1
|
Wojciechowski P, Szereda-Przestaszewska M, Lipkowski AW. Cardiorespiratory activity of C-terminal pentapeptide of substance P in anaesthetized rats. Respir Physiol Neurobiol 2016; 233:7-13. [DOI: 10.1016/j.resp.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022]
|
2
|
Moyes AJ, Stanford SC, Hosford PS, Hobbs AJ, Ramage AG. Raised arterial blood pressure in neurokinin-1 receptor-deficient mice (NK1R(-/-) ): evidence for a neural rather than a vascular mechanism. Exp Physiol 2016; 101:588-98. [PMID: 26876733 DOI: 10.1113/ep085347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/11/2016] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does genetic ablation of neurokinin-1 receptors alter arterial blood pressure? What is the main finding and its importance? NK1R(-/-) mice have increased mean arterial blood pressure, but without a concomitant change in vascular reactivity. This finding suggests that neurokinin-1 receptors play a role in the neural regulation of blood pressure. Mice with functional ablation of the neurokinin-1 receptor gene, Tacr1, (NK1R(-/-) ) express behavioural abnormalities equivalent to those seen in attention deficit hyperactivity disorder (ADHD). An established model of ADHD is the spontaneously hypertensive rat, which exhibits high blood pressure owing to increased central sympathetic drive. In light of the evidence that the neurokinin-1 receptor (NK1R) also influences cardiovascular haemodynamics, we have investigated whether NK1R(-/-) mice exhibit raised blood pressure. Cardiovascular parameters were recorded for 24 h in conscious mice using radiotelemetry. Vascular function was assessed in mesenteric resistance arteries by wire myography. The NK1R(-/-) mice exhibited a higher blood pressure than wild-type animals throughout the 24 h period. Heart rate and locomotor activity in NK1R(-/-) mice were higher than in wild-type mice during the night period (active phase), consistent with an ADHD-like phenotype, but not during the day. Mesenteric and renal arteries from NK1R(-/-) mice exhibited normal vascular function; the responses to vasoconstrictors (U46619 and phenylephrine) and the endothelium-dependent vasodilator, acetylcholine, were not altered in these animals, suggesting that the NK1R does not regulate vascular tone. Analysis of heart rate variability revealed a higher low-frequency to high-frequency ratio in NK1R(-/-) mice, indicative of increased cardiac sympathetic activity. We propose that the raised blood pressure in NK1R(-/-) mice could be due to a neural mechanism rather than a change in vascular reactivity. Further studies are required to understand this mechanism and to establish whether a subgroup of ADHD patients with polymorphism of the equivalent (TACR1) gene are affected in a similar way.
Collapse
Affiliation(s)
- Amie J Moyes
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Patrick S Hosford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Adrian J Hobbs
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrew G Ramage
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
3
|
Park J, Ogunnaike B, Schwaber J, Vadigepalli R. Identifying functional gene regulatory network phenotypes underlying single cell transcriptional variability. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:87-98. [PMID: 25433230 DOI: 10.1016/j.pbiomolbio.2014.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Recent analysis of single-cell transcriptomic data has revealed a surprising organization of the transcriptional variability pervasive across individual neurons. In response to distinct combinations of synaptic input-type, a new organization of neuronal subtypes emerged based on transcriptional states that were aligned along a gradient of correlated gene expression. Individual neurons traverse across these transcriptional states in response to cellular inputs. However, the regulatory network interactions driving these changes remain unclear. Here we present a novel fuzzy logic-based approach to infer quantitative gene regulatory network models from highly variable single-cell gene expression data. Our approach involves developing an a priori regulatory network that is then trained against in vivo single-cell gene expression data in order to identify causal gene interactions and corresponding quantitative model parameters. Simulations of the inferred gene regulatory network response to experimentally observed stimuli levels mirrored the pattern and quantitative range of gene expression across individual neurons remarkably well. In addition, the network identification results revealed that distinct regulatory interactions, coupled with differences in the regulatory network stimuli, drive the variable gene expression patterns observed across the neuronal subtypes. We also identified a key difference between the neuronal subtype-specific networks with respect to negative feedback regulation, with the catecholaminergic subtype network lacking such interactions. Furthermore, by varying regulatory network stimuli over a wide range, we identified several cases in which divergent neuronal subtypes could be driven towards similar transcriptional states by distinct stimuli operating on subtype-specific regulatory networks. Based on these results, we conclude that heterogenous single-cell gene expression profiles should be interpreted through a regulatory network modeling perspective in order to separate the contributions of network interactions from those of cellular inputs.
Collapse
Affiliation(s)
- James Park
- Department of Chemical and Biochemical Engineering, University of Delaware, Newark, DE 19716, USA; Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Babatunde Ogunnaike
- Department of Chemical and Biochemical Engineering, University of Delaware, Newark, DE 19716, USA
| | - James Schwaber
- Department of Chemical and Biochemical Engineering, University of Delaware, Newark, DE 19716, USA; Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rajanikanth Vadigepalli
- Department of Chemical and Biochemical Engineering, University of Delaware, Newark, DE 19716, USA; Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
4
|
de Lartigue G. Putative roles of neuropeptides in vagal afferent signaling. Physiol Behav 2014; 136:155-69. [PMID: 24650553 DOI: 10.1016/j.physbeh.2014.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/23/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023]
Abstract
The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Dept Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Chronic intermittent hypoxia reduces neurokinin-1 (NK(1)) receptor density in small dendrites of non-catecholaminergic neurons in mouse nucleus tractus solitarius. Exp Neurol 2010; 223:634-44. [PMID: 20206166 DOI: 10.1016/j.expneurol.2010.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/18/2010] [Accepted: 02/21/2010] [Indexed: 12/16/2022]
Abstract
Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK(1)) receptors. Acute hypoxia results in internalization of NK(1) receptors, suggesting that CIH also may affect the subcellular distribution of NK(1) receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK(1) receptor and TH in the cNTS of male mice subjected to 10days or 35days of CIH or intermittent air. Electron microscopy revealed that NK(1) receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK(1) receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35days, P<0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35days, P<0.01, unpaired Student t-test) density of NK(1) immunogold particles exclusively in small (<0.1microm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK(1) receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients.
Collapse
|
6
|
Wang Y, Novotny M, Quaiserová-Mocko V, Swain GM, Wang DH. TRPV1-mediated protection against endotoxin-induced hypotension and mortality in rats. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1517-23. [PMID: 18337316 DOI: 10.1152/ajpregu.00005.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to test the hypothesis that the transient receptor potential vanilloid type 1 (TRPV1) channel, expressed primarily in sensory nerves, and substance P (SP), released by sensory nerves, play a protective role against lipopolysaccharide (LPS)-induced hypotension. LPS (10 mg/kg iv) elicited tachycardia and hypotension in anesthetized male Wistar rats, which peaked at 10 min and gradually recovered 1 h after the injection. Blockade of TRPV1 with its selective antagonist capsazepine (CAPZ, 3 mg/kg iv) impaired recovery given that the fall in mean arterial pressure (MAP) was greater 1 h after CAPZ plus LPS injections compared with LPS injection alone (45 +/- 5 vs. 25 +/- 4 mmHg, P < 0.05). Blockade of the neurokinin 1 (NK1) receptor with its selective antagonists RP-67580 (5 mg/kg iv) or L-733,060 (4 mg/kg iv) prevented recovery, considering that falls in MAP were not different 1 h after injections of NK1 antagonists plus LPS from their peak decreases (66 +/- 9 vs. 74 +/- 5 mmHg or 60 +/- 7 vs. 69 +/- 3 mmHg, respectively, P > 0.05). LPS increased plasma SP, norepinephrine (NE), and epinephrine (Epi) levels compared with vehicles, and the increases in plasma SP, NE, and Epi were significantly inhibited by CAPZ or RP-67580. The survival rate at 24 or 48 h after LPS injection (20 mg/kg ip) was lower in conscious rats pretreated with CAPZ or RP-67580 compared with rats treated with LPS alone (P < 0.05). Thus our results show that the TRPV1, possibly via triggering release of SP which activates the NK1 and stimulates the sympathetic axis, plays a protective role against endotoxin-induced hypotension and mortality, suggesting that TRPV1 receptors are essential in protecting vital organ perfusion and survival during the endotoxic condition.
Collapse
Affiliation(s)
- Youping Wang
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
7
|
Abdala APL, Schoorlemmer GHM, Colombari E. Ablation of NK1 receptor bearing neurons in the nucleus of the solitary tract blunts cardiovascular reflexes in awake rats. Brain Res 2006; 1119:165-73. [PMID: 16982039 DOI: 10.1016/j.brainres.2006.08.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 08/14/2006] [Accepted: 08/15/2006] [Indexed: 11/18/2022]
Abstract
The nucleus of the solitary tract (NTS) receives primary afferents involved in cardiovascular regulation. We investigated the role of NK(1)-receptor bearing neurons in the NTS on cardiovascular reflexes in awake rats fitted with chronic venous and arterial cannulae. These neurons were lesioned selectively with saporin conjugated with substance P (SP-SAP, 2 microM, bilateral injections of 20 nL in the subpostremal NTS, or 200 nL in both the subpostremal and the commissural NTS). Before, and 7 and 14 days after injection of SP-SAP, we measured changes in blood pressure and heart rate induced by i.v. injection of phenylephrine and nitroprusside (baroreceptor reflex), cyanide (arterial chemoreceptor reflex), and phenylbiguanide (Bezold-Jarisch reflex). The smaller injections with SP-SAP completely abolished NK1 receptor staining in the subpostremal NTS. The larger injections abolished NK1 receptor immunoreactivity in an area that extended from the commissural NTS to the rostral end of the subpostremal NTS. The lesions seemed to affect only a limited number of neurons, since neutral red stained sections did not show any obvious reduction in cell number. The smaller lesions reduced the gain of baroreflex bradycardia and the hypotension induced by phenylbiguanide. The larger lesions completely abolished the response to phenylbiguanide, blocked the baroreflex bradycardia induced by phenylephrine, severely blunted the baroreflex tachycardia, and blocked the bradycardia and reduced the hypertension induced by cyanide. Thus, these responses depend critically on NK(1)-receptor bearing neurons in the NTS.
Collapse
Affiliation(s)
- Ana Paula L Abdala
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo, SP, 04023-062, Brazil
| | | | | |
Collapse
|
8
|
Abstract
Twenty-five years ago, very little was known about chemical communication in the afferent limb of the baroreceptor reflex arc. Subsequently, considerable anatomic and functional data exist to support a role for the tachykinin, substance P (SP), as a neuromodulator or neurotransmitter in baroreceptor afferent neurons. Substance P is synthesized and released from baroreceptor afferent neurons, and excitatory SP (NK1) receptors are activated by baroreceptive input to second-order neurons. SP appears to play a role in modulating the gain of the baroreceptor reflex. However, questions remain about the specific role and significance of SP in mediating baroreceptor information to the central nervous system (CNS), the nature of its interaction with glutaminergic transmission, the relevance of colocalized agents, and complex effects that may result from mediation of non-baroreceptive signals to the CNS.
Collapse
Affiliation(s)
- Cinda J Helke
- Neuroscience Program, and Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | |
Collapse
|
9
|
Abstract
The parasubthalamic nucleus (PSTN) is a differentiation of the lateral hypothalamic area, characterized by a distinct population of neurons expressing beta-preprotachykinin (beta-PPT) mRNA. The axonal projections from the PSTN have been analyzed with the PHAL anterograde tract tracing method in rats. The results indicate that the cell group is distinguished by massive projections to parasympathetic preganglionic neurons in the brainstem (especially in the salivatory nuclei and dorsal motor nucleus of the vagus nerve) and to parts of the parabrachial nucleus and nucleus of the solitary tract that relay viscerosensory and gustatory information. In addition, the PSTN projects to cortical parts of the cerebral hemisphere (infralimbic, agranular insular, postpiriform transition and lateral entorhinal areas, and posterior basolateral amygdalar nucleus)-directly and also indirectly via thalamic feedback loops involving the paraventricular and mediodorsal nuclei-and to nuclear parts of the cerebral hemisphere (central amygdalar nucleus, striatal fundus, rhomboid nucleus of the bed nuclei of the stria terminalis, and substantia innominata). The PSTN is thus positioned to influence directly many cerebral hemisphere and hindbrain components of the central parasympathetic control network that is active, for example, during feeding behavior and cardiovascular regulation.
Collapse
Affiliation(s)
- Marina Goto
- Laboratory of Neurosciences, City University of São Paulo, São Paulo, São Paulo 03071-000, Brazil
| | | |
Collapse
|
10
|
Bailey CP, Maubach KA, Jones RSG. Neurokinin-1 receptors in the rat nucleus tractus solitarius: pre- and postsynaptic modulation of glutamate and GABA release. Neuroscience 2004; 127:467-79. [PMID: 15262336 DOI: 10.1016/j.neuroscience.2004.05.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2004] [Indexed: 11/29/2022]
Abstract
Neurokinins such as substance P and neurokinin A have long been thought to act as neurotransmitters or modulators in the nucleus tractus solitarius. However, the role and location of the receptors for these peptides have remained unclear. We examined the consequences of activation of the neurokinin-1 (NK1) receptor subtype in the rat nucleus tractus solitarius using whole-cell patch clamp recordings in brain slices. Application of delta-Ala-Phe-Phe-Pro-MeLeu-D-Pro[spiro-gamma-lactam]-Leu-Trp-NH2 (a specific NK1 agonist) or neurokinin A resulted in depolarization, evident as a slow inward current, mediated by direct postsynaptic NK1 receptor activation. The effect was conserved in the presence of tetrodotoxin, and protein kinase C-dependent since it was blocked by 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide, a specific protein kinase C inhibitor. In addition, an increase in the frequency and amplitude of spontaneous excitatory postsynaptic currents was observed, reflecting increased glutamate release induced by NK1 receptor activation. This effect was abolished by tetrodotoxin, suggesting that it resulted from increased firing in afferent neurons, subsequent to somatodendritic excitation via NK1 receptors. Furthermore, spontaneous inhibitory postsynaptic currents were increased in frequency and amplitude showing that GABA release was promoted by NK1 receptor activation. However, amplitude of miniature inhibitory postsynaptic currents was unaltered by NK1 receptor activation, but the increase in frequency persisted. These findings suggest that NK1 receptors are located on presynaptic terminals as well as at somatodendritic sites of GABAergic neurons. The increase in GABA release was also shown to be protein kinase C-dependent. The data presented here show NK1 receptors in the rat nucleus tractus solitarius are present both excitatory and inhibitory neurons. Activation of these receptors can result in increases in release of both GABA and glutamate, suggesting a crucial modulatory role for NK1 receptors in the rat nucleus tractus solitarius.
Collapse
Affiliation(s)
- C P Bailey
- Department of Physiology, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
11
|
Abdala APL, Haibara AS, Colombari E. Cardiovascular responses to substance P in the nucleus tractus solitarii: microinjection study in conscious rats. Am J Physiol Heart Circ Physiol 2003; 285:H891-8. [PMID: 12738616 DOI: 10.1152/ajpheart.00869.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiovascular effects of substance P (SP) microinjections in the nucleus tractus solitarii (NTS) were evaluated in conscious rats. We chose this model because it is an effective way to access some of the cardiovascular effects of neurotransmitters in the NTS without the inconvenience of blunting pathways with anesthetic agents or removing forebrain projections by decerebration. The cardiovascular responses to SP injections were also evaluated after chronic nodose ganglionectomy. We found that, in conscious rats, SP microinjections into the NTS induced hypertension and tachycardia. Unilateral and bilateral SP injections into the NTS caused a slow increase in blood pressure and heart rate that peaked 1.5-5 min after injection and lasted for 20-30 min. Nodose ganglionectomy increased the duration of the pressor and tachycardic effects of SP and enhanced the pressor response. These data show that SP in the NTS is involved in pressor pathways. The supersensitivity to SP seen after nodose ganglionectomy suggests that vagal afferent projections are involved in those pressor pathways activated by SP in the NTS.
Collapse
Affiliation(s)
- Ana Paula L Abdala
- Department of Physiology, Universidade Federal de São Paulo/EPM, São Paulo, SP 04023-062 Brazil
| | | | | |
Collapse
|
12
|
Brady F, Bakhle YS, Bell C. Evaluation of the involvement of nitric oxide and substance P in reducing baroreflex gain in the genetically hypertensive (GH) rat. ACTA PHYSIOLOGICA HUNGARICA 2003; 89:451-61. [PMID: 12489754 DOI: 10.1556/aphysiol.89.2002.4.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The attenuation of baroreflex gain associated with hereditary hypertension could involve abnormal signalling by nitric oxide or substance P. Baroreflex gain was measured in age-matched male genetically hypertensive (GH) and nonnotensive (N) anaesthetised rats from heart rate changes in response to i.v. phenylephrine or sodium nitroprusside. In subgroups of these animals, nitric oxide synthesis was inhibited using NG-nitro-L-arginine methyl ester (L-NAME, 30 mg x kg(-1) i.v.), substance P transmission was blocked using the antagonist SR 140333 (360 nmoles x kg(-1) i.v.) or substance P release was inhibited with resiniferatoxin (4 doses of 0.3 microg x kg(-1) i.v. at 4 min intervals). Baroreflex gain was markedly reduced in GH compared to N animals (N -0.37 +/- 0.04 beat x min(-1) x mm Hg(-1), GH -0.17 +/- 0.02 beat x min(-1) x mm Hg(-1), p < 0.0001). Inhibition of nitric oxide synthase increased baroreflex gain in each strain, but the inter-strain difference in gain persisted (post-treatment N -0.57 +/- 0.07 beat x min(-1) x mm Hg(-1), GH -0.24 +/- 0.05 beat x min(-1) x mm Hg(-1) (p < 0.001). Blockade of receptors or inhibition of substance P release did not affect gain in either strain. Nitric oxide, but not substance P, appears to play an inhibitory role in the rat arterial baroreflex. Impairment of baroreflex gain in GH rats is not secondary to altered nitric oxide signaling.
Collapse
Affiliation(s)
- Felicity Brady
- Department of Physiology, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
13
|
Freed AL, Audus KL, Lunte SM. Investigation of the metabolism of substance P at the blood-brain barrier using capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 2001; 22:3778-84. [PMID: 11699918 DOI: 10.1002/1522-2683(200109)22:17<3778::aid-elps3778>3.0.co;2-e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Substance P (SP) metabolism was investigated upon exposure to a monolayer of bovine brain microvessel endothelial cells (BBMECs), a cell culture model of the blood-brain barrier. SP was incubated with the BBMECs and its metabolism was followed as a function of time over a 5-h period. The resulting samples were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA)/cyanide, separated, and detected using cyclodextrin-modified electrokinetic chromatography with laser-induced fluorescence detection (CDMEKC-LIF). Upon exposure to the BBMEC monolayer, SP rapidly degraded to produce the N-terminal (1-9), (1-4) and (1-7) and C-terminal (2-11) and (3-11) fragments. These results were compared with those in an earlier report from our laboratory, where SP metabolism was investigated in vivo by microdialysis sampling in rat striatum.
Collapse
Affiliation(s)
- A L Freed
- Department of Pharmaceutical Chemistry and the Center for Bioanalytical Research, University of Kansas, Lawrence, USA
| | | | | |
Collapse
|
14
|
Freed AL, Cooper JD, Davies MI, Lunte SM. Investigation of the metabolism of substance P in rat striatum by microdialysis sampling and capillary electrophoresis with laser-induced fluorescence detection. J Neurosci Methods 2001; 109:23-9. [PMID: 11489296 DOI: 10.1016/s0165-0270(01)00397-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabolism of substance P (SP) was investigated in rat striatum using in vivo microdialysis. Substance P was perfused for 5 h at 0.2 microl/min, and its metabolism was followed for over 13 h. The resulting samples were derivatized precolumn with naphthalene-2,3-dicarboxaldehyde (NDA)/cyanide, separated and detected by cyclodextrin-modified electrokinetic chromatography with laser-induced fluorescence detection (CDMEKC-LIF). Substance P rapidly degraded to form the fragments (3-11), (1-9), (1-4) and, to a lesser extent, (1-7). The metabolites reached steady-state levels 2-3 h after addition of SP.
Collapse
Affiliation(s)
- A L Freed
- Department of Pharmaceutical Chemistry and the Center for Bioanalytical Research, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
15
|
Potts JT, Fuchs IE. Naturalistic activation of barosensitive afferents release substance P in the nucleus tractus solitarius of the cat. Brain Res 2001; 893:155-64. [PMID: 11223003 DOI: 10.1016/s0006-8993(00)03308-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The role for substance P (SP) in baroreceptor transmission in the nucleus tractus solitarius (NTS) remains an area of active research. The purpose of the present study was to determine whether naturalistic activation of barosensitive afferent fibers in the glossopharygneal and vagus nerves release SP in the caudal NTS. Experiments were performed on chloralose anesthetized, artificially ventilated and paralyzed cats. A microdialysis probe was stereotaxically positioned unilaterally in the NTS. Dialysate samples were collected and SP-like immunoreactivity (SP-LI) was measured by radioimmunoassay. Barosensitive afferents were mechanically activated by inflation of a balloon catheter positioned in the thoracic aorta at heart level. Graded balloon inflation produced increases in mean arterial pressure (MAP) of 33+/-5 mmHg and 60+/-3 mmHg (P<0.05) and evoked proportional baroreflex decreases in heart rate of 8+/-3 b.p.m. and 19+/-3 b.p.m. (P<0.05). This was accompanied by increases in SP-LI of 16+/-3% and 39+/-8%, respectively (P<0.05). A positive linear relationship was found between changes in MAP and SP-LI (slope=1.73 fmol/microl/mmHg, r(2)=0.62) that was completely abolished following barodenervation. These findings provide evidence that naturalistic activation of pressure-sensitive afferents in the glossopharygneal and vagus nerves release SP in a region of the NTS that receives primary afferent projections from aortic, carotid sinus and cardiac receptors in the cat.
Collapse
Affiliation(s)
- J T Potts
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield Boulevard, Detroit, MI 48201, USA.
| | | |
Collapse
|
16
|
Zhang C, Bonagamba LG, Machado BH. Blockade of NK-1 receptors in the lateral commissural nucleus tractus solitarii of awake rats had no effect on the cardiovascular responses to chemoreflex activation. Braz J Med Biol Res 2000; 33:1379-85. [PMID: 11050671 DOI: 10.1590/s0100-879x2000001100018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neurotransmission of the chemoreflex in the nucleus tractus solitarii (NTS), particularly of the sympatho-excitatory component, is not completely understood. There is evidence that substance P may play a role in the neurotransmission of the chemoreflex in the NTS. Microinjection of substance P (50 pmol/50 nl, N = 12, and 5 nmol/50 nl, N = 8) into the commissural NTS of unanesthetized rats produced a significant increase in mean arterial pressure (101 +/- 1 vs 108 +/- 2 and 107 +/- 3 vs 115 +/- 4 mmHg, respectively) and no significant changes in heart rate (328 +/- 11 vs 347 +/- 15 and 332 +/- 7 vs 349 +/- 13 bpm, respectively) 2 min after microinjection. Previous treatment with WIN, an NK-1 receptor antagonist (2.5 nmol/50 nl), microinjected into the NTS of a specific group of rats, blocked the pressor (11 +/- 5 vs 1 +/- 2 mmHg) and tachycardic (31 +/- 6 vs 4 +/- 3 bpm) responses to substance P (50 pmol/50 nl, N = 5) observed 10 min after microinjection. Bilateral microinjection of WIN into the lateral commissural NTS (N = 8) had no significant effect on the pressor (50 +/- 4 vs 42 +/- 6 mmHg) or bradycardic (-230 +/- 16 vs -220 +/- 36 bpm) responses to chemoreflex activation with potassium cyanide (iv). These data indicate that the activation of NK-1 receptors by substance P in the NTS produces an increase in baseline mean arterial pressure and heart rate. However, the data obtained with WIN suggest that substance P and NK-1 receptors do not play a major role in the neurotransmission of the chemoreflex in the lateral commissural NTS.
Collapse
Affiliation(s)
- C Zhang
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | |
Collapse
|
17
|
Beaujouan JC, Saffroy M, Torrens Y, Glowinski J. Different subtypes of tachykinin NK(1) receptor binding sites are present in the rat brain. J Neurochem 2000; 75:1015-26. [PMID: 10936182 DOI: 10.1046/j.1471-4159.2000.0751015.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
(2-[(125)I]iodohistidyl(1))Neurokinin A ([(125)I]NKA), which labels "septide-sensitive" but not classic NK(1) binding sites in peripheral tissues, was used to determine whether septide-sensitive binding sites are also present in the rat brain. Binding studies were performed in the presence of SR 48968 (NK(2) antagonist) and senktide (NK(3) agonist) because [(125)I]NKA also labels peripheral NK(2) binding sites and, as shown in this study, central NK(3) binding sites. [(125)I]NKA was found to label not only septide-sensitive binding sites but also a new subtype of NK(1) binding site distinct from classic NK(1) binding sites. Both subtypes of [(125)I]NKA binding sites were sensitive to tachykinin NK(1) antagonists and agonists but also to the endogenous tachykinins NKA, neuropeptide K (NPK), and neuropeptide gamma (NPgamma). However, compounds of the septide family such as substance P(6-11) [SP(6-11)] and propionyl-[Met(O(2))(11)]SP(7-11) and some NK(1) antagonists, GR 82334, RP 67580, and CP 96345, had a much lower affinity for the new NK(1)-sensitive sites than for the septide-sensitive sites. The hypothalamus and colliculi possess only this new subtype of NK(1) site, whereas both types of [(125)I]NKA binding sites were found in the amygdala and some other brain structures. These results not only explain the central effects of septide or SP(6-11), but also those of NKA, NPK, and NPgamma, which can be selectively blocked by NK(1) receptor antagonists.
Collapse
Affiliation(s)
- J C Beaujouan
- Chaire de Neuropharmacologie, INSERM U114, Paris, France.
| | | | | | | |
Collapse
|
18
|
Seagard JL, Dean C, Hopp FA. Neurochemical transmission of baroreceptor input in the nucleus tractus solitarius. Brain Res Bull 2000; 51:111-8. [PMID: 10709956 DOI: 10.1016/s0361-9230(99)00235-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Baroreceptor activation has been found to produce different types of discharge patterns in neurons in the nucleus tractus solitarius (NTS). The contribution of different glutamate receptor subtypes, neuropeptide modulators and input from different baroreceptor subtypes to the generation of firing patterns in NTS barosensitive neurons was examined in a series of studies. Results from these studies indicate that both subtypes of ionotropic glutamate receptors contribute to discharge in barosensitive neurons, and the role of each subtype can vary for different neurons. The neuropeptide neurotensin was found to modulate baroreceptor control of BP and discharge of central barosensitive neurons, both through modulation of baroreceptor afferent input and possibly through release of neurotensin by baroreceptor afferent fibers in the NTS. Finally, selective modulation of input from baroreceptor subtypes indicates that there is some degree of divergent baroreceptor innervation of NTS neurons that could contribute to initiation of their different discharge patterns in response to baroreceptor input.
Collapse
Affiliation(s)
- J L Seagard
- Zablocki Department of Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | | | |
Collapse
|
19
|
Seagard JL, Dean C, Hopp FA. Modulation of the carotid baroreceptor reflex by substance P in the nucleus tractus solitarius. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 78:77-85. [PMID: 10789685 DOI: 10.1016/s0165-1838(99)00060-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that administration of substance P (SP) into the nucleus tractus solitarius (NTS) can evoke a depressor response similar to that produced by activation of the arterial baroreceptors. In addition, some studies have suggested that SP increases the reflex responses to activation of baroreceptor input. The present study was performed to determine the effects of SP on the carotid sinus baroreceptor reflex at the level of the NTS by examining the effects of both exogenous SP microinjected into different rostrocaudal locations in the NTS and blockade of the effects of endogenous SP, through the microinjection of a substance P antagonist (SPa; [D-Pro, D-Trp]-substance P). Changes in pressure in an isolated carotid sinus in anesthetized dogs were used to evoke baroreflex changes in arterial blood pressure (BP) before and after microinjection of SP (0.5 microM) or SPa (10 microM) into barosensitive regions of the NTS. Microinjection of SP or its antagonist did not alter baseline, resting BP but did produce significant changes in baroreflex sensitivity. Microinjection of SP into different rostrocaudal regions of the NTS produced different responses, with rostral and caudal NTS microinjections producing significant increases in sensitivity. No effects on baroreflex sensitivity were obtained in response to SP microinjections into the intermediate NTS. Unlike SP, microinjection of the SPa significantly decreased baroreflex sensitivity at all rostrocaudal levels of the NTS. These data demonstrated that SP has the capability to modulate the carotid baroreflex at the level of the NTS and support a physiological role for endogenously released SP.
Collapse
Affiliation(s)
- J L Seagard
- Zablocki Department of Veterans Affairs Medical Center, and Medical College of Wisconsin, Milwaukee 53295, USA.
| | | | | |
Collapse
|
20
|
Cowan AR, Dean C, Bago M, Seagard JL. Potentiation of non-N-methyl-D-aspartate receptor-induced changes in blood pressure by substance P in rats. Neurosci Lett 2000; 278:161-4. [PMID: 10653018 DOI: 10.1016/s0304-3940(99)00920-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Central release of substance P (SP) in the nucleus tractus solitarius (NTS) may potentiate the reflex responses evoked by baroreceptor afferent input to this medullary nucleus. The mechanism is not known but may involve modulation of responses produced by release of glutamate, the putative primary baroreceptor transmitter, at neurons within the NTS. The principal glutamate receptor subtype proposed to transmit baroreceptor afferent input at second-order neurons is the non-N-methyl-D-aspartate (NMDA) receptor. The present study examined the effects of microinjection of SP into barosensitive regions of the NTS on the depressor and bradycardic response induced by activation of non-NMDA receptors in the NTS by subsequent microinjection of (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), a non-NMDA receptor agonist. Substance P potentiated the non-NMDA receptor-induced depressor response to AMPA in the NTS, evoking a significantly larger change in blood pressure over the same time period. These data suggest that SP may modulate a non-NMDA-miediated component of the baroreflex to influence the control of arterial blood pressure by increasing the sensitivity of the baroreceptor reflex.
Collapse
Affiliation(s)
- A R Cowan
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | | | | | | |
Collapse
|
21
|
Paton JF, Kasparov S. Differential effects of angiotensin II on cardiorespiratory reflexes mediated by nucleus tractus solitarii - a microinjection study in the rat. J Physiol 1999; 521 Pt 1:213-25. [PMID: 10562346 PMCID: PMC2269655 DOI: 10.1111/j.1469-7793.1999.00213.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The effect of microinjecting angiotensin II (ANGII) into the nucleus of the solitary tract (NTS) on both baroreceptor and peripheral chemoreceptor reflexes was compared. 2. Experiments were performed in a working heart-brainstem preparation of rat. Baroreceptors were stimulated by raising perfusion pressure and chemoreceptors were activated with aortic injections of sodium cyanide (0.025 %, 25-75 microl). Reflex changes in phrenic nerve activity and heart rate were measured after bilateral NTS microinjection (50 nl) of ANGII (0.5-5000 fmol). 3. NTS microinjection of 5 fmol ANGII elicited a transient (28.2 +/- 6 s; mean +/- s.e.m.) bradycardia (-18 +/- 3 beats min-1), and decreased phrenic nerve activity cycle length and amplitude (P < 0.05). At higher doses of ANGII a similar respiratory response was seen but heart rate changes were inconsistent. 4. The baroreceptor reflex bradycardia was depressed significantly by NTS microinjections of ANGII (5-5000 fmol) in a dose-dependent manner with the reflex gain decreasing from 1.7 +/- 0.16 to 0.66 +/- 0.1 beats min-1 mmHg-1 (P < 0.01) at 5000 fmol. Although the chemoreceptor reflex bradycardia was depressed at a low dose of ANGII (5 fmol), all higher doses (50-5000 fmol) produced a dose-dependent potentiation of the reflex bradycardia (maximally +64 +/- 8 %). The respiratory component was unaffected. The effects of ANGII on both reflexes were blocked by an ANGII type 1 (AT1) receptor antagonist, losartan (20 microM). 5. The potentiating action of ANGII on the chemoreceptor reflex cardiac response was abolished by a neurokinin type 1 (NK1) receptor blocker (CP-99,994, 5 microM) but this had no effect on the baroreceptor reflex. 6. AT1 receptors in the NTS can depress the baroreceptor reflex bradycardia which is independent of NK1 receptors. The ANGII effect on the cardiac component of the chemoreceptor reflex is bi-directional being inhibited at low concentrations and potentiated at higher concentrations; the latter involves NK1 receptors and presumably results from release of substance P.
Collapse
Affiliation(s)
- J F Paton
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
22
|
Potts JT, Fuchs IE, Li J, Leshnower B, Mitchell JH. Skeletal muscle afferent fibres release substance P in the nucleus tractus solitarii of anaesthetized cats. J Physiol 1999; 514 ( Pt 3):829-41. [PMID: 9882754 PMCID: PMC2269110 DOI: 10.1111/j.1469-7793.1999.829ad.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
1. The tachykinin substance P was recovered from the commissural subdivision of the nucleus tractus solitarii (cNTS) using in vivo microdialysis during activation of cardiorespiratory and skeletal muscle receptors in thirteen chloralose-anaesthetized cats. 2. Tetanic muscle contraction was evoked by stimulating L7-S1 ventral roots (n = 7). Electrically induced muscle contraction increased mean arterial pressure (MAP) by 55 +/- 10 mmHg and heart rate by 29 +/- 6 beats min-1. During contraction the dialysate concentration increased 154 % above resting control levels (from 0.217 +/- 0.009 to 0.546 +/- 0.023 fmol (100 microl)-1, control vs. contraction, P < 0.05). 3. Loss of cardiorespiratory input following disruption of the carotid sinus and vagus nerves significantly blunted, but did not abolish, the increase in substance P during muscle contraction (from 0.247 +/- 0.022 to 0.351 +/- 0.021 fmol (100 microl)-1, control vs. contraction, P < 0.05). Approximately 44 % of the substance P release during contraction was independent of cardiorespiratory input transmitted by carotid sinus and vagus nerves. 4. To determine the contribution of cardiorespiratory related neural input on substance P release, an intravascular balloon positioned in the thoracic aorta was inflated to increase arterial pressure (n = 6). Balloon inflation increased MAP by 50 +/- 5 mmHg and substance P increased from 0.251 +/- 0.025 to 0.343 +/- 0. 028 fmol (100 microl)-1 (control vs. balloon inflation, P < 0.05). This increase was completely abolished following interruption of vagal and carotid sinus nerves (from 0.301 +/- 0.012 to 0.311 +/- 0. 014 fmol (100 microl)-1, control vs. balloon inflation). This finding shows that neural input from cardiorespiratory receptors (primarily arterial baroreceptors) accounted for 37 % of the total substance P release during muscle contraction. 5. The findings from this study demonstrate that activation of skeletal muscle receptors and cardiorespiratory receptors (predominantly arterial baroreceptors) increases the extraneuronal concentration of substance P in the cNTS. Because substance P release was not completely abolished during muscle contraction following disruption of carotid sinus and vagus nerves it is proposed that: (1) afferent projections from contraction-sensitive skeletal muscle receptors may release substance P in the NTS; (2) neural input from muscle receptors activates substance P-containing neurones within the NTS; and (3) convergence of afferent input from skeletal muscle receptors and arterial baroreceptors onto substance P-containing neurones in the cNTS facilitates the release of substance P. The role of tachykininergic modulation of cardiorespiratory input is discussed.
Collapse
Affiliation(s)
- J T Potts
- Department of Physiology, Harry S. Moss Heart Center, University of Texas Southwestern Medical Center, 5323 Harry Hines boulevard, Dallas, TX 75235-9034,
| | | | | | | | | |
Collapse
|
23
|
Massari VJ, Shirahata M, Johnson TA, Lauenstein JM, Gatti PJ. Substance P immunoreactive nerve terminals in the dorsolateral nucleus of the tractus solitarius: roles in the baroreceptor reflex. Brain Res 1998; 785:329-40. [PMID: 9518676 DOI: 10.1016/s0006-8993(97)01335-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological and light microscopic evidence suggest that substance P (SP) may be a neurotransmitter contained in first-order sensory baroreceptor afferents; however, ultrastructural support for this hypothesis is lacking. We have traced the central projections of the carotid sinus nerve (CSN) in the cat by utilizing the transganglionic transport of horseradish peroxidase (HRP). The dorsolateral subnucleus of the nucleus tractus solitarius (dlNTS) was processed for the histochemical visualization of transganglionically labeled CSN afferents and for the immunocytochemical visualization of SP by dual labeling light and electron microscopic methods. Either HRP or SP was readily identified in single-labeled unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS. SP immunoreactivity was also identified in unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS, which were simultaneously identified as CSN primary afferents. However, only 15% of CSN terminals in the dlNTS were immunoreactive for SP. Therefore, while the ultrastructural data support the hypothesis that SP immunoreactive first-order neurons are involved in the origination of the baroreceptor reflex, they suggest that only a modest part of the total sensory input conveyed from the carotid sinus baroreceptors to the dlNTS is mediated by SP immunoreactive CSN terminals. Five types of axo-axonic synapses were observed in the dlNTS. SP immunoreactive CSN afferents were very rarely involved in these synapses. Furthermore, SP terminals were never observed to form the presynaptic element in an axo-axonic synapse with a CSN afferent. Therefore, SP does not appear to be involved in the modulation of the baroreceptor reflex in the dlNTS.
Collapse
Affiliation(s)
- V J Massari
- Dept. of Pharmacology, Howard University, College of Medicine, Washington, DC 20059, USA
| | | | | | | | | |
Collapse
|
24
|
Williams CA, Fowler WL. Substance P released in the rostral brainstem of cats interacts with NK-1 receptors during muscle pressor response. Neuropeptides 1997; 31:589-600. [PMID: 9574826 DOI: 10.1016/s0143-4179(97)90005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The release of immunoreactive substance P-like substances (irSP) was measured from sites in the rostral brainstem (at a level 1.3 mm anterior to the obex) of anesthetized cats in response to fatiguing isometric contractions using SP antibody-coated glass microprobes. The contractions caused a pressor and tachycardic response. irSP were released from sites in the medial subnucleus of the nucleus tractus solitarius (mNTS), the solitary tract and lateral tegmental field at this level of the brainstem. Injections of the specific NK-1 receptor antagonist, GR 82334, bilaterally into the mNTS significantly reduced the muscle pressor response, while bilateral injections of the SP NK-1 agonist, GR 73632, into the mNTS significantly increased the pressor and tachycardic responses during the contractions. Neither the antagonist nor the agonist, at the doses tested, affected the resting arterial pressure or heart rate. These data indicate that irSP are released from sites in the mNTS during the reflex pathways activated by isometric contractions and that they interact with NK-1 receptors in the area of the mNTS to affect the cardiovascular responses during the muscle pressor reflex.
Collapse
Affiliation(s)
- C A Williams
- Department of Physiology, College of Medicine, East Tennessee State University, Johnson City 37614, USA.
| | | |
Collapse
|
25
|
Chawla MK, Gutierrez GM, Young WS, McMullen NT, Rance NE. Localization of neurons expressing substance P and neurokinin B gene transcripts in the human hypothalamus and basal forebrain. J Comp Neurol 1997; 384:429-42. [PMID: 9254037 DOI: 10.1002/(sici)1096-9861(19970804)384:3<429::aid-cne8>3.0.co;2-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In situ hybridization histochemistry was used to map the distribution of neurons expressing the substance P (SP) or neurokinin B (NKB) genes in the human hypothalamus and basal forebrain. Hypothalami from five adult males were frozen in isopentane at -30 degrees C and serially sectioned at 20 jm thickness. Every 20th section was hybridized with [35S]-labeled, 48-base synthetic cDNA probes that were complementary to either SP or NKB mRNAs. Slides were dipped into nuclear emulsion for visualization of mRNAs at the single-cell level. The location of labeled neurons (greater than x 5 background) was mapped by using an image-combining computer microscope system. A distinct and complementary distribution pattern of SP and NKB neurons was observed in the human hypothalamus and basal forebrain. NKB was the predominant tachykinin in the rostral hypothalamus, whereas SP mRNA predominated in the posterior hypothalamus. Numerous NKB neurons were identified in the magnocellular basal forebrain, the bed nucleus of stria terminalis, and the anterior hypothalamic area. Scattered NKB neurons were present in the infundibular and paraventricular nuclei, paraolfactory gyrus, posterior hypothalamic area, lateral division of the medial mammillary nucleus, and amygdala. Numerous neurons expressing SP mRNAs were identified in the premammillary, supramammillary, and medial mammillary nuclei; the posterior hypothalamic area; and the corpus striatum. Scattered SP neurons were also observed in the preoptic area; the infundibular, intermediate, dorsomedial, and ventromedial nuclei; the infundibular stalk; the amygdala; the bed nucleus of stria terminalis; and the paraolfactory gyrus. These studies provide the first description of the location of neurons that express tachykinin gene transcripts in the human hypothalamus.
Collapse
Affiliation(s)
- M K Chawla
- Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson 85724, USA
| | | | | | | | | |
Collapse
|
26
|
Kawano H, Masuko S. Synaptic contacts of substance P-immunoreactive axon terminals in the nucleus tractus solitarius onto neurons projecting to the caudal ventrolateral medulla oblongata in the rat. Brain Res 1997; 754:315-20. [PMID: 9134991 DOI: 10.1016/s0006-8993(97)00171-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The possibility that substance P (SP)-immunoreactive axon terminals in the nucleus tractus solitarius (NTS) make synaptic contacts onto NTS neurons projecting to the catecholaminergic cell region in the caudal ventrolateral medulla oblongata (CVLM) was examined in the rat using a retrograde tract-tracing method combined with immunohistochemistry. After injection of a retrograde tracer, wheat germ agglutinin-conjugated horseradish peroxidase-colloidal gold complex (WGA-HRP-gold), into the CVLM region where tyrosine hydroxylase-immunoreactive neurons were situated, many retrogradely labeled neurons were detected in the dorsal parts of the NTS, especially at levels between 1.0 mm caudal and 0.5 mm rostral to the obex. Immunoelectron microscopy revealed synaptic contacts between SP-immunoreactive axon terminals and WGA-HRP-gold-labeled neurons in the NTS. These findings indicated that SP regulates NTS neurons which project to the catecholaminergic cell region of the CVLM.
Collapse
Affiliation(s)
- H Kawano
- Department of Anatomy, Saga Medical School, Japan.
| | | |
Collapse
|
27
|
Wang Y, Ramage AG, Jordan D. In vivo effects of 5-hydroxytryptamine receptor activation on rat nucleus tractus solitarius neurones excited by vagal C-fibre afferents. Neuropharmacology 1997; 36:489-98. [PMID: 9225274 DOI: 10.1016/s0028-3908(97)00063-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of ionophoretically applied 5-hydroxytryptamine (5-HT) and 5-HT receptor agonists were studied on rat nucleus tractus solitarius (NTS) neurones receiving unmyelinated vagal afferent input. 5-HT excited 15 of 34 neurones (44%), inhibited 10 (29%) and had no effect on nine. 8-Hydroxy-2-(di-N-propylamino)tetralin HBr (8-OH-DPAT) excited 23 of 53 neurones (43%), inhibited 24 (45%) and had no effect on six neurones and (+/-)-2,5-dimethoxy-4-iodoamphetamine HCl activated 18 of 37 neurones (49%), inhibited nine (24%) and had no effect on 10. These results demonstrate that activation of 5-HT1A and 5-HT2 receptors can excite or inhibit populations of NTS neurones. Phenylbiguanide, however, excited 20 of 23 neurones (87%), inhibited only one (4%) and had no effect on two indicating that 5-HT3 receptor activation has an excitatory action. NTS neurones receiving cardiac vagal afferent input were more likely to be excited by 5-HT (five of five, 100%) or 8-OH-DPAT (four of five. 80%) than the population as a whole. In conclusion, the data demonstrate that 5-HT1A, 5-HT2, and 5-HT3 receptor subtypes are functionally present on NTS neurones receiving excitatory vagal afferent input. Further, the subpopulation of NTS neurones receiving input from cardiac afferents are excited by 5-HT, possibly by an action on 5-HT1A or 5-HT3 receptors.
Collapse
Affiliation(s)
- Y Wang
- Department of Pharmacology, Royal Free Hospital Medical School, London, U.K
| | | | | |
Collapse
|
28
|
Khan S, Grogan E, Whelpton R, Michael-Titus AT. N- and C-terminal substance P fragments modulate striatal dopamine outflow through a cholinergic link mediated by muscarinic receptors. Neuroscience 1996; 73:919-27. [PMID: 8809811 DOI: 10.1016/0306-4522(96)00119-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study investigated whether the modulatory effects of substance P and substance P fragments on striatal dopamine release involve a cholinergic link. Rat striatal slices were incubated with substance P, substance P(1-4), substance P(1-7), substance P(5-11) and substance P(8-11) in the absence or presence of various agents which modify cholinergic transmissions, and endogenous dopamine outflow was measured using high-performance liquid chromatography. The incubation of striatal slices with substance P and its N- and C-terminal fragments (1 nM) induced a significant overflow of endogenous dopamine. Neostigmine (150 nM) potentiated the effects of substance P and its fragments, whereas the incubation with hemicholinium-3 (50 microM) abolished the effects of the peptides on dopamine outflow. The acetylcholinesterase inhibitor and the inhibitor of choline uptake did not have intrinsic effects on dopamine outflow. The muscarinic antagonist atropine (1 microM) reversed completely the effects of substance P and its fragments, whereas the nicotinic antagonists dihydro-beta-erythroidine (0.5 microM) and pempidine (10 microM) were devoid of effects. None of the cholinergic antagonists modified dopamine outflow. The results suggest that substance P and several N- and C-terminal substance P fragments activate cholinergic neurons in striatal slices. The released acetylcholine induces an increased dopamine outflow, mediated by muscarinic receptors. These observations represent additional evidence which supports the functional interactions between substance P, acetylcholine and dopamine in the striatum. Furthermore, they show that substance P fragments may exert neuromodulatory effects through mechanisms similar to those underlying the effects of the parent peptide.
Collapse
Affiliation(s)
- S Khan
- Department of Pharmacology, Faculty of Basic Medical Sciences, Queen Mary and Westfield College, London, U.K
| | | | | | | |
Collapse
|
29
|
Jia HG, Wang BR, Rao ZR, Shi JW, Shigemoto R, Kaneko T, Mizuno N. GABAergic synapses upon neurons expressing substance P receptors in the nucleus of the solitary tract: an immunocytochemical electron microscope study in the rat. Neurosci Lett 1996; 210:49-52. [PMID: 8762189 DOI: 10.1016/0304-3940(96)12654-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Morphological substrates for interactions between gamma-aminobutyric acid (GABA) and substance P upon neurons expressing substance P receptor (SPR) in the nucleus of the solitary tract (NST) were investigated by immunocytochemical electron microscopy. In the NST of the rat, many GABA-like immunoreactive axon terminals were in symmetric synaptic contacts with dendritic profiles; they were observed on nearly a half of the SPR-like immunoreactive dendritic profiles in the medial part of the caudal half of the NST.
Collapse
Affiliation(s)
- H G Jia
- Department of Anatomy, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Martini-Luccarini F, Reynaud JC, Puizillout JJ. Effects of tachykinins on identified dorsal vagal neurons: an electrophysiological study in vitro. Neuroscience 1996; 71:119-31. [PMID: 8834396 DOI: 10.1016/0306-4522(95)00418-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intracellular current-clamp recordings were performed using in vitro brainstem slice preparations to compare the actions of substance P, neurokinin A, neurokinin B and their agonists on rat dorsal vagal nucleus neurons with or without antagonists of neurokinin 1 and 2 receptors. The agonists used were either [Sar9,Met(O2)11]substance P or septide for neurokinin 1 and [Nle10]neurokinin A(4-10) for neurokinin 2 receptors. The antagonists were spantide, SR 140333 or RP 67580 for neurokinin 1 receptors and SR 48968 for neurokinin 2 receptors. Identification of vagal neurons was achieved electrophysiologically by testing antidromic responses and confirmed morphologically by an intracellular injection of biocytin. Of the 70 neurons tested, substance P led to depolarization in 36, hyperpolarization in six and no effect in 28. Depolarization was concentration dependent and generally associated with an increase of the membrane input resistance. Addition of tetrodotoxin (1 microM) to the medium had no effect on depolarization. RP 67580 (1 microM) blocked depolarization, but spantide and SR 140333 (microM to 50 microM) did not. Hyperpolarization was never observed using agonists. Neurokinin A and neurokinin 2 agonist induced concentration-dependent depolarization associated with an increase in membrane input resistance in eight of 14 neurons and in four of nine neurons, respectively. Depolarization was only partially abolished by the neurokinin 2 antagonist SR 48968. Neurokinin B had no effect in any of the eight neurons tested. These data prove that vagal neurons have neurokinin 1 and 2 receptors and that tachykinin could produce either depolarization or hyperpolarization. Since membrane potential variations were associated with an increase (during depolarization) or decrease (during hyperpolarization) in the membrane input resistance and since the reversal potential was close to the potassium equilibrium potential, we speculate that these effects are mediated by modulation of potassium conductance.
Collapse
|
31
|
Lawrence AJ, Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol 1996; 48:21-53. [PMID: 8830347 DOI: 10.1016/0301-0082(95)00034-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The central control of cardiovascular function has been keenly studied for a number of decades. Of particular interest are the homeostatic control mechanisms, such as the baroreceptor heart-rate reflex, the chemoreceptor reflex, the Bezold-Jarisch reflex and the Breuer-Hering reflex. These neurally-mediated reflexes share a common termination point for their respective centrally-projecting sensory afferents, namely the nucleus tractus solitarius (NTS). Thus, the NTS clearly plays a critical role in the integration of peripherally initiated sensory information regarding the status of blood pressure, heart rate and respiratory function. Many endogenous neurochemicals, from simple amino acids through biogenic amines to complex peptides have the ability to modulate blood pressure and heart rate at the level of the NTS. This review will attempt to collate the current knowledge regarding the roles of neuromodulators in the NTS, the receptor types involved in mediating observed responses and the degree of importance of such neurochemicals in the tonic regulation of the cardiovascular system. The neural pathway that controls the baroreceptor heart-rate reflex will be the main focus of attention, including discussion of the identity of the neurotransmitter(s) thought to act at baroafferent terminals within the NTS. In addition, this review will provide a timely update on the use of recently developed molecular biological techniques that have been employed in the study of the NTS, complementing more classical research.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
32
|
Kawano H, Masuko S. Substance P innervation of neurons projecting to the paraventricular hypothalamic nucleus in the rat nucleus tractus solitarius. Brain Res 1995; 689:136-40. [PMID: 8528697 DOI: 10.1016/0006-8993(95)00501-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
After injection of WGA-HRP-colloidal gold in the rat paraventricular nucleus (PVN), retrogradely labeled neurons were found mainly in the medial and commissural subnuclei of the nucleus tractus solitarius (NTS) around 0.5 mm caudal to the obex which is closely related to cardiovascular function. Electron microscopic immunohistochemistry in these areas demonstrated synaptic contacts between retrogradely labeled neurons and substance P-immunoreactive terminals. Innervation of NTS-PVN projection systems by substance P is suggested.
Collapse
Affiliation(s)
- H Kawano
- Department of Anatomy, Saga Medical School, Japan
| | | |
Collapse
|
33
|
Martini F, Reynaud JC, Puizillout JJ. Effects of substance P on cardiovascular regulation in the rabbit. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 51:143-52. [PMID: 7537770 DOI: 10.1016/0165-1838(94)00126-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of substance P on blood pressure and aortic reflex was investigated in rabbits. Microinjections of substance P and Sar9, Met(O2)11-SP (a selective NK1-receptor agonist) into the floor of the fourth ventricle led to a dose-dependent increase of blood pressure and a sharp enhancement of the baroreflex. These effects were abolished by pretreatment with SR 140333 (a selective NK1-receptor antagonist). Intraventricular injection of the antagonist alone significantly decreased the amplitude of the aortic reflex. After bivagotomy, the amplitude of the parasympathetic component of the baroreflex decreased dramatically and substance P injections were no longer effective. Our results demonstrate that substance P activation of NK1 receptors plays a major role in the modulation of the parasympathetic component of the baroceptor reflex.
Collapse
|
34
|
Saha S, Batten TF, Mcwilliam PN. Glutamate, gamma-aminobutyric acid and tachykinin-immunoreactive synapses in the cat nucleus tractus solitarii. JOURNAL OF NEUROCYTOLOGY 1995; 24:55-74. [PMID: 7769401 DOI: 10.1007/bf01370160] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurophysiological and pharmacological evidence suggests that glutamate, gamma-aminobutyric acid and tachykinins (substance P and neurokinin A) each have a role in cardiovascular regulation in the nucleus tractus solitarii. This study describes the ultrastructural relationships between nerve terminals immunoreactive for these substances in the nucleus tractus solitarii of the cat using post-embedding immunogold (single and double) labelling techniques on sections of tissue embedded in LR White resin. The technique combines a high specificity of labelling with good ultrastructural and antigenic preservation. Glutamate-immunoreactive terminals, recognized by their high density of gold particle labelling compared to the mean tissue level of labelling, accounted for about 40% of all synaptic terminals in the region of the nucleus tractus solitarii analysed (medial, dorsal, interstitial, gelatinosus and dorsolateral subnuclei). They appeared to comprise several morphological types, but formed mainly asymmetrical synapses, most often with dendrites of varying size, and contained spherical clear vesicles together with fewer dense-cored vesicles. Substance P- and neurokinin A-immunoreactive terminals were fewer in number (9% of all terminals) but similar in appearance, with the immunoreaction restricted to the dense-cored vesicles. Analysis of serial- and double-labelled sections showed a co-existence of substance P and neurokinin A-immunoreactivity in 21% of glutamate-immunoreactive terminals. Immunoreactivity for gamma-aminobutyric acid was found in 33% of all terminals in the nucleus tractus solitarii. These predominantly contained pleomorphic vesicles and formed symmetrical synapses on dendrites and somata. Possible sites of axo-axonic contact by gamma-aminobutyric acid-immunoreactive terminals onto glutamate-or tachykinin-immunoreactive terminals were rare, but examples of adjacent glutamate and gamma-aminobutyric acid-immunoreactive terminals synapsing on the same dendritic profile were frequent. These results provide an anatomical basis for a gamma-aminobutyric acid mediated inhibition of glutamatergic excitatory inputs to the nucleus tractus solitarii at a post-synaptic level.
Collapse
Affiliation(s)
- S Saha
- Institute for Cardiovascular Research, Research School of Medicine, University of Leeds, UK
| | | | | |
Collapse
|
35
|
Berk ML, Smith SE, Karten HJ. Nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of the pigeon: localization of peptide and 5-hydroxytryptamine immunoreactive fibers. J Comp Neurol 1993; 338:521-48. [PMID: 8132859 DOI: 10.1002/cne.903380404] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The distribution of peptide and serotonin fibers in the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMNX) in the pigeon (Columba livia) was investigated immunocytochemically. This information was correlated with the viscerotopic organization of the nuclei and with central NTS circuitry to suggest the role of the neurochemical containing fibers in the regulation of organ function. The distribution of fibers containing cholecystokinin (CCK), calcitonin gene-related peptide (CGRP), enkephalin (ENK), neuropeptide Y (NPY), neurotensin (NT), substance P (SP), somatostatin (SS), vasoactive intestinal peptide (VIP), and 5-hydroxytryptamine (5-HT) was determined. Each substance had a distinct distribution within the subnuclei of NTS-DMNX, but certain generalities can be deduced. In the DMNX, fibers immunoreactive for ENK, NT, and SP were found in greatest concentration, while CGRP and 5-HT immunoreactive fibers were the least dense. This suggests that ENK, NT, and SP may have a significant modulatory effect on gastrointestinal functions. In the NTS overall, ENK, NT, SP, and VIP fibers were found in high density, CCK, NPY, SS, and 5-HT fibers were found in moderate density, and CGRP fibers were found in low density. However, some individual NTS subnuclei were found to contain moderate to high concentrations of each of the substances, including CGRP. Fibers containing CCK, ENK, NT, SP, SS, and VIP in the medial dorsal NTS subnuclei may regulate gastroesophageal functions. The caudal part of subnucleus lateralis parasolitarius did not contain most of the substances, which suggests that pulmonary function is not modulated by these neurochemicals. The boundaries of a subnucleus could sometimes be demarcated by a change in density of immunoreactive fibers between adjacent subnuclei. This was particularly evident in NTS subnuclei medialis dorsalis anterior centralis and lateralis parasolitarius, and in DMNX subnucleus posterior dorsalis magnocellularis. The selective distribution of peptide and serotonin immunoreactive fibers in various subnuclei of NTS-DMNX suggests that these substances may be differentially involved in neural circuits that mediate cardiovascular and gastrointestinal functions.
Collapse
Affiliation(s)
- M L Berk
- Department of Anatomy and Cell Biology, Marshall University School of Medicine, Huntington, West Virginia 25755-9350
| | | | | |
Collapse
|
36
|
Hall ME, Greer RA, Stewart JM. Effects of L-glutamate, substance P and substance P(1-7) on cardiovascular regulation in the nucleus tractus solitarius. REGULATORY PEPTIDES 1993; 46:102-9. [PMID: 7692477 DOI: 10.1016/0167-0115(93)90019-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M E Hall
- Department of Biochemistry, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
37
|
Abstract
The effects of intracerebroventricularly (i.c.v.) administered Substance P (100 pg, 1 microgram, 10 micrograms) on mean blood pressure (MBP), inter-beat interval (IBI) and the baroreceptor heart reflex (BHR) were studied in conscious Wistar rats. The BHR was induced by intravenous injection of both phenylephrine (1 microgram) and sodium nitroprusside (5 micrograms) before and after SP administration (3 and 15 min). The dose of 100 pg SP was without effect on the resting values of both MBP and IBI but enhanced the BHR sensitivity by about + 0.5 ms/mm Hg in the phenylephrine test 3 min after i.c.v. SP. 1 microgram and 10 micrograms SP caused a long-lasting dose dependent increase in MBP and changed the IBI. In contrast to the results obtained with 100 pg, the BHR sensitivity was impaired-1 microgram SP: -0.2 ms/mm Hg (phenylephrine) and -0.45 ms/mm Hg (nitroprusside), 10 micrograms SP: -0.35 ms/mm Hg (phenylephrine). These changes in BHR sensitivity were only recognised 3 min, but not 15 min, after i.c.v. treatment even hough changes in the resting values of MBP and IBI were still present at 15 min. These data suggest that SP through the cerebrospinal fluid may participate in central cardiovascular control and, moreover, it may influence the baroreflex regulation.
Collapse
Affiliation(s)
- E Appenrodt
- Institut of Physiology, Magdeburg School of Medicine, FRG
| | | | | |
Collapse
|
38
|
Huston JP, Hasenöhrl RU, Boix F, Gerhardt P, Schwarting RK. Sequence-specific effects of neurokinin substance P on memory, reinforcement, and brain dopamine activity. Psychopharmacology (Berl) 1993; 112:147-62. [PMID: 7532865 DOI: 10.1007/bf02244906] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is ample evidence that the neurokinin substance P (SP) can have neurotrophic as well as memory-promoting effects. This paper outlines a recent series of experiments dealing with the effects of SP and its N- and C-terminal fragments on memory, reinforcement, and brain monoamine metabolism. It was shown that SP, when applied peripherally (IP), promotes memory (inhibitory avoidance learning) and is reinforcing (place preference task) at the same dose of 37 nmol/kg. Most important, however, is the finding that these effects seemed to be encoded by different SP sequences, since the N-terminal SP1-7 (185 nmol/kg) enhanced memory, whereas C-terminal hepta- and hexapeptide sequences of SP proved to be reinforcing in a dose equimolar to SP. These differential behavioral effects were paralleled by selective and site-specific changes in dopamine (DA) activity, as both SP and its C-, but not N-terminus, increased extracellular DA in the nucleus accumbens (NAc), but not in the neostriatum. The neurochemical changes lasted at least 2 h after injection. These results show that the reinforcing action of peripheral administered SP may be mediated by its C-terminal sequence, and that this effect could be related to DA activity in the NAc. Direct application of SP (0.74 pmol) into the region of the nucleus basalis magnocellularis (NBM) was also memory-promoting and reinforcing, and again, these effects were differentially produced by the N-terminus and C-terminus, supporting the proposed structure-activity relationship for SP's effects on memory and reinfrocement. These results may provide a hypothetical link between the memory-modulating and reinforcing effects of SP and the impairment in associative functioning accompanying certain neurodegenerative processes.
Collapse
Affiliation(s)
- J P Huston
- Institute of Physiological Psychology I, Heinrich-Heine-University of Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
39
|
Stewart JM, Hall ME. Neuropeptide processing in pathophysiology. AGENTS AND ACTIONS. SUPPLEMENTS 1993; 42:211-26. [PMID: 8356926 DOI: 10.1007/978-3-0348-7397-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuropeptides (peptides synthesized and secreted by neurons) perform many functions in the central nervous system as neurotransmitters, neuromodulators and neurotrophic factors. Neuropeptides are important regulators of amine neurotransmitter release, and can be identified as playing important roles in several pathological states. Neuropeptides are synthesized as protein precursors that are processed enzymatically to yield the biologically active peptides. Many neuropeptides having defined roles are further processed enzymatically to yield fragments having totally different actions. Examples discussed are substance P, adrenocorticotrophic hormone, endorphins and vasopressin.
Collapse
Affiliation(s)
- J M Stewart
- University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|
40
|
Wang LH, Ahmad S, Benter IF, Chow A, Mizutani S, Ward PE. Differential processing of substance P and neurokinin A by plasma dipeptidyl(amino)peptidase IV, aminopeptidase M and angiotensin converting enzyme. Peptides 1991; 12:1357-64. [PMID: 1726123 DOI: 10.1016/0196-9781(91)90220-j] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In addition to plasma metabolism of substance P (SP) by angiotensin converting enzyme (ACE; EC 3.4.15.1) (less than 1.0 nmol/min/ml), the majority of SP hydrolysis by rat and human plasma was due to dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5) (3.15-5.91 nmol/min/ml), which sequentially converted SP to SP(3-11) and SP(5-11). In turn, the SP(5-11) metabolite was rapidly hydrolyzed by rat and human plasma aminopeptidase M (AmM; EC 3.4.11.2) (24.2-25.5 nmol/min/ml). The Km values of SP for DAP IV and of SP(5-11) for AmM ranged from 32.7 to 123 microM. In contrast, neurokinin A (NKA) was resistant to both ACE and DAP IV but was subject to N-terminal hydrolysis by AmM (3.76-10.8 nmol/min/ml; Km = 90.7 microM). These data demonstrate differential processing of SP and NKA by specific peptidases in rat and human plasma.
Collapse
Affiliation(s)
- L H Wang
- Department of Physiology, Ohio State University, Columbus 43210
| | | | | | | | | | | |
Collapse
|
41
|
Jean A. [The nucleus tractus solitarius: neuroanatomic, neurochemical and functional aspects]. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE, DE BIOCHIMIE ET DE BIOPHYSIQUE 1991; 99:A3-52. [PMID: 1720691 DOI: 10.3109/13813459109145916] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleus tractus solitarii (NTS) has long been considered as the first central relay for gustatory and visceral afferent informations only. However, data obtained during the past ten years, with neuroanatomical, biochemical and electrophysiological techniques, clearly demonstrate that the NTS is a structure with a high degree of complexity, which plays, at the medullary level, a key role in several integrative processes. The NTS, located in the dorsomedial medulla, is a structure of small size containing a limited number of neurons scattered in a more or less dense fibrillar plexus. The distribution and the organization of both the cells and the fibrillar network are not homogeneous within the nucleus and the NTS has been divided cytoarchitectonically into various subnuclei, which are partly correlated with the areas of projection of peripheral afferent endings. At the ultrastructural level, the NTS shows several complex synaptic arrangements in form of glomeruli. These arrangements provide morphological substrates for complex mechanisms of intercellular communication within the NTS. The NTS is not only the site of vagal and glossopharyngeal afferent projections, it receives also endings from facial and trigeminal nerves as well as from some renal afferents. Gustatory and somatic afferents from the oropharyngeal region project with a crude somatotopy within the rostral part of the NTS and visceral afferents from cardiovascular, digestive, respiratory and renal systems terminate viscero-topically within its caudal part. Moreover the NTS is extensively connected with several central structures. It projects directly to multiple brain regions by means of short connections to bulbo-ponto-mesencephalic structures (parabrachial nucleus, motor nuclei of several cranial nerves, ventro-lateral reticular formation, raphe nuclei...) and long connections to the spinal cord and diencephalic and telencephalic structures, in particular the hypothalamus and some limbic structures. The NTS is also the recipient of several central afferent inputs. It is worth to note that most of the structures that receive a direct projection from the NTS project back to the nucleus. Direct projections from the cerebral cortex to the NTS have also been identified. These extensive connections indicate that the NTS is a key structure for autonomic and neuroendocrine functions as well as for integration of somatic and autonomic responses in certain behaviors. The NTS contains a great diversity of neuroactive substances. Indeed, most of the substances identified within the central nervous system have also been detected in the NTS and may act, at this level, as classical transmitters and/or neuromodulators.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Jean
- Laboratoire de Neurobiologie fonctionnelle, Faculté des Sciences et Techniques St Jérôme, Marseille
| |
Collapse
|
42
|
Lasher RS, Lutz EM, Mulholland F, Sanderson R, Stewart JM, Bublitz C. Immunocytochemical localization of endopeptidase-24.11 in the nucleus tractus solitarius of the rat brain. Neurosci Lett 1990; 117:43-9. [PMID: 2290620 DOI: 10.1016/0304-3940(90)90117-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, it has been hypothesized that the N-terminal portion of substance P (SP), SP(1-7), which results from the action of endopeptidase 24.11 (EC3.4.24.11), could be involved in mediating the depressor effects of baroreceptor afferent activation via its action on cells in the nucleus tractus solitarius (NTS). In this study, the binding of a monoclonal antibody to endopeptidase 24.11 was examined immunohistochemically at the level of the caudal medulla of the rat brain. By light microscopy, intense immunoreactivity was seen in the NTS, in fibers bordering the area postrema, and in the area postrema itself. After electron microscopy, endopeptidase 24.11-like immunoreactivity was seen to be associated with the cytoskeleton and plasma membrane in axons, dendrites and glial processes. Antigen was also associated with synaptic vesicles and plasma membranes in presynaptic terminals forming mainly axo-dendritic synapses typical of vagal afferent terminals involved in the baroreceptor reflex. Thus, endopeptidase 24.11 appears to be localized at sites where it could effectively process SP prior to its binding to postsynaptic receptors.
Collapse
Affiliation(s)
- R S Lasher
- Department of Cellular and Structural Biology, University of Colorado Medical School, Denver 80262
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
There is considerable evidence that substance P (SP) is a neurotransmitter in the CNS. Current findings suggest that the effects of synaptically released SP are terminated by enzymatic breakdown, primarily by endopeptidase 3.4.24.11 (endo 24.11). The products of cleavage by endo 24.11 include the amino-terminal fragment SP(1-7). Evidence suggests that SP is involved in mediating baroreceptor reflex activity in the nucleus of the solitary tract (NTS). Microinjection of SP into the NTS lowered blood pressure and heart rate. Microinjection of SP(1-7) into the NTS reproduced the effects of SP on both heart rate and blood pressure. Intra-NTS injection of phosphoramidon, an inhibitor of endo 24.11 activity, completely blocked the effects of a subsequent injection of SP. This blocking effect of phosphoramidon was unaltered by pretreatment with the opiate inhibitor naloxone. In contrast, phosphoramidon failed to block the depressor and bradycardic effects of SP(1-7). The implications of these findings regarding the role of endo 24.11 in the metabolism of SP are discussed.
Collapse
Affiliation(s)
- M E Hall
- Department of Biochemistry, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|