is commonly thought, an observation that has major implications for understanding the role of NMDARs in cognition.
Collapse
Affiliation(s)
- Arturas Volianskis
- MRC Centre for Synaptic Plasticity, Departments of Anatomy, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Graef JD, Wei H, Lippiello PM, Bencherif M, Fedorov N. Slice XVIvo™: A novel electrophysiology system with the capability for 16 independent brain slice recordings. J Neurosci Methods 2013; 212:228-33. [DOI: 10.1016/j.jneumeth.2012.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
|
39
|
Lynch G, Kramár EA, Babayan AH, Rumbaugh G, Gall CM. Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation. Neuropharmacology 2013; 64:27-36. [PMID: 22820276 PMCID: PMC3445784 DOI: 10.1016/j.neuropharm.2012.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 01/25/2023]
Abstract
The fundamental observation that the temporal spacing of learning episodes plays a critical role in the efficiency of memory encoding has had little effect on either research on long-term potentiation (LTP) or efforts to develop cognitive enhancers. Here we review recent findings describing a spaced trials phenomenon for LTP that appears to be related to recent evidence that plasticity thresholds differ between synapses in the adult hippocampus. Results of tests with one memory enhancing drug suggest that the compound potently facilitates LTP via effects on 'high threshold' synapses and thus alters the temporally extended timing rules. Possible implications of these results for our understanding of LTP substrates, neurobiological contributors to the distributed practice effect, and the consequences of memory enhancement are discussed. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-4260 USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
| | - Enikö A. Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
| | - Alex H. Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter FL 33458 USA
| | - Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4450 USA
| |
Collapse
|
40
|
Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem 2012; 124:109-22. [PMID: 23113835 DOI: 10.1111/jnc.12075] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/21/2012] [Accepted: 10/22/2012] [Indexed: 11/28/2022]
Abstract
Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
LTP induction translocates cortactin at distant synapses in wild-type but not Fmr1 knock-out mice. J Neurosci 2012; 32:7403-13. [PMID: 22623686 DOI: 10.1523/jneurosci.0968-12.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stabilization of long-term potentiation (LTP) depends on reorganization of the dendritic spine actin cytoskeleton. The present study tested whether this involves activity-driven effects on the actin-regulatory protein cortactin, and whether such effects are disturbed in the Fmr1 knock-out (KO) model of fragile X syndrome, in which stabilization of both actin filaments and LTP is impaired. LTP induced by theta burst stimulation (TBS) in hippocampal slices from wild-type mice was associated with rapid, broadly distributed, and NMDA receptor-dependent decreases in synapse-associated cortactin. The reduction in cortactin content was blocked by blebbistatin, while basal levels were reduced by nocodazole, indicating that cortactin's movements into and away from synapses are regulated by microtubule and actomyosin motors, respectively. These results further suggest that synapse-specific LTP influences cytoskeletal elements at distant connections. The rapid effects of TBS on synaptic cortactin content were absent in Fmr1 KOs as was evidence for activity-driven phosphorylation of the protein or its upstream kinase, ERK1/2. Phosphorylation regulates cortactin's interactions with actin, and coprecipitation of the two proteins was reduced in the KOs. We propose that, in the KOs, excessive basal phosphorylation of ERK1/2 disrupts its interactions with cortactin, thereby blocking the latter protein's use of actomyosin transport systems. These impairments are predicted to compromise the response of the subsynaptic cytoskeleton to learning-related afferent activity, both locally and at distant sites.
Collapse
|
42
|
Titterness AK, Christie BR. Prenatal ethanol exposure enhances NMDAR-dependent long-term potentiation in the adolescent female dentate gyrus. Hippocampus 2010; 22:69-81. [PMID: 21080406 DOI: 10.1002/hipo.20849] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2010] [Indexed: 11/08/2022]
Abstract
The dentate gyrus (DG) is a region of the hippocampus intimately involved with learning and memory. Prenatal exposure to either stress or ethanol can reduce long-term potentiation (LTP) in the male hippocampus but there is little information on how these prenatal events affect LTP in the adolescent female hippocampus. Previous studies suggest that deleterious effects of PNEE can, in part, be mediated by corticosterone, suggesting that prenatal stress might further enhance any alterations to LTP induced PNEE. When animals were exposed to a combination of prenatal stress and PNEE distinct sex differences emerged. Exposure to ethanol throughout gestation significantly reduced DG LTP in adolescent males but enhanced LTP in adolescent females. Combined exposure to stress and ethanol in utero reduced the ethanol-induced enhancement of LTP in females. On the other hand, exposure to stress and ethanol in utero did not alter the ethanol-induced reduction of LTP in males. These results indicate that prenatal ethanol and prenatal stress produce sex-specific alterations in synaptic plasticity in the adolescent hippocampus.
Collapse
Affiliation(s)
- Andrea K Titterness
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
43
|
Erickson MA, Maramara LA, Lisman J. A single brief burst induces GluR1-dependent associative short-term potentiation: a potential mechanism for short-term memory. J Cogn Neurosci 2010; 22:2530-40. [PMID: 19925206 DOI: 10.1162/jocn.2009.21375] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent work showed that short-term memory (STM) is selectively reduced in GluR1 knockout mice. This raises the possibility that a form of synaptic modification dependent on GluR1 might underlie STM. Studies of synaptic plasticity have shown that stimuli too weak to induce long-term potentiation induce short-term potentiation (STP), a phenomenon that has received little attention. Here we examined several properties of STP and tested the dependence of STP on GluR1. The minimal requirement for inducing STP was examined using a test pathway and a conditioning pathway. Several closely spaced stimuli in the test pathway, forming a single brief burst, were sufficient to induce STP. Thus, STP is likely to be induced by the similar bursts that occur in vivo. STP induction is associative in nature and dependent on the NMDAR. STP decays with two components, a fast component (1.6 +/- 0.26 min) and a slower one (19 +/- 6.6 min). To test the role of GluR1 in STP, experiments were conducted on GluR1 knockout mice. We found that STP was greatly reduced. These results, taken together with the behavioral work of D. Sanderson et al. [Sanderson, D., Good, M. A., Skelton, K., Sprengel, R., Seeburg, P. H., Nicholas, J., et al. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: Evidence for a dual-process memory model. Learning and Memory, 2009], provide genetic evidence that STP is a likely mechanism of STM.
Collapse
|
44
|
Tsanov M, Lyons DG, Barlow S, González Reyes RE, O’Mara SM. The psychostimulant modafinil facilitates water maze performance and augments synaptic potentiation in dentate gyrus. Neuropharmacology 2010; 59:9-19. [DOI: 10.1016/j.neuropharm.2010.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 02/16/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
45
|
Shouval HZ, Wang SSH, Wittenberg GM. Spike timing dependent plasticity: a consequence of more fundamental learning rules. Front Comput Neurosci 2010; 4. [PMID: 20725599 PMCID: PMC2922937 DOI: 10.3389/fncom.2010.00019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 06/07/2010] [Indexed: 11/13/2022] Open
Abstract
Spike timing dependent plasticity (STDP) is a phenomenon in which the precise timing of spikes affects the sign and magnitude of changes in synaptic strength. STDP is often interpreted as the comprehensive learning rule for a synapse - the "first law" of synaptic plasticity. This interpretation is made explicit in theoretical models in which the total plasticity produced by complex spike patterns results from a superposition of the effects of all spike pairs. Although such models are appealing for their simplicity, they can fail dramatically. For example, the measured single-spike learning rule between hippocampal CA3 and CA1 pyramidal neurons does not predict the existence of long-term potentiation one of the best-known forms of synaptic plasticity. Layers of complexity have been added to the basic STDP model to repair predictive failures, but they have been outstripped by experimental data. We propose an alternate first law: neural activity triggers changes in key biochemical intermediates, which act as a more direct trigger of plasticity mechanisms. One particularly successful model uses intracellular calcium as the intermediate and can account for many observed properties of bidirectional plasticity. In this formulation, STDP is not itself the basis for explaining other forms of plasticity, but is instead a consequence of changes in the biochemical intermediate, calcium. Eventually a mechanism-based framework for learning rules should include other messengers, discrete change at individual synapses, spread of plasticity among neighboring synapses, and priming of hidden processes that change a synapse's susceptibility to future change. Mechanism-based models provide a rich framework for the computational representation of synaptic plasticity.
Collapse
Affiliation(s)
- Harel Z Shouval
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | | | | |
Collapse
|
46
|
Abstract
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Collapse
|
47
|
Korwek KM, Trotter JH, Ladu MJ, Sullivan PM, Weeber EJ. ApoE isoform-dependent changes in hippocampal synaptic function. Mol Neurodegener 2009; 4:21. [PMID: 19725929 PMCID: PMC2695436 DOI: 10.1186/1750-1326-4-21] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 05/27/2009] [Indexed: 11/11/2022] Open
Abstract
The lipoprotein receptor system in the hippocampus is intimately involved in the modulation of synaptic transmission and plasticity. The association of specific apoE isoform expression with human neurodegenerative disorders has focused attention on the role of these apoE isoforms in lipoprotein receptor-dependent synaptic modulation. In the present study, we used the apoE2, apoE3 and apoE4 targeted replacement (TR) mice along with recombinant human apoE isoforms to determine the role of apoE isoforms in hippocampus area CA1 synaptic function. While synaptic transmission is unaffected by apoE isoform, long-term potentiation (LTP) is significantly enhanced in apoE4 TR mice versus apoE2 TR mice. ApoE isoform-dependent differences in LTP induction require NMDA-receptor function, and apoE isoform expression alters activation of both ERK and JNK signal transduction. Acute application of specific apoE isoforms also alters LTP induction while decreasing NMDA-receptor mediated field potentials. Furthermore, acute apoE isoform application does not have the same effects on ERK and JNK activation. These findings demonstrate specific, isoform-dependent effects of human apoE isoforms on adult hippocampus synaptic plasticity and highlight mechanistic differences between chronic apoE isoform expression and acute apoE isoform exposure.
Collapse
Affiliation(s)
- Kimberly M Korwek
- Department of Molecular Pharmacology and Physiology, Johnnie B Byrd Sr Alzheimer's Center & Research Institute, University of South Florida Tampa, Florida 33612, USA.
| | | | | | | | | |
Collapse
|
48
|
Habib D, Dringenberg HC. Alternating low frequency stimulation of medial septal and commissural fibers induces NMDA-dependent, long-lasting potentiation of hippocampal synapses in urethane-anesthetized rats. Hippocampus 2009; 19:299-307. [DOI: 10.1002/hipo.20507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Walther T, Albrecht D, Becker M, Schubert M, Kouznetsova E, Wiesner B, Maul B, Schliebs R, Grecksch G, Furkert J, Sterner-Kock A, Schultheiss HP, Becker A, Siems WE. Improved learning and memory in aged mice deficient in amyloid beta-degrading neutral endopeptidase. PLoS One 2009; 4:e4590. [PMID: 19240795 PMCID: PMC2643003 DOI: 10.1371/journal.pone.0004590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 01/17/2009] [Indexed: 12/03/2022] Open
Abstract
Background Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-β (Aβ) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. Methodology/Principal Findings We found that while endogenous Aβ concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Aβ deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Aβ degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. Conclusions/Significance Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Walther
- Department of Cardiology, Charité-University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jedlicka P, Schwarzacher SW, Winkels R, Kienzler F, Frotscher M, Bramham CR, Schultz C, Bas Orth C, Deller T. Impairment of in vivo theta-burst long-term potentiation and network excitability in the dentate gyrus of synaptopodin-deficient mice lacking the spine apparatus and the cisternal organelle. Hippocampus 2009; 19:130-40. [DOI: 10.1002/hipo.20489] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|