1
|
Kalil B, Ramaswamy S, Plant TM. The Distribution of Substance P and Kisspeptin in the Mediobasal Hypothalamus of the Male Rhesus Monkey and a Comparison of Intravenous Administration of These Peptides to Release GnRH as Reflected by LH Secretion. Neuroendocrinology 2016; 103:711-23. [PMID: 26580201 PMCID: PMC4873470 DOI: 10.1159/000442420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023]
Abstract
Substance P (SP) was recently reported to be expressed in human kisspeptin/neurokinin B/dynorphin (KNDy) neurons and to enhance KNDy neuron excitability in the mouse hypothalamus. We therefore examined (1) interactions of SP and kisspeptin in the mediobasal hypothalamus of adult male rhesus monkeys using immunofluorescence, and (2) the ability of SP to induce LH release in GnRH-primed, agonadal juvenile male monkeys. SP cell bodies were observed only occasionally in the arcuate nucleus (Arc), but more frequently dorsal to the Arc in the region of the premammillary nucleus. Castration resulted in an increase in the number of SP cell bodies in the Arc but not in the other regions. SP fibers innervated the Arc, where they were found in close apposition with kisspeptin perikarya in the periphery of this nucleus. Beaded SP axons projected to the median eminence, where they terminated in the external layer and intermingled with beaded kisspeptin axons. Colocalization of the two peptides, however, was not observed. Although close apposition between SP fibers and kisspeptin neurons suggest a role for SP in modulating GnRH pulse generator activity, i.v. injections of SP failed to elicit release of GnRH (as reflected by LH) in the juvenile monkey. Although the finding of structural interactions between SP and kisspeptin neurons is consistent with the notion that this tachykinin may be involved in regulating pulsatile GnRH release, the apparent absence of expression of SP in KNDy neurons suggests that this peptide is unlikely to be a fundamental component of the primate GnRH pulse generator.
Collapse
Affiliation(s)
- Bruna Kalil
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, 14049-900
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, 14040-904, Universidade de São Paulo, SP, Brazil
| | - Suresh Ramaswamy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Tony M. Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Guilding C, Piggins HD. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 2007; 25:3195-216. [PMID: 17552989 DOI: 10.1111/j.1460-9568.2007.05581.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level.
Collapse
Affiliation(s)
- Clare Guilding
- 3.614 Stopford Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
3
|
Debeljuk L, Lasaga M. Modulation of the hypothalamo-pituitary-gonadal axis and the pineal gland by neurokinin A, neuropeptide K and neuropeptide gamma. Peptides 1999; 20:285-99. [PMID: 10422885 DOI: 10.1016/s0196-9781(98)00159-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Modulation of the hypothalamo-pituitary-gonadal axis and the pineal gland by neurokinin A, neuropeptide K, and neuropeptide gamma. PEPTIDES 1999. Neurokinin A (NKA), neuropeptide K (NPK) and neuropeptide gamma (NPG) are members of the family of tachykinins, and act preferentially on NK-2 tachykinin receptors. These peptides are widely distributed and are potent stimulators of smooth muscle contraction, especially in the respiratory and gastrointestinal tract. They also induce vasodilatation and plasma extravasation. Through their effects on the vascular tone, they are also potential regulators of the blood flow and therefore of the function of many organs and tissues. Tachykinins have been demonstrated to influence the secretory activity of endocrine cells, and they may have a physiological role as regulators of endocrine functions. A number of reports have indicated that NPK, NKA and NPG act on the hypothalamo-pituitary gonadal axis to regulate functions related to reproduction. Therefore, we thought that, at this point, it was important to review the available evidence suggesting the role of these tachykinins on reproductive functions by effects exerted at 3 different levels of regulation: the hypothalamus, the anterior pituitary and the gonads. These 3 tachykinin peptides were reported to have effects on reproductive functions, acting on the control of the secretion of gonadotropin and prolactin at the level of the hypothalamo-pituitary axis, and on the steroid secretion by the testes and the ovaries. Acting on the hypothalamus, tachykinins, mainly NPK, were reported to inhibit LH secretion, but this effect is dependent on the presence of gonadal steroids. On the anterior pituitary gland, however, tachykinins were shown to stimulate LH and prolactin secretion, and this effect is also dependent on the presence of gonadal steroids. Tachykinin concentrations in the hypothalamus and pituitary are regulated by steroid hormones. In the hypothalamus, estrogens and testosterone increase tachykinin concentration. In the anterior pituitary gland, estradiol and thyroid hormones markedly depress tachykinin concentrations. Ovariectomy and exposure to short photoperiods significantly increase anterior pituitary tachykinins in the Siberian hamster. In the pineal gland, SP and NK-1 receptors are present and, more recently, the presence of NKA and probably also NPK was demonstrated. Castration and steroid replacement modified the content of tachykinins in the pineal gland. The removal of the superior cervical ganglia was followed by an increase in NKA content in the pineal gland. These results suggest that gonadal steroids may influence tachykinins in the pineal gland. In the gonads, tachykinins stimulated the secretory activity of Sertoli cells, but inhibited testosterone secretion by Leydig cells. There are very few reports on the role of tachykinins in the ovary, but some of them indicated that these peptides are present in some of the ovarian structures, and they may affect the secretion of ovarian steroids. Thus, NKA, NPK and NPG appear to have a modulatory role, mainly acting as paracrine factors, on the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- L Debeljuk
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale 62901-6512, USA.
| | | |
Collapse
|
4
|
Abstract
Tachykinins are a family of neuropeptides, which act by binding to three main subtypes of G protein-coupled receptors, named NK1, NK2 and NK3. Tachykinins are contained in both nerve fibers and secretory cells of the hypothalamo-pituitary-adrenal (HPA) axis, and evidence indicates that they take part in the functional control of it. Tachykinins involved in this function include substance P (SP), neuropeptide K and its derivative neurokinin A (NKA), and neurokinin B, which preferentially bind to NK1, NK2 and NK3 receptors, respectively. NK1 agonists exert an inhibitory effect on the hypothalamo pituitary CRH/ACTH system, while NK2 and perhaps NK3 agonists stimulate it, thereby controlling the secretion and growth of the adrenal cortex via circulating ACTH. Intra-adrenal tachykinins may also affect the cortex function. Their direct action on adrenocortical cells is doubtful and probably pharmacologic in nature, but several investigations suggest that tachykinins indirectly stimulate the cortex by acting on medullary chromaffin cells, which in turn exert a paracrine control on adrenocortical cells. SP enhances aldosterone production of zona glomerulosa by eliciting catecholamine secretion; neuropeptide K and NKA raise glucocorticoid production of zonae fasciculata and reticularis through the activation of the intramedullary CRH/ACTH system. The relevance of these effects of tachykinins under basal conditions is questionable, although there are indications that SP is involved in the maintenance of a normal growth and steroidogenic capacity of rat zona glomerulosa, and that SP and NKA play an important role in the stimulation of the adrenal growth during the fetal life. In contrast, evidence has been provided that the role of tachykinins, and especially of SP, could become very relevant under paraphysiological (e.g., physical or inflammatory stresses) or pathological conditions (e.g., ACTH-secreting pituitary tumors), when an excess of steroid-hormone production has to be counteracted.
Collapse
|
5
|
Gautreau A, Duval P, Kerdelhué B. Variations in levels of substance P-encoding beta-, gamma-preprotachykinin and substance P receptor NK-1 transcripts in the rat hypothalamus throughout the estrous cycle: a correlation between amounts of beta-preprotachykinin and NK-1 mRNA. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:157-64. [PMID: 9387875 DOI: 10.1016/s0169-328x(97)00140-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using a sensitive RNase protection assay, the simultaneous quantification of hypothalamic beta-, gamma-preprotachykinin (PPT) and SP receptor NK-1 transcripts was performed throughout the estrous cycle. The amounts of these 3 transcripts were up-regulated during diestrus II-proestrus night (2-, 1.5- and 1.3-fold, respectively). These levels returned to low values during the proestrous day in the case of gamma-PPT mRNA and during the estrus-diestrus I night in the cases of beta-PPT and NK-1 mRNAs. These results implicate a differential regulation in amounts of the two alternatively spliced PPT transcripts. The 160 hypothalami of this study had been previously assayed for amounts of substance P (SP) and neurokinin A (NKA) peptides [P. Duval, V. Lenoir, S. Moussaoui, C. Garret and B. Kerdelhué, Substance P and neurokinin A variations throughout the rat estrous cycle; comparison with ovariectomized and male rats: I. Plasma, hypothalamus, anterior and posterior pituitary, J. Neurosci. Res., 45 (1996) 598-609]. Variations in mRNA and peptide levels were compared by statistical analysis. Surprisingly, variations in SP level paralleled those in beta-PPT mRNA level and variations in NKA level paralleled those of gamma-PPT mRNA level, although beta- and gamma-PPT transcripts encode both SP and NKA. Furthermore, the level of NK-1 mRNA was positively correlated with the level of beta-PPT mRNA (r = 0.90, P < 10(-58)) and with the level of SP peptide (r = 0.30, P < 10(-3)) but not with the level of NKA peptide. This analysis suggests that SP receptor NK-1 mRNA could be physiologically regulated by SP peptide in the rat hypothalamus.
Collapse
Affiliation(s)
- A Gautreau
- Laboratoire de Neuroendocrinologie, CNRS URA 1310, Faculté de Pharmacie, Paris, France
| | | | | |
Collapse
|
6
|
Chowdrey HS, Larsen PJ, Harbuz MS, Lightman SL, Jessop DS. Endogenous substance P inhibits the expression of corticotropin-releasing hormone during a chronic inflammatory stress. Life Sci 1995; 57:2021-9. [PMID: 7475953 DOI: 10.1016/0024-3205(95)02194-n] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the effects of a chronic inflammatory stress on substance P (SP) levels in the hypothalami of rats given adjuvant-induced arthritis (AA). Fourteen days after injection of Mycobacterium butyricum, substance P concentrations in the paraventricular nucleus (PVN) and median eminence/arcuate nucleus were significantly increased. In AA rats injected intraperitoneally with the specific neurokinin-1 receptor antagonist RP67580, plasma ACTH and corticosterone concentrations were significantly elevated, and corticotropin-releasing hormone (CRH) mRNA in the PVN was increased compared to the AA group which received saline alone. The increases in hypothalamic SP in AA, together with the data demonstrating that HPA axis activity is enhanced in AA following injection of a SP antagonist, are consistent with the hypothesis that SP is acting as an inhibitor of CRH expression in this model of chronic inflammatory stress.
Collapse
Affiliation(s)
- H S Chowdrey
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, U.K
| | | | | | | | | |
Collapse
|
7
|
Horvath TL, Kalra SP, Naftolin F, Leranth C. Morphological evidence for a galanin-opiate interaction in the rat mediobasal hypothalamus. J Neuroendocrinol 1995; 7:579-88. [PMID: 8704731 DOI: 10.1111/j.1365-2826.1995.tb00795.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It is well established that hypothalamic galanin- and beta-endorphin-containing circuits play important roles in the neuroendocrine regulation of pituitary hormone secretion and sexual behaviors, as well as in feeding. Recent experimental evidence suggests that an opiate-galanin interaction may be involved in these neuroendocrine responses. In particular, galanin and beta-endorphin have been shown to stimulate prolactin release from the pituitary, and concurrently, evoke feeding in the rat. The present study was designed to elucidate the morphological component underlying these responses in the hypothalamus. Sections of the mediobasal hypothalamus of colchicine-pretreated female rats were double immunostained for galanin and beta-endorphin. A dark blue nickel ammonium sulfate-intensified diaminobenzidine reaction was used to visualize galanin profiles, while beta-endorphin neurons were labeled with a light brown diaminobenzidine reaction. Light microscopy revealed putative connections between galanin boutons and beta-endorphin cells. Electron microscopic examination showed that galanin boutons form axo-somatic and axo-dendritic synaptic connections with beta-endorphin neurons. The vast majority (89.6%) of the beta-endorphin-immunoreactive neurons were found to be contacted by galanin-immunopositive fibers in the hypothalamus. To determine the origin of the galanin fibers innervating this region, the arcuate nuclei of additional rats were isolated unilaterally using a Halász-knife. After a ten day survival period, immunostaining was carried out for galanin. The relative surface occupied by galanin immunoreactive profiles on the ipsi- and contralateral sides were compared using an image analyzer. This analysis revealed that deafferentation of the arcuate nucleus did not decrease the density of galanin immunoreactive profiles on the isolated side of the arcuate nucleus compared to the control side, thus, indicating that the galanin boutons contacting beta-endorphin cells are most probably of local origin. These studies support the proposal that galanin-evoked prolactin secretion and feeding behavior may, in part, be mediated by enhanced beta-endorphin release and raises the possibility that a hypothalamic galanin-beta-endorphin axis may operate in the control of other pituitary hormones.
Collapse
Affiliation(s)
- T L Horvath
- Department of Obstetrics and Gynecology, Yale University School of Medicine New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Neuronal peptides exert neurohormonal and neurotransmitter (neuromodulator) functions in the central nervous system (CNS). Besides these functions, a group of neuropeptides may have a capacity to create cell proliferation, growth, and survival. Axotomy induces transient (1-21 d) upregulation of synthesis and gene expression of neuropeptides, such as galanin, corticotropin releasing factor, dynorphin, calcitonin gene-related peptide, vasoactive intestinal polypeptide, cholecystokinin, angiotensin II, and neuropeptide Y. These neuropeptides are colocalized with "classic" neurotransmitters (acetylcholine, aspartate, glutamate) or neurohormones (vasopressin, oxytocin) that are downregulated by axotomy in the same neuronal cells. It is more likely that neuronal cells, in response to axotomy, increase expression of neuropeptides that promote their survival and regeneration, and may downregulate substances related to their transmitter or secretory activities.
Collapse
Affiliation(s)
- M Palkovits
- Laboratory of Neuromorphology, Semmelweis Medical University, Budapest, Hungary
| |
Collapse
|
9
|
Chowdrey HS, Lightman SL. Role of central amino acids and peptide-mediated pathways in neurohypophysial hormone release. Ann N Y Acad Sci 1993; 689:183-93. [PMID: 8373013 DOI: 10.1111/j.1749-6632.1993.tb55547.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- H S Chowdrey
- Neuroendocrinology Unit, Charing Cross and Westminster Medical School, Charing Cross Hospital, London, United Kingdom
| | | |
Collapse
|
10
|
Bayer LE, Milner TA. Transient increases in neuropeptide Y-like immunoreactivity in dentate hilar neurons following fimbria/fornix transection. J Neurosci Res 1993; 34:434-41. [PMID: 8474145 DOI: 10.1002/jnr.490340408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurons containing neuropeptide Y (NPY) are numerous in those hippocampal regions that receive septal and monoaminergic afferents. To assess the role of these afferents in the expression of NPY in hippocampal neurons, the number and distribution of perikarya with NPY-like immunoreactivity (NPY-LI) was examined quantitatively in the dentate gyrus of adult male rats following unilateral transection of the right fimbria/fornix. In unlesioned rats, immunoperoxidase labeling for the antibody to NPY was detected mostly in fibers and only a few perikarya in the dentate gyrus. Following fornix transections, the number of detectable NPY-containing neurons in the hilus of the dentate gyrus ipsilateral to the lesion increased at 3 days post-lesion (dpl), peaked at 6 and 9 dpl, then returned to basal levels at 14 dpl and 1 and 6 months post-lesion. This elevation followed a rostral to caudal gradient. No apparent changes were found in the distribution of NPY-labeled neurons at any post-lesion interval studied. Moreover, no significant changes at any of the post-lesion times were found in the number or distribution of neurons with NPY-LI in the hilus of sham lesioned (i.e., ablations of the cortex and anterior hippocampal formation sparing the fornix) rats. The observed increases in the number of hippocampal neurons containing detectable NPY suggests that the cellular levels of this peptide are dependent on pathways travelling through the fornix. The rapid and transient increases in NPY are not due exclusively to changes in cholinergic pathways but may involve changes in other pathways within the fornix or even indirect neurotrophic effects.
Collapse
Affiliation(s)
- L E Bayer
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021
| | | |
Collapse
|
11
|
Weld MM, Maler L. Substance P-like immunoreactivity in the brain of the gymnotiform fish Apteronotus leptorhynchus: presence of sex differences. J Chem Neuroanat 1992; 5:107-29. [PMID: 1375031 DOI: 10.1016/0891-0618(92)90038-r] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of substance P-like immunoreactivity (SPli) was charted in the brain of the gymnotiform fish Apteronotus leptorhynchus, and correlated with the circuitry underlying intraspecific electrocommunication. Cell bodies were found predominantly in the lateral hypothalamus and in certain paraventricular organs: nucleus preopticus periventricularis, anterior subdivision; anterior hypothalamus; nucleus posterioris periventricularis; nucleus recessus lateralis, medial subdivision 2; nucleus recessus posterioris and nucleus recessus lateralis, lateral subdivision. Cell bodies were also found in the rostral olfactory nucleus, ventral telencephalon (ventral and central subdivisions), the habenula, the vagal sensory and motor nuclei and in the subtrigeminal nucleus. The distribution of SPli fibers was similar in some respects to that reported for other vertebrates. SPli was found in the rhombencephalon associated with vagal afferent fibers and in the funicular nucleus (possibly related to nociception). In the diencephalon and midbrain SPli fibers were found in the habenular-interpeduncular tract, in the hypothalamus and pituitary. SPli fibers were also found in preoptic and forebrain areas. The most striking result was the sexually dimorphic SPli innervation of certain hypothalamic and septal nuclei, and of the prepacemaker nucleus (PPn), a diencephalic cell group which controls communication ('chirping') in gymnotiforms. The PPn and septal/hypothalamic nuclei were densely innervated by SPli in males but devoid of SPli in females.
Collapse
Affiliation(s)
- M M Weld
- Department of Anatomy, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
12
|
Villanúa MA, Debeljuk L, Ghosh PK, Bartke A. Effects of neonatal administration of monosodium glutamate and castration on neurokinin A levels in the hypothalamus and anterior pituitary of rats. Peptides 1992; 13:377-81. [PMID: 1329045 DOI: 10.1016/0196-9781(92)90124-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of neonatal administration of monosodium glutamate (MSG) and castration on hypothalamic and anterior pituitary levels of neurokinin A (NKA) were studied in male and female rats killed at 46 days of age. In male rats treated neonatally with MSG, body, anterior pituitary, testis, ventral prostate, and seminal vesicle weights and serum testosterone levels were significantly lower than in saline-injected controls. Hypothalamic NKA was significantly lower in MSG-treated male rats as compared with the controls, and no apparent changes were recorded in anterior pituitary NKA. Orchidectomy was followed by a significant decrease in hypothalamic NKA in saline controls, but not in MSG-treated rats. In female rats treated with MSG, there was a significant decrease in body, anterior pituitary, and ovarian weights, as compared with saline-injected controls, but no significant differences were observed in uterine weights and serum estradiol levels. Hypothalamic NKA was lower, although not significantly, in MSG-treated rats as compared with the respective controls, and no differences were recorded in anterior pituitary NKA levels. Ovariectomy was followed by a significant decrease in hypothalamic NKA in both MSG-treated and control rats, but NKA in the anterior pituitary was significantly increased after ovariectomy only in saline-treated controls, whereas MSG-treated females failed to show this response. It is concluded that neonatal MSG treatment resulted in a decrease of hypothalamic NKA, which was particularly pronounced in male rats without any significant change in anterior pituitary NKA levels. The response of hypothalamic NKA to castration and the response of anterior pituitary NKA to ovariectomy were also altered in MSG-treated rats; this may reflect a functional block of some neuroendocrine functions of the hypothalamus that resulted from the neuronal lesions induced by MSG.
Collapse
Affiliation(s)
- M A Villanúa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale 62901-6512
| | | | | | | |
Collapse
|
13
|
Larsen PJ. Distribution of substance P-immunoreactive elements in the preoptic area and the hypothalamus of the rat. J Comp Neurol 1992; 316:287-313. [PMID: 1374435 DOI: 10.1002/cne.903160304] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The localization and morphology of neurons, processes, and neuronal groups in the rat preoptic area and hypothalamus containing substance P-like immunoreactivity were studied with a highly selective antiserum raised against synthetic substance P. The antiserum was thoroughly characterized by immunoblotting; only substance P was recognized by the antiserum. Absorption of the antiserum with synthetic substance P abolished immunostaining while addition of other hypothalamic neuropeptides had no effect on the immunostaining. The specificity of the observed immunohistochemical staining pattern was further confirmed with a monoclonal substance P antiserum. The distribution of substance P immunoreactive perikarya was investigated in colchicine-treated animals, whereas the distribution of immunoreactive nerve fibers and terminals was described in brains from untreated animals. In colchicine-treated rats, immunoreactive cells were reliably detected throughout the preoptic area and the hypothalamus. In the preoptic region, labeled cells were found in the anteroventral periventricular and the anteroventral preoptic nuclei and the medial and lateral preoptic areas. Within the hypothalamus, immunoreactive cells were found in the suprachiasmatic, paraventricular, supraoptic, ventromedial, dorsomedial, supramammillary, and premammillary nuclei, the retrochiasmatic, medial hypothalamic, and lateral hypothalamic areas, and the tuber cinereum. The immunoreactive cell groups were usually continuous with adjacent cell groups. Because of the highly variable effect of the colchicine treatment, it was not possible to determine the actual number of immunoreactive cells. Mean soma size varied considerably from one cell group to another. Cells in the magnocellular subnuclei of the paraventricular and supraoptic nuclei were among the largest, with a diameter of about 25 microns, while cells in the supramammillary and suprachiasmatic nuclei were among the smallest, with a diameter of about 12 microns. Immunoreactive nerve fibers were found in all areas of the preoptic area and the hypothalamus. The morphology, size, density, and number of terminals varied considerably from region to region. Thus, some areas contained single immunoreactive fibers, while others were innervated with such a density that individual nerve fibers were hardly discernible. During the last decade, knowledge about neural organization of rodent hypothalamic areas and mammalian tachykinin biochemistry has increased substantially. In the light of these new insights, the present study gives comprehensive morphological evidence that substance P may be centrally involved in a wide variety of hypothalamic functions. Among these could be sexual behavior, pituitary hormone release, and water homeostasis.
Collapse
Affiliation(s)
- P J Larsen
- Department B, University of Copenhagen, Denmark
| |
Collapse
|
14
|
Rance NE. Hormonal influences on morphology and neuropeptide gene expression in the infundibular nucleus of postmenopausal women. PROGRESS IN BRAIN RESEARCH 1992; 93:221-35; discussion 235-6. [PMID: 1336203 DOI: 10.1016/s0079-6123(08)64574-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuronal hypertrophy occurs in a subpopulation of neurons in the infundibular nucleus of post-menopausal women. The hypertrophied neurons contain NKB, SP and estrogen receptor gene transcripts. Although associated with reproductive aging, post-menopausal neuronal hypertrophy is not a sign of central nervous system degeneration. Quite the opposite, because the hypertrophy is accompanied by marked increases in tachykinin gene expression, reflecting increased neuronal activity. We have proposed that infundibular neurons containing NKB, SP and estrogen receptor mRNAs participate in the hypothalamic circuitry regulating estrogen negative feedback on gonadotropin release in the human. In addition, there is evidence to suggest that the hypertrophied tachykinin neurons may be involved in the initiation of menopausal flushes. Because menopause affects a well characterized system, and has consistent and substantial changes in hormone levels, we have had the rare opportunity to correlate changes in hormone secretion with structural and neurochemical changes in the human hypothalamus. We suspect that future studies of the hypothalami of post-menopausal women will continue to be a fruitful avenue for investigating neuroendocrine regulation in the human.
Collapse
Affiliation(s)
- N E Rance
- Department of Pathology, University of Arizona College of Medicine, Tucson 85724
| |
Collapse
|
15
|
Jakab RL, Leranth C. Synaptology and origin of somatostatin fibers in the rat lateral septal area: convergent somatostatinergic and hippocampal inputs of somatospiny neurons. Brain Res 1991; 565:123-34. [PMID: 1723020 DOI: 10.1016/0006-8993(91)91743-k] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study deals with the synaptology, morphologically identified postsynaptic targets, and origin of somatostatin (SOM) fibers in the rat lateral septal area (LSA) with special reference to those forming pericellular baskets. Septal vibratome sections were immunostained for SOM-14 in 3 experimental groups: control animals, rats subjected to a chronic transection of the ascending afferents to the septum, and animals with acute fimbria-fornix lesion. Light microscopy revealed that the SOM-immunoreactive fibers form pericellular baskets predominantly in the intermediate and ventral parts of the caudal half of the LSA. Electron microscopic analysis showed that the somatospiny neurons are postsynaptic targets of these pericellular baskets. Eight days after a unilateral cut placed at the ventral border of the septum, virtually all SOM-immunoreactive axon terminals disappeared from the ipsilateral intermediate and ventral LSA, and they were substantially reduced in the dorsal LSA. However, in these rats SOM-positive neurons could be observed in the LSA on the lesioned, but not on the contralateral side. Furthermore, on the lesion side of the anterior periventricular hypothalamus an increase was detected both in the number and the intensity of immunostaining of SOM-positive neurons. Thirty-six h following a unilateral transection of the fimbria-fornix, the SOM-immunoreactive axon terminals in the LSA remained intact; only immunonegative degenerated hippocamposeptal boutons were detected forming synaptic contacts with somatospiny neurons. Axosomatic synapses of SOM-positive boutons regularly appeared at the neck of somatic spines which were postsynaptic to degenerated hippocamposeptal fibers. The results indicate that the septal SOM fibers are of multiple origin. Those forming pericellular baskets in the LSA originate in ventral extraseptal, probably periventricular hypothalamic areas. SOM fibers scattered in the dorsal LSA are most likely processes of local SOM neurons. The accumulation of immunoreactive SOM in some cells of the undercut septum is a sign of axonal lesion, indicating that these neurons project outside the septum. The SOM innervation of somatospiny neurons which also receive hippocampal input and have been reported to contain gamma-aminobutyric acid (GABA) may be a morphological substrate of the SOM-related disinhibition in the LSA.
Collapse
Affiliation(s)
- R L Jakab
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
16
|
Jessop DS, Chowdrey HS, Biswas S, Lightman SL. Substance P and substance K in the rat hypothalamus following monosodium glutamate lesions of the arcuate nucleus. Neuropeptides 1991; 18:165-70. [PMID: 1712432 DOI: 10.1016/0143-4179(91)90109-v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adult rats treated neonatally with monosodium glutamate (MSG) exhibit lesions in the arcuate nucleus of the hypothalamus. Following MSG lesioning, dopamine content in median eminence/arcuate nucleus (ME/AN) tissue extracts declined by 60-70%. Substance P (SP) content as determined by radioimmunoassay was significantly decreased in the paraventricular nucleus (PVN) (531 +/- 30 pg, mean +/- SEM) compared to controls (871 +/- 110 pg) but was unchanged in ME/AN extracts. Substance K (SK) content decreased to 257 +/- 20 pg in the PVN of lesioned animals compared to controls (367 +/- 31 pg) and the ME/AN content of SK was also significantly decreased (236 +/- 36 pg compared to control levels of 619 +/- 65 pg). The CRF-41 content of the PVN and ME/AN was unchanged by MSG lesioning, indicating that these areas are not affected by MSG. The partial depletion of SP and SK in the PVN following MSG treatment provides evidence that at least some of the neurokinin content of the PVN may originate in cell bodies of the arcuate nucleus. However, the lack of response of ME/AN SP to MSG treatment may suggest that the arcuate nucleus is not the major source of SP in the median eminence.
Collapse
Affiliation(s)
- D S Jessop
- Neuroendocrinology Unit, Westminster Hospital, London, UK
| | | | | | | |
Collapse
|
17
|
Jessop DS, Chowdrey HS, Lightman SL. Substance P and substance K in the median eminence and paraventricular nucleus of the rat hypothalamus. Neuropeptides 1990; 17:135-40. [PMID: 1707503 DOI: 10.1016/0143-4179(90)90076-b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have used specific radioimmunoassays coupled with reversed-phase high-performance liquid chromatography (HPLC) to measure and characterise substance P (SP) and substance K (SK) in subdivisions of the rat hypothalamus. SP and SK levels in the paraventricular nucleus (PVN) were 968 +/- 61 and 381 +/- 22 pg respectively; in the supraoptic nucleus (SON) were 210 +/- 21 and 79 +/- 8 pg; and in the median eminence/arcuate nucleus (ME) were 1044 +/- 66 and 451 +/- 20 pg. Reversed-phase HPLC revealed that immunoreactive (ir) SP was present solely in the non-oxidised form in all tissue extracts. The principal form of ir-SK in the PVN and SON coeluted with synthetic SK on HPLC, but some immunoreactivity eluted in a later position. This material represented less then 5% of the total ir-SK in extracts of the PVN and SON, but increased to 35-40% of the total in the ME. Gel chromatography and HPLC characterised this compound as being slightly smaller and more hydrophobic than SK. These results establish that ir-SK is present within the hypothalamus in varying amounts and molecular forms. The location of significant amounts of both SP and SK in the PVN and ME, the principal regions of CRF-41 synthesis and release, is compatible with a role for neurokinins in the modulation of CRF-41 and consequently ACTH release.
Collapse
Affiliation(s)
- D S Jessop
- Neuroendocrinology Unit, Westminister Hospital, London, UK
| | | | | |
Collapse
|